CEN

WORKSHOP

CWA 18059-2

December 2023

AGREEMENT

ICS 29.220.20

English version

Definition of parameters required for modelling of the material, cell and manufacturing process behaviour for battery cells for the automotive market - Part 2: Experiments and characterisation techniques for data required for modelling cells

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2023 All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for CEN/CENELE CENELEC Members.

С

Contents

Page

Europe	ean foreword	3
Introd	uction	4
1	Scope	5
2	Normative references	5
3	Terms and definitions	5
4	Acronyms and abbreviations	5
5	List of experiments	5
Annex	A (informative) Experiments for cells ageing mechanisms	9

European foreword

This CEN and CENELEC Workshop Agreement (CWA 18059-2:2023) has been developed in accordance with the CEN-CENELEC Guide 29 "CEN/CENELEC Workshop Agreements — A rapid prototyping to standardization" and with the relevant provisions of CEN/CENELEC Internal Regulations — Part 2. It was approved by a Workshop of representatives of interested parties on 2023-11-14, the constitution of which was supported by CEN and CENELEC following the public call for participation made on 2022-05-24. However, this CEN and CENELEC Workshop Agreement does not necessarily include all relevant stakeholders.

The final text of this CEN and CENELEC Workshop Agreement was provided to CEN and CENELEC for publication on 2023-11-14.

Results incorporated in this CWA received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875247.

The following organizations and individuals developed and approved this CEN and CENELEC Workshop Agreement:

- SK (Ohjun Kwon, Minkwon Choi, Subin Lee)
- CERTH (ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS) (Nickolas Vlachos)
- DLR (DEUTSCHES ZENTRUM FUER LUFT UND RAUMFAHRT EV) (Benjamin Kellers, Martin Lautenschlaeger, Dennis Kopljar, Alexander Kube)
- PSA Automobiles SA (Gérald Crepeau)
- CIDETEC Energy Storage (Elixabete Ayerbe, María Yáñez)
- CEA (COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES) (Benoit Mathieu)
- UPM (UNIVERSIDAD POLITECNICA DE MADRID) (Fernando Varas)
- Leclanché (Jana Kumberg)

Attention is drawn to the possibility that some elements of this document may be subject to patent rights. CEN-CENELEC policy on patent rights is described in CEN-CENELEC Guide 8 "Guidelines for Implementation of the Common IPR Policy on Patent". CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

Although the Workshop parties have made every effort to ensure the reliability and accuracy of technical and non-technical descriptions, the Workshop is not able to guarantee, explicitly or implicitly, the correctness of this document. Anyone who applies this CEN and CENELEC Workshop Agreement shall be aware that neither the Workshop, nor CEN and CENELEC, can be held liable for damages or losses of any kind whatsoever. The use of this CEN and CENELEC Workshop Agreement does not relieve users of their responsibility for their own actions, and they apply this document at their own risk. The CEN and CENELEC Workshop Agreement should not be construed as legal advice authoritatively endorsed by CEN/CENELEC.

Introduction

Modelling the material, cell and manufacturing process behaviour allows to accelerate cell development and the R&I process. The work can be done on an iterative exchange process for model development, validation and optimisation using two cell technologies for the automotive market: an industrial scale state of the art Layered Oxide $\text{LiNi}_{0.6}\text{Mn}_{0.2}\text{Co}_{0.2}\text{O}_2$ NMC622/Graphite cell (NMC622/G) and a competitive Nickel Rich Layered Oxide $\text{LiNi}_{0.8}\text{Mn}_{0.1}\text{Co}_{0.1}\text{O}_2$ NMC811/silicon-carbon composite prototype (NMC811/G-Si). Additionally, High-Voltage Spinel Oxide $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ /silicon-carbon composite (LMNO/G-Si) can be studied to explore the versatility of the built models.

Modelling work requires input parameters and data for validation. Before starting the experimental work, it is necessary to define precisely the nature, the sensitivity requirements for input parameters and the appropriate experiment and characterisation techniques for a list of physical and chemical characteristics.

This CWA is based on some of the results of the European Union's Horizon 2020 research and innovation programme <u>DEFACTO</u> (funded under grant agreement No 875247).

1 Scope

This document specifies the most suitable experiment(s) needed for obtaining the data required for modelling the material, cell and manufacturing process for cells for the automotive market, based on physical and chemical characteristics of cells of NMC622/G, NMC811/G-Si, LMNO/G-Si chemistry types.

