

CEN-CENELEC-ETSI Smart Grid Coordination Group

November 2012

CEN-CENELEC-ETSI Smart Grid Coordination Group Smart Grid Reference Architecture

Contents

M	ain changes in this version	4
Fc	preword	5
1	Scope. 1.1 How to use the document	6 6 7 8 8
2	References	9
3	Terms and definitions	.11
4	Symbols and abbreviations	12
5	Executive Summary	14
6	Conceptual Model and Reference Architecture Principles	17
	6.1 Motivation for Conceptual Model and Reference Architecture	.17
	6.2 Requirements for the M/490 Reference Architecture	.17
	6.3.1 Introduction	18
	6.3.2 Approach and Requirements	.19
	6.3.3 An EU extension of the NIST Model	.20
	6.3.4 The Flexibility Concept	. 22
	6.4 Reference Architecture Viewpoints	.22
7	The Smart Grid Architecture Model (SGAM) Framework	24
	7.1 Interoperability in the context of the Smart Grid	24
	7.1.1 General	.24
	7.1.2 Definition	.24
	7.2 SGAM Framework Elements	24
	7.2.1 General	26
	7.2.2 SGAM Interoperability Layers	26
	7.2.3 SGAM - Smart Grid Plane	.27
	7.2.5 SGAM Zones	.20
	7.2.6 SGAM Framework	.30
	7.2.7 Cross-cutting Issues and SGAM	.31
	7.3 The SGAM methodology	.33
	7.3.2 Principles	.33
	7.3.3 Mapping of use cases to SGAM framework	34
	7.3.4 Mapping the business layer with the lower SGAM layers	36
8	Reference Architecture Elements	38
	8.1 Business Architecture	.38
	8.1.1 Koles & actors	.40 ⊿∩
	8.1.3 Business Services	41

8.1.4 Business Processes	41
8.1.5 Methodology/ Process	41
8.2 Functional Architecture	43
8.2.1 General	
8.2.2 Functional Architecture Meta-model	43
8.2.3 Smart Grid Functional Architecture	44
8.3 Information Architecture	46
8.3.1 General	46
8.3.2 Integration technology	40
8.3.3 Data Models	47
8.3.4 Interfaces	48
0.5.5 LOyidal Internates	49
0.4 Communication Architecture	50
8.4.2 Smart Grid sub natworks	50 51
8.4.2 Applicability statement of the Communication Technologies to the Smart Grid	
Sub-networks	54
Annex A Background Architecture Work	56
A.1 Objectives of this annex	56
A.1.1 Aspects of a Common View: evolvability, simplicity and reuse of building blocks	56
A.1.2 Clarification of views: power vs. communication; applications vs. services	57
A.2 Relationship to existing Architectures	58
A.3 Overview of one possible RA lifecycle-model	58
Annex B Model mappings	60
B.1 Conceptual Model	60
B.2 SGAM Framework	60
B.2.1 Quality of interoperability	60
B.2.2 Specific qualities of interoperability: "Plug-and-play" and "Interchangeability"	61
B.2.3 Standard profiles – a measure to increase the quality of interoperability	61
B.2.4 SGAM Mapping Example	61
B.2.4.1 Use Case Analysis	61
B.2.4.2 Development of the Component Layer	67
B.2.4.3 Development of the Business Layer	68
B 2 4 4 Development of the Function Laver	69
B.2.4.5 Development of the Information Layer	70
B.2.4.5 Development of the Information Layer B.2.4.6 Development of the Communication Layer	70 72
B.2.4.5 Development of the Information Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards	70 72 73
B.2.4.5 Development of the Information Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions	70 72 73 78
 B.2.4.4 Development of the Information Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions B.2.6.1 Example: ETSI "M2M Architecture" 	70 72 73 78 79
 B.2.4.4 Development of the Information Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions B.2.6.1 Example: ETSI "M2M Architecture" B.2.6.2 Example: IEC SG3 "Mapping Chart" 	70 72 73 78 79 79
 B.2.4.4 Development of the Information Layer B.2.4.5 Development of the Communication Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions B.2.6.1 Example: ETSI "M2M Architecture" B.2.6.2 Example: IEC SG3 "Mapping Chart" B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange" 	70 72 73 78 79 79 80
 B.2.4.4 Development of the Information Layer B.2.4.5 Development of the Communication Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions B.2.6.1 Example: ETSI "M2M Architecture" B.2.6.2 Example: IEC SG3 "Mapping Chart" B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange" B.2.7 Findings 	70 72 73 78 79 79 80 81
 B.2.4.4 Development of the Information Layer B.2.4.5 Development of the Information Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions B.2.6.1 Example: ETSI "M2M Architecture" B.2.6.2 Example: IEC SG3 "Mapping Chart" B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange" B.2.7 Findings B.2.8 Mapping of business transactions 	70 72 73 78 79 79 80 81 81
 B.2.4.4 Development of the Information Layer B.2.4.5 Development of the Information Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions B.2.6.1 Example: ETSI "M2M Architecture" B.2.6.2 Example: IEC SG3 "Mapping Chart" B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange" B.2.7 Findings	70 72 73 78 79 79 79 80 81 81
 B.2.4.4 Development of the Information Layer B.2.4.5 Development of the Communication Layer B.2.4.6 Development of the Communication Layer B.2.5 Relation of SGAM framework to Architecture Standards B.2.6 Examples and Mappings of existing solutions B.2.6.1 Example: ETSI "M2M Architecture" B.2.6.2 Example: IEC SG3 "Mapping Chart" B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange" B.2.7 Findings B.2.8 Mapping of business transactions Annex C Business Architecture and Conceptual Model	70 72 73 78 79 79 79 80 81 81 83
 B.2.4.4 Development of the Information Layer	70 72 73 78 79 79 80 81 81 81 83 83
 B.2.4.4 Development of the Information Layer	70 72 73 78 79 79 79 80 81 81 81 83 83 83 84
 B.2.4.5 Development of the Information Layer	70 72 73 78 79 79 79 79 80 81 81 81 83 83 83 83 84 86
 B.2.4.5 Development of the Information Layer. B.2.4.6 Development of the Communication Layer. B.2.5 Relation of SGAM framework to Architecture Standards. B.2.6 Examples and Mappings of existing solutions. B.2.6.1 Example: ETSI "M2M Architecture"	70 72 73 78 79 79 80 81 81 83 83 83 83 83 84 86 88
 B.2.4.5 Development of the Information Layer	70 72 73 78 79 79 80 81 81 83 83 83 83 84 86 88 90
 B.2.4.5 Development of the Information Layer	70 72 73 78 79 79 79 79 79 79 79 79
 B.2.4.5 Development of the Information Layer	70 72 73 78 79 79 79 79 79 79 79 79 79
 B.2.4.5 Development of the Information Layer	70 72 73 78 79 79 79 79 80 81 81 83 83 83 83 84 86 88 90 91 91 91
 B.2.4.5 Development of the Information Layer. B.2.4.6 Development of the Communication Layer. B.2.5 Relation of SGAM framework to Architecture Standards. B.2.6 Examples and Mappings of existing solutions. B.2.6.1 Example: ETSI "M2M Architecture" B.2.6.2 Example: IEC SG3 "Mapping Chart". B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange". B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange". B.2.7 Findings. B.2.8 Mapping of business transactions. Annex C Business Architecture and Conceptual Model. C.1 Conceptual Model C.1.1 Introduction. C.1.2 Historical context C.1.3 Starting Principles. C.1.4 European Conceptual Model of Smart Grids. C.1.4.1 Alternative Figure: European Conceptual Model for the Smart Grid C.1.5.1 Alignment. C.1.5.2 Alignment with the EU flexibility concept C.1.5.2 Alignment with NIST, SGIP, SGAC	70 72 73 78 79 79 80 81 81 83 83 83 83 83 84 83 83 84 90 91 91 91 92

C.1.5.5 Alignment with EU market model developments (EG3)	93
C.1.6 Conclusions	93
C.2 The European Harmonized Electricity Market Role Model	93
C.2.1 Role model – role definitions	94
C.3 Relationship between the domains of the conceptual model and the European harmonized electricity market role model	98
C.4 Relation between the flexibility operator actor and the European harmonized	
electricity market role model	99
C.4.1 Communication of price signals, tariffs and other economic incentives	100
C.4.2 Explicit trade in flexibility in demand and/or supply	101
C.4.3 Direct control of demand and/or supply	101
Annex D Functional Architecture	102
Annex E Information Architecture	103
Annex F Communication Architecture	106
Annex G Bibliography	107

History of document

Number	Date	Content
v0.5	24/01/2012	First TR external version for SG-CG "Sanity Check"
v1.0	02/03/2012	First Interim TR draft for official comments
v2.0	31/07/2012	Second interim TR draft for official comments
v3.0	08/11/2012	Final TR for adoption by M/490

Main changes in this version

The adoption of the SG-CG report template has induced a reordering and renumbering of most of the sections and annexes.

The changes between version 2.0 and 3.0 have been kept minimal, considering that this version was not to be reviewed.

However, Annex C has been largely changed. A lot of new work has been done within SG-CG/RA between TR2.0 and TR3.0 on the Conceptual Model. Considering that is was useful to the readers, even if it could not be introduced in the main section of the report because of the many uncommented changes, it has been decided to present it as an informative reference.

In addition, Annex F (Communication Architecture) has been largely changed and is provided as a separate document, as in the previous versions of this report.

Foreword

Based on the content of the M/490 EU Mandate, the general scope of work on Standardization of the Smart Grid might be considered as follows:

CEN, CENELEC, and ETSI are requested to develop a framework to enable European Standardization Organizations to perform continuous standard enhancement and development in the field of Smart Grids, while maintaining transverse consistency and promote continuous innovation.

The expected framework will consist of a set of deliverables. The deliverable addressed in this document is:

"A technical reference architecture, which will represent the functional information data flows between the main domains and integrate several systems and subsystems architectures."

The development of this technical Reference Architecture, under the form of a Technical Report (TR), is the main responsibility of the <u>Reference Architecture Working Group</u> (SG-CG/RA), working under the Smart Grid Coordination Group (SG-CG) established by CEN, CENELEC and ETSI in order to fulfill the tasks laid down the Mandate M/490 of the European Commission.

The members of the Reference Architecture WG have been nominated, following an official call for experts. They have met since June 2011 in order to produce the various versions of the Technical Report. A Work Programme has been set-up that involves the production of several versions of the TR until final completion.

A first version v0.5 has been circulated in January 2012 for "Sanity check" within the SG-CG, to get guidance on the main aspects of the report.

The version v1.0 was the first Interim Report. It was a first solid step towards the Reference Architecture and has initiated a discussion about the architectural model proposed as well as its different viewpoints and dimensions.

The version v2.0 was the second Interim Report. It has been developed on the basis of the feedback (over 340 comments) received on v1.0 and on new contributions from the SG-CG/RA team.

The version v3.0 (this document) is the final version of the report within the current iteration of the M/490 mandate. It will be handed over to the European Commission in November 2012 and sent for approval by CEN, CENELEC and ETSI.

Further work on this report is expected in a subsequent iteration of the M/490 mandate, still to be decided.

1 Scope

This document is prepared by the Smart Grid Coordination Group (SG-CG) Reference Architecture Working Group (SG-CG/RA) and addresses the M/490 mandate's deliverable regarding the technical reference architecture.

This report is the final report due at the end of 2012.

1.1 How to use the document

The overall content of this document is as follows.

Chapter 1 (this chapter) introduces the approach chosen by the SG-CG/RA to address a complex problem space and the corresponding choices to define the scope of work. It outlines the main outcome expected at the end of the work and clarifies what is the main (but by far not the only) audience for the report. It also briefly outlines what is not in the scope of the SG-CG/RA work.

Chapters 2, 3 and 4 provide background information to the report (References, etc.) whenever they are not common to all SG-CG Reports.

Chapter 5 is an Executive Summary which is reproduced as such in the overall M/490 Framework Document.

Chapter 6 provides the European view of the Smart Grids Conceptual Model and an overview of the general elements of a Reference Architecture. It introduces the viewpoints chosen as target of the SG-CG/RA work.

Chapter 7 introduces the Smart Grids Architecture Model (SGAM) framework. The SGAM introduces interoperability aspects and how they are taken into account via a domain, zone and layer based approach. It finally introduces the methodology associated with the SGAM. Taking into account the interoperability dimension, the SGAM is a method to fully assign and categorize processes, products and utility operations and align standards to them.

Chapter 8 outlines the main elements of the different architectural viewpoints chosen for development by the SG-CG/RA, i.e. the Business, Functional, Information and Communication Architectures. Additional material or more detailed presentations of these architectures are provided in Annexes (that can be separate documents if their size requires it).

Chapter 1 lists the work items that SG-CG/RA may address in view of the next iteration of the M/490 mandate.

Annex A is grouping all the background work that serves as a foundation to the SG-CG/RA Report but was deemed not essential to the understanding of the Reference Architecture principles.

Annex B provides an overview how the SG-CG Sustainable Processes Work Group's Use Cases can be applied alongside the SGAM model, providing a holistic architectural view comprising the most important aspects for Smart Grid operations. In particular, it contains a detailed example regarding the application of the SGAM Methodology to a generic Smart Grid use case.

Annexes C to F provide details of the Reference Architecture viewpoints.

1.2 Approach to the problem domain

Considering that the overall scope of an architectural description can be quite large, the SG-CG/RA has chosen to focus on the following aspects of the reference architecture:

- Means to communicate on a common view and language about a system context, not only in the SG-CG but also with industry, customers and regulators;
- Integration of various existing state-of-the-art approaches into one model with additional European aspects;
- Methods to serve as a basis to analyze and evaluate alternative implementations of an architecture;
- Support for planning for transition from an existing legacy architecture to a new smart griddriven architecture;
- Criteria for properly assessing conformance with identified standards and given interoperability requirements.

This has led the SG-CG/RA to address three major objectives:

- Ensuring that the main elements of the architectural model be able to represent the Smart Grid domain in an abstract manner with all the major stakeholders. Such a model should be coherent with already existing comparable models worldwide.
- Define an architectural framework that would support a variety of different approaches corresponding to different stakeholders' requirements and make it in a timeframe that would force to choose a limited set of such approaches.
- Providing a methodology that would allow the users of the architectural model to apply it to a large variety of use cases so that, in particular, it would provide a guide to analyze potential implementation scenarios, identify areas of possible lack of interoperability (e.g. missing Standards), etc.

Regarding the first objective, the NIST Conceptual Model [NIST 2009] was considered as a first essential input, though it required adaptation to the European context and some of its specific requirements (identified by prior work of the European Smart Grid Task Force).

Completion of the second objective required a careful selection of the architecture viewpoints to be developed. In general, reference architectures aim at providing a thorough view of many aspects of a system viewed by the different participating stakeholders throughout the overall system lifecycle. This means that, on a complex system like the Smart Grid, it is not always possible to cover all viewpoints and choices had to be made.

In particular, the viewpoints had to be chosen in order to allow for a meaningful description of relevant and essential aspects of the system (e.g. intended use and environment, principles, assumptions and constraints to guide future change, points of flexibility or limitations), documenting architectural decisions with their rationales, limitations and implications.

The third objective was reached through the provision of a model that would make the link between the different architecture viewpoints and that could be used in a systematic manner, thus leading to the provision of a methodology.

1.3 Outcome: an architecture framework and a mapping methodology

This report addresses the technical reference architecture part of mandate M/490 and provides the main results below:

- <u>European Conceptual Model</u>. It is an evolution of the NIST model in order to take into account some specific requirements of the EU context that the NIST model did not address. The major one is the integration of "Distributed Energy Resources" (DER).
- <u>Architecture Viewpoints</u>. They represent a limited set of ways to represent abstractions of different stakeholders' views of a Smart Grid system. The viewpoints selected are the Business, Functional, Information, Communication viewpoints.
- <u>Smart Grids Architecture Model (SGAM) Framework</u>. The architecture framework takes into account already identified relevant aspects [JWG-SG 2010] like interoperability (e.g. the

GridWise Architecture Council (GWAC) Stack), multi-viewpoints (SGAM Layers). Additionally, a functional classification, overview on needed and existing data models, interfaces and communication layers and requirements is provided to the First Set of Standards Work Group (FSSWG).

This framework can be applied, as a mapping methodology, to document smart grid use cases (developed by the Sustainable Processes Work Group - SG-CG/SP) from a technical, business, standardization and security point-of-view (as developed with the Smart Grids Information Security Work Group - SG-CG/SGIS) and identify standards gap.

1.4 Main target audience: Standardization Technical Committees

The target audience of the reference architecture is mainly standardization bodies and technical groups which can use the architectural framework, the methodological guidelines as well as the mappings of existing architectures (developed in the report annexes) to guide their work.

The SGAM provides a holistic view on the most important existing standards and architectures from different SDOs, making this deliverable a valuable document for members of standardization dealing with Smart Grid standards.

