

'Putting Science Into Standards' workshop

Welcome! We will start soon

CREATING AND DOCUMENTING DATASETS FOR AI

8 June, 15:45-17:15

Panel discussion CREATING AND DOCUMENTING DATASETS FOR AI

Roundtable speakers

Felix NAUMANN

Hasso-Plattner-Institut **Emmanuel KAHEMBWE**

VDE

Kasia CHMIELINSKI

Dataset Nutrition label

Flora DELLINGER

Valeo, Confiance.ai

Rapporteurs: Isabelle Hupont Torres (JRC)

Audience interaction

slido.com

#Standards4AI

- Select the Dataset for AI room on Slido
- Zoom chat only technical questions to host
- Camera and audio OFF

'Putting Science Into Standards' workshop

Felix Naumann Hasso-Plattner-Institut

slido

Please fill in the survey

Felix Naumann (HPI)

- ▶CS PhD in Information Quality and Information Integration
- ▶ Research at Humboldt University, IBM, AT&T, QCRI, SAP
- ► Chair for "Information Systems" at Hasso Plattner Institute and University of Potsdam
- ► Data Profiling: Measuring data quality
 - ▶ Dependency discovery
- ► Data Cleaning: Improving data quality
 - **▶** Duplicate detection
 - **▶** Data preparation
 - **▶**Change exploration

https://www.vde.com/kitgar

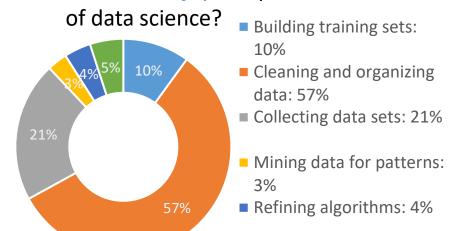
Challenges Faced & Solutions

- ▶Bad files → bad data → bad results
 - ▶ Path of least resistance
- ► First challenge: Detect and measure problems
 - ► Novel AI-specific quality dimensions
- ► Second challenge: Prepare and clean data for AI
- ► Third challenge: Transparent documentation
 - ► Data quality measures
 - **▶** Data cleaning steps

What data scientists spend



What is the least enjoyable part



'Putting science into standards' workshop – Data quality inclusive, non-biased and trustworthy Al■ Others: 5%

Way Forward, Next Steps

- **▶** Data quality dimensions
 - ▶Which established dimensions are relevant?
 - ▶ Based on learning task, pipeline stage, domain
 - ▶ Which new dimensions are needed?
 - ▶ Diversity, privacy, bias, liability, explainability, ...
- ► Assessment and explanation of data quality
 - ▶Which dimensions are (automatically) assessable/testable?
 - ▶ Can we efficiently measure data quality?
 - ▶ Can we correlate model errors with data quality problems?

'Putting Science Into Standards' workshop

Emmanuel Kahembwe VDE

Background

- ▶Education: PhDs in AI & Robotics
- ▶ Research:
 - ► Amazon Alexa AI Prize
 - ► Multimodal datasets
- ▶ Professional:
 - ▶CEO @ VDE (UK&I)
 - ▶ Chief AI Architect @ VDE e.V.
 - ▶ Standardization: StandICT EUOS, BSI (ART/1), OECD.AI
- ► European Projects:
 - ► AI Trust Standard/Label
 - ► AI Quality & Testing Hub

Challenges Faced & Solutions

- ► Web Scrapping:
 - ► Copyright & Provenance
 - **►**Multimodality
 - ► Alt-text
 - ► Malignant stereotypes
 - ► Search Engine Bias
 - **▶** Curation
 - ► RTBF
 - ▶ Illicit material
 - ► Inclusivity
 - **▶** Documentation
 - **▶**Access
 - ▶ Difficult/expensive to collect, clean and maintain datasets

Challenges Faced & Solutions

- ▶ Documentation
 - ► Datasheets (and Model Cards)
- **►**Auditing
 - ▶ Checklists
 - ► AI Trust Label/Standard
- ► Algorithmic Tools
 - ► Shapley Values
 - ► Influence functions
 - ▶ Filtering (and deletion) tools
 - **▶**Labelling tools

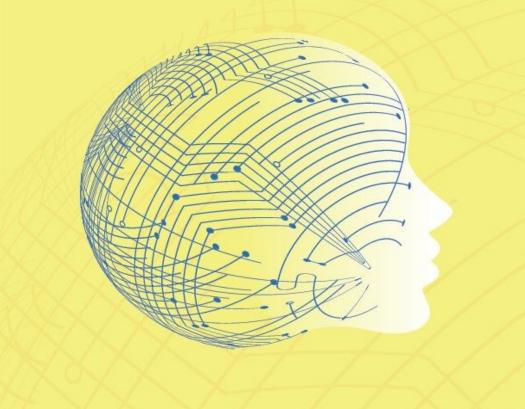
Way Forward, Next Steps

►MISSING:

- ▶ A clear roadmap or set of standards/guidelines on the large scale collection and curation of web-scrapped data.
- ► How should such data be collected, stored, accessed and used within AI.

►Next Steps:

- ► Aligning current AI practices with respect to existing laws and regulations.
- ▶ A set of standard guidelines and metrics for the collection and curation of web-scraped data.
- ▶ A set of standard tools to aid with data curation and documentation



'Putting Science Into Standards' workshop

Thank you!

