

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 17515:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 17515 May 2020

ICS 03.100.01; 13.200; 35.240.99
English version Building a common simulation space

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CWA 17515:2020 (E)

2

 Page

European foreword ... 4

Introduction .. 5

1 Scope .. 7

2 Normative references .. 7

3 Terms and definitions ... 8

4 Symbols and abbreviations ... 9

5 Architectural guidelines .. 10
5.1 Prerequisites of a common simulation space infrastructure .. 10
5.2 Configuration of a common simulation space ... 11
5.3 Recognition of connected applications .. 12
5.4 Management of sessions .. 12
5.5 Handling of time ... 13
5.6 Entities ... 14
5.7 Aggregation of entity data ... 15
5.8 Requests .. 15
5.9 Responding to requests ... 16
5.10 Transfer of ownership .. 16

6 Configuration messages ... 17
6.1 Heartbeat message .. 17
6.2 Session management message .. 17
6.3 Time management message ... 18

7 Entity messages .. 19
7.1 Item message ... 19
7.2 Feature collection message .. 20
7.3 Post message .. 23

8 Request messages .. 24
8.1 Ownership request message .. 24
8.2 Route request message .. 25
8.3 Move request message ... 25
8.4 Start inject request message .. 26

9 Support messages .. 27
9.1 Entity deletion message ... 27
9.2 Request cancellation message ... 27
9.3 Response message ... 27
9.4 Geo-referencing .. 28
9.5 Aggregated entity message ... 29

Annex A (informative) List of all architectural guidelines ... 31

Annex B (informative) Use cases ... 36
B.1 Use case 1 – Full-scale and/or live exercise .. 36
B.2 Use case 2 – Cascading effects .. 43

Contents

CWA 17515:2020 (E)

3

B.3 Use case 3 – Ownership .. 45
B.4 Use case 4 – High throughput ... 48
B.5 Use case 5 – Interaction with an external simulation space ... 50
B.6 Use case 6 – Interaction between common simulation and a shared application space 53

Bibliography ... 56

CWA 17515:2020 (E)

4

This CEN Workshop Agreement (CWA 17515:2020)has been developed in accordance with CEN-
CENELEC Guide 29 'CEN/CENELEC Workshop Agreements – The way to rapid consensus' and with the
relevant provision of CEN/CENELEC Internal Regulations – Part 2. It was approved by a Workshop of
representatives of interested parties on 2019-07-09, the constitution of which was supported by CEN
following the public call for participation made on 2019-06-10. However, this CEN Workshop
Agreement does not necessarily reflect the views of all stakeholders that might have an interest in its
subject matter.

This CEN Workshop Agreement (CWA) is based on the results of the DRIVER+ research project, which
received funding from the European Union's 7th Framework Programme for Research, Technological
Development and Demonstration under Grant Agreement (GA) N° 607798.

The final text of this CEN Workshop Agreement was submitted to CEN for publication on 2020-03-25.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

— Independent Consultant/ Jean-François Sulzer;

— Nelen & Schuurmans B.V./ Govert ter Mors;

— Netherlands Organization for Applied Scientific Research/ Erik Vullings, Rinze Bruining;

— Riskaware Ltd./ Martyn Bull, Russell Mills, James England;

— Thales SIX GTS France SAS/ Jean-Benoit Bonne; and

— XVR Simulation B.V./ Martijn Hendriks, Steven van Campen.

Attention is drawn to the possibility that some elements of this document may be subject to patent
rights. CEN-CENELEC policy on patent rights is described in CEN-CENELEC Guide 8 “Guidelines for
Implementation of the Common IPR Policy on Patent”. CEN shall not be held responsible for identifying
any or all such patent rights.

Although the Workshop parties have made every effort to ensure the reliability and accuracy of
technical and non-technical descriptions, the Workshop is not able to guarantee, explicitly or implicitly,
the correctness of this document. Anyone who applies this CEN Workshop Agreement shall be aware
that neither the Workshop, nor CEN, can be held liable for damages or losses of any kind whatsoever.
The use of this CEN Workshop Agreement does not relieve users of their responsibility for their own
actions, and they apply this document at their own risk.

European foreword

CWA 17515:2020 (E)

5

Due to the unimpeded population growth and our ever-increasing dependency on technology, effects in
one domain can have a big impact on other domains, e.g. flooding can cause power and communication
outages. Although the current focus on domain-specific simulators allows an increasing effectiveness of
modeling a behavior to be as fine-grained as required, it also gives rise to the desire to interconnect
multiple simulators together to simulate the co-dependence between different domains.
Interoperability refers to the ability of computerized systems to connect and communicate with one
another readily, even if they were developed by widely different manufacturers in different industries.
CWA 17515 focuses on the interoperability between specialized simulators to facilitate a common
simulation space used, for example, for exercises, operational setups and experiments that take place
especially for crisis management inside the shared domain of these connected simulators.

Current and future challenges, due to increasingly severe consequences of natural disasters and
terrorist threats, require the development and uptake of innovative solutions that address the
operational needs of practitioners dealing with crisis management. DRIVER+ (Driving Innovation in
Crisis Management for European Resilience) was a European research project funded under the 7th
Framework Programme (FP7) that aimed to improve the way capability development and innovation
management is tackled [1]. One of the objectives of this project was to develop an infrastructure to
create relevant environments for enabling the trialing of new solutions and to explore and share crisis
management capabilities. This development and use of the infrastructure within DRIVER+ provided a
basis that led to the creation of this CWA.

For training and exercising in the crisis management domain, there is a growing need for a more
realistic simulation of the crisis or incident, including an interactive 3D visualization of the incident site
as well as the cascading effects that may follow the original incident. For example, a flooding may cause
a power failure, which in turn causes a failure of the communication infrastructures and traffic
management systems, leading to further disruptions. As these effects typically cover many domains, it is
unlikely that there is a single simulator that covers all these aspects, so multiple simulators have to be
connected and have to cooperate to create such an immersive fictive crisis.

Although similar standards regarding interoperability are available these standards are predominantly
used within the military field. Examples for this are:

— IEEE 1516:2010 Modeling and Simulation (M&S) High Level Architecture (HLA) – Framework and
rules

— IEEE 1516.1:2010 Modeling and Simulation (M&S) High Level Architecture (HLA) – Federate
interface specification

— IEEE 1516.2:2010 Modeling and Simulation (M&S) High Level Architecture (HLA) – Object Model
Template (OMT) specification

— IEEE 1278.1:2012 Distributed Interactive Simulation (DIS) – Application protocols

— IEEE 1278.2:2015 Distributed Interactive Simulation (DIS) – Communication services and Profiles

— IEEE 1278.3:1996 Recommended practice for distributed interactive simulation – Exercise
management and feedback

Introduction

CWA 17515:2020 (E)

6

— IEEE 1278.4:1997 Recommended practice for distributed interactive simulation – Verification,
validation, and accreditation

The implementation of such standards in the crisis management domain is difficult, because:

— tooling is expensive for crisis management organizations, there is no real open source alternative,
and the community of practitioners is small;

— tooling typically only offers code generators for the programming languages Java, C++ and C#, and
for applications using web service description language, which excludes many simulators;

— implementing such standards requires a steep learning curve, and although some work has been
done in creating a crisis management Federation Object Model (FOM), no mature interaction
standards are available;

— few, if any, simulators operating in the crisis management domain currently support HLA or DIS
standards.

This CWA defines a set of architectural and interfacing guidelines for easily connecting simulators
developed by different manufacturers from different industries. A reference implementation of the
guidelines described in this document and created for DRIVER+ can be found at the DRIVER+ GitHub
repository [2]. It has to be noted that other domains than crisis management may find benefit in
implementing the dispositions of this CWA.

The structure of this document is as follows: Section 1 to 4 specifies general information about the
content of the CWA, for example the scope, definitions and abbreviations. Section 5 defines architectural
guidelines that are recommended when building a common simulation space, while Section 6 through 9
define the messages used inside the proposed architectural guidelines to communicate in the common
simulation space. In order to provide the reader with practical examples of the use of the guidelines and
messages, Annex B presents several use cases that represent common interactions when dealing with
interoperability. These use cases intend to provide a frame of reference for the reader to understand
the general vision of this CWA and for simulators to add specific protocols, messages, or applications
relevant for their common simulation space in line with these guidelines.

CWA 17515:2020 (E)

7

1 Scope

This document defines a technical framework for connecting simulators and supporting tools aiming to
facilitate interoperability between multiple stand-alone simulators, in order to jointly create and
maintain a common simulation space. It specifies infrastructure and accompanied protocol parameters,
common simulation message formats, and a set of services or tools facilitating the common simulation
space functionalities. This document is intended to be used by system integrators and developers of
individual simulators who jointly want to use an interoperability framework to share (parts of) their
own simulation domain with simulators from another domain.

The aim for this CEN Workshop Agreement (CWA) is to provide a solid foundation of architectural
guidelines to be used for jointly configuring a common simulation space. This CWA does not have the
aim to closely integrate connected applications together. The general vision is that simulators are
created for one or more specific domain knowledge areas with their own granularity, boundaries and
purposes. To closely integrate these simulators would mean to integrate these domains as well, most
likely causing irredeemable conflicts in the individual granularities, boundaries and purposes. In order
to maintain individuality of the simulators, a common simulation space provides a framework for
communication, based on a minimum commonality of the data accepted and produced by the individual
simulators and an event-driven design philosophy.

The document provides a set of protocols and associated message formats to facilitate elementary
interaction processes for simulators to function inside a common simulation space. To provide a better
understanding of the proposed guidelines, this CWA also provides a repository of example interactions
between simulators connected to a common simulation space. These examples are not described to
limit the use of this document but are carefully chosen to reflect the most common types of interaction
simulators would be expected to encounter when using a common simulation space. Each use case
consists of a brief description of its intention, accompanied with a scenario description to provide an
example for this use case. Based on this scenario, the desired information exchange flow and the
required guidelines, messages, infrastructures and services to implement this flow are defined. Please
note that the scenarios used inside each use case can be easily translated to other topics or
configurations that serve the same purpose of the use case.

