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European foreword 

This CEN Workshop Agreement (CWA 17944:2022) has been developed in accordance with 
CEN/CENELEC Guide 29 “CEN/CENELEC Workshop Agreements – A rapid way to standardization” and 
with the relevant provisions of CEN/CENELEC Internal Regulations – Part 2. It was approved by a 
Workshop of representatives of interested parties on 2022-11-04, the constitution of which was 
supported by CEN following the public call for participation made on 2022-09-02. However, this CEN 
Workshop Agreement does not necessarily include all relevant stakeholders. 

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2022-11-11. 

Some results incorporated in this CWA received funding from the European Union’s Horizon 2020 
research and innovation framework programme under grant agreement No 814671 (BIZEOLCAT). 

The following organizations and individuals developed and approved this CEN Workshop Agreement: 

• Isabel VICENTE – Fundació EURECAT (Spain) 

• Ana VILLACAMPA – Fundació EURECAT (Spain) 

• Fotios KATSAROS – National Centre for Scientific Research DEMOKCRITOS (Greece) – H2020 
ZEOLCAT-3D 

• Çelebi SERDAR – Turkiye Petrol Rafinerileri Anonim Sirketi TUPRAS (Turkey) 

• Cem AÇIKSARI – Turkiye Petrol Rafinerileri Anonim Sirketi TUPRAS (Turkey) 

• Matej HUŠ – Kemijski Institut (Slovenia) 

• Nathalie VALLEE – Strane Innovation (France) 

• Ilaria PERISSI – European Research Institute of Catalysis A.I.S.B.L. (Belgium) 

• Lidia PELLICANO – European Research Institute of Catalysis A.I.S.B.L. (Belgium) 

• Marta BREGUA – Compañía Española de Petróleos SA (Spain) 

• Trond HALVORSEN – Sintef AS (Norway) 

Attention is drawn to the possibility that some elements of this document may be subject to patent rights. 
CEN and CENELEC policy on patent rights is described in CEN/CENELEC Guide 8 “Guidelines for 
Implementation of the Common IPR Policy on Patent”. CEN shall not be held responsible for identifying 
any or all such patent rights. 

In particular, the one-pot method described in this CWA is subject of international patent application 
PCT/EP2022/054574 (2022) Claiming priority of the European Patent application no.: EP21382154.9 
(2021) held by EURECAT. 

Although the Workshop parties have made every effort to ensure the reliability and accuracy of technical 
and non-technical descriptions, the Workshop is not able to guarantee, explicitly or implicitly, the 
correctness of this document. Anyone who applies this CEN Workshop Agreement shall be aware that 
neither the Workshop, nor CEN, can be held liable for damages or losses of any kind whatsoever. The use 
of this CEN Workshop Agreement does not relieve users of their responsibility for their own actions, and 
they apply this document at their own risk. The CEN Workshop Agreement should not be construed as 
legal advice authoritatively endorsed by CEN. 
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Introduction 

Olefins, also commonly named alkenes, are hydrocarbons containing one or more carbon-carbon double 
bond. Light olefins are strategic chemical building blocks that produce a broad range of extensively high-
value-added products such as polymers, or other interesting chemical intermediates. 

Propylene (C3H6) is a particularly interesting raw material due to its high versatility for the production 
of materials such as polypropylene (PP) for the production of plastic materials, acetone, isoprene for 
synthetic rubber, acrylonitrile, acrolein, acrylic acid and acrylates for the production of acrylic fibres, 
among others and propylene oxide. 

The worldwide demand for propylene (C3H6) is expected to grow at an average annual rate around 2-3 % 
between 2021-2035 (from 90,6 tons/year to 132,1 tons/year) that will exceed the current production 
capacity. 

Traditionally, the production of alkenes is carried out by cracking processes of fossil naphtha. These 
cracking processes produce large CO2 emissions due to its high-energy demanding nature (i.e., reaction 
temperatures 800-1 200 °C). 