This document shall be read in conjunction with the document CWA 18059-1:2023 "Definition of parameters required for modelling of the material, cell and manufacturing process behaviour for battery cells for the automotive market - Part 1: Data required for modelling the material, cell and manufacturing process for cells for the automotive market".

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CWA 18059-1:2023, Definition of parameters required for modelling of the material, cell and manufacturing process behaviour for battery cells for the automotive market - Part 1: Data required for modelling the material, cell and manufacturing process for cells for the automotive market

3 Terms and definitions

No terms and definitions are listed in this document.

4 Acronyms and abbreviations

NMC	$LiNi_{X}Mn_{y}Co_{Z}O_{2} with x + y + z = 1$	
NMC622	LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂	
NMC811	LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂	
LMNO	LiMn _{1.5} Ni _{0.5} 0 ₄	
G	Graphite	
Si Silicon		
PNM	Pore Network Model	
P4D	Pseudo 4D	
DEM	Discrete Elements Method	
CFD	Computational Fluid Dynamics	
LBM	Lattice Boltzmann Model	

5 List of experiments

The experimental characterisation and cell prototyping activities allow to build, validate and optimise multiscale and multiphysics models which will improve the understanding of the mechanical and electrochemical processes occurring during cell manufacturing and performance: from the atomistic to the cell level, from the slurry mixing to the cell assembly and finishing steps. The following table list all

the experiments which are needed to determine the model parameters defined in CWA 18059-1. A short description and the data type are also defined for each experiment.

Name	Code Name	Туре	Description	Data type
Micro Computed Tomography	μСТ	Imaging	Electrode structure determination	Picture
Ultrasonic acoustic wave	Acoustic	Process	Ultrasonic acoustic wave transportation through batteries to study the filling kinetics of the porous structures by electrolyte and detect possible defects	Float functional
Angle of repose	Angle of repose	Process	Rotating drum/heap measurement	Point
Accelerated Rate Calorimeter	ARC	Thermal	Netzsch ARC 254 for cylindrical cells & Netzsch MMC 274 Nexus for button cells	Float functional
Chronoamperometry	Chronoamperometry	Electrochemical	Determination of time dependancy of filling process	Float functional
Coating thickness	Coating thickness	Process	Wet thickness: ultrasonic absorption Dry thickness: beta gauge and micrometer caliper Ultrasonic Absorption and Beta Gauge: Thickness as a function of the loading in g/m ² ; for the double- side coated anode it is only possible to determine the loading of both sides simultaneously. Each side individually is not possible	Point
Coating temperature during drying	Coating_T_drying	Process	Single point measurement by infrared sensor	Point
DFORM	DFORM	Mechanics	In-house test bed to measure the swelling pouch cell upon cycling	Float functional
Incremental capacity	dQ/dV	Electrochemical	The dQ/dV analysis takes a refined step to estimate the capacity displaced in each incremental change of voltage in the reaction	Float functional
Electrochemical Impedance Spectroscopy	EIS	Electrochemical	Electrochemical impedance spectroscopy to determine ionic resistances, charge transfer resistance, transport numbers, and post-mortem analysis, using coin cells (half, symetric or full) configurations	Float functional
Electrochemical characterization of the cells	Electrochemical tests	Electrochemical	C-rate and galvanostatic tests in coin cell and pouch cell at different temperatures	Float functional
Electrode adhesion strength	Electrode adhesion strength	Mechanics	Adhesive strength of the electrode determined with pull-off adhesive test or simple in-house designed method	Float functional
Electrode thickness	Electrode thickness	Process	Micrometer caliper	Point
Electrode thickness during calandering	Electrode thickness calendering	Process	Measurement by the gap between calander rolls	Point