'Putting Science Into Standards' workshop

Kasia Chmielinski

CO-FOUNDER, DATA NUTRITION PROJECT SHORENSTEIN CENTER, HARVARD KENNEDY SCHOOL OF GOVERNMENT

Professional background

► *Industry: (2007-2021)*Building algorithmic systems

► Research: (2017-current)

Dataset standards, documentation as a transparency mechanism

Challenges

► Incentives [Why should I document?]

Key insight: Internal momentum must be paired with clear expectations and support from leadership, including real power to adjust existing org structures

▶ Usability / Usefulness [How does this fit into my existing tasks?]

Key insight: Friction can be reduced through integrating tools into workflow and focusing on user experience (not just schema)

► Technical Challenges [**How do I document?**]

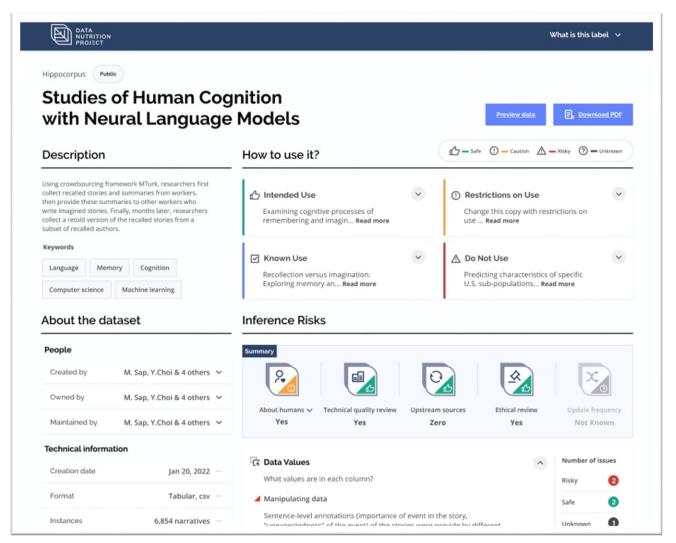
Key insight: Large, unstructured streaming datasets are very challenging to document and will require new tools and approaches. Additionally, there will need to be different standards for different data domains.

► Engagement [How do we engage communities and create culture?]

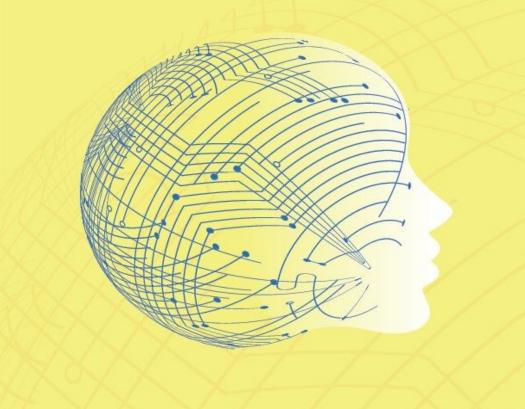
Key insight: This will require balancing values, e.g. community values may be incompatible with open data / science principles

Opportunities

- ► Legibility: Provide standardized, accessible dataset documentation
 - ▶ "Nutrition Label" for Datasets (Fall 2022)
 - ► Streamlined for two pathways: **use** the data and **understand** the data
 - Strong user experience focus for easy reading and comparing
- ► Ecosystem: Leverage existing knowledge structures
 - ▶ Impact Assessments, Datasheets, Model Cards, FactSheets, etc
 - Qualitative information prioritized, especially provenance and domain knowledge
- ► Impact: Short and Long Term
 - ► Labels can be consulted individually, comparatively
 - ► Future integrations with certification programs
 - Drives consumer expectations of data quality transparency even when Label isn't present



'Putting science into standards' workshop – Data quality requirements for inclusive, non-biased and trustworthy AI



'Putting Science Into Standards' workshop

Thank you!

'Putting Science Into Standards' workshop

Flora DELLINGER Valeo, Confiance.ai

Professional background

- ► Flora Dellinger (Valeo, Confiance.AI)
 - ► PhD in computer vision and image processing
 - ► Machine Learning engineer in the industry

Development of AI-based camera perception modules for driving assistance systems.

Confiance.AI: French consortium to design and industrialize trustworthy AI-based critical systems [2021-2024].

Leader of the project "Trust by data": development of methods and tools to obtain trustworthy and relevant datasets for AI.

Challenges Faced & Solutions

Behaviour of AI components is difficult to assess!

- → Datasets are not representative enough of encountered real-world situations (biases, domain gap, corner cases...).
- → Datasets lack quality and integrity over lifecycle.
- → Metrics to evaluate AI models are too generic and research oriented.

How to build relevant datasets for a specific use case? How to ensure quality of a dataset?

Create a methodology for data specification and data collection activities

- → To guide processes
- → To ensure compliance with input requirements (safety, functional, operational design domain)
- → Inspired by work done by ASAM (OpenODD, OpenScenario)

- Propose and develop metrics for trustworthiness datasets
 - → To measure representativity, diversity, traceability, compliance...

Develop tools to process and analyse datasets

- → To facilitate data processing and get insights on datasets
- → Fully integrated in a platform to ensure data integrity.

Way Forward, Next Steps

- ► Today:
 - ► No standards or methodology for data creation, rely mainly on engineers experience.
- ▶Tomorrow, we need to develop new standards for:
 - ▶ Data format and label
 - ► To facilitate data exchanges and processes.
 - ► Dataset design and collection
 - ▶ To ensure relevance of data and to guide data acquisition step.
 - ► Data quality
 - ► To monitor datasets and provide trust in AI components.

'Putting Science Into Standards' workshop

Thank you!

Thank you for joining us today See you tomorrow!