1.5 What is not in the scope of this document

For a variety of reasons, the work of SG-CG/RA shall not address notably the following domains:

- Standards development; Certification
- Market Models
- Regulation issues
- Home Automation, Building, ...
- Gas

2 References

Smart Grids Coordination Group Documents

SG-CG/M490/A Framework for Smart Grid Standardization
SG-CG/M490/B_ Smart Grid First set of standards
SG-CG/M490/C_ Smart Grid Reference Architecture (this document)
SG-CG/M490/D_Smart Grid Information Security
SG-CG/M490/E_Smart Grid Use Case Management Process

References made in the main part of this document

[ENTSO-E 2011]	The Harmonized Electricity Market Role Model (December 2011), ENTSO- E, online: <u>https://www.entsoe.eu/fileadmin/user_upload/edi/library/role/role- model-v2011-01.pdf</u> .
[ENTSO-E 2012]	'Modular Development Plan of the Pan-European Transmission System 2050' of the e-HIGHWAY2050 Project Consortium: https://www.entsoe.eu/system-development/2050-electricity-highways/
[GWAC2008]	GridWise Interoperability Context-Setting Framework (March 2008), GridWise Architecture Council, online: <u>www.gridwiseac.org/pdfs/</u> .
[IEEE2030-2011]	IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation, with the Electric Power System (EPS), End-Use Applications, and Loads, IEEE Std. 2030 (2011).
[IEC61850-2010]	IEC 61850, Communication networks and systems for power utility automation, 2010.
[IEC62357-2011]	IEC 62357-1, TR Ed.1: Reference architecture for power system information exchange, 2011.
[IEC62559-2008]	IEC 62559, PAS Ed.1: Intelligrid Methodology for developing requirements for Energy Systems
[IEC 62264-2003]	IEC 62262, Enterprise-control system integration
[ISO/IEC42010]	ISO/IEC 42010: Systems Engineering – Architecture description, 2011
[JWG-SG 2011]	JWG Smart grids: Final report: JWG report on standards for smart grids – V1.1 $$
[NIST2009]	NIST Framework and Roadmap for Smart Grid Interoperability, Interoperability Standards Release 1.0 (2009), Office of the National Coordinator for Smart Grid Interoperability, National Institute of Standards and Technology, U.S. Department of Commerce. Online: www.nist.gov/public_affairs/releases/smartgrid_interoperability.pdf
[NIST 2012]	Framework and Roadmap for Smart Grid Interoperability, Interoperability Standards Release 1.0 (2009), Office of the National Coordinator for Smart Grid Interoperability, National Institute of Standards and Technology, U.S. Department of Commerce. Online: www.nist.gov/public_affairs/releases/smartgrid_interoperability.pdf

References made in the Annexes of this document

It should be noted that the SG-CG First Set of Standards Work Group report [SG-CG/B] provides a list of references that may include most of the references below. In case of doubt on the applicable referenced documents, the [SG-CG/B] list prevails.

The following references are made in Annex E:

- Mapping of IEC 61850 Common Data Classes on IEC 60870-5-104 (IEC 61850-80-1 TS)
- OASIS EMIX
- UN/CEFACT CCTS
- EN 60870-6-802:2002 + A1:2005, Telecontrol equipment and systems Part 6-802: Telecontrol protocols compatible with ISO standards and ITU-T recommendations – TASE.2 Object models
- EN 60870-5-1:1993, Telecontrol equipment and systems Part 5: Transmission protocols Section 1: Transmission frame formats
- EN 60870-5-3:1992, Telecontrol equipment and systems Part 5: Transmission protocols Section 3: General structure of application data
- IEC 61850-7-410 Ed. 1.0, Communication networks and systems for power utility automation Part 7-410: Hydroelectric power plants Communication for monitoring and control
- IEC 61850-7-420, Communication networks and systems for power utility automation Part 7-420: Basic communication structure Distributed energy resources logical nodes
- IEC 61400-25-2, Communications for monitoring and control of wind power plants Part 25-2: Information models
- IEC 61400-25-3, Communications for monitoring and control of wind power plants Part 25-3: Information exchange models
- IEC 61400-25-6, Communications for monitoring and control of wind power plants Part 25-6 Communications for monitoring and control of wind power plants: Logical node classes and data classes for condition monitoring
- IEC 62056 series, *Electricity metering Data exchange for meter reading, tariff and load control*, Parts 21, 31, 41, 42, 46, 47, 51, 52, 53, 61, 62
- IEC 61334, *Distribution automation using distribution line carrier systems* Part 4 Sections 32, 511, 512, Part 5 Section 1
- EN 61970-301:2004, Energy management system application program interface (EMS-API) – Part 301: Common information model (CIM) base
- EN 61970-402:2008 Ed. 1.0, Energy management system application program interface (EMS- API) Part 402: Component interface specification (CIS) Common services
- EN 61970-403:2007, Energy management system application interface (EMS- API) Part 403: Component Interface Specification (CIS) Generic Data Access
- EN 61970-404:2007, Energy management system application program interface (EMS-API) – Part 404: High Speed Data Access (HSDA))
- EN 61970-405:2007, Energy management system application program interface (EMS-API) – Part 405: Generic eventing and subscription (GES)
- EN 61970-407:2007, Energy management system application program interface (EMS-API) – Part 407: Time series data access (TSDA)
- EN 61970-453:2008, Energy management system application interface (EMS- API) Part 453: CIM based graphics exchange
- EN 61970-501:2006, Energy management system application interface (EMS- API) Part 501: Common information model resource description framework (CIM RDF) Schema
- EN 61968-:2004, Application integration at electric utilities System interfaces for distribution management Part 3: Interface for network operations
- EN 61968-4:2007, Application integration at electric utilities System interfaces for distribution management Part 4: Interfaces for records and asset management
- EN 61968-9:2009, System Interfaces For Distribution Management Part 9: Interface Standard for Meter Reading and Control
- FprEN 61968-11:2010, System Interfaces for Distribution Management Part 11: Distribution Information Exchange Model
- EN 61968-13:2008, System Interfaces for distribution management CIM RDF Model Exchange Format for Distribution

- IEC 61850-5 Ed. 1.0, Communication networks and systems in substations Part 5: Communication requirements for functions and device models
- IEC 61850-6 Ed. 1.0, Communication networks and systems in substations Part 6: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-1 Ed. 1.0, Communication networks and systems in substations Part 7-1: Basic communication structure for substation and feeder equipment – Principles and models
- IEC 61850-7-2 Ed. 1.0, Communication networks and systems in substations Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)
- IEC 61850-7-3 Ed. 1.0, Communication networks and systems in substations Part 7-3: Basic communication structure for substation and feeder equipment – Common data classes
- IEC 61850-7-4 Ed. 1.0, Communication networks and systems in substations Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes
- IEC 62325-301 Ed.1.0 : Common Information Model Market Extensions
- IEC 62325-501 Framework for energy market communications Part 501: General guidelines for use of ebXML
- IEC 62325-351 Framework for energy market communications Part 351: CIM European Market Model Exchange Profile
- IEC 62325-502 Framework for energy market communications Part 502: Profile of ebXML

Other references pertaining to Communication Architecture are made in Annex F.

3 Terms and definitions

Architecture

Fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution [ISO/IEC42010].

Architecture Framework

Conventions, principles and practices for the description of architectures established within a specific domain of application and/or community of stakeholders [ISO/IEC42010].

Conceptual Model

The Smart Grid is a complex system of systems for which a common understanding of its major building blocks and how they interrelate must be broadly shared. NIST has developed a *conceptual architectural reference model* to facilitate this shared view. This model provides a means to analyze use cases, identify interfaces for which interoperability standards are needed, and to facilitate development of a cyber security strategy. [NIST2009]

Interoperability

Interoperability refers to the ability of two or more devices from the same vendor, or different vendors, to exchange information and use that information for correct co-operation [IEC61850-2010].

Reference Architecture

A Reference Architecture describes the *structure* of a system with its element types and their structures, as well as their *interaction* types, among each other and with their environment. Describing this, a Reference Architecture defines restrictions for an instantiation (concrete architecture). Through abstraction from individual details, a Reference Architecture is universally valid within a specific domain. Further architectures with the same functional requirements can be

constructed based on the reference architecture. Along with *reference* architectures comes a *recommendation*, based on experiences from existing developments as well as from a wide acceptance and recognition by its users or per definition. [ISO/IEC42010]

SGAM Interoperability Layer

In order to allow a clear presentation and simple handling of the architecture model, the interoperability categories described in the GridWise Architecture model are aggregated in SGAM into five abstract interoperability layers: Business, Function, Information, Communication and Component.

SGAM Smart Grid Plane

The Smart Grid Plane is defined from the application to the Smart Grid Conceptual Model of the principle of separating the Electrical Process viewpoint (partitioning into the physical domains of the electrical energy conversion chain) and the Information Management viewpoint (partitioning into the hierarchical zones (or levels) for the management of the electrical process. [IEC62357-2011, IEC 62264-2003]

SGAM Domain

One dimension of the *Smart Grid Plane* covers the complete electrical energy conversion chain, partitioned into 5 domains: Bulk Generation, Transmission, Distribution, DER and Customers Premises.

SGAM Zone

One dimension of the *Smart Grid Plane* represents the hierarchical levels of power system management, partitioned into 6 zones: Process, Field, Station, Operation, Enterprise and Market [IEC62357-2011].

4 Symbols and abbreviations

Acronyms

3GPP	3rd Generation Partnership Project
6LoWPAN	IPv6 over Low power Wireless Personal Area Networks
ADSL	Asymmetric digital subscriber line
AN	Access Network
ANSI	American National Standard Institute
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning
BCM	Business Capability Model
CEN	Comité Européen de Normalisation.
CENELEC	Comité Européen de Normalisation Electrotechnique
CIM	Common Information Model
DER	Distributed Energy Resources
DSO	Distribution System Operator
eBIX	(European forum for) energy Business Information Exchange
EGx	EU Smart Grid Task Force Expert Group x (1 to 3)
ENTSO-E	European Network of Transmission System Operators for Electricity
ESCO	Energy Service Company
еТОМ	extended Telecom Operations Map
ETSI	European Telecommunications Standard Institute
EV	Electrical Vehicle
EVO	Electrical Vehicle Operator
FACTS	Flexible Alternating Current Transmission Systems
FLISR	Fault Location Isolation and Service Recovery
GSM	Global System for Mobile
GWAC	GridWise Architecture Council
HAN	Home Area Network

HDSL HSPA ICT IEEE IETF IP IPv6 ISO	High-bit-rate digital subscriber line High Speed Packet Access Information & Communication Technology Institute of Electrical and Electronics Engineers Internet Engineering Task Force Internet Protocol Internet Protocol Version 6 International Organization for Standardization
ITU-T:	International Telecommunications Union for the Telecommunication Standardization Sector
JWG	Joint Working Report for Standards for the Smart Grids
KNX	EN 50090 (was Konnex)
L2TP	Layer 2 Tunneling Protocol
LR WPAN	Low Rate Wireless Personal Area Network
LTE	Long Term Evolution
MAC	Media Access Control
MPLS	Multiprotocol Label Switching
MPLS-TP	MPLS Transport Profile
NAN	Neighborhood Area Network
NAT	Network Address Translator
OSI:	Open System Interconnection
OTN	Optical Transport Network
PLC	Power Line Carrier
PLC	Power Line Communication
PON	Passive Optical Network
QoS	Quality of Service
RPL	Routing Protocol for Low power and lossy networks (LLN)
SDH	Synchronous Optical Networking
SDO	Standards Developing Organization
SG-CG	Smart Grids Coordination Group
SG-CG/FSS	SG-CG First Set of Standards Work Group
SG-CG/RA	SG-CG Reference Architecture Work Group
SG-CG/SP	SG-CG Sustainable Processes Work Group
SLA	Service Level Agreement
TDM	Time Division Multiplexing
TMF	TeleManagement Forum
TOGAF	The Open Group Architecture Framework
TSO	Transmission System Operator
UMTS	Universal Mobile Telecommunications System
WAN	Wide Area Network
WAMS	Wide Area Management Systems
WAN	Wide Area Network
WASA	Wide Area Situation Awareness
WPAN	Wireless Personal Area Network
xDSL	Digital Subscriber Line
XG-PON	10G PON

5 Executive Summary

The "SG-CG/M490/C_ Smart Grid Reference Architecture" report prepared by the Reference Architecture Working Group (SG-CG/RA) addresses the M/490 mandate deliverable regarding the development of a Technical Reference Architecture.

The Reference Architecture challenge

The CEN/CENELEC/ETSI Joint Working Group report on standards for smart grids has defined the context for the development of the Smart Grids Reference Architecture (RA):

"It is reasonable to view [the Smart Grid] as an evolution of the current grid to take into account new requirements, to develop new applications and to integrate new state-of-the-art technologies, in particular Information and Communication Technologies (ICT). Integration of ICT into smart grids will provide extended applications management capabilities over an integrated secure, reliable and high-performance network.

This will result in a new architecture with multiple stakeholders, multiple applications, multiple networks that need to interoperate: this can only be achieved if those who will develop the smart grid (and in particular its standards) can rely on an agreed set of models allowing description and prescription: these models are referred to in this paragraph as Reference Architecture."

To develop a coherent and useful Reference Architecture, two main issues have been addressed:

- Clarification of the requirements for the reference architecture and description of its major elements. Reuse of existing results has been considered essential to a fast progress. In particular, the Reference Architecture elements are positioned with respect to existing models (e.g. NIST) and architectural frameworks (GWAC, TOGAF, etc.). Extensions have been limited and, in general, focused on addressing the European specificities.
- Coherence of the RA with respect to the overall Smart Grids standardization process. Notably, the work of SG-CG/RA has been aligned with the other SG-CG Work Groups.
 - Using upstream results of SG-CG/SP on (generic) use cases and the flexibility concept;
 - Providing results to SG-CG/FSS regarding the identification of useful standards and a method to support standards gap analysis;
 - Clarifying the alignment with SG-CG/SGIS regarding the representation of the Security viewpoint in the RA and providing a method to analyze Information Security use cases.
 - In addition, alignment with existing initiatives from other organizations (e.g. NIST, ENTSO-
 - E, EU Task Force Experts Groups ...) has been a constant objective.

Main elements of the Reference Architecture

The main components of the Reference Architecture are now in place. The most important are described below.

European Conceptual Model

The National Institute of Standards and Technology (NIST) has introduced the Smart Grid Conceptual Model which provides a high-level framework for the Smart Grid that defines seven high-level domains and shows all the communications and energy/electricity flows connecting each domain and how they are interrelated.

Though the NIST model is a sound and recognized basis, it has been necessary to adapt it in order to take into account some specific requirements of the EU context that the NIST model did not address. Two main elements are introduced to create the EU Conceptual Model. The first one is the Distributed Energy Resource (DER) domain that allows addressing the very important role that

DER plays in the European objectives. The second one is the Flexibility concept (developed in SG-CG/SP) that group consumption, production and storage together in a flexibility entity.

The EU Conceptual Model is a top layer model (or master model) and will also act as a bridge between the underlying models in the different viewpoints of the Reference Architecture.

During the course of this first iteration of the M/490 mandate, a constant discussion has taken place with NIST SGIP/SGAC to ensure optimal alignment on the Conceptual Model. The model that is presented in the main part of the SG-CG/RA report is reflecting these discussions.

Smart Grids Architecture Model (SGAM) Framework

The SGAM Framework aims at offering a support for the design of smart grids use cases with an architectural approach allowing for a representation of interoperability viewpoints in a technology neutral manner, both for current implementation of the electrical grid and future implementations of the smart grid.

It is a three dimensional model that is merging the dimension of five *interoperability layers* (Business, Function, Information, Communication and Component) with the two dimensions of the Smart Grid Plane, i.e. *zones* (representing the hierarchical levels of power system management: Process, Field, Station, Operation, Enterprise and Market) and *domains* (covering the complete electrical energy conversion chain: Bulk Generation, Transmission, Distribution, DER and Customers Premises).

SGAM Methodology

This SGAM Framework can be used by the SGAM *Methodology* for assessing smart grid use cases and how they are supported by standards, thus allowing standards *gap analysis*. The model has largely evolved in v2.0, with clearer basic definitions, more detailed presentation of the elements (zones, domains, etc.), a clarification of the methodology and a complete detailed example.

Architecture Viewpoints

They represent a limited set of ways to represent abstractions of different stakeholders' views of a Smart Grid system. Four viewpoints have been selected by the SG-CG/RA: Business, Functional, Information and Communication, with associated architectures:

- The Business Architecture is addressed from a methodology point of view, in order to ensure that whatever market or business models are selected, the correct business services and underlying architectures are developed in a consistent and coherent way;
- The Functional Architecture provides a meta-model to describe functional architectures and gives an architectural overview of typical *functional groups* of Smart Grids (intended to support the high-level services that were addressed in the Smart Grids Task Force EG1);
- The Information Architecture addresses the notions of data modeling and interfaces and how they are applicable in the SGAM model. Furthermore, it introduces the concept of *"logical interfaces"* which is aimed at simplifying the development of interface specifications especially in case of multiple actors with relationships across domains;
- The Communication Architecture deals with communication aspects of the Smart Grid, considering generic Smart Grid use cases to derive requirements and to consider their adequacy to existing communications standards in order to identify communication standards gaps. It provides a set of recommendations for standardization work as well as a view of how profiling and interoperability specifications could be done.

How to use the Reference Architecture

Given the large span of the Reference Architecture components described above, the Reference Architecture can be used in a variety of ways, amongst which:

• Adaption of common models and meta-models to allow easier information sharing between different stakeholders in pre-standardization (e.g. research projects) and standardization;

- Analysis of Smart Grids use cases via the SGAM methodology. This is a way to support, via an easier analysis of different architectural alternatives, the work of those who are going to implement those use cases;
- Gap analysis: analysis of generic use cases in order to identify areas where appropriate standards are missing and should be developed in standardization;
- ...