Recently, the dehydrogenation of light alkanes (C1-C8 alkanes) emerged as a more efficient and 
sustainable alternative to produce these alkenes. However, the non-oxidative dehydrogenation (nODH) 
process is up to now applied at industrial scale only with limited success due to: 

• Technical limitations – The reaction is operated at high temperatures (550-700 °C) hindering the 
selectivity and favouring metal sintering and coke formation affecting catalyst stability. The reaction 
as well has thermodynamic limitations (maximum conversion 30-45 %) depending on temperature. 

• Economical limitations – i.e., high operational expenditures (OPEX) related with the need of 
regeneration cycles due to the quick catalyst deactivation. 

• Sustainability limitations – i.e., large greenhouse gases emissions associated with poor catalyst 
performances and catalyst regeneration process. 

Although good catalysts for nODH of alkanes have already been provided, there is still a need of additional 
ones with high catalytic conversion, activity and selectivity, and/or with a catalytic conversion. The 
selection of certain metals in combination with other elements, all of them stabilized with particular 
organic compounds and adsorbed on porous supports, gave rise to highly active catalytic surface areas 
that, in addition, not only are selective for propene selectivity in nODH, but also are highly stable and free 
from the main drawbacks of other catalysts for the same reaction (i.e. coke formation, by-side 
deactivating reactions, etc.). 

The methodology in this CWA describes a process for the preparation of a catalyst composition as defined 
above. By means of this one-pot synthesis method, these catalysts are highly active due to the small-
variation of the surface areas caused by the homogeneous distribution of the elements on the supports, 
and due to the synthesis of well-dispersed nanoparticles (1-15 nm, more particularly 1-5 nm), controlled 
by the presence of an organic molecule. The one-pot reaction runs at relatively low temperatures (room 
temperature to 100 °C), thus making the production process more affordable and reproducible than 
other methods for obtaining similar catalysts. 

The use of this method for the preparation of the catalysts results in lower reaction temperature 
(≈500 °C), higher selectivity to propylene (>99 %) and higher conversion and stability (up to 23 % and 
maintained at 21 % after 24 h on stream). The one-pot organometallic approach allows to explore new 
horizons in the preparation of other catalyst for propane dehydrogenation with a very easy one-step 
methodology. 
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This CWA includes results from the European research and innovation BIZEOLCAT project (Bifunctional 
Zeolite based Catalysts and Innovative process for Sustainable Hydrocarbon Transformation). This project 
has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No 814671. 

BIZEOLCAT's main objective is to obtain light olefins and aromatics using light hydrocarbons (C1, C3 and 
C4) by implementing new procedures, involving innovative catalysts synthesis methodologies and novel 
reactor design and processing, demonstrating their improvement in sustainability and economic 
scalability in existing industrial processes. 
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1 Scope 

This CWA describes a one-pot synthesis method to produce nanocatalysts composed of metallic (Pt-Sn) 
nanoparticles adsorbed on the surface area of a porous support. 

These nanocatalysts are used for the non-oxidative dehydrogenation of alkanes (saturated 
hydrocarbons) to obtain light alkenes (olefins) and aromatic hydrocarbons. 
NOTE 1 Methodology and descriptions in this document are suitable to laboratory scale. 

NOTE 2 Safety aspects are not included in this document. General laboratory safety and related nanosafety 
measures from suitable national or international standards, regulations or literature should be applied. 

2 Normative references 

There are no normative references in this document. 

3 Terms and definitions 

No terms and definitions are listed in this document. 

ISO and IEC maintain terminological databases for use in standardization at the following addresses: 

— ISO Online browsing platform: available at https://www.iso.org/obp/ 

— IEC Electropedia: available at https://www.electropedia.org/ 

4 Description of the nanocatalysts 

4.1 General description 

Catalyst compositions comprises: 

a) a metallic nanoparticle; and 

b) a porous support with a surface area; wherein the nanoparticle (a) is adsorbed on the surface area 
of the porous support. 

The nanoparticles shall be well-distributed all through the porous support surface. 

The amount of nanoparticle is typically between 1 and 5 wt.% of the total catalyst. 