It is not the aim of this CWA to impose one global and general common simulation space to which all
interested simulators have to connect to. A specific common simulation space should be configured
based on, for example, the needs of an exercise, experiment or operational setup. This allows more
flexibility for the simulators to find common ground for sharing domain-specific knowledge on a case-
by-case basis. In order to ensure flexibility to fit the specific interoperability needs between simulators,
the architectural guidelines posed in this document are categorized per interaction, allowing developers
to jointly decide to implement the attached protocols and message formats, if required. If an interaction
(e.g. change of ownership, updates of areas) is not necessary for the configured common simulation
space or is not relevant for a specific simulator, its implementation is not mandatory.

Although numerous parties were involved in defining the architectural guidelines, it is inevitable that a
specific (future) domain and/or interaction will be found that does not fit in the described architectural
guidelines. Therefore, these guidelines focus on the elementary interaction processes, while supporting
customization and expansion to fit specific interoperability needs. Because this CWA stresses the
importance of a joint process of design and configuration, whenever the current architectural guidelines
do not, it is encouraged to add new protocols and/or message formats that fit the need of a specific
common simulation space.

2 Normative references

There are no normative references in this document.

CWA 17515:2020 (E)

8

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at http://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

3.1
applicant
connected application that is sending out a request

3.2
application
software or a program that is specific to the solution of an application problem

[SOURCE: ISO/IEC 20944-1:2013, 3.6.3.1]

3.3
common simulation space
virtual space aiming to facilitate interoperability between multiple stand-alone simulators

3.4
common simulation space infrastructure
underlying technical framework for the common simulation space

3.5
configuration guideline
procedure needed for further configuring a common simulation space for a specific purpose

3.6
external simulation space
virtual space with the same goal as the common simulation space that is not the common simulation
space

3.7
message
data concept; grouping of data elements and/or data frames as well as associated message metadata,
that is used to convey a complete unit of information

[SOURCE: ISO 24531:2013, 4.31]

3.8
request
message asking another connected application to perform a function

3.9
session
meeting of simulators working simultaneously according to the same protocol during a defined time
period

http://www.iso.org/obp
http://www.electropedia.org/

CWA 17515:2020 (E)

9

[SOURCE: ISO 11136:2014, 3.14, modified: "consumers" from the original definition was exchanged
with "simulators"]

3.10
session manager
connected application that enables a user to create, update and close a session, being responsible for
informing the common simulation space regarding changes to the session

3.11
shared application space
virtual space aiming to facilitate interoperability between multiple applications other than simulators,
consisting of protocols and messages tailored for a shared application domain

3.12
simulation domain
simulator-specific logically related group of components that provides the functions of that simulator

Note 1 to entry: The functions of that simulator are not shared on the common simulation space.

3.13
simulation entity
virtual object residing inside a simulation domain, consisting of a specific set of properties and
functions

3.14
simulator
device, computer program, or system that behaves or operates like a given system when provided a set
of controlled inputs

[SOURCE: ISO/IEC/IEEE 24765:2017, 3.3750]

3.15
time manager
connected application that enables users to manage simulation time, being responsible for informing
the common simulation space regarding changes of that simulation time

3.16
UNIX epoch time
amount of time that has elapsed since the UNIX epoch (00:00:00 UTC on 1 January 1970), ignoring leap
seconds

3.17
virtual space
shared environment where applications from different domains exchange information syntactically and
semantically in a meaningful way

4 Symbols and abbreviations

— API: Application programming interface

— CG: Configuration guideline

— CSS: Common simulation space

CWA 17515:2020 (E)

10

— DRIVER+: Driving innovation in crisis management for European resilience

— ECT: Exercise control tool

— ESS: External simulation space

— EXCON: Exercise control

— FOM: Federation object model

— OT: Observer/evaluator tool

— SAS: Shared application space

— ST: Storage tool

— URI: Uniform resource identifier

— UTC : Coordinated universal time

— G: Guideline

— sim: Simulator

— msg: Message

— HTTP: Hypertext transfer protocol

— WGS: World geodetic system

— CAP: Common alerting protocol

— ESMI: Emergency services messaging interface

5 Architectural guidelines

5.1 Prerequisites of a common simulation space infrastructure

In order to configure and use a common simulation space, several guidelines (G) regarding its
infrastructure should be considered.

G.1 A common simulation space infrastructure should be based on well-developed and robust
message broker software, where messages are exchanged between simulators and other tools.

This guideline implies that the main characteristics of a common simulation space infrastructure are
reliant on the chosen message broker software. Although the core mechanisms of such software – like
routing, subscription, policy, persistency, error handling, metadata and security – provide a solid basis
for a common simulation space infrastructure, it also allows flexibility to choose the best fitting
message broker for its specific needs.

G.2 Connecting to a common simulation space infrastructure should be made possible for all
applications that are needed in the common simulation space, by means of configurable
adapters that provide a documented application programming interface (API) for sending
messages to and receiving messages from the specific common simulation space.

CWA 17515:2020 (E)

11

G.3 The common simulation space infrastructure should be modularized, having its core
functionality of a message system expandable with additional modules for administrative
functions, large data usage, data storage, application authentication and authorization, message
encoding and encryption, as well as other features that might be needed for a specific common
simulation space.

5.2 Configuration of a common simulation space

A general-purpose simulation space is not the intent of the provided guidelines; re-usability of
protocols and message formats is. Each common simulation space supporting an exercise or training
serves a specific purpose, requiring connected applications with different requirements, functionality
and data exchange policies.

G.4 A common simulation space may exclude architectural guidelines defined inside this document.
Since the guidelines inside this CWA are complementary within one sub-section, when
excluding architectural guidelines, it is recommended to exclude the complete set of guidelines
defined per sub-section instead of individual guidelines.

G.5 A common simulation space may include configuration guidelines for setting up that specific
common simulation space.

G.6 Configuration guidelines should not conflict with the architectural guidelines included in this
CWA but should serve as a specification on those guidelines.

G.7 A common simulation space may include additional message formats, i.e. not defined as part of
this CWA, required to be sent over that specific common simulation space.

G.8 New common simulation space message formats should not semantically conflict with
messages already defined inside this document.

The messages defined in this document are generic. The aim is to use these messages whenever
possible to reduce the implementation work for the connected applications. New types of messages can
be added, if they are needed for a specific common simulation space.

G.9 When configuring a common simulation space, the following should be defined:

— used common simulation space infrastructure;

— connected applications;

— used architectural guidelines;

— used configuration guidelines;

— used messages, including the properties inside each message;

— used pre-computed data or application-specific configurations;

— interactions defining which messages are sent and received by which connected
application;

— common simulation space infrastructure channel or topic topology for facilitating the
interactions;

CWA 17515:2020 (E)

12

— rules for conflict handling that might arise during interactions or handling of messages.

G.10 Connected applications should implement a translation between their own domain model and
the messages they should send or receive inside the specific common simulation space.

EXAMPLE A simulator that has a location defined inside its local simulation space should implement
a mapping between its space and the WGS 84 based space defined in a common simulation space
location (see Table 19) in order to send out location information to the common simulation space.

5.3 Recognition of connected applications

Each connected application should notify all other connected applications that it is responsive for
messages being sent over the common simulation space.

G.11 All connected applications should send out a heartbeat message (see Section 6.1) to the
common simulation space, at a constant time interval agreed-upon in the configuration
guidelines, to indicate the application is responsive in the common simulation space.

G.12 Each connected application interested in another connected application’s responsiveness may
listen to the heartbeat messages of that connected application.

With these guidelines, connected applications can infer the responsiveness of other connected
applications. Especially for management or support tools (e.g. administration, session or time control),
these guidelines can be crucial in understanding how to act inside the specific common simulation
space.

Whenever the timespan between the current time and the timestamp reported in the latest received
heartbeat message exceeds the agreed-upon time interval, e.g. two heartbeats, the application is
deemed unresponsive until a new heartbeat is received.

5.4 Management of sessions

Whenever synchronization between multiple connected applications is needed, session management
overarching these applications becomes relevant within a common simulation space. The most basic
approach to session management makes sure all connected applications understand what state the
current session is in.

G.13 Session management should be handled by one session manager.

This guideline does not enforce a connected application to solely function as a session manager. A
connected application that serves as a session manager might also have another functionality – such as
being a simulator or exercise control tool. There should, however, only one session manager be
appointed for managing the session.

G.14 The session manager should inform the common simulation space of the current session
information via the session management message (see Section 6.2).

G.15 Each connected application interested in session-related information should listen to the
session management messages of the session manager.

G.16 Each session state change should be under supervision of a person or staff responsible for the
session, making sure all connected applications are ready for the state change.

CWA 17515:2020 (E)

13

Guideline 16 allows, for example, for connected applications to prepare themselves for the actual start
of the session during an initialization state, loading in pre-computed data or starting relevant functions
defined statically in the configuration guidelines or dynamically in the session management message.
Because this preparation time heavily relies on the individual connected application, personnel
responsible for the session should make sure all connected applications are ready for the next state
change before applying it via the session manager. This could be added to the human preparation phase
of the session, checking if all operators or observers of the connected applications are ready to start the
session.

5.5 Handling of time

Time management can become a crucial aspect of a common simulation space. Whenever more complex
synchronization between connected applications is desired, different options are available that can only
best be described in configuration guidelines. There is such a variety of handling time and timing
conflicts per simulator that each common simulation space might have its own configuration regarding
time management, and here only one approach is described in more detail.

G.17 Time management should be handled by a single time manager.

This guideline does not enforce a connected application to solely function as a time manager. A
connected application that serves as a time manager might also have another functionality – such as
being a simulator or exercise control tool – or the connected application is both session and time
manager whenever both guideline sections are included in the specific common simulation space. There
should, however, only a single time manager be appointed for managing the time inside one common
simulation space.

G.18 Further definitions of time inside the common simulation space should be in the configuration
guidelines.

