

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 17494:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 17494 January 2020

ICS 35.080
English version Analytics Insights and Scaling Policies for Microservices

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CWA 17494:2020 (E)

2

Contents Page

Foreword .. 3

Introduction .. 4

1 Scope .. 5

2 Normative references .. 5

3 Terms and definitions ... 5

4 Metric Definition ... 5

5 Measurement Extraction .. 6

6 Analytics Insight Definition Language ... 7

7 Elasticity Rule Definition and Evaluation ... 9

Bibliography ... 12

CWA 17494:2020 (E)

3

Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions
of CEN/CENELEC Internal Regulations - Part 2. It was approved by a Workshop of representatives of
interested parties on 2019-10-25, the constitution of which was supported by CEN following the public
call for participation made on 2018-09-10. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-16.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• CAS Software AG/Spiros Alexakis

• Julia Vuong/CAS Software AG

• Manos Papoutsakis/FORTH

• Marios Phinikettos/Suite 5

• Sotirios Koussouris/Suite 5

• Pedro Sanchez/Technical University of Cartagena

• Diego Alonso/Technical University of Cartagena

• Ioannis Ledakis/UBITECH

• Panos Parthenis/UBITECH

• Panagiotis Gouvas/UBITECH

• Demetris Trihinas/University of Cyprus

• George Pallis/University of Cyprus

• Marios Dikaiakos/University of Cyprus

• Thanasis Tryfonos/University of Cyprus

Attention is drawn to the possibility that some elements of this document may be subject to patent
rights. CEN-CENELEC policy on patent rights is described in CEN-CENELEC Guide 8 “Guidelines for
Implementation of the Common IPR Policy on Patent”. CEN shall not be held responsible for identifying
any or all such patent rights.

Although the Workshop parties have made every effort to ensure the reliability and accuracy of
technical and non-technical descriptions, the Workshop is not able to guarantee, explicitly or implicitly,
the correctness of this document. Anyone who applies this CEN Workshop Agreement shall be aware
that neither the Workshop, nor CEN, can be held liable for damages or losses of any kind whatsoever.
The use of this CEN Workshop Agreement does not relieve users of their responsibility for their own
actions, and they apply this document at their own risk.

CWA 17494:2020 (E)

4

Introduction

The emergence of cloud computing altered radically the way modern applications are managed.
Virtualization offers many technical and financial advantages since it contributes to rapid provisioning
and to decrease of operational expenses. One of the most significant implications of the cloud
computing dominance is the emergence of microservices as the de-facto application development
paradigm. Thus, modern applications are not architected in a monolithic way. Instead, applications are
decomposed in several microservices that can be managed independently. Management refers to all
states of a microservice e.g. start, stop, scale in, scale out etc. One of the crucial aspects of microservice
management is elasticity. Elasticity refers to the way a microservice is reacting to the increase or
decrease of its load. Microservices that have the ability to scale in/out are considered elastic-by-design.
The scope of this document is to set the guidelines for platform agnostic elasticity management.

CWA 17494:2020 (E)

5

1 Scope

This CEN Workshop Agreement gives guidelines for platform-agnostic elasticity management of elastic-
by-design microservices. Platform-agnostic implies that the mechanism/orchestration entity which will
perform the actual scale-in/out process is outside of the scope of this document. Instead, the definition
of the actual elasticity events and the relationship of this definition with the underlying monitoring
mechanisms will be formally described. The specification is using the Backus Naur form [1].

This document is applicable to independent software vendors (also known as ISVs) or developers of
microservice orchestration platforms.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at http://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

3.1
Extended Backus–Naur form
EBNF
formal notation which can be used to express a context-free grammar, consisting of terminal symbols
and non-terminal production rules which are the restrictions governing how terminal symbols can be
combined into a legal sequence

3.2
Infrastructure as a Service
IaaS
form of cloud computing that provides virtualized computing resources over the internet to provision
processing, storage, networks, and other fundamental computing resources

3.3
Independent Software Vendor
ISV
software producer that is not owned or controlled by a hardware manufacturer or a company whose
primary function is to distribute software

4 Metric Definition

A Metric is an essential part of an autonomous system that aims to capture and quantify the behaviour
of a system’s element (e.g. how many requests are handled by a service). In Table 1, the definition of a
Metric is described. The unique identifier of a metric is composed by the name of the metric and the
identifier of the agent that belongs to; each agent is responsible for collecting one or more metrics
through its probes. The MetricDefinition production rule consists of useful information about the metric,
such as, description, type, unit, group and an initial value. The attribute HigherIsBetter is useful for
visualization and analysis purposes, as it specifies whether a higher value is better or not in terms of

http://www.iso.org/obp
http://www.electropedia.org/

CWA 17494:2020 (E)

6

quality. The MetricConfiguration production rule, allows the use of configurations, such as controlling
the intrusiveness and accuracy of various adaptive monitoring techniques.