4.2 Nanoparticle description 

a) Composition 

The nanoparticle shall comprise: 

i) One or more metallic elements of group 10 of the periodic table: nickel (Ni), palladium (Pd) and 
platinum (Pt). These elements are, as such, the atoms that catalyze the reaction. 

ii) One or more organic molecules selected from the group consisting of an organophosphorus 
compound, and an N-heterocyclic carbene, acting as “nanofabrication controlling agents”, “organic 
ligands” or “organic stabilizing agents”. They are organic compounds that are adsorbed onto the 
metal atoms that will form part of a nanoparticle, in such a way that during the preparation process 
of the catalyst composition or once prepared, the element atoms will neither agglomerate nor 
coalescence with other nanoparticles of the surroundings and also including the element atoms and 

https://www.iso.org/obp/ui
https://www.electropedia.org/
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the said organic molecules. Thus, these organic compounds behave as nanofabrication controlling 
agents in the nanoparticles to avoid coalescence or agglomeration with other nanoparticles. This 
assures that the nanoparticles are small and well-dispersed in a predetermined volume or area. In 
addition, the final composition of the nanoparticles is controlled by the presence of these organic 
molecules (i.e., nanoparticle mean diameter and size distribution, shape and crystallinity in alloy and 
core-shell, well-distributed on the support, uniform compositions on different regions of the support 
and improved catalyst performance by control of the reactivity of the nanoparticle sites). 

• The “organophosphorus compound”, also referred as “P-coordinating compound” relates to 
organic compounds comprising phosphorus (P). An example of organophosphorus compound 
are the phosphines. Phosphine (or phosphane) results from replacement of one or more 
hydrogen centers by an organic substituents R (alkyl, aryl) in PH3 molecule, which gives PH3−xRx 
(or PR1R2R3 if all H are substituted), an organophosphine, generally referred to as phosphines, 
which can be primary, secondary, or tertiary phosphines depending on the number of hydrogen 
replacements. A particular and exemplified organophosphine is triphenylphosphine (PPh3). 

• The “C-coordinating N-heterocyclic carbenes”, also referred as “carbon adducts of N-heterocyclic 
carbenes” are carbenes of formula RN2C:, where the 'R' is a (C2-Cn)-alkyl forming with the two N 
atoms an heterocycle, and the C atom coordinates (i.e. adducts) with another carbon atom 
containing compound (i.e. a carbon dioxide). The carbon dioxide adducts of N-heterocyclic 
carbenes reacts under the reaction conditions used for the catalyst preparation forming N-
heterocyclic carbene (RN2C:) and another carbon atom containing compound (i.e., carbon 
dioxide). A particular carbon adduct of N-heterocyclic carbenes is the 
1,3-dimethylimidazoliumcarboxylate (NHC-CO2), illustrated below, and which gives the 
1,3-dimethylimidazoliumcarbene. 

 
iii) One or more metallic elements selected from the group consisting of tin (Sn), gallium (Ga), and 

indium (In) are cocatalysts in the catalyst composition. Thus, they also increase the rate of the 
chemical reaction catalyzed by the metallic elements of the group 10 in the nanoparticle and 
cooperate improving each other catalytic activity (better yield and/or selectivity). 

b) Size 

The nanoparticles in the catalyst have a diameter from 0,5 nm to 15 nm. Nanoparticles comprising Ni as 
only element of group 10, and Sn and/or Ga have a diameter from 10,0 nm to 15,0 nm. Nanoparticles 
comprising Pt have diameter sizes from 1,0 nm to 5,0 nm. The process allows obtaining nanoparticles of 
PtSn with a mean diameter of 1,42 nm. 

In general, the smaller the size of the nanoparticles resulted in better the performance of the catalyst 
because the dispersion of the number of available active metal sites is maximized. This results in a more 
efficient use of the precious metals. 
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4.3 Porous support description 

The porous support shall be selected from: 

• Alumina-based (Al2O3): gamma-Al2O3, theta-Al2O3 and alumina with alkaline elements (Li-Al2O3 and 
Na-Al2O3). 

• Silica-based (SiO2). 

• Zeolites-based and related aluminosilicates of several chemical formulas. 

Pore diameter is between 1-50 nm so, according to the IUPAC definition, the support is mesoporous. 