EXAMPLE The time manager can, for instance, be expanded to first synchronize time with all
interested connected applications, to mitigate any system-specific time conflicts (e.g. time zones,
operating system formats). An alternative to this would be to introduce a simulation time which is
completely independent of any current time format stated by underlying systems (e.g. mark the start of
the session as 0 and start counting seconds from that point onwards).

A simple form of time management is for the time manager to send out time information messages at an
agreed-upon fixed time interval, and when intermediate changes occur, to send this information
immediately as an event.

G.19 The time manager should inform the common simulation space of the current time information
via the time management message (see Section 6.3) at a fixed time interval defined in the
configuration guidelines.

G.20 The time manager should provide the current time and speed with each time management
message.

G.21 Each connected application interested in time-related information based on intervals, should
listen to the time management messages of the time manager.

G.22 Connected applications receiving a time management message should use the provided
simulation time and speed for correcting their own application time mechanism to the
provided time.

CWA 17515:2020 (E)

14

G.23 Whenever the time manager has changed its time state (e.g. the simulation is paused), it should
inform the common simulation space of the current time information via the time management
message (see Section 6.3).

G.24 Each connected application interested in time-related information based on time states, should
listen to the time management messages of the time manager.

With these guidelines, the time manager described is expanded with logic to keep track of a pre-defined
time interval. Although the user is still able to change the time states, the time manager sends out time
management messages at a constant time interval. This allows connected applications that are relying
on time to synchronize their simulation time with the leading common simulation space time.

5.6 Entities

A large part of a common simulation space is concerned with sharing data amongst multiple simulators,
each with their own simulation domain. Simulation entity messages let simulators understand and
update each other on data changes, without having to completely understand the domain specifics of all
other simulators. These messages provide updates to shared entities inside a common simulation space,
each with their own distinct properties (see Section 7).

G.25 An entity message should have a unique identifiable name (named id), to be used for referral
by all connected applications.

G.26 An entity message may have an optional timestamp property, to represent the moment in time
the update happened.

The time to use for this timestamp should be defined inside configuration guidelines, considering the
time definition used inside Section 5.5 when applicable.

G.27 An entity message may have an optional type property, allowing the connected application
sending the message to provide further information on what type of simulation entity it is
sharing.

EXAMPLE 1 The type property might be an ambulance/firefighting vehicle specified further by car
model, or a military/police officer specified further by rank. This type property allows for simulators to
define and use a mapping for all shared entities inside a given common simulation space. For instance, all
entities of type "subway station" can be displayed using simple icons and a name for one simulator,
whereas another simulator may show them using realistic 3D models.

G.28 An entity message may have an optional tags property consisting of a list of unique string keys
with accompanied string values, allowing the connected application sending the message to
provide specific details that are relevant for the current common simulation space
configuration.

Because of the generic applicability of the defined entity messages in Section 7, it is in the interest of the
specific common simulation space to properly define the usage of the entity message properties.

EXAMPLE 2 The detailed specification of the tags property inside each entity message can vary. One common
simulation space might require separating items of type person further into victims, crew and bystanders (by
having "role" as key and "victim", "crew" and "bystander" as possible value), while another specifies tags for
additional information concerning an area (e.g. defining a "water depth" as key with a number in meters as the
value).

The tags property has been defined as a simple string-to-string mapping. Although more primitive and
complex types can be defined for this, specifying a range of different types for a value makes the

CWA 17515:2020 (E)

15

recognition of which type is used more complex. A string-to-string mapping is understandable for all
programming languages and reduces mapping complexity in translating the tags property back to
useful information.

G.29 Whenever a connected application has created a new simulation entity that needs to be shared
or the application has performed an update on a shared entity, the connected application
should send the corresponding entity message with all relevant information to the common
simulation space.

G.30 Unless configuration guidelines define otherwise, whenever a shared entity is no longer to be
shared on the common simulation space, that entity can become marked as deleted by means of
an entity deletion message (see Table 16).

Depending on the needs of a specific common simulation space, the last guideline can have many
alternatives that should be defined in the configuration guidelines. An example of such an alternative is
to include a specification of the tags property, adding a deleted state to report an entity needs to be
unshared.

5.7 Aggregation of entity data

Whenever a subset of properties of a large amount of entities needs to be updated, aggregated messages
can be used to limit the number of excess information being sent. Section 9.5 defines such an
aggregation message, which can be used for wrapping all entity messages defined in Section 7.

G.31 Aggregation messages should only be used to provide updates to already shared entities.

G.32 Each defined entity message should also have its aggregated version containing a map with
unique identifiers of the updated entities as a key, and entity aggregation information
containing a subset of properties of the entity that can be changed throughout a session as a
value.

G.33 All properties of entity aggregation messages should be marked as optional, to allow connected
applications to send an update of a subset of these properties.

5.8 Requests

Where entity messages can be seen as notifications from one connected application to the other
connected applications, request messages are asking other connected applications for changes or
information outside the area of influence of the applicant (see Section 8).

G.34 A request message should have a unique identifiable name (named id), to be used for referral
by all connected applications.

G.35 A request message should have an applicant property containing the identifier of the applicant.

G.36 A request message may have an optional tag property consisting of a list of unique string keys
with accompanied string values, allowing the applicant to provide specific details that are
relevant for the current common simulation space configuration.

G.37 Unless configuration guidelines define otherwise, any connected application may send out a
request used in the common simulation space.

CWA 17515:2020 (E)

16

G.38 Unless configuration guidelines define otherwise, whenever a request is no longer applicable in
a common simulation space, it may be cancelled by the applicant via a request cancellation
message (see Table 17).

G.39 Each connected application that was handling the request and that received a request
cancellation message concerning this request should, unless configuration guidelines define
otherwise, stop current handling and leave the affected entities as is.

Additional configuration guidelines might, for instance, indicate reverting all affected entities to the
state prior to starting the request.

5.9 Responding to requests

Depending on the specific common simulation space, responses may not be needed because a "fire and
forget" policy is defined in the configuration guidelines, or responses can be inferred from future
(in)actions of the connected applications receiving a request. Since the requirement of how to handle
requests is common simulation space specific, a separation is created in the guidelines between the use
of requests (see Section 5.8) and the use of responding to requests (Section 5.9).

Whenever more information or complex interactions are required inside a common simulation space,
responses can be used to inform the applicant on the handling of its request.

G.40 A response message should have a unique identifiable name (named id), to be used for referral
by all connected applications.

G.41 A response message should have a request property containing the identifier of the request this
message is responding to.

G.42 Configuration guidelines should clearly define further implications of the possible responses
for all connected applications in the common simulation space.

Understanding what it means to have an approval, rejection or error response from a connected
application is important in handling interactions inside a common simulation space properly, and this
can only be correctly defined inside the configuration guidelines.

5.10 Transfer of ownership

Within a common simulation space, transferring ownership allows connected applications to become
owners of a shared entity and have the exclusive right to change properties of that shared entity. When
interaction complexity inside a common simulation space increases, control of ownership may be
crucial to provide clear restrictions on when to apply updates to a shared entity. This can happen in
situations where multiple connected applications update the same shared entity over time based on
specific application functionality.

G.43 An entity message should have an optional owner property (only when the entity can be
shared) to represent the current owner of this simulation entity.

G.44 Whenever a connected application creates an entity that can have multiple owners (but only
one at a time) inside a common simulation space, the owner property of that entity should be
set to the identifier of the connected application, marking this connected application as owner.

G.45 Connected applications should only send (aggregated) entity messages for entities that they are
owner of.

CWA 17515:2020 (E)

17

G.46 Whenever a connected application wants to own a simulation entity that it does not own, the
connected application should send a request for ownership (see Section 8.1).

G.47 Unless configuration guidelines define otherwise, an owner receiving a request for ownership
of a simulation entity it owns, should send out an entity message with its owner property
changed to the applicant (thereby handing over the ownership to that applicant).

Additional configuration guidelines may be needed to prevent conflicts in transferring ownership (e.g.
two simulators constantly swapping ownership of the same entity without any progress, or a
continuous stream of ownership requests for any entity that will never be approved by its current
owner).

An alternative to transferring ownership as defined in G.46 and G.47 could be to introduce specific
request messages (possibly re-using the aggregation message properties) for the connected
applications to implement. Instead of requesting ownership of an entity to change properties by itself,
the applicant then requests the owner to change those properties on behalf of the applicant.

These guidelines describe ownership at a simulation entity level, limiting the number of owners per
entity to one. One might deem it feasible to define ownership at the property level of those entities,
allowing entities to have multiple owners at the same time, or to implement a more complex service for
facilitating this behavior. In order to achieve this, several messages defined in this document need to be
altered. It also introduces additional configuration guidelines to make sure no conflicts can arise inside
a common simulation space. Since this CWA focuses on defining a basis for building a common
simulation space, it advises on using the ownership guidelines only at simulation entity level.

6 Configuration messages

6.1 Heartbeat message

A heartbeat message is used to derive the state of responsiveness of a connected application, further
defined in Section 5.3 (see Table 1).

Table 1 — Heartbeat message properties

Property Type Description

id string Unique case-insensitive identifier of the connected application sending out
the heartbeat message.

alive long UNIX Epoch time in milliseconds marking the time the connected application
last responded.

origin string Optional case-insensitive identifier from which device or location the
heartbeat message was sent.

EXAMPLE IP address or machine name.

6.2 Session management message

The session management message is used for informing connected applications on session details and
primarily the current state of the session (see Table 2). Section 5.4 defines guidelines that use this
session management message.

CWA 17515:2020 (E)

18

Table 2 — Session management message properties

Property Type Description

id string Unique case-insensitive identifier of the session.

state enum State the session is currently in:

Initializing – preparing for the actual start of a session, including
loading in pre-computed data and configuring the connected
application as was designed for this particular use of the common
simulation space
Started – the session has started and is running
Stopped – the session has stopped
Closed – the session is closed after all administrative tasks are done,
so no more messages can be exchanged

name string Optional name of the session.

tags map<string> Optional map containing session-specific information:

key – unique name of the specific property
value – value of that property

timestamp long Optional UNIX Epoch time in milliseconds marking the time the
update was or needs to be performed.

simulationTime long Optional UNIX Epoch time in milliseconds marking the fictive date
and time the session should run with.