Outlook

The current version of the Reference Architecture document is the result of the work done by the SG-CG/RA Working Group during the <u>first</u> iteration of the M/490 Mandate.

The final version (v3.0) of this report addresses the comments made on v2.0 and clarifies some of the remaining issues, such as the handling of Security aspects in the Architecture and in SGAM, an (SG-CG) agreed functional meta-model, or the respective role of markets and business viewpoints.

However, there are still areas where the document can be completed such as a role-based definition of the European Conceptual Model (developed but still to be validated), expansion of the Functional Architecture, more in-depth exploration of the communication profiles, etc. This work could be addressed if the extension of the M/490 Mandate for a <u>second</u> iteration is decided.

6 Conceptual Model and Reference Architecture Principles

6.1 Motivation for Conceptual Model and Reference Architecture

Smart Grids standardization is not a green field. It is largely relying on previous work done at national, regional (in particular European) and international level, both on standardization (largely focused on the identification of the existing set of standards that are applicable to the Smart Grid) and on pilot and research project (that validate early ideas that may be brought to standardization).

The work of the Reference Architecture WG will, in particular, use significant existing material such as the NIST Conceptual Model [NIST 2009], the GridWise Architecture Council Stack interoperability categories [GWAC 2008], architecture standards like TOGAF and Archimate [Jonkers 2010].

The development of the SG-CG framework (as already noted above in section 5) addresses 'continuous standard enhancement and development in the field of Smart Grids, while maintaining transverse consistency and promote continuous innovation'.

To achieve consistency and gradual integration of innovation in an incremental manner, two elements are deemed essential, that are both addressed by the SG-CG/RA:

- An overall high-level model that describes the main actors of the Smart Grid and their main interactions. This is captured by the <u>Conceptual Model</u>. The approach taken by the SG-CG/RA, considering the need to reuse existing models whenever possible, has been to take into account the NIST Conceptual Model, analyze which differences a European approach would need to bring to it and further reduce these differences as much as possible;
- A set of universal presentation schema that allow for the presentation of the Smart Grid according to a variety of viewpoints that can cope with
 - The variety of Smart Grid stakeholders,
 - The need to combine power system management requirements with expanded interoperability requirements, and
 - The possibility to allow for various levels of description from the top-level down to more detailed views.

This is captured in the <u>Reference Architecture</u> that should be seen as the aggregation of several architectures (e.g. functional, communication, etc.) into a common framework.

The motivation for the creation and utilization of reference architectures can be to have a blueprint for the development of future systems and components, providing the possibility to identify gaps in a product portfolio. It can also be used to structure a certain Smart Grid domain and provide a foundation for communication about it to other domains which need to interoperate. Furthermore, it can be used to document decisions which have been taken during the development process of an infrastructure.

An additional – and important - motivation for the SG-CG/RA was to ensure that the Reference architecture could help, by providing an appropriate <u>methodology</u> to identify where standardization gaps may exist.

It is also important to finally point out a very essential motivation for the Reference Architecture work: reuse as much of the existing work as possible and not re-invent the wheel. This has guided both the Conceptual Model (as noted above) as well as the Reference Architecture.

6.2 Requirements for the M/490 Reference Architecture

The reference architecture has to be very much in consistency with the following aspects and requirements already outlined in this report.

It must support the work of Smart Grids standardization over a long period of time:

- Be able to represent the current situation (snapshot of already installed basis and reference architectures)
- Be able to **map future concepts** (migration and gap analysis)
- Achieve a common understanding of stakeholders
- Fulfill the demand for systematic coordination of Smart Grid standardization from an architectural perspective
- Provide a top-level perspective encompassing entire smart grid but enabling enlargements to details
- Be able to be represented using established and state-of-the art System Engineering technology and methodologies (e.g. lifecycle model, architecture standards and methods)
- Take into account Standardization activities (regional, Europe, international)
- Be able to reflect European Pilot and research projects (regional, Europe, international)

More specifically, the Reference Architecture must be able to address the complexity of the Smart Grid in a coherent manner:

- Be consistent with the M/490 conceptual model;
- Fulfill the need for an universal presentation schema a model, allowing to map stakeholder specific prospective in a common view
- Being able to represent the views of different stakeholders (not only SDOs) in an universal way, e.g. provide <u>some of</u> the following viewpoints in an abstract way:
 - Enterprise viewpoint,
 - Information viewpoint,
 - Computational viewpoint,
 - Engineering viewpoint,
 - Technology Viewpoint (RM-ODP, ISO/IEC 10746)
 - Business Architecture viewpoint,
 - Application Architecture viewpoint,
 - Data Architecture viewpoint,
 - Technology Architecture viewpoint
 - Be consistent with established interoperability categories and experiences
- Provide an abstract view on SG specific structures (domains, zones, layers)
- Fulfill the need for an universal presentation schema a model, allowing to map stakeholder specific prospective in a common view

6.3 Conceptual Model

This section will present the Conceptual Model practically unchanged since the draft version 2.0 of the Reference Architecture report.

Nevertheless, a lot of new work has been done within SG-CG/RA between TR2.0 and TR3.0 on the Conceptual Model, in order to better support the flexibility concept and to take into account the comments made on version 2.0. A new version of this section has been produced but it could not be introduced in the main section of the report because of the many uncommented changes. Consequently, it has been decided to present it as an informative reference in Annex C, section C.1. It is expected that this new section will be introduced in the subsequent versions of this report, should the new M/490 iteration be decided.

6.3.1 Introduction

The electrical energy system is currently undergoing a paradigm change, that has been affected by a change from the classical centralistic and top down energy production chain "Generation", "Transmission", "Distribution" and "Consumption" to a more decentralized system, in which the participants change their roles dynamically and interact cooperative. The development of the concepts and architectures for a European Smart Grid is not a simple task, because there are various concepts and architectures, representing individual stakeholders' viewpoints.

The National Institute of Standards and Technology (NIST) has introduced the Smart Grid Conceptual Model which provides a high-level framework for the Smart Grid that defines seven high-level domains (Bulk Generation, Transmission, Distribution, Customers, Operations, Markets and Service Providers) and shows all the communications and energy/electricity flows connecting each domain and how they are interrelated. Each individual domain is itself comprised of important smart grid elements (actors and applications) that are connected to each other through two-way communications and energy/electricity paths. The NIST Conceptual Model helps stakeholders to understand the building blocks of an end-to-end smart grid system, from Generation to (and from) Customers, and explores the interrelation between these smart grid segments.

In order to develop the different viewpoints in an aligned and consistent manner, the EU Conceptual Model is introduced. It is based on the NIST Model which is used with some customizations and extensions regarding the general European requirements. This EU Conceptual Model forms the top layer model or master model and it is therefore the bridge between models from different viewpoints. Its task is to form a bracket over all sub models.

6.3.2 Approach and Requirements

The electrical power grid in the European Union is based on a big number of heterogeneous participants; that are hierarchically and next to each other connected. Every participant of the electrical power grid builds and operates its part of the network in its own manner; and at the same time they have to work together. So the EU Conceptual Model has to deal with different levels of decentralization (see Figure 1). The figure shows still another effect. Regarding to the history of electrical power supply systems, the electrical power supply started more than a century ago with decentralized isolated networks and developed to an European centralized mixed network. With the beginning of the 21st century, more and more decentralized energy systems are coming into the network again, so future architectures will have to support both centralized and decentralized concepts. Consequently requirements for distributed and centralized concepts and applications need to be considered. . From this follows the requirement to the EU conceptual model to allow to model different levels of decentralization between the two extremes: "Fully Centralized Energy System" and "Fully Decentralized Energy System".

Decentralized Energy System (generation in a very big number of distributed small and midsize generation units, all units are interconnected; large Power Plants did not exist)

Figure 1: Different levels of decentralization

6.3.3 An EU extension of the NIST Model

To integrate the "Distributed Energy Resources" (DER) into the NIST Model, it will be extended by a new "Distributed Energy Resources" Domain, which is (in terms of electricity and communications) connected with the other NIST Domains shown in Figure 2.

The extension of the NIST Model with a new DER Domain is necessary for the following reasons:

- Distributed Energy Resources require a new class of use cases
- In order to comply to future anticipated regulation and legislation explicit distinction of Distributed Energy Resources will be required
- Distributed Energy Resources represent the current situation
- A consistent model requires clear criteria to separate the new DER Domain from the existing Domains, especially from Bulk Generation and the Customer Domain. Initial criteria are given in Table 1: Separation criteria for the DER-Domain.
 - "Control" The generation units in the Customer Domain can not be remote controlled by an operator. The generation units in the DER and Bulk Generation Domain are under control of an operator, (approximately comparably with the controllability of bulk generation units today).
 - "Connection point". The generation units in the bulk generation domain are predominantly connected to the high voltage level. The generation units in the DER Domain are predominantly connected to the medium voltage level (in some cases also to the low voltage level) and the generation units in the customer domain to the low voltage level.

Criteria / Domain	Bulk Generation	Distributed Energy Resources	Consumer
Control	Direct	direct	indirect
Connection Point	high voltage	medium voltage / low voltage	low voltage

Table 1: Separation criteria for the DER-Domain

One can uniquely model the two extremes as shown in Figure 1 ("Centralized Energy System" and "Decentralized Energy System") and the space between them as follows:

- "Fully Centralized Energy System" At the extreme point of "Centralized Energy System", no distributed energy resources exist and "Distributed Energy Resources" Domain is not needed.
- "Fully Decentralized Energy System" At the extreme point of "Decentralized Energy System", no bulk generation systems exist and the "Bulk Generation" Domain is not needed. The power generation is realized by a large number of distributed and interconnected power generation units. The generation power of the distributed generation units are aggregated by the distribution network to the transmission network. Areas with power reserve can supply areas with power demand. Due to the constantly changing weather situation over Europe the mix of the regions will permanently change.
- A level of decentralization between both turning points. This case will correspond to reality, which shows that the trend here is towards an increasing degree of decentralization. Furthermore, it is assumed that both extreme positions will not be reached, they are only theoretical. The mixture of 'bulk generation' and 'distributed energy generation' (which includes a significant proportion of volatile energy generating units) will effect an increase of volatility in the operation of classical generating units. This is primarily the case in countries, where legislations determine the feed-in of energy from renewable sources.

Figure 2: EU extension of the NIST Model

Figure 2 also defines the scope of PAN European Energy Exchange System and application area of a microgrid architecture:

The <u>application area of the hierarchical mesh cell architectures (microgrids</u>) includes the Customer, Distribution, and Distributed Energy Resources domains. One objective is to find a balance between production and consumption as locally as possible in order to avoid transmission losses and increase transmission reliability through ancillary services such as reserves volt/var support, and frequency support .For other objectives for microgrids see also use case WGSP-0400 The <u>Pan European Energy Exchange System (PEEES)</u>, which includes technologies in the transport network for low-loss wide-area power transmission systems (e. g. high-voltage direct current transmission, HVDC), better realizing the large-scale energy balance between the regions, which is essential due to the constantly changing weather situation, which has a significant influence on the power generation capacity of different regions. In version 3.0 examples of microgrids and a PAN European Energy Exchange System will be given.

One should not forget that the customer domain in a Smart Grid has the ability to control their energy consumption within certain limits. In the future, the smart grid will have two adjustment possibilities: generation and power consumption (load)) and a large number of new degrees of freedom to control the power balance (frequency stability).

6.3.4 The Flexibility Concept

As a result of ongoing work in the M490 Working Groups (SG-CG/RA and SG-CG/SP), the flexibility concept has been introduced and is discussed. In this model, consumption, production and storage are grouped together in a flexibility entity (next to the entities Grid, and Markets). It is believed that this concept creates much more the required flexibility to support future demand response use cases then the more rigid classification given in table 1. In version 3.0 of this document the existing conceptual model will be re-represented in a way that it supports the flexibility concept and also that it enables maximum re-use of results and standards derived from the existing conceptual model.

Initial ideas on this are given in table 2 below.

CM Domains/Flexibility entities	Market	Grids	Flexibility
Markets	+		
Bulk Generation			+
DER			+
Customer			+
Transmission		+	
Distribution		+	
Operations	+	+	+
Service Provider	+	+	+

Table 2 (for further study)

6.3.5 Conclusion

The EU Conceptual Model corresponds for the most part with the NIST Model and extends it with a new DER Domain to fulfill the specific European requirements. It is a future-oriented model, because it allows the description of a totally centralized grid, a totally decentralized grid and a mixture between both extreme points on a defined level. The application area of the hierarchical mesh cell architectures will allow in future the description of microgrid architecture and local energy management systems, that are integrated in the future European Smart Grid system.

6.4 Reference Architecture Viewpoints

The report of the Joint Working Group (JWG) for Standards for the Smart Grids [JWG-SG 2011] had outlined some of the potential viewpoints that the work of M/490 might have to deal with:

- Conceptual Architecture. A high-level presentation of the major stakeholders or the major (business) domains in the system and their interactions.
- Functional Architecture. An arrangement of functions and their sub-functions and interfaces (internal and external) that defines the execution sequencing, the conditions for control or data flow, and the performance requirements to satisfy the requirements baseline. (IEEE 1220)
- Communication Architecture. A specialization of the former focusing on connectivity.
- Information Security Architecture. A detailed description of all aspects of the system that
 relate to information security, along with a set of principles to guide the design. A security
 architecture describes how the system is put together to satisfy the security requirements.
- Information Architecture. An abstract but formal representation of entities including their properties, relationships and the operations that can be performed on them.

As such, these viewpoints could be very much targeting the Information and Communication Technology (ICT) aspects of the Smart Grid. However, this aspect – though an essential element of the Smart Grid – cannot be seen in isolation of the other essential aspect of the Smart Grid: the Power Technology. The choice of the appropriate viewpoints and their level of granularity are therefore very important. This is addressed by the section below.

Considering the JWG recommendations and the requirements defined in section 6.2, the following viewpoints have been selected as the most appropriate to represent the different aspects of Smart Grids systems:

- Business Architecture
- Functional Architecture
- Information Architecture
- Communication Architecture

The 'Information Security Architecture' listed in the JWG list above has been handled separately from the SG-CG/RA work by the SG-CG/SGIS. However, alignment of work of both WGs is deemed essential. At this stage, first elements of this alignment can be found in 7.2.7.

7 The Smart Grid Architecture Model (SGAM) Framework

7.1 Interoperability in the context of the Smart Grid

7.1.1 General

Interoperability is seen as the key enabler of smart grid. Consequently the proposed SGAM framework needs to inherently address interoperability. For the understanding on interoperability in the context of smart grid and architectural models, a definition and requirements for achieving interoperability are given.

7.1.2 Definition

A prominent definition describes interoperability as the ability of two or more devices from the same vendor, or different vendors, to exchange information and use that information for correct co-operation [IEC61850-2010].

In other words, two or more systems (devices or components) are interoperable, if the two or more systems are able to perform cooperatively a specific function by using information which is exchanged. This concept is illustrated in Figure 3.

Figure 3: Definition of interoperability – interoperable systems performing a function

Being formulated in a general way, the definition is valid to the entire smart grid.

7.1.3 Interoperability Categories

The interoperability categories introduced by the GridWise Architecture Council [GWAC2008] represent a widely accepted methodology to describe requirements to achieve interoperability between systems or components (Figure 4).

CENELEC

Figure 4: Interoperability Categories defined by GWAC [GWAC2008]

The individual categories are divided among the three drivers "Technical", "Informational" and "Organizational". These interoperability categories underline the definition of interoperability in the previous section 7.1.2. Hence for the realization of an interoperable function, all categories have to be covered, by means of standards or specifications.

Figure 5: Interoperability Categories and Cross-Cutting Issues [GWAC2008]

Cross-cutting issues are topics which need to be considered and agreed on when achieving interoperability [GWAC 2008]. These topics may affect several or all categories to some extent. Typical cross-cutting issues are cyber security, engineering, configuration, energy efficiency, performance and others.

7.2 SGAM Framework Elements

7.2.1 General

The SGAM framework and its methodology are intended to present the design of smart grid use cases in an architectural viewpoint allowing it both- specific but also neutral regarding solution and technology. In accordance to the present scope of the M/490 program, the SGAM framework allows the validation of smart grid use cases and their support by standards.

The SGAM framework consists of five layers representing business objectives and processes, functions, information exchange and models, communication protocols and components. These five layers represent an abstract and condensed version of the interoperability categories introduced in section 7.1.3. Each layer covers the smart grid plane, which is spanned by electrical domains and information management zones (section 7.2.3). The intention of this model is to represent on which zones of information management interactions between domains take place. It allows the presentation of the current state of implementations in the electrical grid, but furthermore to depict the evolution to future smart grid scenarios by supporting the principles universality, localization, consistency, flexibility and interoperability.

7.2.2 SGAM Interoperability Layers

In order to allow a clear presentation and simple handling of the architecture model, the interoperability categories described in section 7.1.3 are aggregated into five abstract interoperability layers (refer to Figure 6). However in case of a detailed analysis of interoperability aspects, the abstraction can be unfolded.