5 Process for the preparation of catalysts 

5.1 General description 

The process comprises, in a one-pot step, the decomposition of: 

• one or more organometallic precursor compounds (bis- and tris(dibenzylideneacetone) and, 
1,5-cyclooctadienedimethyl) of one or more elements of group 10, and 

• one or more organometallic precursors ((C1-C4)-alkyl complexes) compounds of metallic elements 
selected from the group consisting of Tin (Sn), Gallium (Ga), and Indium (In). 

These precursor compounds provide the metallic elements to the reaction. 

This is made in the presence of: 

• an organic solvent, selected from the group consisting of ether containing solvents (in particular 
tetrahydrofuran, methyl-tetrahydrofuran, dioxane and diethyl ether), aromatic solvents (in 
particular benzene, toluene, anisole, methyl anisole and xylenes) and alkanes (in particular 
cyclohexane, hexane, pentane) and mixtures thereof; 

• a porous support; and 

• one or more organic molecules selected from the group consisting of an organophosphorus 
compound and an N-heterocyclic carbene. 

The one-pot decomposition is carried out at the following physical condition ranges: 

• Temperature: from 20 °C (room temperature) to 100 °C. 

• Time: from 30 minutes to 70 hours. 

• Pressure: from 1,0 × 105 Pa to 5,0 × 105 Pa. 

It is performed in hydrogen gas atmosphere, which allows a reductive environment that starts reducing 
the organometallic compounds to obtain the metals that will conform the nanoparticles and/or will be 
deposited onto the surface of the selected support. 

All the operations for the syntheses of nanoparticles can be carried out using standard Schlenk tubes, 
Fisher-Porter vessels or gloveboxes under nitrogen atmosphere. 
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5.2 Preparation of reactives 

• Tris(dibenzylideneacetone)diplatinum (Pt2(dba)3) can be prepared adapting the reported procedure 
[1] using potassium tetrachloroplatinate(II) (K2PtCl4), dibenzylideneacetone (dba). 

• Sodium acetate with metal trace levels (NaOAc), can be used without further purification. 

• The tin precursors (SnBu4 and N,N'-Di-t-butyl-2,3-diamidobutanetin(II)), and stabilizing agents 
(triphenylphosphine (PPh3)) can be used without further purification. 

• The imidazolium carboxylate (NHC·CO2) can be prepared following reported procedures in [2] and 
[3]. 

• Solvents (Toluene, tetrahydrofuran (THF) and hexane) can be purified by solvent purification 
systems (e.g. MBRAUN SPS or equivalent) and degassed by freeze-pump-thaw cycles prior use. 

• High purity gas such as hydrogen (H2), nitrogen (N2) and argon (Ar) shall show a purity >99,999 %, 
and hydrocarbons (propane) a purity of 99,9999 %. 

• Pyrogenic ꝩ-Al2O3 (100 m2 g-1) can be pre-treated as reported in [4] to obtain Al2O3 and LiAl2O3. 

5.3 Catalyst preparation process 

a) Supported nanoparticles: 

The process to prepare the bimetallic PtSn-NPs ligand capped (L), Pt-(2 wt.%)/Sn-(1 wt.%)-NPs 
supported onto Al2O3 (PtSn-L@Al2O3), is the following: 

• The platinum precursor (i.e., for Pt2dba3, 0,274 mmol, 150 mg), the tin precursor (i.e., for SnBu4, 0,274 
mmol, 101 mg), the selected stabilizing agent (L: none, PPh3, NHC·CO2) (i.e., for PPh3, 0,054 mmol, 
14,35 mg), the corresponding support (i.e., for Al2O3, 2,57 g) and solvent (i.e., 37,5 mL toluene) shall 
be introduced in a Fisher Porter vessel. 

• The mixture shall be pressurized with 3 bars of H2 and stirred at 700 rpm at 100 °C during 40 h. 

• After this period, it shall be filtered with a 14-15 μm pore filter, washed with toluene and hexane and 
dried under vacuum. 

• The resulting supported PtSnIV-P@Al2O3 is isolated in high yields (ca. 90-95 %) and can be stored 
under inert atmosphere. 