Table 1 — List of experiments to determine data for modeling

Name	Code Name	Туре	Description	Data type
Electrode thickness during drying	Electrode thickness drying	Process	Tabletop coater + heating + laser triangulation. Specific measurement for lab scale kinetics of thickness during drying for model development	Float functional
Electrolyte density	Electrolyte density	Process	Precision balance	Point
Electrochemical quartz crystal micro balance	EQCM	Electrochemical	Measurement of layer deposition and stripping during operation of electrode (ex : growth of SEI layer during formation). Balance swings in a certain frequency and shows changes in electrode weight through changes in frequency	Float functional
Focus Ion Beam - Scanning Electron Microscopy	FIB-SEM	Imaging	Images 2D & 3D of the electrode microstructure	Picture
Air convection and temperature during drying	Flow_T_drying	Process	Hand unit to measure air flow	Float functional
Galvanostatic Intermittent Titration Technique	GITT	Electrochemical	Determination of OCV and diffusion coefficients in coin cells configuration	Float functional
Laser diffraction	Laser diffraction	Process	Particle size distributions of powders	Float functional
Mercury intrusion	Mercury intrusion	Process	Pore size distribution	Float functional
Microcompression/ Nanoindentation	Microcompression/ Nanoindentation	Mechanics	Mechanical behavior of particles and electrodes	Float functional
Nuclear Magnetic Resonance	NMR	Chemistry	Lithium metal detection	Float functional
Pressure during electrolyte filling	Pressure electrolyte	Process	Pressure sensors during electrolyte filling	Float functional
Capilary pressure saturation	p-s-curves	Process	Measurement of saturation of porous system for given capillary pressure	Float functional
Pycnometry	Pycnometry	Process	Density measurement of solids	Point
Reference electrode	Reference electrode	Electrochemical	Measurement of each electrode potential	Float functional
Rheology for electrode	Rheology electrode	Process	Measurement of solvent and slurry	Float functional
Rheology for electrolyte	Rheology electrolyte	Process	Measure viscosity of electrolye	Float functional
Segmented cell	Segmented cell	Process	Determination of time dependency of filling process with better accuracy than chronoamperometry. Can also be used to determine inhomogeneities of porous system, current distribution etc.	Float functional
Scanning Electron Microscopy - Energy Dispersive X-ray spectrometry	SEM-EDX	Imaging	Image microstructure coupled with elemental analysis for material distribution in electrodes	Picture

Name	Code Name	Туре	Description	Data type
Slurry density	Slurry density	Process	Precision balance; Coriolis mass flowmeter	Point
Solvent density	Solvent density	Process	Precision balance	Point
Transmission Electron Microscopy	ТЕМ	Imaging	Image of crystal structure	Picture
Temperature of calendaring rolls	T-calendering	Thermal	The temperature of the rolls is measured externally with a hand- held equipment. It is also possible to measure and control the temperature of the flowing oil that is used to heat up the rolls.	Point
Tensiometer	Tensiometer	Process	Surface tension for solvent, electrode suspension	Point
Thermogravimetric analysis connected with gas chromatograph	TGA-GC	Process	TGA shows at which temperatures material decomposes into gas phase. Gas chromatograph is used to analyse evaporated species to determine which componed decomposes at which temperature.	Float functional
Estimation of separator tortuosity	Tortuosity separator	Process	Technique based on work of Landesfeind and uses two copper contacts in an electrolyte bath	Point
Xray Photoelectron Spectroscopy	XPS	Chemistry	Electrode surface analysis	Float functional
X-Ray Diffraction	XRD	Chemistry	Lithiation stage, identification of the phase	Float functional
Zeta potential	Zeta potential	Process	Electrostatic interactions between particles	Point

Annex A

(informative)

Experiments for cells ageing mechanisms

The ageing of lithium batteries is caused by electrochemical and mechanical degradation processes, due to charging and discharging cycles as well as storage, and leads to a drop in battery capacity and power over time.

This Annex describes a process to force and characterise various ageing mechanisms in cells.

Table A.1 describes an experimental matrix of tests to be carried out on monolayer pouch cells to determine the limit conditions to induce ageing mechanisms in larger cells. The goal is to test several conditions and make deep analysis on small lab cells to limit the quantity of materials, limit thermal/mechanical heterogeneities, limit damages in case of thermal runaway and guarantee fast capacity decay in larger cells to allow saving time and resources. For some chemistries, such tests must confirm that ageing mechanism is not occurring.

The analysis to identify of ageing laws (1) Li plating, (2) Heterogeneities, (3) Expansion+SEI, (4) Dissolution+ CEI/SEI) both at monolayer and pouch cell level is described below. All these tests are performed on fresh cells with same chemistry and after a conventional formation step (by default, low C-rate (C/10 or below) on full DoD with CV step at end of charge until current equivalent to C/40 or lower, and at room temperature).

At least two cells per tests should be launched for reproducibility check. All the monolayer cells are instrumented with a third reference electrode in order to characterize the individual signature of each electrode.