Figure 6: Grouping into interoperability layers

7.2.2.1 Business Layer

The business layer represents the business view on the information exchange related to smart grids. SGAM can be used to map regulatory and economic (market) structures and policies, business models, business portfolios (products & services) of market parties involved. Also business capabilities and business processes can be represented in this layer. In this way it supports business executives in decision making related to (new) business models and specific business projects (business case) as well as regulators in defining new market models. The Business layer is addressed in more detail in paragraph 8.1.

7.2.2.2 Function Layer

The function layer describes functions and services including their relationships from an architectural viewpoint. The functions are represented independent from actors and physical implementations in applications, systems and components. The functions are derived by extracting the use case functionality which is independent from actors.

7.2.2.3 Information Layer

The information layer describes the information that is being used and exchanged between functions, services and components. It contains information objects and the underlying canonical data models. These information objects and canonical data models represent the common semantics for functions and services in order to allow an interoperable information exchange via communication means.

7.2.2.4 Communication Layer

The emphasis of the communication layer is to describe protocols and mechanisms for the interoperable exchange of information between components in the context of the underlying use case, function or service and related information objects or data models.

7.2.2.5 Component Layer

The emphasis of the component layer is the physical distribution of all participating components in the smart grid context. This includes system actors, applications, power system equipment (typically located at process and field level), protection and tele-control devices, network infrastructure (wired / wireless communication connections, routers, switches, servers) and any kind of computers.

7.2.3 SGAM - Smart Grid Plane

In general power system management distinguishes between electrical process and information management viewpoints. These viewpoints can be partitioned into the physical domains of the electrical energy conversion chain and the hierarchical zones (or levels) for the management of the electrical process (refer to [IEC62357-2011, IEC 62264-2003]). Applying this concept to the smart grid conceptual model introduced in section 6.3 allows the foundation of the *Smart Grid Plane* (see Figure 7.). This smart grid plane enables the representation on which levels (hierarchical zones) of power system management interactions between domains take place.

Figure 7: Smart Grid plane - domains and hierarchical zones

According to this concept those domains, which are physically related to the electrical grid (Bulk Generation, Transmission, Distribution, DER, Customer Premises) are arranged according to the electrical energy conversion chain. The conceptual domains Operations and Market are part of the information management and represent specific hierarchical zones. The conceptual domain Service Provider represents a group of actors which has universal role in the context of smart grid. This means that a Service Provider can be located at any segment of the smart grid plane according to the role he has in a specific case.

7.2.4 SGAM Domains

The *Smart Grid Plane* covers the complete electrical energy conversion chain. This includes the domains listed in Table 2:

Table 2: SGAM Domains	Table :	2: SG/	AM Do	omains
-----------------------	---------	--------	-------	--------

Domain	Description
Bulk Generation	Representing generation of electrical energy in bulk quantities, such as by fossil, nuclear and hydro power plants, off-shore wind farms, large scale solar power plant (i.e. PV, CSP)– typically connected to the transmission system
Transmission	Representing the infrastructure and organization which transports electricity over long distances
Distribution	Representing the infrastructure and organization which distributes electricity to customers
DER	Representing distributed electrical resources directly connected to the public distribution grid, applying small-scale power generation technologies (typically in the range of 3 kW to 10.000 kW). These distributed electrical resources may be directly controlled by DSO
Customer Premises	Hosting both - end users of electricity, also producers of electricity. The premises include industrial, commercial and home facilities (e.g. chemical plants, airports, harbors, shopping centers, homes). Also generation in form of e.g. photovoltaic generation, electric vehicles storage, batteries, micro turbines are hosted

7.2.5 SGAM Zones

The SGAM zones represent the hierarchical levels of power system management [IEC62357-2011]. These zones reflect a hierarchical model which considers the concept of aggregation and functional separation in power system management. The basic idea of this hierarchical model is laid down in the Purdue Reference Model for computer-integrated manufacturing which was adopted by IEC 62264-1 standard for "enterprise-control system integration" [IEC 62264-2003]. This model was also applied to power system management. This is described in IEC 62357 "Reference architecture for object models services" [IEC 62357-2003, IEC 62357-1-2012].

The concept of aggregation considers multiple aspects in power system management:

- Data aggregation data from the field zone is usually aggregated or concentrated in the station zone in order to reduce the amount of data to be communicated and processed in the operation zone
- Spatial aggregation from distinct location to wider area (e.g. HV/MV power system equipment is usually arranged in bays, several bays form a substation; multiple DER form a plant station, DER meters in customer premises are aggregated by concentrators for a neighborhood)

In addition to aggregation the partitioning in zones follows the concept of functional separation. Different functions are assigned to specific zones. The reason for this assignment is typically the specific nature of functions, but also considering user philosophies. Real-time functions are typically in the field and station zone (metering, protection, phasor-measurement, automation...). Functions which cover an area, multiple substations or plants, city districts are usually located in operation zone (e.g. wide area monitoring, generation scheduling, load management, balancing, area power system supervision and control, meter data management...). The SGAM zones are described in Table 3.

Zone	Description
Process	Including the physical, chemical or spatial transformations of energy (electricity, solar, heat, water, wind) and the physical equipment directly involved. (e.g. generators, transformers, circuit breakers, overhead lines, cables, electrical loads any kind of sensors and actuators which are part or directly connected to the process,).
Field	Including equipment to protect, control and monitor the process of the power system, e.g. protection relays, bay controller, any kind of intelligent electronic devices which acquire and use process data from the power system.
Station	Representing the areal aggregation level for field level, e.g. for data concentration, functional aggregation, substation automation, local SCADA systems, plant supervision
Operation	Hosting power system control operation in the respective domain, e.g. distribution management systems (DMS), energy management systems (EMS) in generation and transmission systems, microgrid management systems, virtual power plant management systems (aggregating several DER), electric vehicle (EV) fleet charging management systems.
Enterprise	Includes commercial and organizational processes, services and infrastructures for enterprises (utilities, service providers, energy traders), e.g. asset management, logistics, work force management, staff training, customer relation management, billing and procurement
Market	Reflecting the market operations possible along the energy conversion chain, e.g. energy trading, mass market, retail market

Table 3: SGAM Zones

In general organizations can have actors in several domains and zones. In the smart grid plane the areas of the activity of these actors can be shown. E.g. according to the business area of a

transmission utility it is likely that the utility covers all segments of the transmission domain, from process to market.

A service provider offering weather forecast information for distribution system operators and DER operators could be located to the market zone interacting with the operation zone in the distribution and DER domain.

7.2.6 SGAM Framework

The SGAM framework is established by merging the concept of the interoperability layers defined in section 7.2.2 with the previous introduced smart grid plane. This merge results in a model (see Figure 8) which spans three dimensions:

- Domain
- Interoperability (Layer)
- Zone

Figure 8: SGAM framework

Consisting of the five interoperability layers the SGAM framework allows the representation of entities and their relationships in the context of smart grid domains, information management hierarchies and in consideration of interoperability aspects.

7.2.7 Cross-cutting Issues and SGAM

7.2.7.1 Application to SGAM interoperability layers

According to the adopting of the concept of interoperability categories, which was introduced in section 7.1.3, cross-cutting issues apply in the same manner to the abstract interoperability layers. Figure 9 shows the relation of cross-cutting issues to the five abstracted interoperability layers.

Figure 9: Interoperability layers and cross-cutting issues

Figure 10 depicts the impact of crosscutting issues to the individual interoperability layers from the overall SGAM framework prospective.

Figure 10: Impact of cross-cutting issues on SGAM interoperability layers

7.2.7.2 Example cyber security

Information Security in Smart Grid is an integral part of the Reference Architecture. The incorporation of the security aspects is the task of the Smart Grid Information Security Work Group (SG-CG/SGIS) investigating into existing security standards and their feasibility in a smart grid environment. A commonly agreed view of SG-CG/RA and SG-CG/SGIS is that security is a consistent process and has to be addressed upfront, both from a functional and non functional perspective.

The question has been addressed in two angles:

- How to benefit from the SGAM Methodology to address Security Use Cases
- How to represent the Information Security viewpoint within SGAM.

Regarding the first question, the SGAM Methodology based on a Use Case analysis as depicted in Figure 12 can be directly used for dedicated security functions. Security specific interactions can be shown on different SGAM layers showing the involved entities, their functional interface in terms of protocols and information models and also the relating business case. This has been shown on the example of Role-based Access Control, where SGAM allowed depicting the security specifics on each layer.

Regarding the representation of security within SGAM, it has been discussed (between SG-CG/RA and SG-CG/SGIS) to provide a "security view per layer" emphasizing that security is a cross functional topic, which has to be obeyed in each of the SGAM layers and has been depicted in that way by the SG-CG/SGIS. This can even more underlined as security is actually to be obeyed per layer, per domain, and per zone and thus basically per SGAM cell. To allow for the consideration of security aspects in that detail the SG-CG/SGIS has provided a toolbox, supporting the analysis and determination of security risks on a per use case base, following the SGAM methodology.

Figure 11: Using the SGIS Toolbox

Moreover, using the toolbox allows identifying available standards, applicable in dedicated use cases and also to identify gaps, for which further work is has to be done. This approach completes the SGAM methodology with inherent security considerations.

7.3 The SGAM methodology

7.3.1 General

This section introduces the methodology of the SGAM framework. It is intended to provide users an understanding on its principles and a guideline how to use the SGAM framework.

7.3.2 Principles

The definition of the principles of the SGAM is essential in order to leverage its capabilities for the universal representation of smart grid architectures. In the following the SGAM principles universality, localization, consistency, flexibility, scalability, extensibility and interoperability are described.

7.3.2.1 Universality

The SGAM is intended as a model to represent smart grid architectures in a common and neutral view. For the M/490 objectives it is essential to provide a solution and technology agnostic model, which also gives no preferences to existing architectures.

7.3.2.2 Localization

The fundamental idea of the SGAM is to place entities to the appropriate location in the smart grid plane and layer respectively. With this principle an entity and its relation to other entities can be clearly represented in a comprehensive and systematic view. E.g. a given smart grid use case can be described from an architectural viewpoint. This includes its entities (business processes, functions, information exchange, data objects, protocols, components) in affected and appropriate domains, zones and layers.

7.3.2.3 Consistency

A consistent mapping of a given use case or function means that all SGAM layers are covered with an appropriate entity. If a layer remains open, this implies that there is no specification (data model, protocol) or component available to support the use case or function. This inconsistency shows that there is the need for specification or standard in order to realize the given use case or function. When all five layers are consistently covered, the use case or function can be implemented with the given specifications / standards and components.

7.3.2.4 Flexibility

In order to allow alternative designs and implementations of use cases, functions or services, the principle of flexibility can be applied to any layer of SGAM. This principle is essential to enable future mappings as smart grid use cases, functions and services evolve. Furthermore the principle of flexibility allows to map extensibility, scalability and upgradability of a given smart grid architecture.

Flexibility includes the following methods:

- Use cases, functions or services are in general independent of the zone. E.g. a centralized Distribution Management System (DMS) function can be placed in operation zone; a distributed DMS function can be placed in field zone.
- Functions or services can be nested in different components case by case.
- A given use case, function or service can be mapped to information and communication layer in many different ways in order to address specific functional and non-functional requirements. E.g. the information exchange between control centers and substations can be realized with IEC 61850 over IP networks or with IEC 60870-5-101 over SDH (Synchronous Digital Hierarchy) communication networks.

7.3.2.5 Scalability

The SGAM encompasses the entire smart grid from a top level view. An enlargement to specific domains and zones is possible in order to detail given use cases, functions and services. E.g. the SGAM could be scaled and detailed focusing on microgrid scenarios only.

7.3.2.6 Extensibility

The SGAM reflects domains and zones of organizations which are seen from the current state. In the evolution of the smart grid there might be a need to extend the SGAM by adding new domains and zones.

7.3.2.7 Interoperability

Picking up the GWAC Stack methodology [GWAC2008], the SGAM represents a kind of a threedimensional, abstract aggregation of the GWAC Stack interoperability categories to the smart grid plane. By doing this, the interaction between actors, applications, systems and components (component layer) is indicated by their connections or associations via information exchange and data models (information layer), protocols (communication layer), function or service (function layer) and business constraints (business layer). Generally the connection between entities (components, protocols, data models) is established by interfaces. In other words the consistency of an interoperable interaction can be represented by a consistent chain of entities, interfaces and connections in the *SGAM* layers.

The principles of *Consistency* and *Interoperability* constitute the coherency of the SGAM. Consistency ensures that the five layers are unambiguously linked; interoperability ensures that the conditions for interaction (interfaces, specifications, standards) are met within each layer. Both principles need to be fulfilled for a given use case, function or service to be realized.

7.3.3 Mapping of use cases to SGAM framework

This section describes the basic process to map use cases to the SGAM framework. A detailed example can be found in annex B.2.4.

The mapping process can be applied to the following tasks, which are considered relevant for the present mandate M/490:

- Mapping of use cases in order to validate the support by standards
- Identifying gaps in respect to standards
- Mapping of existing architectures into a general view
- Developing smart grid architectures.

On overview of the process and its steps is depicted in Figure 12.

Depending on the task the process can be carried out iteratively.

Figure 12: Use case mapping process to SGAM

7.3.3.1 Use Case Analysis

The starting point is an analysis of the use case to be mapped. It needs to be verified that a use case description provides the sufficient information which is necessary for the mapping. This information includes:

- Name, scope and objective
- Use case diagram
- Actor names, types
- Preconditions, assumptions, post conditions
- Use case steps
- Information which is exchanged among actors
- Functional and non-functional requirements.

The use case template considered by M/490 Sustainable Process WG provides the required information.

It is crucial that hard constraints are identified from a use case description. These constraints may have impact on the sequence of steps carried out for the mapping process.

7.3.3.2 Development of the Component Layer

The content of the component layer is derived from the use case information on actors. As actors can be of type devices, applications, persons and organizations, these can be associated to domains relevant for the underlying use case. In the same manner the hierarchical zones can be identified indicating where individual actors reside.

7.3.3.3 Development of the Business Layer

The business layer is intended to host the business processes, services and organizations which are linked to the use case to be mapped. This includes also the business objectives, economic and regulatory constraints underlying to the use case. These business entities are located to the appropriate domain and zone.

7.3.3.4 Development of the Function Layer

The function layer is intended to represent functions and their interrelations in respect to domains and zones. Functions are derived from the use case by extracting its functionality. Typically a use case consists of several sub use cases with specific relationships. These sub use case can be transformed to functions when formulating them in an abstract and actor independent way.

7.3.3.5 Development of the Information Layer

The information layer describes the information that is being used and exchanged between functions, services and components. The information objects which are exchanged between actors are derived from the use case description in form of use case steps and sequence diagrams. Underlying canonical data models are identified by analysis of available standards if these provide support for the exchanged information objects. Information objects and canonical data models are located to the appropriate domain and zone being used.

7.3.3.6 Development of the Communication Layer

The emphasis of the communication layer is to describe protocols and mechanisms for the interoperable exchange of information between the use case actors. Appropriate protocols and mechanisms are identified on the basis of the information objects and canonical data models and by consideration of non-functional requirements of the use case. Protocols and mechanisms are located to the appropriate domain and zone being used.

7.3.4 Mapping the business layer with the lower SGAM layers

This is a crucial phase of the methodology. Some guidelines below can be applied.

7.3.4.1 European market structure alignment

Guideline

Define architectural elements on the business layer in accordance to business roles that are identifiable within the European electricity market.

Rationale

In order to have business architectures derived from this reference architecture match the situation in all European countries, the roles used in the business interactions must be defined and agreed upon, or otherwise the responsibilities carried out by those roles are inconsistent and the interactions (and consequently the interfaces) between roles are unclear. This results in a system that is not interoperable.

Currently, the Harmonized Electricity Market Role Model by ENTSO-E, EFET and ebIX [ENTSO-E] is the best candidate, since it is harmonized and fits on all European electricity markets. Note that this model only represents the current EU situation, based on the current regulations, and that this might not fit future developments. Any deviation from this model should be documented and preferably discussed and agreed upon with the creators of the model and/or regulators (e.g. through Expert Group 3 of the European Commission's Task Force on Smart Grids).

Approach

Use the HEM-RM of ENTSO-E, EFET and ebIX (freely downloadable from the ebIX website at http://www.ebix.org/content.aspx?ContentId=1117&SelectedMenu=8) as a guidance to select and define your business roles and their interactions.

7.3.4.2 Consistency with the business layer

Guideline

Ensure consistent association between roles identified on the business layer and architectural elements identified on other layers, such as functions, applications, databases, or power system elements. Make sure there is a 1-to-n mapping from a single role to one or more architectural elements in the other layers, mitigating ambiguity of responsibilities for architectural elements.

Rationale

when a clear mapping is made between the roles in the business layer and the architectural elements in the other layers of SGAM (functions, interfaces, information, communication infrastructure, components ...), one automatically knows which role is responsible for an architectural element and which business interfaces exist between these roles.

For example: the functional layer provides a list of functions required for the execution of a business process in the business layer. Due to the role mapping it is clear which roles are responsible for a specific function. Consequently none of the functions (and in lower layers information, interfaces and components) is omitted when realizing the business process and ownership/responsibility is clear.

Approach

once the architectural elements of the layer under work are defined, one needs to check how these map to the business roles from the roles defined on the business layer. If one cannot map an element onto a single role from the role model, the responsibility on that element is unclear and needs further investigation before continuing.