Table 1 — Metric EBNF Definition

Metric ::= MetricInstanceID “:” MetricDefinition “,” MetricConfiguration

MetricInstanceID ::= “(” MetricName “,” AgentID “)”

MetricName ::= String

AgentID ::= String

MetricDefinition ::= Description Type Unit InitValue Min Max Group HigherIsBetter

Description ::= String

Type ::= “Float” | “Double” | “Integer” | “Boolean” | “String”

Unit ::= String

InitValue ::= Number | String

Number ::= [+-]? ([0-9]*[.])? [0-9]+

Min ::= Number | String

Max ::= Number | String

Group ::= String

HigherIsBetter ::= “TRUE” | “FALSE”

MetricConfiguration ::= Param (“,” Param)*

Param ::= Key Value

Key ::= String

Value ::= “Object”

5 Measurement Extraction

A Monitoring Agent is composed from a set of probes and tags. Table 2, describes the definition of the
Monitoring Agent. The tags are useful for grouping agents that belong to the same tier (e.g. business-tier
or presentation-tier) or services that belong to a specific zone (e.g. eu_west, eu_central). Each probe
contains a set of metrics that are collected based on a periodical cycle (e.g. every 5 s) or when certain
conditions are satisfied (event based). With the use of conditions, for example, an agent collects
measurements only when the value is above or below a certain threshold (e.g. memory_usage < 5), or
there is a change on its statistical properties (e.g. DIFF (cpu_usage) > = 2). The DIFF function denotes
the difference between the value and the arithmetic mean of the timeseries stream in standard
deviation units. The APTITUDE denotes the magnitude of change of the value since the last
measurement.

Table 2 — Monitoring Agent EBNF Definition

Agent ::= AgentID “:” Probes “,” Tags

AgentID ::= UUID

UUID ::= String

Probes ::= Probe (“,” Probe)*

CWA 17494:2020 (E)

7

Probe ::= Name “,” Metrics “,” CollectionEvent

Metrics ::= Metric (“,” Metric)*

CollectionEvent ::= Periodical | EventBased

Periodical ::= “COLLECT EVERY” PositiveInteger TimeUnit

PositiveInteger ::= [1-9]([0-9])*

TimeUnit ::= “Milliseconds” | “Seconds”| “Minutes”| “Hours”

EventBased ::= “WHEN” MetricConditions

MetricConditions ::= MetricCondition (“AND” MetricCondition)*

MetricCondition ::= MetricFunction “(” MetricName “)” RelOp Number

MetricFunction ::= “LAST_VALUE” | “DIFF” | “APTITUDE”

RelOp ::= “LT” | “GT” | “EQ” | “NEQ” | “GTE” | “LTE”

Number ::= [+-]? ([0-9]*[.])? [0-9]+

6 Analytics Insight Definition Language

An Analytics Insight is basically a composite metric, namely one that is composed from multiple metrics,
via composition and/or aggregation. A user can define an insight by firstly specifying the observation
period of her interest and then compose with basic arithmetic operations the aggregated metric values
exposed by a set of members. The Membership production rule allows the user to specify from which
agents the metrics are collected.

A CompositeExpr is either a simple expression, denoted as Expr, or is recursievely constructed via left
and right-hand composite expressions operated by a binary operation (e.g. ADD, DIV). An Expr can be
an Aggregate function (e.g. MEDIAN (cpu_usage)), a MetricStream or a Number. Optionally, a Filter can
be attached to an Expr so that left-hand operations are only processed if the filter predicate evaluates to
true. As such, a Filter is composed from applying on a metric a relational operation and a
CompositeExpr, with users also able to concatenate multiple filters with the AND logical operator. In
turn, an Aggregate is either window-based or accumulated function. The difference is in the application
of the aggregate on the metric stream. For window-based aggregates (WindowedFunc), a window is
needed to denote the time interval of interest for aggregating values, while for accumulated aggregates
(AccumFunc) the result is computed solely based on previous values. A WindowedFunc can be either a
UserFunc or a PrimitiveWindowedFunc. A UserFunc is a user-defined function that takes: i) a list of key-
value pairs as parameters; ii) a MetricStream as input; and produce another MetricStream. Respectively,
an AccumFunc can be either a UserFunc or a PrimitiveAccumFunc. A PrimitiveWindowedFunc is a
primitive windowed function like AVERAGE, SUM, and COUNT, while a PrimitiveAccumFunc is a
primitive accumulated function like RUNNING_SUM, RUNNING_MEAN, etc.