6.3 Time management message

The time management message can be used for informing connected applications on time progression
and changes (see Table 3). Section 5.5 defines guidelines that show options of using this time
management message.

Table 3 — Time management message properties

Property Type Description

state enum State the time is currently in:

Initialization – preparing for the actual start of the simulation time
Started – the simulation time is started
Paused – the simulation time is paused
Stopped – the simulation time is stopped
Reset – the simulation time is reset

tags map<string> Optional map containing time specific information:

key – unique name of the specific property

CWA 17515:2020 (E)

19

value – value of that property

timestamp long Optional UNIX Epoch time in milliseconds marking the time the
update was or needs to be performed.

simulationTime long Optional UNIX Epoch time in milliseconds marking the fictive date
and time the session should run with.

simulationSpeed float Optional speed factor this session wants to run a simulation.
Range of the speed factor: [0, ∞).

7 Entity messages

7.1 Item message

An item is a specific simulation entity that is bound to one position in the world (see Table 4). It should
represent a tangible object, person or vehicle.

Items can have a parent-child relation described in the parent entity by means of a list of children, e.g.
an ambulance vehicle has two paramedics as children. Upon receiving this item message, the children
may or may not be known to the receiving simulator, which is something that should be specified in the
configuration guidelines. More complex hierarchies can be constructed in this way too.

Table 4 — Item message properties

Property Type Description

id string Unique case-insensitive identifier of the item.

location Location Location of the item (see Table 19).

orientation Orientation Optional orientation of the item (see Table 20).

velocity Velocity Optional velocity of the item (see Table 21).

name string Optional name of the item.

description string Optional description of the item.

type string Optional type of the item.

owner string Optional unique case-insensitive identifier of the connected
application owning the item.

timestamp long Optional UNIX Epoch time in milliseconds marking the time the
update was performed.

tags map<string> Optional map containing item specific information:

key – unique name of the specific property
value – value of that property

children list<string> Optional list of item identifiers that belong to this item.

CWA 17515:2020 (E)

20

7.2 Feature collection message

A feature collection represents one or more points, lines, or areas of interest to the common simulation
space. For example, specific places or buildings, routes, borders, flooded areas or disaster zones. A
specification for sharing a collection of geographic features is GeoJSON (RFC 7946:2016), created by the
Internet Engineering Task Force. Each feature can be a point, multi-point, line, multi-line, polygon, or
multi-polygon (with or without holes). In addition, every feature has a map of arbitrary properties for
other standards or specifications to include relevant information per feature. One of those
specifications this CWA recommends in using is the simplestyle specification proposed by MapBox [7],
which defines properties for visual styling a feature’s geometry.

Similar to the simplestyle specification, this CWA defines a list of common feature properties for
structuring additional information about its context on top of the GeoJSON specification, making it
easier to share simulation relevant data (see Table 5).

A feature might have a list of entities that are present at that specific feature. This can be used, for
instance, to indicate the fire truck units and materials that are stationed at a fire station. In order to
reduce the amount of duplicate information that can be sent over, this list only contains the unique
case-insensitive identifiers of the shared entities that reside at that feature.

Table 5 — Feature collection message properties

Property Type Description

id string Unique case-insensitive identifier of the feature collection.

type enum Type of the feature collection (as defined by the GeoJSON
specification):

FeatureCollection – a collection of multiple GeoJSON features
Feature– a single GeoJSON feature (not used within this CWA)
Geometry – a single geometric GeoJSON object (not used within
this CWA)

In this CWA only the FeatureCollection option is used for easier
processing.

features list<Feature> List of all features inside the feature collection (as defined by the
GeoJSON specification) (see Table 6).

name string Optional name of the feature collection.

description string Optional description of the feature collection.

owner string Optional unique case-insensitive identifier of the connected
application owning the feature collection.

timestamp long Optional UNIX Epoch time in milliseconds marking the time the
update was performed.

tags map<string> Optional map containing feature collection specific information:

key – unique name of the specific property

CWA 17515:2020 (E)

21

value – value of that property

bbox list<double> Optional bounding box around the feature collection in the
following order [west, south, east, north].

— 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) = 2 × 𝑛𝑛,

— where n is the number of dimensions represented in the
contained geometries, with all axes of the most south-
westerly point followed by all axes of the more north-easterly
point.

The axes order of a bbox follows the axes order of the geometries.
The bbox values define shapes with edges that follow lines of
constant longitude, latitude, and elevation.

Table 6 — Feature properties

Property Type Description

type enum Type of the feature (as defined by the GeoJSON specification):

Feature – a single GeoJSON feature

geometry Geometry Geometry of the feature (as defined by the GeoJSON
specification) (see Table 7).

properties Properties Optional feature specific properties (as defined by the GeoJSON
specification) (see Table 8).

bbox list<double> Optional bounding box around the feature in the following
order [west, south, east, north].

— 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) = 2 × 𝑛𝑛,

— where n is the number of dimensions represented in the
contained geometry, with all axes of the most south-
westerly point followed by all axes of the more north-
easterly point.

The axes order of a bbox follows the axes order of the
geometry. The bbox values define shapes with edges that
follow lines of constant longitude, latitude, and elevation.

CWA 17515:2020 (E)

22

Table 7 — Geometry properties

Property Type Description

type enum Type of the geometry (as defined by the GeoJSON
specification):

Point – a point
MultiPoint – a collection of points
LineString – a collection of points forming a line
MultiLineString – a collection of lines
Polygon – a collection of points forming an area
MultiPolygon – a collection of areas
GeometryCollection – a collection of any of the types above

coordinates list<double> or
list<list<double>> or
list<list<list<double>>>

List of coordinates representing the geometry (as defined
by the GeoJSON specification). For each coordinate, the first
two elements are longitude and latitude. Altitude can be
included as an optional third element. Longitude, latitude
and altitude are further specified in Table 19.

The difference in coordinate types depends on the chosen
geometry type: a point uses a single coordinate (a list of
decimals), while a multi polygon uses a list of polygons,
each having a list of coordinates, in its turn represented by
a list of decimals.

Polygon rings follow the right-hand rule for orientation
(counterclockwise order for external rings, clockwise order
for internal rings).

Table 8 — Property properties

Property Type Description

id string Case-insensitive unique identifier of the feature.

name string Optional name of the feature.

description string Optional description of the feature.

type string Optional type of the feature.

tags map<string> Optional map containing feature specific information:

key – unique name of the specific property
value – value of that property

orientation Orientation Optional orientation of the feature (see Table 20).

entities list<string> Optional list of entity identifiers that are at the feature.

address Address Optional address information of the feature (see Table 9).

CWA 17515:2020 (E)

23

Table 9 — Address properties

Property Type Description

street string Optional street name including house number and house letter.

houseNumber int Optional house number.

houseLetter string Optional house letter.

postalCode string Optional postal code.

city string Optional name of the city.

state string Optional name of the state or province.

country string Optional name of the country.

tags map<string> Optional map containing address specific information:

key – unique name of the specific property
value – value of that property

7.3 Post message

A post is a specific simulation entity representing a piece of writing, image or other content published.
Examples of posts can range from (e-)mail to social media posts (see Table 10).

Table 10 — Post message properties

Property Type Description

id string Unique case-insensitive identifier of the post.

body string Body text of the post.

header Header Optional header information of the post (see Table 11).

name string Optional name of the post.

type string Optional type of the post.

owner string Optional unique case-insensitive identifier of the connected
application owning the post.

timestamp long Optional UNIX Epoch time in milliseconds marking the time the
update was performed.

tags map<string> Optional map containing post specific information:

key – unique name of the specific property
value – value of that property

CWA 17515:2020 (E)

24

Table 11 — Header properties

Property Type Description

from string Sender of the post.

date long UNIX Epoch time in milliseconds marking the time the post was
published/updated.

to list<string> Optional list of recipients of the post.

cc list<string> Optional list of recipients in carbon copy of the post.

bcc list<string> Optional list of recipients in blind carbon copy of the post.

subject string Optional subject of the post.

intro string Optional introductory text of the post.

attachments map<string> Optional map of (references to) attachments inside the post:

key – unique reference to the attachment (e.g. Uniform Resource
Identifier (URI)) or complete string-encoded attachment
value – media type of the attachment (e.g. .pdf, .png, .zip)

location Location Optional location of the sender of the post (see Table 19).

8 Request messages

8.1 Ownership request message

An ownership request is a specific request for becoming owner of a given simulation entity (see
Table 12). Section 5.10 defines guidelines that use this ownership request message.

Table 12 — Ownership request message properties

Property Type Description

id string Unique case-insensitive identifier of the request.

applicant string Unique case-insensitive identifier of the connected application
sending the request.

entity string Unique case-insensitive identifier of the entity the applicant
requests ownership over.

tags map<string> Optional map containing ownership request specific information:

key – unique name of the specific property
value – value of that property

CWA 17515:2020 (E)

25

8.2 Route request message

A route request is a specific request for calculating a route from a starting location, passing through
several waypoints (see Table 13).

Table 13 — Route request message properties

Property Type Description

id string Unique case-insensitive identifier of the request.

applicant string Unique case-insensitive identifier of the connected application
sending the request.

start Location Location that marks the start of the route (see Table 19).

waypoints list<Location> Ordered list of locations to visit consecutively (see Table 19).

moveType enum Optional type of movement to consider calculating the route:

Straight – move in a direct line to all waypoints without taking
into account the terrain
CrossCountry – move directly to all waypoints without taking into
account the roads
OnlyRoads – stay on the roads to get to the closest point to the
waypoints that is still on a road
RoadsAndCrossCountry – move to the waypoints by taking into
account the roads; it is allowed to go off the road

tags map<string> Optional map containing route request specific information:

key – unique name of the specific property
value – value of that property

8.3 Move request message

A move request is a specific request for moving or transporting a given simulation entity towards a
given destination, possibly over a given set of waypoints or route (see Table 14).