8 **Reference Architecture Elements**

The Conceptual Model (as defined in 6.3) consists of several domains, each of which contain applications and actors that are connected by associations through interfaces.

The Conceptual Model can be regarded as the basis from which regulation, business models, ICT architectures, standards etc. can be derived. Since it forms the common starting point for all these activities, it has the potential to ensure consistency between all these mentioned perspectives / viewpoints.

8.1 Business Architecture

It is commonly understood that ICT solutions are meant to support business processes, and that business processes of an organization produce products or services (in the service industry). Products and/or services are offered by that organization to its customers (residential of business) on a market. These markets may be subject to regulation in order to ensure a level playing field. Some markets/ products /services may even be fully regulated (e.g. unbundling).

Therefore it is essential that in creating ICT standards for inter-operability, the relation to markets, products and processes as described here, is well understood and aligned. Only then ICT solutions really support the business. This logic is well presented in the SGAM, showing the business layer as the top layer of the SGAM frame work.

Although standardization of market models and business models itself is out of scope of M/490, good interoperability is essential in order to create well-functioning markets. This requires standardized business services and interfaces, and this is <u>in scope</u> of M/490.

In this paragraph the business architecture is addressed from a methodology point of view, with the objective to ensure that whatever market or business models are selected, the correct business services and underlying architectures are developed in a consistent and coherent way. The business architectures are modeled in the business layer of the SGAM, and comprise the markets and enterprise zone of the SGAM layer, thereby also coping with regulatory aspects of markets and business objectives ate enterprise level.

The basis for alignment between organizations, roles & responsibilities, and application & information architectures, is created by the use of the meta-model, as shown in Figure 13 (source TOGAF 9.1).

Figure 13: Meta model (TOGAF 9.1)

The use of this model also ensures alignment between the work of the M/490 working groups SG-CG/SP (Sustainable Processes WG), SG-CG/RA (Reference Architecture WG), and the development of a generic market model by the EU taskforce smart grids (EG3).

Figure 14 defines the relation between the metamodel and the SGAM framework, and it specifies more in detail what artifacts/deliverables should come out of the business architecture layer. The data entity corresponds with the information layer, the application component with the functional layer, and the technology component and platform services with the communication and component layer.

Figure 14: Relation Meta-model to SGAM

In the business architecture layer, the definition and overview (listing) of the following deliverables are foreseen:

- Roles & actors
- Business functions (or business function model)
- Business services
- Business processes (or business process model)

8.1.1 Roles & actors

In a market model in the business layer, roles are defined. These roles are mainly defined in terms of responsibility (ref. ENTSO-E/eBIX, see also Annex H). Then these roles are allocated to market parties. A party hereby is defined as a legal entity performing one or more roles (ref.[NIST 2009]).

This role-allocation to parties may be subject to regulation / legislation.

A role represents the external intended behavior of a party. A party cannot share a role. Businesses carry out their activities by performing roles (e.g. System Operator, Trader). Roles describe external business transaction with other parties in relation to the goal of a given business transaction.

The concept of an "Actor" is very general and can cover People (their roles or jobs), systems, databases, organizations, and devices.

Roughly actors, as identified by SG-CG/SP, might be divided into system actors and business actors (Ref. IEC TC8).

- System actors are covering functions or devices which for example are defined in the Interface Reference Model (IEC 61968-1). A system actor will perform a task under a specific role.
- A business actor specifies in fact a « Role » and will correspond 1:1 with roles defined in the eBIX harmonized role model (possibly some new roles will be required and added to the eBIX model).

An actor represents a party that participates in a business transaction. Within a given business transaction an actor assumes a specific role or a set of roles.

For example with respect to unbundling in Europe, the market models define what activities are regulated and what activities are allowed in the commercial market; In that respect smart grid parties (DSO, TSO) and smart market parties (suppliers, Energy Service Companies (ESCOs), traders, customers, etc.) are defined.

The energy transition will require an update of existing market models, which differ today, even in different EU member states. It is the ambition of the EU to harmonize existing market models and to develop a generic EU market model.

With respect to mandate M/490, work on the definition of a EU generic market models is out of scope but work on components which are to be used for defining a market model (roles & business services) is in scope. Therefore, strong alignment between M/490 (especially SG-CG/SP) and EG3 of the EU Smart Grid Task Force is necessary, to guarantee use of the same definition and overview (listing) of roles & business services.

Only then EU work on market model development and the M/490 work on standards are in sync.

8.1.2 Business Functions

A business function delivers business capabilities closely aligned to an organization, but not necessarily governed by the organization (ref. TOGAF 9.1)

8.1.3 Business Services

A business service supports a business function through an explicitly defined interface and is explicitly governed by an organization (ref. TOGAF 9.1).

Actors in the conceptual model are connected by associations. Where these actors are represented by applications, information is exchanged via application interfaces. Where these interfaces cross boundaries between market parties, we define the information exchanged as business services. Through these business services market parties will interact.

The definition of business services via which regulated and unregulated market parties will interact, will be subject or part of regulation/legislation in order to create a level playing field in the smart market.

The 'physical" energy product, being an energy "end user proposition" from a commercial market party or an energy transport product (underlying) from a regulated market party, is defined as a business product. Associations between business products and business services are foreseen (e.g. a business transaction service related to EV charging). In order to fully facilitate "smart markets" by "smart grids", it is expected that business services (interfaces) between regulated and unregulated environments will be prioritized.

A Smart Market hereby is defined as an unregulated environment where energy products and energy related services are freely produced, traded, sold and consumed between many market actors.

A Smart Grid is defined a regulated environment where energy is transported and distributed via energy networks, and which provides relevant data & functionality to facilitate envisioned market functioning (e.g. switching customers, providing metering data).

8.1.4 Business Processes

In order to realize business services between markets parties, it is important to have a good insight in the underlying business processes. Furthermore the business processes drive the requirements for the functional and information architectures.

Creating a Utility common Business process model, (to be derived via a business function model) contributes to EU economy of scale with respect to application development and can lead to an "eco -system" of interconnected applications; It contributes to M490 interoperability objectives that go beyond 2 systems interfacing, leading to the realization of defined and specified use cases.

Today, a generic process model for utilities does not exist (for example, in contrast to the telecom sector where the eTOM reference model of TMF is internationally widely accepted and used).

Related work, leading a smart grid/ smart market high level process model is considered to be in scope of M490. Input for this work could come from:

- ENTSO-E/eBIX where processes/interactions between actors are described.
- Cooperation between ENTSO-E/eBIX and IEC related to the HMM and CIM model
- IEC standards (e.g. 61850) in which also processes/functions entities are described
- Work from relevant EU research programs
- The SG-CG/SP on sustainable processes is working on use case and generic use cases.

All these results will be input, next to other contributions and existing material for drafting an initial business capability and process model. This is for further study, input is welcome.

8.1.5 Methodology/ Process

In order to reach and maintain alignment between market model developments and ICT architecture & services development, the process that needs to be followed is:

- The definition of a market model which includes defining and allocating clear roles and responsibilities to market parties. EG3 defines the roles, building on the existing ENTSO-E/eBIX Harmonized Role Model. EG3 and maps these roles to all market parties and DSO's. An initial mapping of existing roles is given in annex H. New roles may come out of analysis of uses cases (SG-CG/SP) as well as market model discussions (EG3)
- 2. M/490 (SG-CG/SP) derives from the use cases, the actors, and maps these actors onto the roles used by EG3.
- 3. M/490 (SG-CG/SP) is identifying the information exchange between actors from the use cases, and since actors are allocated to roles, this also defines the information exchange between roles. As roles are also allocated to market parties it consequently also defines the information exchange between market parties, thereby defining the basis for the standard business services.
- 4. From the business services defined, the process model, the information, application, communication & technical architecture should be derived.

This process is shown in Figure 15.

Figure 15: Alignment process between market model developments and ICT architecture & services development

It is envisaged that, at the end of 2012, the EU commission in its revision of mandate M490 will prioritize business services that will be necessary between connected parties (SGCP), market parties and DSO's. So, these business services should be addressed with priority, leading to a first set of standardized interfaces and business services, also required for implementation of the flexibility concept.

8.2 Functional Architecture

8.2.1 General

A functional architecture is intended to describe the functional elements of a system and their relationship independent from physical implementation, applied technology or assigned actor. In the context of Smart Grid a functional architecture consists of functions that enable Smart Grid use cases. The functional layer of the SGAM model hosts functional architectures of Smart Grids.

This section provides the concept of a meta-model to describe functional architectures and gives an architectural overview of typical functional groups of Smart Grids.

8.2.2 Functional Architecture Meta-model

8.2.2.1 Concept

The objective of this section is to introduce a meta-model, which describes Smart Grid functions and their relationship from an architectural viewpoint. The basic concept for the description of functional architectures for Smart Grid is adopted from the M/441 Smart Metering Reference Architecture [CEN CLC ETSI TR 50572:2011].

Figure 1Figure 16 shows the meta-model concept for the description of functional architectures for Smart Grid.

Figure 16: Functional architecture meta-model

Table 4: Terms of functional architecture meta-model

Term	Description
Function	Represents a logical entity which performs a dedicated function. Being a logical entity, a function can be physically implemented in various ways.
Function Group	Is a logical aggregation of one or more functions. A function group may also contain one or more function groups.
interaction	An "interaction" of two or more functions is indicated by a connecting line between these functions. Interaction is realized by information exchange via the interfaces of functions and communication means
Functional architecture	Identifies the functional elements of a system and relates them to each other.

Figure 16 shows a function group containing the functions A and B that mutually interact. Function C interacting with function B, is not contained by any function group.

An example for a functional architecture is given for the use case "control of reactive power in section B.2.4.

8.2.2.2 Flexibility

Being able to describe functional elements of a system and their relationship independent from physical implementation, applied technology or assigned actor, allows an abstract and flexible development and use of functional architectures. In terms of SGAM this means, that functions or function groups can be assigned and shifted over the segments of the SGAM smart grid plane.

The example in Figure 17 illustrates the flexible assignment of functions to SGAM segments.

Figure 17: Flexibility for assignment of function "Volt/Var Control" to SGAM segments, case A - in operation zone, case B - in field zone

In case A, the function "Volt/Var Control" is assigned in the operation zone. This is a typical functional architecture in centralized DMS systems. In case B, the function is located in the field zone representing a local or decentralized concept. Both scenarios have specific impact on the other SGAM layers in terms of information exchange, canonical data models, communication protocols and component capabilities (see example in section B.2.4).

8.2.3 Smart Grid Functional Architecture

8.2.3.1 General

This section provides an overview on function groups that are derived from the Smart Grid systems introduced by SGCG/FSS [SG-CG/B]. Moreover these function groups are intended to support the high-level services, which were addressed in the Smart Grids Task Force EG1 report:

- Enabling the network to integrate users with new requirements
- Enhancing efficiency in day-to-day grid operation
- Ensuring network security, system control and quality of supply
- Enabling better planning of future network investment
- Improving market functioning and customer service
- Enabling and encouraging stronger and more direct involvement of consumers in their energy usage and management

8.2.3.2 Smart Grid Function Groups

The smart grid systems cover all five SGAM interoperability layers. Consequently the systems have specific content in the functional architecture viewpoint. Figure 18 shows the functional groups of the Smart Grid systems mapped to the Smart Grid domains and zones.

Figure 18: Overview on Smart Grid function groups derived from Smart Grid Systems

A description and further details on the smart grid systems is given in [SG-CG/B].

From a functional prospective the function groups of the individual systems contain further function groups or function of smaller granularity. E.g. the function group "Substation Automation" can be decomposed into the function groups "protection", "control", "monitoring", "data acquisition"... which themselves can be break down in further functions or function groups. The key idea is to identify basic functions which can be seen as reusable building blocks for complex functions. By the help of these basic functions different functional layouts can be studied and compared (see section 8.2.2.2).

8.3 Information Architecture

8.3.1 General

This section of the report focuses of the overview of the most important concepts for the representation and management of the needed information for the Smart grid elements. An Information Architecture is an abstract but formal representation of entities including their properties, relationships and the operations that can be performed on them. Important aspects which are addressed are data management, integration concepts and the interfaces needed. For those main aspects, the Smart Grid JWG report has already provided a thorough overview what has be considered state-of-the-art from the viewpoints of standardization bodies. In order to distinguish between those three aspects in the SGAM, the integration aspects must be seen as a link between either two or more layers and between one or more fields at plane level. Data models are typically focusing on the information layer and can be mapped easily onto the SGAM planes.

The following paragraphs focus on the three very aspects of the information architecture in more detail. Furthermore the concept of "logical interfaces" is introduced which is dedicated to simplify the development of interface specifications especially in case of multiple actors with relationships across domains.

8.3.2 Integration technology

While systems and applications in the past were often operated separately, today business requires interactions between multiple systems and applications to operate effectively. To do so, a coupling of former separated and heterogeneous systems is necessary. This requires solutions to integrate those systems in a way their functionality is still available and can be adapted to changing need. The establishment of a common information model that is to be used throughout many applications and systems requires solutions to cope with different data sources from the various actors.

To allow the recombination of different data sources and the establishment of new interfaces between those systems, syntactic and semantic interoperability is required. Different than in data or function integration, the implementation of the original systems is not affected by this enterprise application integration approach.

Usually, the integration will be realized through integration platforms that allow the implementation of required interfaces – Middleware is often the layer where this integration effort takes place. Often times the middleware is message-based, meaning components exchange data defined in messages which are sent from one component to another. XML is then used for various purposes, like message description and interchange. By shifting the intelligence to interfaces in conjunction with intelligent routing, publish/subscribe and event mechanisms, it is possible to define efficient systems spanning across multiple organizations and actors. In general this approach is labeled as EAI.

SOA goes one step further with the integration approach as well as with the organizational embedding, but also share the technological concepts of EAI. A SOA requires specific features according to the service paradigm from the applications to be coupled in order to allow for

successful process integration. The smallest units in SOAs are services that provide a defined set of functionality, being so fine-grained that they provide units for reuse.

However, what exactly a service is and its level of granularity is in many cases defined different. The term service is often considered from a certain perspective from a particular stakeholder group, for instance, regarding the structuring of the business or the IT, as being stated by TOGAF. Different approaches to describe SOAs and to classify their services are further mentioned in [Uslar et al 2012].

Services, both business and technical, are self-contained, have a contract assigned that specifies their functionality and how to access it, and produce predictable results. In contrast to the sizing of applications and their functionality, services are designed to be used with other services in terms of composition and orchestration. This level of granularity adds more flexibility to business processes, as they may defined and executed using the services. Services are characterized by loose coupling and will usually be provided in specific directories where they can be found by third parties or process engines. Technical services are mostly realized as Web Services using the WS* technology stack from W3C. The service localization is then realized with Universal Description, Discovery and Integration (UDDI) that provides standardized way to locate those services. Besides the possibility of direct coupling, the usage of a platform providing the required functionality to orchestrate and compose services is highly important and can be realized in SOA middleware.

The features that middleware for this application area usually offers can for example be data transformation, connection to data sources, automation technology, logging, reporting as well as filtering and transformation. Such complex middleware is often named ESB. A platform like this can serve as a focal point for data, but it can also become a bottleneck for the decentralized arranged services. Therefore, it is beneficial to have a redundant middleware infrastructure that is scalable. In case a part of the IT infrastructure is not operated by a company itself but by another provider, the provided infrastructure becomes more and more abstract and blurred, meaning it appears as to be surrounded by a cloud.

By turning from a central IT to more decentralized systems in the energy sector, more efforts on system integration have to be spent. The mentioned integration paradigms are very valuable for Smart Grids, as they can be applied for the integration of decentralized systems, comprising producers, storage, consumers and other data sources. Here, the integration paradigms of EAI and SOA may be used for communication, automation as well as for secondary and primary IT. Internationally standardized solutions already exist to simplify this, like for instance the IEC 62357 SIA, which can be realized using a SOA, or the IEC 62541 OPC Unified Architecture as a SOA-based approach for data exchange. Nevertheless, there are still gaps that require harmonization between semantic and syntactic interfaces.

8.3.3 Data Models

According to literature, a data model in software engineering is an abstract model that documents and organizes the business data for communication between team members and is used as a plan for developing applications, specifically how data is stored and accessed. If the abstract level is higher, usually, business functions implemented and exchanged in processes are represented in a data model, focusing on the data in terms of payloads between stakeholders being exchanged.

Data modeling and description languages are typical "system enablers" transversal to use cases and should be seen in priority from a top-down approach. It may conflict with the traditional bottomup approaches. However, there are many benefits of proceeding top-down starting with the data models:

- Avoiding useless translators, which increase the complexity of the deployment of smart grids, increase its costs, reduce its overall reliability, reduce flexibility in the future and finally speed down the over all market acceptance.
- Avoid misunderstanding between stakeholders from different domains involved in the system development, and increase the global reliability and interoperability of the system.

- Increase the flexibility of the system.
- Increase the speed of spreading the smart grid, by reducing the amount of engineering time per additional point of connection of IEDs.
- Providing harmonized data model and description language leads to think "transverse" to be efficient, with the constraint not only to define an "ultimate" target but also the migration path from the existing situation.
- Harmonization between various data models takes place before the actual system development and might lead to a better seamless integration.

In the utility domain, several data models in context with the different aspects for the corresponding SGAM plane "Information layer" exist and have been thoroughly documented.