Both windowed and accumulated functions require as input a MetricStream, which is composed from a
list of Metrics and optionally a Membership description. In turn, the membership description is used
when metrics are compiled as aggregates from multiple monitoring sources. When the membership is
omitted, measurements satisfying the metric description from all monitoring sources are considered in
the insight computation. What is more, Filters can be attached and applied directly to the metric stream.
Furthermore, in the composition definition, an optional BY statement is available which permits
grouping the expression evaluation on a given Metric key.

Finally, the optional WITH statement allows the user to define certain optimization strategies and
constraints to improve runtime performance. Specifically, SALIENCE denotes the importance of an
insight, allowing the user to prioritize query execution over other queries. In turn, SAMPLE allows users

CWA 17494:2020 (E)

8

to specify that query execution can be applied on a percentage of the available measurements so that an
approximate answer is given in a fraction of the time required to execute the query on the entire data.
The language also supports users to set the MAX ERROR and CONFIDENCE which are optimization
constraints allowing for the query to be executed on a sample of the data, where the constructed sample
must satisfy the aforementioned constraints.

Table 3 — Insight EBNF Definition

Insight ::= InsightID “:” Composition “EVERY” Window
[“WITH” Optimizations]

InsightID ::= String

Composition ::= CompositeExpr [“BY” MetricName]

CompositeExpr ::= CompositeExpr BinOp CompositeExpr
| MapOp “(“ Expr “)”
| Expr

BinOp ::= “+” | “-” | “*” | “/” | “DIV” | “MOD”

Expr ::= Aggregate [“WHEN” Filters]
| MetricStream
| Number

Aggregate ::= WindowedFunc | AccumFunc

WindowedFunc ::= (UserFunc | PrimitiveWindowedFunc) “(” MetricStream “,”
Window “)”

UserWindowedFunc ::= FuncName [Params]

FuncName ::= String

Params ::= “[“ Key “=” Value (“,” Key “=” Value)* “]”

Key ::= String

Value ::= String | Number

PrimitiveWindowedFunc ::= “SUM” | “COUNT” | “PRODUCT” | “ARITHMETIC_MEAN”
| “GEOMETRIC_MEAN” | “HARMONIC_MEAN” | “MIN” | “MAX”
| “MEDIAN” | “PERENTILE” “[” Percent “]” |
“TOP_K” “[” PositiveInt “]”

UserWindowedFunc ::= FuncName [Params]

FuncName ::= String

Params ::= Key “=” Value (“,” Key “=” Value)*

AccumFunc (UserFunc | PrimitiveAccumFunc) “(” MetricStream “)”

PrimitiveAccumFunc ::= “RUNNING_SDEV” | “RUNNING_MEAN” | “RUNNING_MAX”
| “RUNNING_MIN” | EWMA “[” Percent “]” | PEWMA “[” Percent “]”

MetricStream ::= Metrics [“FROM” Membership] [“WHEN” Filters]

Metrics ::= MetricName (“,” MetricName)*

Membership ::= AgentID (“,”AgentID)* | “TAG” “=” Tag

CWA 17494:2020 (E)

9

Filters ::= Filters (“AND” Filter)*

Filter ::= MetricName RelOp CompositeExpr

RelOp ::= “LT” | “GT” | “EQ” | “NEQ” | “GTE” | “LTE”

Window ::= TimePeriod

TimePeriod ::= PositiveInt TimeUnit

TimeUnit ::= “MILLIS” | “SECONDS” | “MINUTES” | “HOURS”

Tag ::= String

Optimizations ::= [“SALIENCE” PositiveInt] | [(“MAX_ERROR” Percent “AND”
“CONFIDENCE” Percent | “SAMPLE” Percent)]

MapOp ::= PrimitiveMapOp | UserFunc

PrimitiveMapOp ::= “ABS” | “SQR” | “SQRT”

7 Elasticity Rule Definition and Evaluation

An Elasticity Policy, depicted in Table 4, is composed by an elasticity trigger and an elasticity action. The
policy specifies the action to be enforced when the policy is triggered. Note that, in case of conflicting
policies, the priority value is used to resolve the conflict. An example of such policy is shown in Figure 1.
In this example, the policy specifies that one more service of type svc-s (streaming service) should be
added when there is i) a sufficient increase (10 requests/sec in that last 5 minutes) on the number of
requests in the European region; ii) the aggregated cost of these services do not exceed the budget
constraint (1,5 credits/hour); iii) and also there are less than 10 services running.

Figure 1 — Elasticity Policy Example

A trigger, as described in Table 5, may contain multiple elasticity conditions that should all be satisfied
so that the policy is triggered. Each condition can be either a runtime information expression or a
scheduled event. The Runtime Information expression can be composed from an existing insight metric
or from an aggregated runtime information from resources, such as running instances, or hourly cost.