Table 14 — Move request message properties

Property Type Description

id string Unique case-insensitive identifier of the request.

applicant string Unique case-insensitive identifier of the connected
application sending the request.

entities list<string> Unique identifiers of the entities the applicant requests to be
moved. This also allows multiple entities to move in a
convoy.

CWA 17515:2020 (E)

26

destination string Unique identifier of the entity the applicant requests the
given entities to move to.

waypoints list<Location> Optional list of locations to visit consecutively along the
movement (see Table 19).

moveType enum Optional type of movement:

Straight – move in a direct line to all waypoints without
taking into account the terrain
CrossCountry – move directly to all waypoints without
taking into account the roads
OnlyRoads – stay on the roads to get to the closest point to
the waypoints that is still on a road
RoadsAndCrossCountry – move to the waypoints by taking
into account the roads; it is allowed to go off the road

route string Optional unique identifier of a feature collection
representing the preferred route that should be followed
(see Table 5). This property should not be used together
with the waypoints property.

tags map<string> Optional map containing move request specific information:

key – unique name of the specific property
value – value of that property

In principle, the owner of the entity should handle the request. If multiple connected applications are
capable of handling move requests, configuration guidelines should be defined resolving all possible
conflicts that might arise. An additional guideline could be to split movement per capable connected
application based on entity type or specific tag combinations (e.g. move requests concerning vehicles
marked as traffic are handled by a connected traffic simulator, while move requests concerning persons
marked as pedestrian are handled by a connected crowd simulator).

8.4 Start inject request message

A start inject request is a specific request for starting a pre-defined sequence of events defined at one or
more connected applications (see Table 15).

Table 15 — Start inject request message properties

Property Type Description

id string Unique case-insensitive identifier of the request.

applicant string Unique case-insensitive identifier of the connected application
sending the request.

inject string Case-insensitive name of the inject that is requested to start.

tags map<string> Optional map containing start inject request specific information:

key – unique name of the specific property
value – value of that property

CWA 17515:2020 (E)

27

If multiple connected applications are capable of handling start inject requests, all of them should start
the given inject if present in their implementation. This allows a common simulation space to have
global injects that have application-specific effects, and eases starting of said injects without knowing all
specific details per application.

9 Support messages

9.1 Entity deletion message

An entity deletion message is a support messages indicating a shared entity should no longer be shared
(see Table 16).

Table 16 — Entity deletion message properties

Property Type Description

id List<string> Unique case-insensitive identifier of the entity.

owner string Optional unique case-insensitive identifier of the connected application
owning the entity.

timestamp long Optional UNIX Epoch time in milliseconds marking the time the update
was performed.

9.2 Request cancellation message

A request cancellation message is a support message indicating a pending request to be cancelled (see
Table 17).

Table 17 — Request cancellation message properties

Property Type Description

id string Unique case-insensitive identifier of the request.

applicant string Unique case-insensitive identifier of the connected application sending the
request.

timestamp long Optional UNIX Epoch time in milliseconds marking the time the update was
performed.

9.3 Response message

A response message is a support message for responding to a received common simulation space
message (see Table 18). Guidelines for responding to requests are described in Section 5.9.

CWA 17515:2020 (E)

28

Table 18 — Response message properties

Property Type Description

id string Unique case-insensitive identifier of the response.

request string Unique case-insensitive identifier of the request this response is responding
to.

code int Optional HTTP status code [100] that best serves the response. Configuration
guidelines might define new response codes that better fit the needs of that
common simulation space.

message string Optional information accompanying the response code.

timestamp long Optional UNIX Epoch time in milliseconds marking the time the respond was
given.

9.4 Geo-referencing

A location is defined as a WGS 84 based standard [3] representation of a location relative to the WGS 84
based ellipsoid (see Table 19).

Table 19 — Location properties

Property Type Description

latitude double In decimal degrees, ranging from [-90, 90] where 0 is the equator.

longitude double In decimal degrees, ranging from (-180, 180] where 0 is the prime meridian
(line going through the geographic north, Greenwich, and the geographic
south).

altitude double Optional in meters, where 0 is the surface of the WGS 84 based ellipsoid, or
another agreed upon common ground level (specified inside the configuration
guidelines). A positive number indicates a location outside the ellipsoid (or
above the ground level), while a negative number indicates a location inside
the ellipsoid (or below the ground level). If an altitude is not provided, it is
presumed that the location is at the ground level of the provided latitude and
longitude coordinates.

An orientation is defined in the aviation axes conventions representation (see Table 20). It is a left-
handed item-centric reference system, with in default initial state its heading/yaw-axis pointing away
from the center of the WGS 84 based ellipsoid, its pitch-axis pointing to the right, and its roll/bank-axis
pointing forward. The orientation of an item is represented in three properties, each representing a
rotation over one of the defined axes.

CWA 17515:2020 (E)

29

Table 20 — Orientation properties

Property Type Description

yaw double In decimal degrees, ranging from [0, 360) where 0 is pointing towards the
geographic north. The yaw value is applied in a clockwise rotation over the
item’s heading/yaw-axis. A yaw value of 90 makes the item face east, while a
yaw of 270 makes it face west.

pitch double In decimal degrees, ranging from [-90, 90] where 0 is perpendicular to the line
crossing the item’s location and the center of the WGS 84 based ellipsoid. The
pitch value is applied in a counter-clockwise rotation over the item’s pitch-axis.
A pitch value of 45 makes the item face 45 degrees upwards, while a pitch of -
20 makes it face 20 degrees downwards.

roll double In decimal degrees, ranging from (-180, 180] where 0 is perpendicular to the
line crossing the item’s location and the center of the WGS 84 based ellipsoid.
The roll value is applied in a clockwise rotation over the item’s roll/bank-axis.
A roll value of 45 makes the item roll 45 degrees to the right, while a roll of -50
makes it roll 50 degrees to the left.

A velocity is defined in the aviation axes conventions representation of a velocity vector (see Table 21).
It is a left-handed item-centric reference system, with in default initial state its heading/yaw-axis
pointing away from the center of the WGS 84 based ellipsoid, its pitch-axis pointing to the right, and its
roll/bank-axis pointing forward.

Table 21 — Velocity properties

Property Type Description

yaw double In decimal degrees, ranging from [0, 360) where 0 is pointing towards the
geographic north. The yaw value is applied in a clockwise rotation over the
item’s heading/yaw-axis. A yaw value of 90 makes the item face east, while a
yaw of 270 makes it face west.

pitch double In decimal degrees, ranging from [-90, 90] where 0 is perpendicular to the line
crossing the item’s location and the center of the WGS 84 based ellipsoid. The
pitch value is applied in a counter-clockwise rotation over the item’s pitch-
axis. A pitch value of 45 makes the item face 45 degrees upwards, while a
pitch of -20 makes it face 20 degrees downwards.

magnitude double In meter per seconds, ranging from [0, ∞) where 0 is standing still relative to
the Earth’s rotation.

9.5 Aggregated entity message

Using aggregated messages is defined in Section 5.7. Table 22 is a wrapper message containing a map
with all entities that require an aggregated update. The values of this map would be the defined entity
messages in Section 7, with all described properties to be optional allowing the message to only contain
the relevant changed properties.

CWA 17515:2020 (E)

30

Table 22 — Aggregation message properties

Property Type Description

id string Unique case-insensitive identifier of the aggregation update.

map map<Aggr> Map containing key-value pairs, all with unique keys:

key – unique case-insensitive identifier of the entity.
value – entity message where all properties are optional.

timestamp long Optional UNIX Epoch time in milliseconds marking the time the
aggregated update was performed.

CWA 17515:2020 (E)

31

Annex A
(informative)

List of all architectural guidelines

Table A.1 — Prerequisites of a common simulation space infrastructure

No. Guideline

G.1 A common simulation space infrastructure should be based on well-developed and robust
message broker software, where messages are exchanged between simulators and other tools.

G.2 Connecting to a common simulation space infrastructure should be made possible for all
applications that are needed in the common simulation space, by means of configurable
adapters that provide a documented application programming interface (API) for sending
messages to and receiving messages from the specific common simulation space.

G.3 The common simulation space infrastructure should be modularized, having its core
functionality of a message system expandable with additional modules for administrative
functions, large data usage, data storage, application authentication and authorization,
message encoding and encryption, as well as other features that might be needed for a specific
common simulation space.

Table A.2 — Configuration of a common simulation space

No. Guideline

G.4 A common simulation space may exclude architectural guidelines defined inside this
document. Since the guidelines inside this CWA are complementary within one sub-section,
when excluding architectural guidelines, it is recommended to exclude the complete set of
guidelines defined per sub-section instead of individual guidelines.

G.5 A common simulation space may include configuration guidelines for setting up that specific
common simulation space.

G.6 Configuration guidelines should not conflict with the architectural guidelines included in this
CWA but should serve as a specification on those guidelines.

G.7 A common simulation space may include additional message formats, i.e. not defined as part of
this CWA, required to be sent over that specific common simulation space.

G.8 New common simulation space message formats should not semantically conflict with
messages already defined inside this document.

G.9 When configuring a common simulation space, the following should be defined:

— used common simulation space infrastructure;

— connected applications;

CWA 17515:2020 (E)

32

— used architectural guidelines;

— used configuration guidelines;

— used messages, including the properties inside each message;

— used pre-computed data or application-specific configurations;

— interactions defining which messages are sent and received by which connected
application;

— common simulation space infrastructure channel or topic topology for facilitating the
interactions;

— rules for conflict handling that might arise during interactions or handling of messages.

G.10 Connected applications should implement a translation between their own domain model and
the messages they should send or receive inside the specific common simulation space.

Table A.3 — Recognition of connected applications

No. Guideline

G.11 All connected applications should send out a heartbeat message (see Section 6.1) to the
common simulation space, at a constant time interval agreed-upon in the configuration
guidelines, to indicate the application is responsive in the common simulation space.

G.12 Each connected application interested in another connected application’s responsiveness may
listen to the heartbeat messages of that connected application.

Table A.4 — Management of sessions

No. Guideline

G.13 Session management should be handled by one session manager.

G.14 The session manager should inform the common simulation space of the current session
information via the session management message (see Section 6.2).