Annex 6.2 of the JWG-SG Report on Smart Grid Standardization provides a thorough overview on the most important data models which have to be seen in context with the smart grid standardization. As most reports point out, the CIM (IEC 61968, 61970 and 62325) and the IEC 61850 data model are the most prominent data models [Uslar et al 2012]. Fortunately, there are strong initiatives started by the SG-CG FSSWG group to harmonize the most important data models for smart grids. Therefore, we assume for a future version of the SGAM, seamless integration of data model at the information plane between the domains and zones can be reached.

This report does not recommend (apart from the obvious standards form the JWG reports) any data model standards but leaves this for the final report of the first set of standards group which will cover, based on the SGAM methodology described in this report, individual standards to be included in the M/490 First list of Standards focusing on meaningful data model standards for the Smart Grid. Additionally, the identified gaps between those data models are identified and will be addressed by the final report of the first set of standards group, e.g. IEC 61850 and CIM harmonization. Additionally, the SGAM method and EA techniques applied like TOGAF and Archimate provide for a meaningful integration and identification of needed date models in a context.

8.3.4 Interfaces

Most of the interfaces are normally seen between the domains and zones on the information plane. However, also interfaces between the planes must exist. Data like measurements and control signals are to be exchanged between those layers. The SGAM principles were created to make sure that both data models and interfaces for technical standardization could be mapped and properly addressed for standards.

As most utility standards were developed with the focus on the separation of concerns, interfaces are usually specified technology independent (ETSI M2M, IEC 61850 ACSI, CIM profiles (in RDF, OPC UA) and CIS/IRM) and can therefore be assumed somehow fix for a reference architecture as the semantics and syntax usually stays stable over the system's lifecycle.

The generic basic interfaces can be supplied by literally unlimited numbers of technology mappings) most of the time, a vast number already exists because of the different use cases the standards have), however standardization most of the time recommends some of them only. Choosing the appropriate technology mapping for an interface depends on the functional and non-functional requirements of a use case and on the given context. This aspect is similar for the communications architecture plane. The non-functional aspects of an interface and data model are addressed by the IEC PAS 62559 IntelliGrid template and its extensions by the WG SP of the mandate. In a Use case, the interfaces and data models which will be mapped onto the SGAM for structuring can be identified from a pre-filled template and easily be annotated for the later system development.

The SGAM focuses on the possibility to model different types of uses for interfaces on plane and layer level, making it easier to distinguish between the interfaces which cover different domains of

the conceptual models, different roles (e.g. at market or unbundling level) and of course technical systems.

8.3.5 Logical interfaces

The concept of logical interfaces is intended to provide a methodology for a systematic development of interface specifications. The resulting interface specification includes the information to be exchanged via the interface. This method offers advantages especially when multiple actors interoperate among different domains. Focusing on logical relationships, this method is independent from physical implementations of interfaces making it well applicable in concept studies e.g. in standardization.

Figure 19 illustrates the concept of logical interfaces in the context of SGAM domains and zones.

Figure 19: Concept of logical interfaces in the context of domains and zones

The generic example consists of business actors (A1, A2, B1) and a system actor (resource B1) assigned to domains A and B. In this example resource B is connected to the electrical grid and might be assigned to process zone. The business actors can be assigned to any zone, depending on the type of actor and the specific use case.

All actors may interact with other actors across the domain boundary but also within domains, e.g. actor A1 interacts with resource B1, actor A2 interacts with actor B2, actor B1 interacts with resource B1. The logical interfaces, indicated by the dots on the circle line at the domain boundary, manage the information exchange among all connected actors. For doing this, all actors have to provide the information in quality and quantity which is expected by the other actors. This idea of logical information exchange is independent from physical implementation, which can be realized with computers, dedicated gateways, and interface components (e.g. integrated in resource B1). This makes this concept flexible providing the necessary interface specifications required for implementation.

For the systematic development of interface specifications the information which is available in use case descriptions can be used. The necessary steps can be summarized as follows:

- Sorting use cases to logical interfaces
 - The use case actors are mapped to the appropriate domains and zones
 - The logical interfaces result from crossing through the circle of the connection between interacting actors
- Identification of exchanged information per logical interface
 - The exchanged information is assigned to the respective logical interfaces (dot on circle line)
 - This is done for all use cases
 - Merging of interfaces specifications
 - The result is a list of information for each logical interface
 - o Duplicates can be identified and removed

In conclusion this concept can be used for the development of information specifications

- For the analysis if standards are available which provide necessary support by data models
- For the extension of data model standards for new use cases
- Used in R&D and customer projects.

8.4 Communication Architecture

The Communication Architecture document (see Annex F) deals with communication aspects of the Smart Grid. The main objective of the study on Smart Grid communications is to identify gaps that need to be addressed in standardization organizations. This work considered generic Smart Grid use cases to derive the requirements and to consider the adequacy of those requirements to the existing communications standards in order to identify communication standards gaps. It was found that there are no specific standardization gaps for Layer 1 to Layer 4 standards (according to OSI model) mandating the immediate need for evolution of existing standards.

However, there is an immediate need to develop profiling and interoperability specifications based on the existing communications standards. The profiling work is the task of the SDOs. However, for the purpose of explaining our vision of such a profiling, a draft profile is proposed as an example of Smart Grid sub-network architecture.

The first section of the document provides a set of recommendations for standardization work as well as a mapping of the communication technologies to Smart Grid communication sub-networks that are listed in the section below.

The remaining part of the document provides:

- An overview of the Communication standards applicable to Smart Grid communications.
- A description of generic Smart Grid use cases, their communication requirements, along with recommendations on how to setup the communication networks to address these requirements.
- An example of profile and some interoperability considerations.

8.4.1 Recommendations

8.4.1.1 Recommendation 1

Examining the communication needs of different Smart Grid use cases, it appears that there are cases that have very stringent communications requirements (PMU, Tele-protection, etc.). However, all these requirements can be addressed using existing communications standards with sufficient engineering guidelines (see Recommendation 2). There is already a large set of communication standards for each network segment identified and no gaps mandating the need for new communication standards have been identified.

8.4.1.2 Recommendation 2

Communication network performance including QoS, reliability, and security must be managed so as to achieve the smart grid communications requirements. This mandates the need to develop communication profiles on "how to use" the current communication standards for Smart Grids. IEC in collaboration with bodies such as IETF, IEEE, ETSI, CEN and CENELEC is the right place to develop such profiles. A profile is defined as a description of how to use the different options and capabilities within a set of standards for a particular use.

8.4.1.3 Recommendation 3

There is a need to develop a standardized Service Level Specification (i.e. the technical part of a Service Level Agreement: availability, resiliency, DoS, etc.) that allows a utility network or application to rely on predictable network performance when communication is provided by a shared communication infrastructure.

8.4.1.4 Recommendation 4

Deployment constraints mandate the need for both wireline and wireless communications. Utility access to wireless network resources is necessary. Where spectrum is allocated for use by utility networks, this will help progress the Smart Grid deployments ensuring the standard work and products take into account the allocated spectrum for utilities.

8.4.1.5 Recommendation 5

Given the plethora of L1 and L2 technologies (according to OSI) used in the different communication standards (as well as the upcoming ones), IP shall be the recommended L3 technology to ensure communications are future proof and avoid the unnecessary need for interworking gateways in different parts of the Smart Grid communication networks.

8.4.1.6 Recommendation 6

This Communication Architecture document recommends a list of applicable communication technologies as well as their applicability statement to different sub-networks of the communications architecture. The choice of a technology for a sub-network is left to implementations, which need to take into account a variety of deployment constraints.

8.4.1.7 Recommendation 7

Profiles (see Recommendation 2) should be used as a basis for building interoperability test specifications. When interoperability test specifications / suites exist, those should be leveraged for building test specifications for the communication profiles.

8.4.1.8 Recommendation 8

ESOs should consider the approval of their specifications applicable to Smart Grid as ENs.

Recognizing the role of consortia in providing & developing specifications for communications and considering the fact that these consortia adopt an open standards approach (i.e. IEEE, IETF, W3C) the European Commission should endorse the importance of their specifications in building communications network, including for Smart Grid. There are globally recognized technologies & deployments for communications that use a selection of open specifications from ESOs, global SDOs and these consortia. The endorsement of the specifications into ENs, may not be reasonable in defined timeframe or achievable.

8.4.2 Smart Grid sub-networks

We are identifying the different networks that play a role in the overall communication architecture and we are representing their scope using the SGAM model (see Figure 8).

The following networks could be defined, see figure 3-2 below where these terms are used:

• (A) Subscriber Access Network

Network that is not part of the utility infrastructure but involve devices and systems that interact significantly with the utility such as responsive loads in residences and commercial/industrial facilities, etc.

• (B) Neighborhood network

Network at the distribution level between distribution substations and end users. It is composed of any number of purpose-built networks that operate at what is often viewed as the "last mile" or Neighborhood Network level. These networks may service metering, distribution automation, and public infrastructure for electric vehicle charging, for example.

• (C) Field Area Network

Network at the distribution level upper tier, which is a multi-services tier that integrates the various sub layer networks and provides backhaul connectivity in two ways: directly back to control centers via the WAN (defined below) or directly to primary substations to facilitate substation level distributed intelligence. It also provides peer-to-peer connectivity or hub and spoke connectivity for distributed intelligence in the distribution level.

• (D) Low-end intra-substation network

Network inside secondary substations or MV/LV transformer station. It usually connects RTUs, circuit breakers and different power quality sensors.

• (E) Intra-substation network

Network inside a primary distribution substation or inside a transmission substation. It is involved in low latency critical functions such as tele-protection. Internally to the substation, the networks may comprise from one to three buses (system bus, process bus, and multi-services bus).

• (F) Inter substation network -

Network that interconnects substations with each other and with control centers. These networks are wide area networks and the high end performance requirements for them can be stringent in terms of latency and burst response. In addition, these networks require very flexible scalability and due to geographic challenges they can require mixed physical media and multiple aggregation topologies. System control tier networks provide networking for SCADA, SIPS, event messaging, and remote asset monitoring telemetry traffic, as well as peer-to-peer connectivity for tele-protection and substation-level distributed intelligence.

• (G) Intra-Control Centre / Intra-Data Centre network

Networks inside two different types of facilities in the utility: utility data centers and utility control centers. They are at the same logical tier level, but they are **not** the same networks, as control centers have very different requirements for connection to real time systems and for security, as compared to enterprise data centers, which do not connect to real time systems. Each type provides connectivity for systems inside the facility and connections to external networks, such as system control and utility tier networks.

• (H) Enterprise Network

Enterprise or campus network, as well as inter-control center network. Since utilities typically have multiple control centers and multiple campuses that are widely separated geographically.

• (I) Balancing Network

Network that interconnects generation operators and independent power producers with balancing authorities, and network which interconnects balancing authorities with each other. In some emerging cases, balancing authorities may also dispatch retail level distributed energy resources or responsive load.

• (J) Interchange network

Network that interconnects regional reliability coordinators with operators such as transmission

operators and power producers, as well as network that connects wholesale electricity markets to market operators, providers, retailers, and traders. In some cases, the bulk markets are being opened up to small consumers, so that they have a retail-like aspect that impacts networking for the involved entities.

• (K) Trans-Regional / Trans-National network

Network that interconnects synchronous grids for power interchange, as well as emerging national or even continental scale networks for grid monitoring, inter-tie power flow management, and national or continental scale renewable energy markets. Such networks are just beginning to be developed.

• (L) Wide and Metropolitan Area Network¹

Network that can use public or private infrastructures. They inter-connect network devices over a wide area (region or country) and are defined through SLAs (Service Level Agreement).

• (M) Industrial Fieldbus Area Network

Networks that interconnect process control equipment mainly in power generation (bulk or distributed) in the scope of smart grids.

Figure 20: Mapping of communication networks on SGAM Communication Layer

Note 1 These areas of responsibility are an example mapping and cannot be normative to all business models.

Several of the shown networks could be based on WAN technologies. However since those networks A. can be run / managed by different stakeholders,

B. could provide different level of security or different SLAs

they are depicted separately. It should be noted however that this is a logical view and that in practice multiple logical networks can be implemented using a single WAN technology. Implementation design choices are beyond the scope of this report

Note 2 It is assumed that that sub-networks depicted in the above figure are interconnected (where needed) to provide end-to-end connectivity to applications they support. VPNs, Gateways and firewalls could provide means to ensure network security or virtualization.

8.4.3 Applicability statement of the Communication Technologies to the Smart Grid Subnetworks

The following table provides an applicability statement indicating the standardized communication technologies to the Smart Grid sub-networks depicted in the previous sub-clause. As per Recommendation 6, the choice of a technology for a sub-network is left to implementations, which need to take into account a variety of deployment constraints.

Note This report addresses communication technologies related to smart grid deployment. It includes communication architecture and protocols that could be used in smart metering deployments as well as other use cases (like feeder automation, FLISR etc.). For AMI only specific standards, please refer to CEN/CLC/ETSI TR 50572 and other future deliverables as listed in SMCG_Sec0025_DC_V0.3 Work Program Document.

Table 5: Applicability statement of the communication technologies to the smart grid sub-networks

	Subscriber	Neighbourn, access Nei, bourn,	ruor, ¹⁰⁰⁰	Low Brd int.	hitasubst.	Inter subst.	hutra Control	intra data	Enteronise	Balancing	Interchange	l'ans egin.	Trans, nation	NEW.	Industrial Fields.
	А	В	С	D	E	F		G	Н	I	J		к	L	М
Narrow band PLC (Medium and Low voltage)	x	x	x												
Narrow band PLC (High and very High voltage)					x	x									
Broadband PLC	х	х													
IEEE 802.15.4	х	х	х												
IEEE 802.11	х	х		х	x										
IEEE 802.3/1				х	x		х	х	х						х
IEEE 802.16	х	х	х												
ETSI TS 102 887		х	х												
IPv4	х	х	х	х	x	х	х	х	х	х	х	х	х	х	
IPv6	х	х	х	х	х	х	х	х	х	х	х	х	х	х	
RPL / 6LowPan	х	х	х												
IEC 61850		х	х	х	x	х								х	
IEC 60870-5				х	x	х								х	
GSM / GPRS /															
EDGE	х	x												x	
3G / WCDMA /															
UMTS / HSPA	x	x					x	x	x	x	x	x	x	x	
LTE/LTE-A	х	х	х	х		х	х	х	х	х	х	х	х	х	
SDH/OTN	х	х	х	х	x	х	х	х	х	х	х	х	х	х	
IP MPLS / MPLS															
ТР	x	x	x	x	x	x	x	x	x	x	x	x	x	x	
EN 13757		х													
DSL/PON	х	х				х								х	

² IEEE GEPON and EPON are considered to be part of DSL/PON line

Annex A Background Architecture Work

4 A.1 Objectives of this annex

5 This annex is dealing with the main principles for architecture management which have been 6 applied developing both the SGAM and the Reference Architecture.

7

21

30 31

8 A.1.1 Aspects of a Common View: evolvability, simplicity and reuse of 9 building blocks

For the understanding of the term Reference Architecture in the context of this document, various
definitions have to be taken into account. Different relevant terms and definitions exist for
architectures. The paragraphs provides and overview on how the term is used in context of this
document and the ISO 42010.

One relevant ISO/IEC definition can be found in the ISO/IEC FDIS 42010 (2011): "Systems and
 software engineering — Architecture description"

18 Architecture

19 Fundamental concepts or properties of a system in its environment embodied in its 20 elements, relationships, and in the principles of its design and evolution.

22 Architecting

Process of conceiving, defining, expressing, documenting, communicating, certifying proper
 implementation of, maintaining and improving an architecture throughout a system's life
 cycle.

27 Architecture Framework

28 Conventions, principles and practices for the description of architectures established within 29 a specific domain of application and/or community of stakeholders.

Reference Architecture

32 A Reference Architecture describes the structure of a system with its element types and 33 their structures, as well as their interaction types, among each other and with their 34 environment. Describing this, a Reference Architecture defines restrictions for an 35 instantiation (concrete architecture). Through abstraction from individual details, a 36 Reference Architecture is universally valid within a specific domain. Further architectures 37 with the same functional requirements can be constructed based on the reference 38 architecture. Along with reference architectures comes a recommendation, based on experiences from existing developments as well as from a wide acceptance and recognition 39 40 by its users or per definition.

47

48

49

50

51

52

56

Figure 21: Metamodel of ISO/IEC 42010

- 44 What characterizes a Reference Architecture can be seen in the following list and overview of 45 typical attributes which are covered by it: 46
 - Recommendation character
 - Declared by author .
 - . Acceptance and recognition by users
 - . Generality
 - Abstracts from specific characteristics
 - . Universal validity just possible within a specific domain or in relation to a set of use cases

53 In general, an architecture description is a work product used to express an architecture (of a 54 system). Its content varies depending on the architecture. Stakeholders and their concerns and the 55 Architecture Description usually depict the relevant stakeholders concerns.

57 Different Architecture Views are used to express architecture and to cover the stakeholder's 58 concerns. Architecture Viewpoints are used to describe (relevant) architecture views; those 59 Viewpoints describe stakeholders, concerns, notations, etc.