Same procedure shall be followed to obtain PtSnIV-NHC@Al2O3, using the NHC·CO2, or PtSnIV-@Al2O3, 
without adding any stabilizing agent. 

To obtain the PtSnIV-P@LiAl2O3, LiAl2O3 shall be used as support. 

PtSnII-P@Al2O3 and PtSnII-NHC@Al2O3 shall be prepared using the as-described methodology with Sn 
(II) precursor (N,N'-Di-t-butyl-2,3-diamidobutanetin(II)). 

1Pt0.5SnIV@Al2O3 shall be prepared using a theoretical content of Pt-(1 wt.%)/Sn-(0,5 wt.%). 

b) Colloidal nanoparticles: 

The process to prepare PtSn-L NPs ligand capped (L: none, PPh3, NHC·CO2), PtSnIV-L, is the following: 
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• The Pt precursor (Pt2dba3, 0,274 mmol, 150,0 mg), the tin precursor (i.e., for SnBu4, 0,274 mmol, 
101,0 mg), the selected stabilizing agent (i.e. for PPh3, 0,054 mmol, 14,35 mg), and toluene (37,5 mL) 
shall be introduced in a Fisher Porter vessel. 

• The mixture shall be pressurized at 3 bars of H2 and stirred at 700 rpm at 100 °C during 40 h. 

• After this period, it shall be washed with toluene and hexane and dried under vacuum. 

• The resulting colloidal PtSnIV-P is isolated in low yields (20-30 %) and can be stored under inert 
atmosphere after precipitation. 

Same procedure shall be followed for the obtention of PtSnIV-NHC (adding 0,2 equivalents of NHC·CO2) 
and PtSnIV (without any stabilizing agent). 

PtSnII-L colloids shall be prepared following the same methodology described, changing the Sn (N,N'-Di-
t-butyl-2,3-diamidobutanetin(II)). PtSnII-P, PtSnII-NHC and PtSnII are obtained in low yields (20-30 %) 
and can be stored under inert atmosphere after precipitation. 

6 Catalyst Characterization 

For complete characterization purposes, the use of colloidal nanoparticles, see 5.3 (b), is recommended 
as they allow obtaining better accuracy for the metallic contents. 

Inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses shall be performed on 
digested samples of the materials. The digestions shall be carried out using a microwave digestion 
system. 

As a general procedure, 50 mg of sample shall be charged in Teflon liners followed by 12 mL of a 
concentrated acid mixture of aqua regia (3 mL HNO3 69 % and 9 mL HCl 37 %). The mixture shall be 
heated from room temperature to 200 °C during 30 min (approx. 6 °C/min) and then kept isotherm at 
200 °C during 1 h more. 

After a typical digestion, the reactor is open and the homogeneity of the solution examined. The solutions 
shall be transferred to volumetric flasks of 50 mL and the liners washed exhaustively with deionized high 
purity water with electrical resistance R > 18,2 MΩ/cm (at 25 Â°C) (e.g. Milli-Q water). 

Finally, the obtained solutions shall be analyzed by ICP-OES. Quantification of Pt and Sn is performed by 
comparison with the respective calibration curve constructed in the range of 0-20 ppm. 

Transmission Electron Microscopy (TEM) experiments shall be performed at with an electron 
microscope operating at 100 kV with resolution of 3 Å. The particles size distributions can be determined 
by a manual analysis of enlarged images. At least 200 particles on a given grid shall be measured to obtain 
a statistical size distribution and a mean diameter. 