G.15 Each connected application interested in session-related information should listen to the
session management messages of the session manager.

G.16 Each session state change should be under supervision of a person or staff responsible for the
session, making sure all connected applications are ready for the state change.

Table A.5 — Handling of time

No. Guideline

G.17 Time management should be handled by a single time manager.

G.18 Further definitions of time inside the common simulation space should be in the configuration

CWA 17515:2020 (E)

33

guidelines.

G.19 The time manager should inform the common simulation space of the current time
information via the time management message (see Section 6.3) at a fixed time interval
defined in the configuration guidelines.

G.20 The time manager should provide the current time and speed with each time management
message.

G.21 Each connected application interested in time-related information based on intervals, should
listen to the time management messages of the time manager.

G.22 Connected applications receiving a time management message should use the provided
simulation time and speed for correcting their own application time mechanism to the
provided time.

G.23 Whenever the time manager has changed its time state (e.g. the simulation is paused), it
should inform the common simulation space of the current time information via the time
management message (see Section 6.3).

G.24 Each connected application interested in time-related information based on time states,
should listen to the time management messages of the time manager.

Table A.6 — Entities

No. Guideline

G.25 An entity message should have a unique identifiable name (named id), to be used for referral
by all connected applications.

G.26 An entity message may have an optional timestamp property, to represent the moment in time
the update happened.

G.27 An entity message may have an optional type property, allowing the connected application
sending the message to provide further information on what type of simulation entity it is
sharing.

G.28 An entity message may have an optional tags property consisting of a list of unique string keys
with accompanied string values, allowing the connected application sending the message to
provide specific details that are relevant for the current common simulation space
configuration.

G.29 Whenever a connected application has created a new simulation entity that needs to be shared
or the application has performed an update on a shared entity, the connected application
should send the corresponding entity message with all relevant information to the common
simulation space.

G.30 Unless configuration guidelines define otherwise, whenever a shared entity is no longer to be
shared on the common simulation space, that entity can become marked as deleted by means
of an entity deletion message (see Table 16).

CWA 17515:2020 (E)

34

Table A.7 — Aggregation of entity data

No. Guideline

G.31 Aggregation messages should only be used to provide updates to already shared entities.

G.32 Each defined entity message should also have its aggregated version containing a map with
unique identifiers of the updated entities as a key, and entity aggregation information
containing a subset of properties of the entity that can be changed throughout a session as a
value.

G.33 All properties of entity aggregation messages should be marked as optional, to allow
connected applications to send an update of a subset of these properties.

Table A.8 — Requests

No. Guideline

G.34 A request message should have a unique identifiable name (named id), to be used for referral
by all connected applications.

G.35 A request message should have an applicant property containing the identifier of the
applicant.

G.36 A request message may have an optional tag property consisting of a list of unique string keys
with accompanied string values, allowing the applicant to provide specific details that are
relevant for the current common simulation space configuration.

G.37 Unless configuration guidelines define otherwise, any connected application may send out a
request used in the common simulation space.

G.38 Unless configuration guidelines define otherwise, whenever a request is no longer applicable
in a common simulation space, it may be cancelled by the applicant via a request cancellation
message (see Table 17).

G.39 Each connected application that was handling the request and that received a request
cancellation message concerning this request should, unless configuration guidelines define
otherwise, stop current handling and leave the affected entities as is.

Table A.9 — Responding to requests

No. Guideline

G.40 A response message should have a unique identifiable name (named id), to be used for referral
by all connected applications.

G.41 A response message should have a request property containing the identifier of the request
this message is responding to.

G.42 Configuration guidelines should clearly define further implications of the possible responses
for all connected applications in the common simulation space.

CWA 17515:2020 (E)

35

Table A.10 — Transfer of ownership

No. Guideline

G.43 An entity message should have an optional owner property (only when the entity can be
shared) to represent the current owner of this simulation entity.

G.44 Whenever a connected application creates an entity that can have multiple owners (but only
one at a time) inside a common simulation space, the owner property of that entity should be
set to the identifier of the connected application, marking this connected application as owner.

G.45 Connected applications should only send (aggregated) entity messages for entities that they
are owner of.

G.46 Whenever a connected application wants to own a simulation entity that it does not own, the
connected application should send a request for ownership (see Section 8.1).

G.47 Unless configuration guidelines define otherwise, an owner receiving a request for ownership
of a simulation entity it owns, should send out an entity message with its owner property
changed to the applicant (thereby handing over the ownership to that applicant).

CWA 17515:2020 (E)

36

Annex B
(informative)

Use cases

B.1 Use case 1 – Full-scale and/or live exercise

This use case describes the use of the common simulation space to link up both simulators and several
exercise-support tools. This is a large-scale outdoor exercise in which exercise staff (EXCON), role-
players, participants and observers are dispersed over a large live-exercise terrain. In this example, the
exercise has its goal to train the participants how to deal with a hacker attempting to shut down parts of
the electricity grid combined with a public violent and chaotic event (e.g. riots or looting).

Basic flow

In this exercise, EXCON uses an exercise control tool (ECT) to control the exercise’s timetable/playbook
to steer the role-players and simulators from their enclosed control room. This tool also presents
EXCON with the (summarized) observations from observers in the field. These observers make use of
an observer tool (OT) to collect digitized human observations of the behavior of participants and how
they deal with the scenario injects. This tool shares these observations with the exercise control tool,
such that EXCON at their off-site location get a real-time overview of how the participants are managing
the crisis in the field. Because evaluation of the actions of the participants is important for these large-
scale exercises, all information that can be stored will be stored by a storage tool (ST). Furthermore, a
simulator is used to model the electricity grid (simElec).

Figure B.1, Figure B.2, Figure B.3, and Figure B.4 depict a basic flow of the connected applications inside
the common simulation space, including specific exercise tools, that all serve the purpose of facilitating
a large-scale exercise being played out. These figures are unified modeling language sequence diagrams,
displaying interactions between components (arrows between the columns) over time (progressing
from top to bottom).

In Figure B.1, the start-up flow of the common simulation space during the exercise is further explained.
Since EXCON is controlling the exercise, they are using the exercise control tool to inform all other
parties that might be in other sections of the exercise field. Whenever initializing the exercise, the
exercise control tool is used to inform all role players to get ready, since the exercise is about to start.
This is also done for the observers via their own specific observer tool using the common simulation
space session management message. The simulator will also receive the session management message
with its state property set to value "Initialization" and initializes its simulation domain. The storage tool
will receive the session management message and starts a new log for recording all common simulation
space messages being sent.

Whenever EXCON decides to start the exercise, they first do a green light check to make sure all
applications and persons are ready for the exercise. When everyone is ready, the exercise control tool is
used for sending out the start of the exercise to all involved parties. Role-players are informed directly,
and the session management message with its state property set to value "Start" is sent to the common
simulation space. Although the electricity simulator receives this message, it will wait with starting the
simulation until a time management message with the state "Started" has been sent. The usage of both
the session and time management messages within this use case is done to make a clear distinction
between the exercise session and the simulation itself. After the time management message has been

CWA 17515:2020 (E)

37

sent out as well by the exercise control tool, the electricity simulator starts its simulation and EXCON
can inform the participants the exercise will start.

Due to planned breaks, or unforeseen issues, EXCON wants to have a pause during the exercise
(depicted in Figure B.2), by first informing the participants, secondly by sending the pause command to
the exercise control tool. This tool reports the pause to the role-players and sends out a time
management message with the state property set to value "Paused". Received by the observer tool, the
observers also receive the pause command. The simulator receives the time management message and
pauses its running simulation. After EXCON receives the feedback the exercise is paused, they can
perform the tasks required during this pause break. Based on the decision by EXCON the exercise will
be resumed with a similar flow as the start of the simulation time.

Inside the running exercise a pre-defined internal script is triggered inside the electricity simulator,
disabling all electric devices used by the exercise participants in grid A of the exercise (see Figure B.3).
This is done via a direct connection between the electricity simulator and fuse boxes used for this
exercise, resulting in the desired result. An additional flow is depicted to even further escalate the
incident of this exercise. The observers report back that the participants are responding correctly to the
situation at hand. This is done via the observer tool, sending out answer messages to be received by the
exercise control tool. This allows EXCON to make the decision to further escalate the problem and put
more pressure on the participants. Escalation is done via the exercise control tool, informing the role
players of this decision and sending out a change questions request message for the observer tool to
alter the current set of questions into a new set, more focused on the escalation aspects. The observer
tool changes the questions for all the observers. Then a start inject request message is sent to inform
the electricity simulator to start the specified escalation inject. Upon receiving this request, the
electricity simulator disables all electric devices for all participants in grid B as well.

After some time, the participants have isolated the hacker’s action and are able to contact electricity
companies (acted out by the role-players) to restore the power. The role-players inform EXCON of this
via the exercise control tool and EXCON directly changes the simulation of the electricity simulator,
causing the simulator to enable all electric devices for both grid A and B. After changing the state of the
electricity simulator, EXCON indicates that the incident has been mitigated. The exercise control tool
sends this to the role-players to inform them and requests to change the set of questions to a mitigation
questionnaire in the observer tool.

When stopping the exercise in Figure B.4, EXCON first informs the participants directly to make sure
they are not introducing new actions for the exercise. Via the exercise control tool, the role-players are
informed that they can do their own evaluation and cool down. The exercise control tool also sends out
the time management message with its state property set to value "Stopped" to the common simulation
space. The observer tool receives this message and reports this to the observers who can answer a final
set of evaluation questions. The simulator will receive the time management message and stops its
simulation. For the simulator, this would end its use for this exercise although the exercise isn’t
formally stopped and closed yet. EXCON is informed via the exercise control tool that the simulation
time has been stopped and simulators are not running anymore. Observers can, however, still answer
the evaluation questions to collect all data belonging to this exercise. Whenever EXCON knows all
observers completed the evaluation, the complete exercise will be stopped and closed via the session
management messages. This will let the exercise control tool send these final session management
messages with its state property set to value "Stop" and "Close" respectively. The observer tool receives
these messages and closes the observer tool session. The storage tool will save all recorded common
simulation space messages into a persistent storage, assuring the data collected throughout this
exercise can be used for evaluation purposes.