60

61 A.1.2 Clarification of views: power vs. communication; applications vs. 62 services

63 When developing a Reference Architecture, it is important to know which aspects and view-points 64 should be addressed in order to keep the model as simple as possible and not to introduce to 65 much un-needed complexity. Often, those viewpoints differ in granularity, depending on the 66 covered concerns. Typical possible viewpoints are:

- 67
- 68 Enterprise viewpoint, 69
 - Information viewpoint,
- Computational viewpoint, 70 •
- 71 Engineering viewpoint, 72
 - Technology Viewpoint (RM-ODP, ISO/IEC 10746)
 - Business Architecture viewpoint,
 - Application Architecture viewpoint,
 - Data Architecture viewpoint,
 - Technology Architecture viewpoint
- 76 77

90

91

92

93

94

95

73

74

75

78 With regard to methodologies like The Open Group Architecture Framework (TOGAF) or Zachman 79 some of those viewpoints should always be addressed in context because they are inseparable. As for the SGAM, section 7 of this document will show the addressed viewpoints at zones, planes and 80 81 layers.

A.2 Relationship to existing Architectures 82

As this is not the first architecture to be developed, most SDOs and their TCs already have created 83 84 certain reference models and different viewpoints which are already used all around the world. As 85 the overall project time to create the RA for the M490 process was limited, existing work was taken 86 into account. The following (non-exhaustive) list contains already existing work whose principles 87 and ideas were used by the RWAG: 88

- IEC SIA (TC 57 and SMB SG 3)
- GridWise
- Intelligrid Framework
- **NIST Conceptual Model**
- eTom/SID/Frameworx
- Electrinet
- OASIS, ebIX, ENTSO-E
- 96 SG-CG First Set of Standards and Security Work Groups key issues 97

98 As for the SGAM, section 7 of this document outlines which aspects of those models were incorporated into the SGAM and which were not. Annex B of this document provides conceptual 99 100 mappings to the SGAM layers for several of the aforementioned frameworks, making an alignment of SGAM use cases with those models possible. 101

A.3 Overview of one possible RA lifecycle-model 102

103 The possible lifecycle for the creation and maintenance of a reference architecture depicted in 104 Figure 22 can be easily adopted by M/490 processes.

107

Figure 22: General Lifecycle for a reference architecture model

108 Firstly, the existing systems and architecture, principles and concepts of a domain, some relevant 109 elements, relations and patterns are extracted, This step was performed by the SG-CG/RA 110 members, taking into account exiting work and EGx and JWG reports. A first version of the 111 reference architecture, the SGAM has been developed. However, as it is applied in practice, special requirements which are not covered by the general model can occur and must be 112 113 instantiated. They must be incorporated in the architecture development and will be fulfilled by the systems which are instance-based on the reference architecture form the domain. Again, the 114 115 knowledge gathered about the domain and application of the reference architecture is brought 116 back in the process to build a new version of the reference architecture. It is strongly suggested to 117 use this model when first experiences with the SGAM in practice are gained to create a new version 2.0 of the SGAM. 118 119

Annex B Model mappings

120 B.1 Conceptual Model

121 This section will be completed in a subsequent version.

122 B.2 SGAM Framework

123 B.2.1 Quality of interoperability

The quality of interoperability can be measured by integration effort. When systems are to be integrated to fulfill a function cooperatively, all interoperability categories need to be covered. Here standards help to increase the quality of interoperability by reducing the integration effort.

Figure 23 shows the relationship between integration efforts and system complexity in respect to the use of standards. A standard is designated

- "rich", when the standard covers several interoperability categories (e.g. IEC 61850, covering the categories from basic connectivity up to semantic understanding, even including aspects of business context)
 - "simple", when the standard covers a single or few interoperability categories (e.g. Ethernet, covering aspects of basic connectivity, syntactic and network interoperability)

136

133

134 135

137

Figure 23: Quality of interoperability

Generally the integration effort to achieve full interoperability increases by system complexity. Having rich standards available (for a given integration task), which provide specifications for the required interoperability categories (e.g. standardized connectors, communication protocols, semantic data models, standardized functions), will ease the integration work. Having simple or even no standards applicable for the integration task may result in higher efforts due to project specific adaptions.

145 Consequently "rich" standards bridging as many interoperability categories as possible are to be 146 preferred for smart grid interoperability.

147

144

148**B.2.2**Specific qualities of interoperability: "Plug-and-play" and149"Interchangeability"

In the discussion about the meaning of interoperability, the terms "plug-and-play" and "exchangeability" are quite common. Rather than synonyms for interoperability, these terms represent a specific quality of interoperability.

154 Plug-and-play

Plug-and-play can be described as the ability to add a new component to a system and have it work automatically without having to do any technical analysis or manual configuration. In other words this includes the automatic configuration of specific settings necessary for the integration for systems. In respect to the interoperability categories, the concept of automatic configuration complements standards and specifications with mechanisms and procedures to simplify system integration. At best these mechanisms and procedures are standardized.

161

162 Interchangeability

163 Interchangeability is defined as "the ability to replace a device supplied by one manufacturer with a 164 device supplied by another manufacturer, without making changes to the other elements in the 165 system" [IEC61850-2010]. This means that interchangeability represents "hot plug" capability of a 166 system or component. For this purpose the system requires a well-defined behavior in respect of 167 function and information exchange, in other words the full specification of all interoperability 168 categories. This full specification can be achieved by using standard profiles (see 2.2.6).

169

For a given system or component, the *Plug-and-play* (auto configuration) capability is not necessary for the support of interchangeability, since pre-configuration is sufficient.

172

B.2.3 Standard profiles – a measure to increase the quality of interoperability

Generally a profile defines a subset of an entity (e.g. standard or specification). Profiles can be used to reduce the complexity of a given integration task by selecting or restricting standards to the essentially required content. A standard profile may contain a selection of data models, communication services applicable for a specific use case. Furthermore a profile may define instances (e.g. specific device types) and procedures (e.g. programmable logics, message sequences) in order to support interchangeability.

182 B.2.4 SGAM Mapping Example

The following example illustrates how a use case can is mapped to the SGAM framework. For this example the process which is described in section 7.3.3 is applied. The sample use case "*Control reactive power of DER unit*" is a typical use case, which falls under the area of the distribution management.

187

This example also illustrates that a use case can be represented with existing devices, infrastructures, functions, communication and information standards and business objective and constraints. Consistency of the layers in respect to the use case is provided by standards, which are applicable for the implementation of the use case.

192 B.2.4.1 Use Case Analysis

193 Starting point is an analysis of the use case to be mapped. It needs to be verified that a use case 194 description provides the sufficient information which is necessary for the mapping.

196	For this mapping example the required information is taken from

	Name, scope and objective Use case diagram Actor names, types Preconditions, assumptions, post conditions Use case steps	(Table 6) (Figure 24) (Table 7) (Table 8) (Table 9)
•	Use case steps	(Table 9)
•	Information which is exchanged among actors	(Table 10)

The underlying business objective of the use case is the operation of the distribution system in order to deliver electrical energy to customers under consideration of specific constraints. These constraints are typically economic and regulatory oriented, such as e.g. grid codes (incl. technical and non-technical requirements), security of supply, system stability, quality standards, company processes, etc.

Table 6: Scope and Objective

Scope and Objectives of Use Case						
Related business case	Operation of distribution grid					
Scope	Monitor voltage level in distribution grid, control reactive power of DER unit, volt/var control of					
	distribution grid,					
Objective	Monitor and control voltage level of distribution grid in tolerated limits					
Objective						

Figure 24: Use Case Diagram for "Control reactive power of DER unit"

Table 7: Actor List "Control reactive power of DER unit"

Actors										
Grouping (Community)		Group Description								
Actor Name	Actor Type	Actor Description	Further information							
see Actor List	see Actor List	see Actor List	specific to this Use							
Grid	System	Power Distribution system	Case							
Distribution-IFD	Device	Intelligent Electric Device (IED) is a								
		communications-enabled controller to								
		monitor and control automated devices in								
		distribution which communicates with								
		Distribution SCADA or other								
		monitoring/control applications, as well as								
		distributed capabilities for automatic								
		operations in a localized area based on								
		local information and on data exchange								
		between members of the group.								
		Operations such as such as tripping circuit								
		breakers if they sense voltage, current, or								
Distributed Conservation	Device	Frequency anomalies.								
Distributed Generation	Device	Distributed Generation, also called								
		includes small-scale generation or storage								
		of whatever form. This is in contrast to								
		centralized or bulk generation and/or								
		storage of electricity. These generation								
		facilities are part of Demand/Reponse								
		programs and may be dispatchable								
		resources. The primary distictions between								
		Distributed Generation (DG) and Bulk								
		Generation is: Bulk Generation is attached								
		via Transmission facilities, output is sold in								
		wholesale markets, provides base load;								
		DG is sited on a Customer permises								
		attached to the Distribution grid, output is								
		Retail (unless sold via an aggregator), can								
		provide ancillary services. These								
		generation facilities include but are not								
		humiled to Photvoitaic panel (PV), micro-								
		Cars (PHEV) and potentially Evel cells								
		These facilities are usually not scheduled								
		but can be dispatched.								
Distribution Data	Device	A data concentrator bringing data from								
Collector		multiple sources and putting it into different								
		form factors.								
Distribution Stabilize and	Application	Performed by actors to ensure the network								
Optimize		is operating within appropriate tolerances								
		across the system. They gather								
		information for control decisions that								
		ensure reliable, proper operations								
		(stability) and more efficient operations								
		(optimization). Weasurement and control								
		operators to stabilize the flow of operators								
		across the electric network or safely								
		increase the load on a transmission path								
Distribution Management	Application	A suite of application software that								

System		monitors and controls the distribution	
		system equipment based on computer-	
		aided applications, market information, and	
		operator control decisions.	
Network Operations	Application	Operational Statistics and Reporting actors	
Reporting and Statistics		archive on-line data and to perform	
		feedback analysis about system efficiency	
		and reliability.	

216 Table 8: Preconditions, Assumptions, Post condition "Control reactive power of DER unit"

Use Case Conditions									
Actor/System/Information/C ontract	Triggering Event	Pre-conditions	Assumption						
Distribution Management System		 The Grid is continuously monitored The Grid topology is known and reflects the real topology The Grid energy path is known and reflects the real path (effective status of remote monitored and controllable switches) 							
Distribution-IED		The device is up and running							
Distributed Generation		The DER is connected to the grid and injects active and reactive power							
Distribution Data Collector		The device is up and running							
Distribution Stabilize and Optimize		The application is up and running							
Distribution Management System		The application is up and running							
Network Operations Reporting and Statistics		The application is up and running							

Table 9: Step by Step Analysis of Use Case "Control reactive power of DER unit"

	Scenario Conditions									
No.	Scenario Name	Primary Actor	Triggering Event	Pre-Condition	Post-Condition					
4.1	Data Acquisition	Distribution IED	Periodically							
4.2	SCADA	DMS	Periodically							
4.3	Voltage/Var	Distribution	Voltage							
	Control	Stabilize and	Measurement							
		Optimize	exceeded threshold							
4.4	DER Control	DMS	Control value, equipment id, received							
4.5	Audit	DMS	Control action							

Table 10: Use Case Steps "Control reactive power of DER unit"

Step	Triggering	Actor	Description of the activity	Information	Information	Information	Additional Notes
#	Event	What actor, either	Describe the actions that take place in this step	producer	Receiver	exchanged	Elaborate on any additional description or value of the step to help support the
		primary or secondary	including the information to be exchanged. The step				descriptions. Short notes on architecture challenges, etc. may also be noted in
		is responsible for the	should be described in active, present tense				this column
		activity in this step?					
Data A	cquisition"					[
1a	Periodically	Distribution	Distribution IED acquires analogue	Grid	Distribution	Analogue	
		IED	voltage measurement		IED	Voltage	
						weasuremen	
2	Dariadiaally	Distribution	Distribution IED transmits voltage	Distribution	Distribution	l Voltogo	
2	Fenouically		measurement		Distribution	Measuremen	
			measurement		Collector	t	
3	Periodicallv	Distribution	Distribution Data Collector transmits	Distribution	DMS	Voltage	
-	· · · · · · · · · · · · · · · · · · ·	Data Collector	voltage measurement to DMS	Data Collector		Measuremen	
			system.			t	
Scada							
4	Periodically	DMS	The DMS System collects data from	DMS	Network	Voltage	
			the grid, reformates the data and		Operations	Measuremen	
			complements it with additional		Reporting &	t, location,	
			relevant information, distributes the		Statistics,	topology	
			data to DMS applications		Distribution	information	
					Stabilize and		
					Optimize	[
Voltage	e/Var Control			-			
5	Voltage	Distribution	Distribution Stabilize and Optimize	Distribution	Distribution	Violation	
	Measuremen	Stabilize and	application detects a threshold	Stabilize and	Stabilize and	Information	
	t exceeded	Optimize	violation of voltage	Opumize	Opumize		
6	Threshold	Distribution	Distribution Stabilize and Ontimize	Distribution	Distribution	Start of	
0	Violation	Stabilize and	application starts Voltage/Var	Stabilize and	Stabilize and	voltage/Var	
	10101011	Optimize	calculation	Optimize	Optimize	calculation	
7	Start voltage	Distribution	Distribution Stabilize and Optimize	Distribution	DMS	Control	
	Var	Stabilize and	application calculates control value	Stabilize and		value,	
	calculation	Optimize	and identifies equipment to be	Optimize		equipment id	
			controlled and transmits value to				
			DMS				

		-					
Step	Triggering	Actor	Description of the activity	Information	Information	Information	Additional Notes
#	Event	What actor, either	Describe the actions that take place in this step	producer	Receiver	exchanged	Elaborate on any additional description or value of the step to help support the
		primary or secondary	including the information to be exchanged. The step				descriptions. Short notes on architecture challenges, etc. may also be noted in
		is responsible for the	should be described in active, present tense				this column
		activity in this step?					
DER C	Control						
8	Control	DMS	DMS reformats control value and	DMS	Distribution	Controllable	
	value,		equipment id and transmits		Data	setpoint	
	equipment id,		controllable setpoint to Distribution		Collector		
	received		Data Collector				
9	Controllable	Distribution	Distribution Data Collector device	Distribution	Distributed	Controllable	
	setpoint	Data Collector	forwards information to Distributed	Data Collector	Generation	setpoint	
	received		Generation device				
10	Controllable	Distributed	Distributed Generation device	Distributed	Distributed	Operation	
	setpoint	Generation	updates its operation parameters	Generation	Generation	parameter	
	received		according to setpoint				
11	Operation	Distributed	Distributed Generation device	Distributed	Distribution	Acknowleda	
	parameter	Generation	verifies updated operation mode and	Generation	Data	e information	
	update		acknowledges parameter change		Collector		
12	Acknowledge	Distribution	Distribution Data Collector device	Distribution	DMS	Acknowleda	
	information	Data Collector	forwards information to DMS	Data Collector	_	e information	
	received						
Audit							
13	Control	DMS	DMS application posts control action	DMS	Network	Control	
	action		to Network Operations Reporting &		Operations	action	
			Statistics application		Reporting &		
					Statistics		
14	Control	Network	Network Operations Reporting &	Network	Network	Control	
	action	Operations	Statistics application documents	Operations	Operations	action	
		Reporting &	control action	Reporting &	Reporting &		
		Statistics		Statistics	Statistics		

223 B.2.4.2 Development of the Component Layer

The content of the component layer is derived from the use case information on actors. In this example the actors are of type devices, applications and system. These actors are located to the appropriate domain and zone (Figure 25).

220

228

Figure 25: Actors and sub use cases mapped to domains and zones, "Control reactive power of DER unit"

The actors "DMS", "Network Operations, Reporting and Statistics" and "Distribution Stabilize and Optimize" typically reside in the distribution domain. DMS and Distribution Stabilize and Optimize" are on operation zone, whereas "Network Operations, Reporting and Statistics" can be in enterprise zone. "Distribution Data Collector" is depicted in distribution domain and station zone, "Distribution IED" in distribution domain and field zone. "Distributed Generation" is consequently located at DER domain and Field zone. The actor "Grid" is valid in both distribution and DER domain in the process zone.

238

In the next step, the mapped use case diagram is transformed to a technical configurationrepresentation by using typical technical symbols (Figure 26)

241

Figure 26: Component Layer "Control reactive power of DER unit"

The component layer (Figure 26) depicts the use case actors in form of hardware which is used to provide the intended use case functionality. In this example these are computers in the enterprise and operation zones which host the application type actors, dedicated automation devices in field and station zones, and nevertheless the grid is depicted with power system equipment (lines, bus bars, transformers, generators ...). To complete this view the typical communication infrastructure is added. This configuration is a sample application, thus various scenarios are possible

250 B.2.4.3 Development of the Business Layer

The business layer is intended to host the business processes, services and organizations which are linked to the use case to be mapped. This includes also the business objectives, economic and regulatory constraints underlying to the use case. These business entities are located to the appropriate domain and zone.

256 257

Figure 27: Business Layer "Control reactive power of DER unit"

The business layer (Figure 27) shows the area which is affected by the use case and consequently influenced by underlying business objectives and economic and regulatory constraints. This means that this objectives and constraints need to be taken into account as non-functional requirements for implementations.

263 **B.2.4.4 Development of the Function Layer**

The function layer is intended to represent functions and their interrelations in respect to domains and zones. Functions are derived from the use case by extracting its functionality. In this example the step-by-step analysis provides the functions of the uses case (Figure 28). The interrelation between functions is implicitly derived from the exchanged information documented in the use case steps (Table 10).