CWA 17494:2020 (E)

10

The value of the runtime information is then compared with a user-defined value, in order to specify
when the condition should evaluate to true in order to trigger the elasticity action, specified by the
policy. In a similar fashion, a condition can be expressed using Scheduled Expression, specifying how
often the condition should evaluate to true. This is particularly useful for taking scaling decisions based
on traffic patterns.

In Table 6, an Elasticity Action is described. Currently, the available actions refer to horizontal scaling,
that is, replicating or removing resources. We should point out that a Resource is an abstract term and
may refer either to a service or virtual machine flavor. The underline infrastructural resources are
transparent to the Cloud Application Developer, as she only knows about the services of her application.
The Unicorn platform is responsible about the infrastructural resources (e.g. virtual machines).

An Elasticity Action offers the ability to users and interested entities to specify a placement
configuration for a service or an infrastructural resource in multiple clusters. A cluster can be located in
the same zone or in another cloud provider, thus it supports multi-cloud scaling. Note that a placement
configuration contains WarmupPeriod and CooldownPeriod production rules, which are important
parameters for the efficiency of a scaling action and the overall performance of an application. The
WarmupPeriod, is used to specify the time period that the metrics from newly instantiated resources
are not considered by the respective auto-scaling handler. Similarly, the CooldownPeriod is used to give
time to the system to provision/de-provision new resources and absorb any changes, so as to avoid
false scaling alerts.

Table 4 — Elasticity Policy EBNF Definition

ElasticityPolicy ::= ElasticityPolicyID “:” “When” ElasticityTriggerID “Perform”
ElasticityActionID “With Priority” Priority

ElasticityPolicyID ::= String

ElasticityTriggerID ::= String

ElasticityActionID ::= String

Priority ::= PositiveInteger

PositiveInteger ::= [1-9]([0-9])*

Table 5 — Elasticity Trigger EBNF Definition

ElasticityTrigger ::= ElasticityTriggerID “:” ElasticityConditions

ElasticityTriggerID ::= String

ElasticityConditions ::= ElasticityCondition (“AND” ElasticityCondition)*

ElasticityCondition ::= RuntimeInfoExpr | ScheduledExpr

RuntimeInfoExpr ::= RuntimeInfo RelOp Number

RuntimeInfo ::= InsightID | ResourceInfo “(” Members “)”

ResourceInfo ::= “COUNT_RUNNING” |
“COUNT_UNHEALTHY” |
“HOURLY_COST”

Members ::= Member (“,” Member)*

Member ::= Resource |

CWA 17494:2020 (E)

11

Resource “IN” Clusters

Clusters ::= ClusterID (“,” ClusterID)*

ClusterID ::= String

RelOp ::= “LT” | “GT” | “EQ” | “NEQ” | “GTE” | “LTE”

Number ::= [+-]? ([0-9]*[.])? [0-9]+

ScheduledExpr ::= “REPEAT_EVERY” TimeExpression

TimeExpression ::= Minute Hour DayOfMonth Month Weekday

Minute ::= [0-5][0-9] (“,” [0-5][0-9])* | “*”

Hour ::= ([0-1][0-9] | [2][0-3]) (“,” ([0-1][0-9] | [2][0-3]))* | “*”

DayOfMonth ::= ([0-2][0-9] | [3][0-1]) (“,” ([0-2][0-9] | [3][0-1]))* | “*”

Month ::= ([1-9] | [1][0-2]) (“,” ([1-9] | [1][0-2]))* | “*”

Weekday ::= [0-6] (“,” [0-6])* | “*”

Table 6 — Elasticity Action EBNF Definition

ElasticityAction ::= ElasticityActionID “:” ResourceAction

ElasticityActionID ::= String

ResourceAction ::= ReplicationAction

ReplicationAction ::= “ADD” PlacementAddConfigs |
“REMOVE” PlacementConfigs

PlacementAddConfig
s

::= PlacementConfig “WITH” WarmupPeriod “,” CooldownPeriod
 (“,” PlacementConfig “WITH” WarmupPeriod “,” CooldownPeriod)*

PlacementConfig ::= PositiveInteger Resource “IN” Cluster

PositiveInteger ::= [1-9]([0-9])*

Resource ::= String

Cluster ::= String

WarmupPeriod ::= PositiveInteger TimeUnit

TimeUnit ::= “Milliseconds” | “Seconds” | “Minutes”| “Hours”

CooldownPeriod ::= PositiveInteger TimeUnit

PlacementConfigs ::= PlacementConfig (“,” PlacementConfig)*

CWA 17494:2020 (E)

12

Bibliography

[1] ISO 22093:2011, Industrial automation systems and integration — Physical device control —
Dimensional Measuring Interface Standard (DMIS)

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Metric Definition
	5 Measurement Extraction
	6 Analytics Insight Definition Language
	7 Elasticity Rule Definition and Evaluation