CWA 17515:2020 (E)

38

Architectural guidelines

In order to configure the common simulation space that can implement the above-mentioned use case,
the following Sections of architectural guidelines are used:

— 5.1 – Prerequisites of the common simulation space infrastructure

— 5.2 – Configuration of the common simulation space

— 5.4 – Management of sessions

— 5.5 – Handling of time

— 5.8 – Requests

The following Sections are used for the described use case flow:

— 6.2 – Session management message

— 6.3 – Time management message

— 8.4 – Start inject request message

A common simulation space-specific answer message is introduced for this use case, containing three
properties:

— the identifier of the observer that answered a question via the tool

— the question that is answered by the observer

— the answer of the observer belonging to the question

A common simulation space-specific change question request message is introduced for this use case,
containing the following properties:

— the identifier of the request

— the applicant of the request

— the list of observer identifiers this change should apply to

— the identifier of the list of questions that the observer tool needs to change to

CWA 17515:2020 (E)

39

Figure B.1 — Initializing and starting the common simulation space inside an exercise

CWA 17515:2020 (E)

40

Figure B.2 — Pausing and resuming simulation time

CWA 17515:2020 (E)

41

Figure B.3 — Simulator interaction and escalation of the exercise incident, including mitigation

CWA 17515:2020 (E)

42

Figure B.4 — Closing down the exercise

CWA 17515:2020 (E)

43

B.2 Use case 2 – Cascading effects

This use case describes the processing of shared information between multiple simulators that
influence these simulators. Individual pieces of information originating from a simulator serve as input
for another simulator connected to the common simulation space, forming a cascading effect chain
enriching the simulated world.

Basic flow

The scenario for the simulated world in this use case will be a flooding incident. Water rises because of
a breach in an embankment (simulated by "simFlood" in Figure B.5), which causes cascading effects like
power outages (simulated by "simElectricity" in Figure B.5), traffic congestion (simulated by
"simTraffic" in Figure B.5), emergency response (simulated by "simResponder" in Figure B.5) and
mitigating measures deployment (simulated by "simMitigation" in Figure B.5). The mitigating measures
would in turn influence the water levels at certain affected areas, causing a circular cascading effect for
all simulators involved.

Figure B.5 depicts a basic flow of the connected applications inside the common simulation space to
update each other and react on those updates to facilitate the above-mentioned use case. This figure is a
unified modeling language sequence diagram, displaying interactions between components (arrows
between the columns) over time (progressing from top to bottom).

In Figure B.5, the simulation session and time has already started, and the flooding simulator is
updating the flooded area for a particular time period. Whenever a new update is calculated, the
flooding simulator will send out a new feature collection message containing all information about the
flooded area to the common simulation space. Received by all other simulators, they will process this
new data into their own simulation domain models. Based on the update from the flooding simulator,
the electricity simulator can calculate how this new input affects the electricity grid. If any updates are
found, the electricity simulator sends out a feature collection message describing areas of electricity
outage to the common simulation space. Like the flood area, the other simulators can process this new
information inside their own simulation domain. The same flow goes for the traffic simulator, which
relies on both the flood area and the electricity outage areas to calculate possible traffic congestion.

Upon user commands, the responder simulator will move responder units to position them correctly in
mitigating the breach causing the flood. Moving units will require plotting a route avoiding the flooded
area and the traffic congestion and should consider electricity outages to find working power sources
for applying the mitigating measures. Each position update of units (represented by item messages) will
be sent from the responder simulator, via the common simulation space, towards the mitigation
simulator. Whenever the responder simulator has put all units on the locations the user provided, the
simulator can then request the mitigation simulator to start to resolve the breach. This is done via a
start inject request, requesting to start the inject called "mitigate". The mitigation simulator upon
reception of the request accepts the request and starts calculating the result of this configuration. When
done calculating, the mitigation simulator sends out the results via a feature collection message to the
common simulation space. This message is then received by the flooding simulator to update the
simulation domain flooding model, possibly causing another chain of cascading effects as described
above.

CWA 17515:2020 (E)

44

Figure B.5 — Cascading effect between multiple simulators reacting to each other’s data updates

CWA 17515:2020 (E)

45

Architectural guidelines

In order to configure the common simulation space that can implement the above-mentioned use case,
the following Sections of architectural guidelines are used:

— 5.1 – Prerequisites of the common simulation space infrastructure

— 5.2 – Configuration of the common simulation space

— 5.6 – Entities

— 5.8 – Requests

The following Sections are used for the described use case flow:

— 7.1 – Item message

— 7.2 – Feature collection message

— 8.4 – Start inject request message

B.3 Use case 3 – Ownership

This use case describes the interaction between two simulators that can transfer ownership of one of
the shared entities. Because functionality is separated over multiple simulators, this use case describes
a basic flow of how shared entities can change owner in order to perform a simulator-specific
functionality.

Basic flow

The two simulators in this case are a visualization (depicted as "simVisual" in Figure B.6 and Figure B.7)
and a routing simulator (depicted as "simRoute" in Figure B.6 and Figure B.7). The visualization
simulator provides a user interface to visualize and move entities inside its simulation domain. Since
the visualization simulator does not implement any movement of entities by itself, the routing simulator
is used to do the actual transportation. An implementation inside the visualization simulator is created
to enable the user to visualize the calculated transport route requested from the routing simulator and
send out a transport request for transporting the item over the route.

Figure B.6 and Figure B.7 depict a basic flow of the connected applications in the common simulation
space to transport an item and apply a minor change to the item being transported with use of several
guidelines and messages defined in this document. These figures are unified modeling language
sequence diagrams, displaying interactions between components (arrows between the columns) over
time (progressing from top to bottom).

The simulation session and time has already started, and the visualization simulator is sending out
updates regarding shared entities. In Figure B.6, the user selects an item to be transported inside the
visualization simulator. Upon having entered where this item should be transported to, the
visualization simulator sends out a route request to the routing simulator. This simulator calculates the
route based on the request and sends a feature collection message containing a line depicting the
suggested route.

Having seen the suggested route inside the visualization simulator, the user orders the transportation
according to the suggested route. The visualization simulator sends out a move request message to the
common simulation space. The routing simulator investigates if it can perform the transport request

CWA 17515:2020 (E)

46

from information of the item and destination obtained by previously sent entity messages. In order to
perform the request, the routing simulator sends out an ownership request for the visualization
simulator to hand off ownership. Whenever the routing simulator received this updated item message,
it can start by updating the location of that item according to the calculated route towards the
destination.

While the transport is still ongoing, the user has notified the visualization simulator to change the
visibility of the item (see Figure B.7). Since this simulator does not own the item, it sends out an
ownership request to the common simulation space. The routing simulator accepts this request, pauses
the internal movement process and changes the owner property to the visualization simulator. The
visualization simulator can now change the visibility, and immediately transfer back the ownership to
the routing simulator, for it to continue the transportation.

After completing the move request, the routing simulator transfers ownership back to the visualization
simulator, indicating it has completed the request. The visualization simulator can in turn report this
back to the user of that simulator.

Architectural guidelines

In order to configure the common simulation space that can implement the above-mentioned use case,
the following Sections of architectural guidelines are used:

— 5.1 – Prerequisites of the common simulation space infrastructure

— 5.2 – Configuration of the common simulation space

— 5.6 – Entities

— 5.8 – Requests

— 5.10 – Transfer of ownership

The following Sections are used for the described use case flow:

— 7.1 – Item message

— 7.2 – Feature collection message

— 8.1 – Ownership request message

— 8.2 – Route request message

— 8.3 – Move request message

CWA 17515:2020 (E)

47

Figure B.6 — Requesting for transport of an item that requires a transfer of ownership

CWA 17515:2020 (E)

48

Figure B.7 — Small alteration within the transport

B.4 Use case 4 – High throughput

This use case describes the interoperability of two simulators that have many messages to transfer and
process each time step. Both simulators have high fidelity and throughput requirements that need to be
met in order to function properly in the common simulation space. To keep track of the synchronized
time steps, a time manager is inside the common simulation space sending out time step information to
allow time synchronization between both simulators.

Basic flow

The two simulators in this case are a crowd simulator (depicted as "simCrowd" in Figure B.8) and a
traffic simulator (depicted as "simTraffic" in Figure B.8), both having many pedestrian and vehicle
entities to simulate. All entities are inside a shared environment, and the simulators need to exchange
information on current and near-future states to avoid any unwanted collisions between moving
pedestrians and vehicles.

CWA 17515:2020 (E)

49

Figure B.8 depicts a basic flow of high throughput between the connected applications inside the
common simulation space by use of guidelines and messages defined inside this document. This figure
is a unified modeling language sequence diagram, displaying interactions between components (arrows
between the columns) over time (progressing from top to bottom).

In this figure, the simulation is being started by the time manager by sending out a time management
message to the common simulation space. The common simulation space propagates this message to all
connected applications, and both simulators will start their first simulation time step. The crowd
simulator sends out an aggregation message containing a map of all shared pedestrian items that are
updated within this time step. The representation of a pedestrian by both simulators is agreed-upon as
a circle with a fixed radius, so only the current location and velocity will be sent inside the aggregation
message. The common simulation space propagates this to the traffic simulator, which processes the
pedestrian data to be represented inside its own simulation domain. The traffic simulator in its turn
sends out an aggregation message (via the common simulation space) to the crowd simulator,
containing all information of shared and updated vehicle items. Representation of a vehicle for this
common simulation space is defined as a rectangle, so the traffic simulator also sends the orientation
changes of its vehicles to be processed by the crowd simulator. In the figure, a similar flow is provided
for consecutive time steps.

Whenever the time manager wants to stop the simulation time, it sends out a time management
message with its state property set to its value "Stopped". Propagated by the common simulation space
and received by the simulators, they can both stop their own simulation.

In this basic flow, every simulator only provides updates of the given properties of the entities it owns,
and the other simulator tries to incorporate them inside its own simulation domain. If the receiving
simulator cannot integrate the information, it decides for itself how to resolve these issues. There is no
explicit conflict resolution mechanism defined for this use case, although this can be provided by
additional configuration guidelines.