	Ageing mechanism targeted	Conditions	Criteria	Goal	Sensitive chemistry
Test 01	Li plating	Increasing C-rate in charge 0.2C, 0.5C, 1C, 2C, 3C / constant C-rate for discharge 0.2D at 10 °C Then, decrease T° and repeat test	Repeat at lower temperatures until Uanode < 0V vs. Li at 3 different temperatures If limits are not reached on studied temperature range, repeat with increasing C-rates in charge	Determine min. charge current and max. temperature for Li plating Note: larger cells will have lower resistance (better C- rate performances) and lower heat dissipation (cell temperature > ambient controlled temperature) a need to apply more severe conditions for larger cells	All with graphite, graphite- Silicon, silicon anodes
Test 02 (only once Test 01 is completed)	Li plating	Direct condition determined from Test 01	Uanode < 0V vs. Li on several cycles, fast capacity decay	Validate that Li plating is induced directly, and that it is not resulting from previous cycling	All with graphite, graphite- Silicon, silicon anodes
Test 03	Dissolution, SEI or CEI growth	Charge at low C-rate (<=0.2C) then CV step at SOC 100% at 45°C with regular EIS	Potential evolution during CV SEI and/or CEI growth with increase of medium frequency resistance in EIS If no increase in EIS, repeat with increasing T°	Enhance cross contamination inducing SEI growth	High voltage cathode (Ni-rich, LNMO)
Test 04	Dissolution, SEI or CEI growth	Charge at low C-rate (<=0.2C) then OCV step at SOC100% 45°C with regular EIS	Potential evolution during CV SEI and/or CEI growth with increase of medium frequency resistance in EIS If no increase in EIS, repeat with increasing T°	Enhance cross contamination inducing SEI growth	High voltage cathode (Ni-rich, LNMO)

Table A.1 — Experimental matrix for monolayer cells

	Ageing mechanism targeted	Conditions	Criteria	Goal	Sensitive chemistry
Test 05	Electrode expansion, structural evolution of active material, SEI growth	Charge and discharge at low C-rate with 0-30%, 0-50%, 50-100%, 0-80%, then 0-100% DoD at 25 °C Repeat test at 45 °C	Check balancing and Umin/Umax for each electrode depending on T° and DoD SEI and/or CEI growth with increase of medium frequency resistance in EIS	Generate different irreversible microstructure and/or crystal structure evolution, control lithiation/delithiation depth	High voltage layered oxide (Ni-rich) Si-based anode
Test 06	Heterogeneities	Constant C-rate for charge 0.2C / Increasing C-rate in discharge 1D, 2D, 3D at 10 °C Then, decrease T° and repeat test	Repeat at lower temperatures until Umin < 0V vs. Li or Umax > Ulimit cathode If limits are not reached on studied temperature range, repeat with increasing C- rates in discharge	Determine max discharge rates and min T° to promote max heterogenities without inducing other mechanisms such as Li plating or material dissolution or SEI/CEI growth	All

Several combinations of C-rate in charge/C-rate in discharge/T° can be then applied on large cells to study long-term effect of ageing mechanims with a reduced number of tests.

To confirm the occurrence of the expected ageing mechanisms, some destructive physico-chemical analyses could be performed on the monolayer/large cells after test. Table A.2 details the ex-situ analyses proposed to demonstrate the occurrence of degradation mechanisms and quantify morphological, structural and/or chemical changes.

Degradation	Gr/NMC622 cells		GrSi/ NMC811 cells	
mechanism/Cell chemistry	Gr	NMC622 cells	GrSi	NMC811
Expansion- Cracking	-	-	Surface morphology (SEM)	-
SEI/CEI formation	Surface morphology/comp. (SEM-EDX)	Surface morphology/comp. (SEM-EDX)	Surface morphology/comp. (SEM-EDX)	Surface morphology/comp. (SEM-EDX)
	Surface composition (XPS) Thickness (TEM)	Surface composition (XPS) Thickness (TEM)	Surface composition (XPS) Thickness (TEM)	Surface composition (XPS) Thickness (TEM)
Li plating	Surface morphology (SEM) Oxidation degree, environment of Li (NMR)	-	Surface morphology (SEM) Oxidation degree, environment of Li (NMR)	-
Dissolution of TM	TM migration identification (XPS, EDX)	-	TM migration identification (XPS, EDX)	-
Heterogeneities	Surface morphology/comp. (SEM-EDX) Lithiation state	(SEM-EDX) Lithiation state	Surface morphology/comp. (SEM-EDX)	Surface morphology/comp. (SEM-EDX)
Reference cell/component	(XRD) All	(XRD) All	All	All

Table A.2 — Experiments to determine degradation mechanisms

NOTE More information on degradation of batteries can be found in deliverables D6.3 and D6.4 of the project INVADE (<u>Deliverables – Invade (h2020invade.eu</u>)).