Scanning Transmission Electron Microscopy - High Angle Annular Dark Field (STEM-HAADF) images 
shall be obtained in a probe-corrected microscope at a working voltage of 300 kV, coupled with a HAADF 
detector. X-ray Energy Dispersive Spectra (EDS) can be obtained with a detector. High Resolution TEM 
(HRTEM) imaging of the nanoparticles shall be performed in an image-corrected operated at a working 
voltage of 300 kV, equipped with a S-FEG and a spherical aberration corrector of the objective lens. TEM 
and HRTEM images can be acquired with a bottom mounted 2Kx2K CCD camera. The samples can be 
dispersed in absolute ethanol or hexane, using ultrasonication. A drop of this solution shall be then 
deposited on a Holey carbon 300 mesh copper grid. 
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7 Example: Preparation of nanocatalysts of PtSn with Sn(III and IV) precursors, 
using different combinations of agents 

7.1 Effect of the organic stabilizing agents 

Preparation of bimetallic PtSn nanoparticles (labelled Pt10), using: 

• Organometallic precursors: Pt2(dba)3 and SnBu4 in a Pt/Sn molar ratio 1:1. 

• Stabilizing agent: Phosphine PPh3 (although all phosphines are valid). 

• Solvent: Toluene. 

• Atmosphere of H2 at 3 bar and room temperature. 

Pt10 displayed small and well-dispersed nanoparticles size of 2,0-2,3 nm. 

Preparation of bimetallic PtSn nanoparticles (labelled Pt11), using: 

• Organometallic precursors: Pt2(dba)3 and SnBu4 in a Pt/Sn molar ratio 1:1. 

• Stabilizing agent: None. 

• Solvent: Toluene. 

• Atmosphere of H2 at 3 bar and room temperature. 

Pt11 displayed the formation of aggregates, thus showing the relevant positive effect of the phosphines 
(i.e., PPh3) stabilizing agent. 

7.2 Effect of different precursors 

Decomposition of Pt and Sn precursors at 100 °C. 

The metallic precursors were, for Pt: 

• Tris(dibenzylideneacetone)dipalladium(0), Pt(0)2(dba)3 

 
• (1,5-Cyclooctadiene)dimethylplatinum(II), Pt(II)(COD)(Me)2 
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And for Sn(III) and Sn(IV): 

• Tin (IV) bromide, SnBu4 

 
• Tributyltin hydride, HSnBu3 

 
• Tetramethyltin, SnMe4 

 
• Bis(tributyltin), Sn2Bu6 

 
The results showed that in presence of SnBu4, the Pt precursor, either Pt(0)2(dba)3 (labelled Pt12) or 
Pt(II)(COD)(Me)2 (labelled Pt13), decomposes quantitatively over a period of time of <15-20 h and the 
SnBu4 partially decomposes (2-4 % for Pt12 and 7-10 % for Pt13) over a period of time of >40 h. 

For Pt(II)(COD)(Me)2 and over period of time of >40 h, the Sn(III) and Sn(IV) precursors decompose at an 
extent of less than 15 %, for example, the SnBu4 decomposes 5-10 % (Pt13) and HSnBu3 (labelled Pt14), 
SnMe4 (labelled Pt15) and Sn2Bu6 (labelled Pt16) decompose 10-15 %. 

7.3 Effect of different porous supports 

Decomposition of the Pt(0 and II) and Sn(III and IV) precursors onto four different supports: 

• Mesoporous alumina, Al2O3 (labelled Pt6c). 

• Mesoporous lithiated alumina, Li- Al2O3 (labelled Pt7c). 

• Sodium mesoporous zeolite, Na-ZSM-5 (labelled Pt8c)1). 

                                                             
1) ZSM-5, Zeolite Socony Mobil–5 (framework type MFI from ZSM-5), is an aluminosilicate zeolite belonging to the 
pentasil family of zeolites. Its chemical formula is NanAlnSi96–nO192·16H2O (0<n<27). Patented by Mobil Oil 
Company in 1975, it is widely used in the petroleum industry as a heterogeneous catalyst for hydrocarbon 
isomerization reactions. 
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• Acid mesoporous zeolite, H-ZSM-5 (labelled Pt9c). 

Conditions: 

• 100 °C; 

• organometallic precursors: Pt2(dba)3 and SnBu4; 

• organic stabilizing agent: phosphine (PPh3); 

• nominal metal loading: Pt 2 % wt-Sn 1 % wt (Pt/Sn molar ratio 1:1). 

The results obtained revealed that: 

• Pt precursor is quantitatively decomposed forming small Pt nanoparticles and the decomposition 
rate is not affected by the nature of the support. 