Architectural guidelines

In order to configure the common simulation space that can implement the above-mentioned use case,
the following Sections of architectural guidelines are used:

— 5.1 – Prerequisites of a common simulation space infrastructure

— 5.2 – Configuration of a common simulation space

— 5.5 – Handling of time

— 5.6 – Entities

— 5.7 – Aggregation of entity data

The following Sections are used for the described use case flow:

— 6.3 – Time management message

— 9.5 – Aggregated entity message

CWA 17515:2020 (E)

50

Figure B.8 — High throughput between two simulators exchanging aggregation messages

B.5 Use case 5 – Interaction with an external simulation space

This use case describes the interaction between connected applications inside the common simulation
space, with one or more simulators connected via an external simulation space (ESS) (e.g. a high-level
architecture implementation). The focus of this use case regards guidelines for a gateway that needs to
be created between the two simulation spaces. It also introduces the use of the response message to
provide an example of handling session initialization in a more automated form (i.e. excluding a person
responsible for checking if all connected applications are ready).

Basic flow

In this basic flow, simulator A (depicted as "simA" in Figure B.9) and the application serving as the
gateway between the common simulation space and the external simulation space (depicted as "CSS-
ESS gateway" in Figure B.9) are both connected to the common simulation space. The gateway
application is also connected to the external simulation space, where simulator B (depicted as "simB" in

CWA 17515:2020 (E)

51

Figure B.9) resides. An exercise control tool (depicted as "ECT" in Figure B.9) provides the external
simulation space with a simple session management that should also control the common simulation
space session management.

Figure B.9 describes a basic flow of simple simulator interactions between the common simulation
space and the external simulation space via the gateway application connected to both spaces. This
figure is a unified modeling language sequence diagram, displaying interactions between components
(arrows between the columns) over time (progressing from top to bottom).

In this figure, the exercise control tool – serving as session manager of the external simulation space –
sends out a command for starting the simulation, automatically starting simulator B upon receiving this
message. In this specific use case, simulator A requires some time to initialize its simulation domain and
the gateway application needs to serve as a session manager inside the common simulation space. It
first sends out the session management message with its state property set to value "Initialization" and
waits until the simulator has responded positively. This allows simulator A to load and configure its
simulation domain before sending out a response to the session management message. If any update
messages are to be sent by the external simulation space, the gateway application should cache these
messages until simulator A has started its simulation. Whenever properly initialized, simulator A
responds to the session management message with an appropriate response message, for the gateway
application to send out the session management message with its state property set to value "Start",
possibly followed by the cached messages. After this, both external simulation space and common
simulation space are in synchronization again and messages can be exchanged between the two spaces.

From common simulation space to external simulation space, all relevant entity and request messages
from simulator A need to be translated by the gateway application to be received by simulator B. In
order to translate a transport request into a proper transport command for simulator B, the gateway
application needs to translate the references to the individual components inside the request (i.e. the
simulation entity to be transported and the simulation entity that serves as the destination). Whenever
this translation is performed correctly, the gateway application can send out the transport command to
simulator B. From external simulation space to common simulation space, the same translation
procedures apply for the gateway application.

Most likely, each external simulation space has a different set of guidelines and messages used to
operate. Via a gateway application like the one proposed inside this use case, a bridge can be created
between an external simulation space and a common simulation space, although this might require a
large effort for simulators to set up correct connecting configuration guidelines, and for developing the
gateway application based on these configuration guidelines.

CWA 17515:2020 (E)

52

Figure B.9 — Communication between simulator A inside a common simulation space and
simulator B inside an external simulation space

CWA 17515:2020 (E)

53

Architectural guidelines

In order to configure the common simulation space that can implement the above-mentioned use case,
the following Sections of architectural guidelines are used:

— 5.1 – Prerequisites of the common simulation space infrastructure

— 5.2 – Configuration of the common simulation space

— 5.4 – Management of sessions

— 5.6 – Entities

— 5.8 – Requests

— 5.9 – Responding to requests

The following Section are used for the described use case flow:

— 6.2 – Session management message

— 7.1 – Item message

— 8.3 – Move request message

— 9.3 – Response message

B.6 Use case 6 – Interaction between common simulation and a shared application
space

This use case describes the interaction between connected applications inside the common simulation
space, with one or more user applications connected via a shared application space (SAS). The focus of
this use case regards guidelines for a gateway that needs to be created between the common simulation
space and the standardized shared application space. For more information on the interoperability
between different crisis management organizations and applications that can help in defining a shared
application space, the reader is referred to CWA 17513:2020 [6].

Basic flow

In this use case, a flood monitoring application (depicted as "appFloodMonitor" in Figure B.10) is used
by a participant. A flooding simulator (depicted by "simFlood" in Figure B.10) generates simulated
water levels in the specified area of interest, in place of actual water sensor readings. The flood area
calculated is provided to the common simulation space, received by a gateway application (depicted as
"CSS-SAS gateway" in Figure B.10). The data of the message is stored in a shared application data
component part of the gateway application, which can be accessed by all applications in the shared
application space. Information about this new flood data is sent out via standard operational message
formats used throughout the shared application space, like Common Alerting Protocol [4], or
Emergency Services Messaging Interface (ESMI) [5].

Figure B.10 describes a basic flow of this flooding simulator inside the common simulation space that
communicates with the gateway application to provide standardized sensor data to be visualized by the
flood monitoring application inside the shared application space. This figure is a unified modeling
language sequence diagram, displaying interactions between components (arrows between the
columns) over time (progressing from top to bottom).

CWA 17515:2020 (E)

54

The session and possible time management have already started, and all applications are connected to
the required spaces. This basic flow starts with the flooding simulator having an update of the flooded
area, sending this via a feature collection message to the common simulation space. The gateway
application receives this message and processes the information to be stored as water level
measurements from sensors at the pre-defined locations that would normally be accessible at an
operational setting. The gateway application also sends out a common alerting protocol (CAP) message
to the shared application space to notify all applications inside this space via an operational
standardized message format. The flood monitor application receives this message and displays the
notification new flood information can be obtained. The user of the flood monitor application actively
requests the latest sensor data by pressing the notification, which leads to a direct communication
between flood monitor application and gateway application to retrieve the current flooding sensor data.
Whenever the data is retrieved from the gateway application, the flood monitor application displays the
new information to the user.

Interaction from shared application space to common simulation space is also very likely in this use
case, since there might be a very large amount of flooding sensors in a region. In order to keep a proper
overview, information is aggregated in both the flood monitor application and the flooding simulator.
The flood monitor application has the functionality to focus on a specific area of interest that should
then receive more detailed sensor information regarding that selected area. Since this is not a
functionality that can be written in current standardized operational message formats, the flood
monitor application communicates directly with the gateway application to provide the region of
interest. Upon receiving this information, the gateway application converts this into a feature collection
message with a special "focus" type to be send via to the common simulation space. The flooding
simulator receives this area and calculates additional information regarding the area of interest and
provides an update via a new feature collection message. The further flow regarding processing the new
flooded area message is handled according to the description above.

Architectural guidelines

In order to configure the common simulation space that can implement the above-mentioned use case,
the following Sections of architectural guidelines are used:

— 5.1 – Prerequisites of the common simulation space infrastructure

— 5.2 – Configuration of the common simulation space

— 5.6 – Entities

The following Sections are used for the described use case flow:

— 7.2 – Feature collection message

CWA 17515:2020 (E)

55

Figure B.10 — Communication between a flooding simulator in the common simulation space
and a flood monitor application in the shared application space

CWA 17515:2020 (E)

56

Bibliography

[1] DRIVER+ website. Available at https://www.driver-project.eu/ [viewed 2020-03-16].

[2] Driver+ GitHub code repository. Available at https://github.com/driver-eu
[viewed 2020-03-16].

[3] World Geodetic System 1984 (WGS 84). National Geospatial-Intelligence Agency (USA).

[4] Common Alerting Protocol (CAP). Available at http://docs.oasis-
open.org/emergency/cap/v1.2/CAP-v1.2-os.html [viewed 2020-03-16].

[5] Emergency Services Messaging Interface (ESMI). Available at
https://pos.driver-project.eu/en/standards/683 [viewed 2020-03-16].

[6] CWA 17513:2020 Crisis and disaster management – Semantic and syntactical interoperability.

[7] MapBox simplestyle-spec GitHub code repository. Available at
https://github.com/mapbox/simplestyle-spec/tree/master/1.1.0 [viewed 2020-03-16].

https://www.driver-project.eu/
https://github.com/driver-eu
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
https://pos.driver-project.eu/en/standards/683
https://github.com/mapbox/simplestyle-spec/tree/master/1.1.0

	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviations
	5 Architectural guidelines
	5.1 Prerequisites of a common simulation space infrastructure
	5.2 Configuration of a common simulation space
	5.3 Recognition of connected applications
	5.4 Management of sessions
	5.5 Handling of time
	5.6 Entities
	5.7 Aggregation of entity data
	5.8 Requests
	5.9 Responding to requests
	5.10 Transfer of ownership

	6 Configuration messages
	6.1 Heartbeat message
	6.2 Session management message
	6.3 Time management message

	7 Entity messages
	7.1 Item message
	7.2 Feature collection message
	7.3 Post message

	8 Request messages
	8.1 Ownership request message
	8.2 Route request message
	8.3 Move request message
	8.4 Start inject request message

	9 Support messages
	9.1 Entity deletion message
	9.2 Request cancellation message
	9.3 Response message
	9.4 Geo-referencing
	9.5 Aggregated entity message

	Annex A (informative)List of all architectural guidelines
	Annex B (informative)Use cases
	B.1 Use case 1 – Full-scale and/or live exercise
	B.2 Use case 2 – Cascading effects
	B.3 Use case 3 – Ownership
	B.4 Use case 4 – High throughput
	B.5 Use case 5 – Interaction with an external simulation space
	B.6 Use case 6 – Interaction between common simulation and a shared application space