• Sn precursor is partially decomposed, and the decomposition rate varies depending on nature of the 
support in the following order Al2O3 (Pt6c) >> Li-Al2O3 (Pt7c) = Na-ZSM-5 (Pt8c) >> H-ZSM-5 (Pt9c) 
>>>no support. 

• The Sn(III and IV) precursors (for example, SnBu4) in the presence of Al2O3 decompose quite fast (70-
100 % after 40 h). 

• Small nanoparticles well dispersed on the support are found with distinct Pt/Sn ratios depending on 
the analyzed region. In some regions, more Sn than Pt can be present, which means that the 
decomposition of Sn precursors occurred also on the support sites. 

7.4 Effect of different organophosporus compounds in catalysts characteristics 

Catalysts samples of PtSn nanoparticles supported onto alumina (Al2O3) with a nominal Pt and Sn loading 
of 2.0 % w/W and 1.0 % w/W respectively. 

Prepared by decomposition of the organometallic Pt and Sn precursors at 100 °C under 3 bar of hydrogen 
during 40 h in presence of 0.2 equivalents of phosphorous organic stabilizing agents from 6 different 
functional groups (Cat0 prepared in absence of organic stabilizing agent). 
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Table 1 — Characteristics of different nano catalysts for different organic stabilizing agents 

  Cat 0 Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Cat 6 

Organic 
stabilizing 
agent 

None Monophosphine 
(PPh3) 

Diphosphine 
(bidentate 
ligand) 

Phosphoramidite Phosphite Secondary 
phosphine 
oxyde 

Tertiary 
phosphine 
oxyde 

PtSn-
Nanoparticle 
Mean 
diameter 
(nm) 

1,42 ± 0,35 1,33 ± 0,31 Below 
detection 
limit of or 
electron 
microscopy 
(< 1 nm) 

1,66 ± 0,28 2,63 ± 0,68 1,50 ± 0,24 2,05 ± 0,53 

Pt content by 
ICP 
(wt. %) 

1,328 1,744 1,038 1,012 1,413 0,652 0,805 

Sn content by 
ICP 
(wt. %) 

1,381 1,111 0,322 1,046 1,074 0,042 1,050 

Sn/Pt molar 
ratio 
(mol/mol) 

1,71 1,04 0,509 1,643 1,249 0,107 2,143 

8 Example: Effect of different nanocatalyst in non-oxidative dehydrogenation 
(nODH) of light alkanes 

Several catalysts evaluated in the following non-oxidative dehydrogenation of propane for the selective 
production of propylene. 

The laboratory set up for the catalytic nODH reactions consists in a stainless-steel fixed bed reactor 
system on-line connected to a GC-TCD/MS system. The reaction is carried out under O2 and H2O exclusion 
conditions. Argon (5,0, purity 99,999 %), N2 (5,0, purity 99,999 %), H2 (5,0, purity 99,999 %), propane 
(3,5, purity 99,95 %), butane (3,5, purity 99,95 %) and 2-butene (3,5, purity 99,95 %) are purified in line 
with molecular sieves and BTS-catalysts traps to ensure high purity is maintained. Mass flow controllers 
and by-pass 3 port valve system control the composition and the flow to the reactor or directly to the 
analysis system. Pressure is monitored and controlled: pressure transducer at the entrance of the reactor, 
pressure regulator with a manometer at the exit of the reactor, and safety valves to avoid overpressures 
(adjusted to a maximum of 5 bars). Temperature is controlled with a temperature heating jacket Hobersal 
with a thermocouple inside the reactor. The catalyst preparation is carried out in a glovebox for avoiding 
oxidation. The catalyst 1 - 100 mg (i.e., 25,0 mg cat., 0,1 mg Pt) is dispersed in a known amount of silicon 
carbide (Ø ≈ 150-300 µm) and placed in the reactor. Catalyst pre-treatment consists in a reduction 
program at 500-600 °C (1 °C/min) under H2 flow for 4-16 h at a pressure comprised between 0,5 and 3 
absolute bars. 

In this example, the selected initial conditions for the non-oxidative dehydrogenation (n-ODH) of propane 
are: temperature, 530 °C; pressure, 1 bar; and gas flow: 3 mL/min of Propane, 21 mL/min of Ar and 1 
mL/min H2. 

The propane conversion and propene selectivity are determined by gas chromatographic (GC-TCD) 
analysis of gas samples taken at regular intervals (each 14 min). The response factor of the propane and 
propene are determined using argon as internal standard. The mathematical formula for the 
determination of the conversion and selectivity are: 
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Table 2 lists the results obtained on propane non-oxidative dehydrogenation with some of the catalysts 
compositions. Comparative data with the benchmark Statoil catalyst (currently termed LINDE-BASF 
Statoil) are also included. 

Table 2 — Propane dehydrogenation catalyzed by PtSn and NiSn nanocatalyst 

Nanocatalyst composition 
Initial conv. – to – conv. 

After 900 min (%) 
Selectivity (%) 

PtSn/Mg(Al)O 
(STATOIL Reference) 

26-to-3 83 

PtSn-PPh3/Al2O3 24-to-15 98 

PtSn-PPh3/Li- Al2O3 20-to-10 97 

PtSn-PPh3/Al2O3 23-to-12 99 

PtGa-PPh3/Al2O3 23-to-14 99 

NiSn-PPh3/Al2O3 2-to-1,5 75 

This example clearly illustrates that nODH of alkanes in which the defined catalyst compositions were 
employed, provided high conversion indexes as well as very high selectivities for propene. 



CWA 17944:2022 (E) 

16 

Bibliography 

[1] Ould Ely T., Pan C., Amiens C., Chaudret B., Dassenoy F., Lecante P. et al. Nanoscale Bimetallic 
CoxPt1-x Particles Dispersed in Poly(Vinylpyrrolidone): Synthesis from Organometallic 
Precursors and Characterization. J. Phys. Chem. B. 2000, 104 (4) pp. 695–702 
https://doi.org/10.1021/jp9924427 

[2] De Los Bernardos M.D., Pérez-Rodríguez S., Gual A., Claver C., Godard C. Facile Synthesis of NHC-
Stabilized Ni Nanoparticles and Their Catalytic Application in the: Z -Selective Hydrogenation of 
Alkynes. Chem. Commun. (Camb.). 2017, 53 (56) pp. 7894–7897 
https://doi.org/10.1039/c7cc01779k 

[3] Voutchkova A.M., Feliz M., Clot E., Eisenstein O., Crabtree R.H. Imidazolium Carboxylates as 
Versatile and Selective N-Heterocyclic Carbene Transfer Agents: Synthesis, Mechanism, and 
Applications. J. Am. Chem. Soc. 2007, 129 (42) pp. 12834–12846 
https://doi.org/10.1021/ja0742885 

[4] Rouge P., Garron A., Norsic S., Larabi C., Merle N., Delevoye L. et al. A Smarter Approach to 
Catalysts by Design: Combining Surface Organometallic Chemistry on Oxide and Metal Gives 
Selective Catalysts for Dehydrogenation of 2,3-Dimethylbutane. Mol. Catal. 2019, 471 (January) 
pp. 21–26 https://doi.org/10.1016/j.mcat.2019.04.011 

 

https://doi.org/10.1021/jp9924427
https://doi.org/10.1039/c7cc01779k
https://doi.org/10.1021/ja0742885
https://doi.org/10.1016/j.mcat.2019.04.011

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Description of the nanocatalysts
	4.1 General description
	4.2 Nanoparticle description
	4.3 Porous support description

	5 Process for the preparation of catalysts
	5.1 General description
	5.2 Preparation of reactives
	5.3 Catalyst preparation process

	6 Catalyst Characterization
	7 Example: Preparation of nanocatalysts of PtSn with Sn(III and IV) precursors, using different combinations of agents
	7.1 Effect of the organic stabilizing agents
	7.2 Effect of different precursors
	7.3 Effect of different porous supports
	7.4 Effect of different organophosporus compounds in catalysts characteristics

	8 Example: Effect of different nanocatalyst in non-oxidative dehydrogenation (nODH) of light alkanes