Figure 28: Function Layer "Control reactive power of DER unit"

The functions "Volt/Var Control" and "SCADA" typically reside in Distribution/Operation. The function "Audit" is located in Distribution/Enterprise. The functions "Data Acquisition" and "DER Control" are located to Distribution/Field and DER/Field, respectively.

275 B.2.4.5 Development of the Information Layer

The information layer describes the information that is being used and exchanged between functions, services and components. The information objects which are exchanged between actors are derived from the use case step description (Table 10). Figure 29 shows the result of the mapping of the exchanged information to the components that represent the use case actors.

Figure 29: Information Layer / Business Context view, "Control reactive power of DER unit"

The Canonical Data Model view (Figure 30) of the information layer is intended to show underlying canonical data model standards which are able to provide information objects. In other words for the implementation of the present use case, instances of data objects according to the standards are required. In the present example CIM standard (IEC 61968-4) is an appropriate basis for exchanging information objects in the enterprise and operation zones. From field to operation zone, data objects according IEC 61850-7-4 (Compatible logical node classes and data object classes) and IEC 61850-7-420 (Distributed energy resources logical nodes) are applied.

292 Figure 30: Information Layer / Canonical Data Model view, "Control reactive power of DER 293

B.2.4.6 Development of the Communication Layer 294

295 The emphasis of the communication layer is to describe protocols and mechanisms for the 296 interoperable exchange of information between the use case actors. Appropriate protocols and 297 mechanisms are identified on the basis of the information objects and canonical data models and 298 by consideration of non-functional requirements of the use case. The communication layer (Figure 299 31) presents the communication protocols for the data exchange of the necessary information between the components 300

unit"

Figure 31: Communication Layer "Control reactive power of DER unit"

304

In the enterprise and operation zone IEC 61980-100 is an option for the exchange of CIM data
 objects. In the field to operation zones there are options of communication standards. IEC 61850 is
 the state-of-the-art communication protocol in power system automation. This standard can be
 mapped to different lower layers, such as Ethernet, PLC or wireless communications.

309

310 B.2.5 Relation of SGAM framework to Architecture Standards

The SGAM framework has been developed with the focus on supporting the very needs of standardization experts and architects in the utility domain. The focus grew originally out of the need of the conceptual model described in section 6 of this document to be put in context with the very existing smart grid architectures from the view of standardization.

Section B.2.6 "Examples and Mappings of existing solutions" provides the most relevant examples
of how the existing meta-models on reference frameworks to been seen in context with smart grid
standardization can be mapped onto the SGAM model itself. However, this section focuses on the

319 need form the domain perspective developed in Utilities by engineers for primary technology,

320 communication technology and standardization engineers. Another possible view towards the
 321 smart grid architecture can be given from the point of a non-domain oriented software engineer.
 322

In the very context of documenting software architectures, different standards or methodologies
 have evolved. One of the most prominent standards is the ISO/IEC 42010: Systems Engineering –
 Architecture description. It focuses on the tool-independent way of conceptualizing architectures
 for systems, which may be hybrid (e.g. hardware, communications and software). The scope is
 further detailed as followed [ISO/IEC 42010].

The complexity of systems has grown to an unprecedented level. This has led to new opportunities, but also to increased challenges for the organizations that create and utilize systems. Concepts, principles and procedures of architecting are increasingly applied to help manage the complexity faced by stakeholders of systems.

Conceptualization of a system's architecture, as expressed in an architecture description, assists the understanding of the system's essence and key properties pertaining to its behavior, composition and evolution, which in turn affect concerns such as the feasibility, utility and maintainability of the system.

Architecture descriptions are used by the parties that create, utilize and manage modern systems to improve communication and co-operation; enabling them to work in an integrated, coherent fashion. Architecture frameworks and architecture description languages are being created as assets that codify the conventions and common practices of architecting and the description of architectures within different communities and domains of application.

344

333

338

The ISO/IEC 42010 addresses the creation, analysis and sustainment of architectures of systems 345 346 through the use of architecture descriptions. It provides a core ontology for the description of architectures. The provisions of this International Standard serve to enforce desired properties of 347 348 architecture descriptions, also specifying provisions that enforce desired properties of architecture frameworks and architecture description languages (ADLs), in order to usefully support the 349 350 development and use of architecture descriptions. ISO/IEC 42010 provides a basis on which to 351 compare and integrate architecture frameworks and ADLs by providing a common ontology for 352 specifying their contents and can be used to establish a coherent practice for developing 353 architecture descriptions, architecture frameworks and architecture description languages within 354 the context of a life cycle and its processes (which have to be defined outside the standard). This 355 International Standard can further be used to assess conformance of an architecture description, of 356 an architecture framework, of an architecture description language, or of an architecture viewpoint 357 to its provisions. 358

One particular way of implementing the ISO/IEC 42010 based ideas proven in industry, addressing
 the aspect of operationalizing the ideas from the meta-model [Jonkers 2010] are the standards
 from the Open Group TOGAF and Archimate.

A major strength of the TOGAF method is its ability to stress the importance of stakeholder concerns for each enterprise architecture development phase: creation, change, and governance. This ability may suggest that TOGAF also describes how an architect should address these concerns. This, however, is not the case. What TOGAF actually offers is a sort of "open interface" for the declaration of a "concern". The actual specification of the concern is left to any suitable modeling language which is capable of capturing such concerns and is compliant with the ISO/IEC 42010:2007 standard like ArchiMate.

370

362

ArchiMate is a modeling standard following the definitions and relationships of the concepts of concern, viewpoint, and view proposed by the ISO/IEC 42010:2007 standard for architecture

373 descriptions. The ArchiMate framework is capable of defining stakeholder concerns in viewpoints,

374 while the ArchiMate language is capable of addressing these with corresponding views showing 375 the right aspects of the architecture conforming to defined viewpoints.

376

377 The core of TOGAF is basically a process, the so-called Architecture Development Method (ADM)

describing viewpoints, techniques, and reference models, but not a complete formal language.

ArchiMate describes viewpoints and provides a formal modeling language, including a (graphical)notation.

381

382

383

Figure 32: TOGAF ADM model

384

TOGAF and ArchiMate overlap in their use of viewpoints, and the concept of an underlying
 common repository of architectural artifacts and models; i.e., they have a firm common foundation.
 Both complement each other with respect to the definition of an architecture development process
 and the definition of an enterprise architecture modeling language.

ArchiMate 1.0 chiefly supports modeling of the architectures in Phases B, C, and D of the TOGAF
 Architecture Development Method (ADM). The resulting models are used as input for the
 subsequent ADM phases. However, modeling concepts specifically aimed at the other phases are
 still missing in the language.

Those three main standards (ISO/IEC 42010, TOGAF and Archimate) which are domain independent can also be used to express the SG-CG/RA work's group for the M/490 mandate. However, this method has a major drawback of using Software and system engineering specific vocabulary and a new specification language most standardization members are not familiar with. Therefore, we suggest the use of the architecture related, non-domain specific standards is possible but suggest fort his document to adhere to the known principles and provide and example in the how to use the three standards for a Smart grid Use Case in the annex.

403 404

Figure 33: Mapping of GWAC dimensions onto Archimate

405

Figure 33 provides a representation of the different aspects form the GWAC stack and dimension onto the Archimate view for a reference architecture model. Figure 34 shows that additionally to the three main dimensions, finer viewpoints addressing more precise objects exist. Figure 35 shows how the model can be applied in a multi-dimensional view if e.g. an unbundled European utility must be modeled. This approach shows that existing, non-domain related views and methodologies can be applied in conjunction with the SGAM and its views.

Figure 34: Archimate representation of the architectural viewpoints

417 Figure 35: interdependencies between the three most important dimensions with Archimate

419

Figure 36: Multi-dimensional view for unbundled utility

B.2.6 Examples and Mappings of existing solutions 420

421 Possible examples on how the SGAM model can be applied to existing solutions and meta-models

422 from ETSI or IEC can be seen in the following graphics. A mapping was made with respect to the

423 existing models; in case of gaps - these need to be fixed or addressed in general.

424 B.2.6.1 Example: ETSI "M2M Architecture"

427

428 Most of the issues could be directly addressed; a direct mapping for the information model was not 429 possible.

430 B.2.6.2 Example: IEC SG3 "Mapping Chart"

431 Case B from the IEC SG 3 addresses the existing model from the IEC SG group which is also 432 covered in the IEC roadmap and the standards mapping tool for smart grid solutions.

Figure 38: SGAM Mapping of IEC SG3 Mapping Chart

435

This example also shows that even information layers and their corresponding standards can be

mapped if the original meta-model addresses the SGAM relevant viewpoint. The model is sliced
 just as the ETSI model; therefore, needed viewpoint for the different stakeholders (e.g.

438 just as the ETST model; therefore, needed viewpoint for the different stakenor 439 communications parts of existing models) can be easier identified.

440 B.2.6.3 Example: IEC TC57 "RA for Power System Information Exchange"

Last example is the existing seamless integration architecture (SIA) from the IEC TC 57 which covers all the relevant smart grid standards form TC 57 in a layered architecture and links to other relevant standards from TCs outside 57.

447

- Figure 39: SGAM Mapping of IEC TC57 Reference Architecture for Power System Information Exchange
- The SIA has taken most of the SGAM architectural viewpoints into account and provides for easymapping onto SGAM.

450 **B.2.7 Findings**

451 As those, from an European perspective main relevant examples clearly show, is that the SGAM 452 meta model with its viewpoints provides a proper way to represent existing solutions which have 453 been developed by the various standardization bodies and stakeholder groups. One important 454 additional conceptual model which should be taken into account fort his SGAM document is the 455 NIST Conceptual model as international alignment of initiatives is of high interest. A future version 456 will address this model.

The *SGAM* model provides, additionally, a good way of both categorizing existing models and identifying gaps. Categorizing in terms of finding out what the specific scope of an existing model is and, using this, finding out about is proper application and on the other hand, finding out what is missing and might need to be addressed.

462 **B.2.8 Mapping of business transactions**

Architectures in general provide services and functionality which is addressed by the corresponding technical or business processes. For the reference architecture, use cases with systems within this architecture are of highest importance. Starting at the function layer, the processes are mapped onto the *SGAM*, sub-functions are then distributed and things are drilled down to components, information and communication model. Using this, not only existing processes and use cases can be mapped onto the *SGAM* but also onto the existing reference

architectures from IEC or ETSI and the *SGAM* can be used as alignment ontology for the processes and use cases between those models like common semantic mediator. 469

470

Annex C Business Architecture and Conceptual Model

- 472 This Annex is introducing informative reference on the following elements:
- The new version of the European Smart Grids Conceptual Model that has been developed by the SG-CG/RA Work Group to take into account the comments on the previous version (v2.0) of this report as well as the need to address the Flexibility Concept. This version has not been introduced in the main section of this report for reasons explained in 6.3.5
- The European Harmonized Electricity Market Role Model and the list of Actors involved.
- A clarification of the relationship between the domains of the European Smart Grids
 Conceptual Model and the European Harmonized Electricity Market Role Model.

480 C.1 Conceptual Model

481 C.1.1 Introduction

482 The electrical energy system is currently undergoing a paradigm change, that has been affected by a change from the classical centralistic and top down energy production chain "Generation", 483 "Transmission", "Distribution" and "Consumption" to a more decentralized system, in which the 484 participants change their roles dynamically and interact cooperative. In the future decentralized 485 energy system, distributed energy resources and consumers produces will become key elements. 486 The development of the concepts and architectures for an European Smart Grid is not a simple 487 488 task, because there are various concepts and architectures, representing individual stakeholders 489 viewpoints. To imagine the paradigm change from the current situation to future situation, both 490 situations are described below:

491

493

495

496

497

498

499

500

504

505

510

511

512

513

514 515

492 The current situation can best be described as:

- Supply follows demand
- One-way energy flow in the grid:
 - bulk generation => transmission => distribution => consumption.
 - Capacity in distribution networks is dimensioned on peak (copper plate), resulting in (almost) no network congestion
 - Capacity required in the lower voltage range is predictable, since it is only based on energy usage.

501 The future situation can best be described as:

- Demand follows supply, due to the insertion of renewables, which are by nature of intermittent character
 - Electrification of society in order to meet 202020 objectives, which will lead to a further growth of electricity demand
- Two way energy flow in the grid: consumers will also produce (e.g. by means of a photovoltaic cells, micro combined heat and power installations, etc.) and supply their surplus to the grid
- A future grid will need to support:
 - Multiple producing consumers, that will aggregate their electrical surplus to an Virtual Power Plant.
 - Electrical cars, in such a way that the grid won't fail when they want to charge simultaneously or use their batteries for energy storage to use in situations with high consumption or high production.
 - The integration of all kinds of distributed energy resources (wind, solar, ...)

521 522

529

545

554

- A grid which will have to fulfill these requirements, not only by expanding grid capacity (which might become very costly due to the expected increase of peaks), but also by implementing smartness via ICT solutions, in a way that it will fully support current and future market processes.
 - Furthermore a future grid will need the Smart Grid functions, described in the EG1 report of the CEN/CENELEC/ETSI Joint Working Group.

523 In the future situation it will have more and very different dynamics in the grid, as in the current 524 situation, because the dynamics results from the distributed (renewable) energy resources, that 525 behavior are difficult to predict. These increased dynamics will require a much more flexible (and 526 intelligent) approach towards the management of electricity supply and demand. Furthermore, the 527 future situation should also allow for new market models and let all kinds of customers participate 528 in the trade of electricity energy.

530 Flexibility, thus, will be key. Where until today in the current "supply follows demand" model, 531 flexibility was offered in bulk generation, in the future in the "demand follows supply" model the 532 flexibility must be equivalent offered on both sides (generation (centralized and decentralized) and 533 consumption (e.g. demand side management)).

Therefore the ICT infrastructure and ICT solutions, which enables the required flexibility on
demand and supply side in a fully interchangeable way, becomes a key component of the smart
grid and therefore it will be become part of the smart grid eco system.

539 This paragraph defines the conceptual model of the European smart grid. This conceptual model 540 should be regarded as the initial "umbrella" model from which all future frameworks, architectures 541 and standards could be derived from, and from which also existing standards could be (re) 542 positioned. This conceptual model should also be able to act as a basis for future market models 543 and related regulation, in order to guarantee that market models are supported by the right 544 architectures and standards.

546 The Reference Architecture for the Smart Grid must support several stakeholders in building the 547 European smart grid, and each stakeholder today has a different view on this smart grid. The more 548 and more decentralized energy production requires new methods to guarantee the stable operation 549 of the electrical part of the smart grid.

550
551 The development of the future smart grid requires the collaboration of different stakeholders. The
552 future smart gird technology is the equivalent integration of power system management technology
553 and information and communication technology (IT/OT convergence).

555 The conceptual model attempts to be the common framework, thereby enabling this convergence 556 and facilitating the dialog between all these stakeholders, resulting in an aligned and consistent 557 smart grid. 558

559 It is the basis of a common dictionary, necessary to talk the same language. The Conceptual 560 Model will be this common dictionary and describe the key concepts in the European smart grid.

561 C.1.2 Historical context

A starting point for the development of a European conceptual model was the reuse of existing know-how to avoid redundant work and to build up on it. This led in the previous version of this report initially to the full adoption of the US conceptual model, defined by NIST. This model provides a high-level framework for the Smart Grid that defines seven high-level domains (Bulk Generation, Transmission, Distribution, Customers, Operations, Markets and Service Providers).

568 The NIST model shows all the communications and energy/electricity flows connecting each 569 domain and how they are interrelated. Each individual domain is itself comprised of important 570 smart grid elements (actors and applications) that are connected to each other through two-way 571 communications and energy/electricity paths. 572

573 Due to strong European focus on decentralized energy generation, the original NIST model was extended by a new "Distributed Energy Resources" Domain (see 0), for the following reasons: 574 575

- Distributed Energy Resources require a new class of use cases
- In order to comply to future anticipated regulation and legislation explicit distinction of 576 • Distributed Energy Resources will be required 577
 - Distributed Energy Resources represent the current situation •

580 Consistent and clear criteria to separate the new DER Domain from the existing Domains, especially from Bulk Generation and the Customer Domain were identified. 581

578

579

583

584

Figure 40: EU extension of the NIST Model

Review comments and discussion on the M490 report version 2.0 led to the insight that a rigid 585 586 separation of the DER domain from the customers domain, would actually create complexity and 587 would rule out required flexibility that emerges in the energy transition from customers both 588 consuming and producing energy. 589

590 As a result of these discussions it was decided that the European conceptual model should 591 incorporate/ enable the flexibility concept that was defined by SG-CG/SP.

593 The European Flexibility Concept

594 The objective of the flexibility concept, shown in Figure 41, is to describe the flexibility (demand 595 596 and generation) methods for technical and commercial operations.

597

599

600

Figure 41: Flexibility concept (result of WGSP)

In the flexibility concept the management (control) of flexible demand and supply is fully
 interchangeable at the Smart Grid Connection Point (SGCP); in principle any connected party
 (Smart Customer) with flexible generation, consumption and/or storage.

604605 In the elaboration of the flexibility model commercial and technical flexibilities are identified, leading

to commercial flexibilities for interaction with the market (e.g. contracts, pricing) and technical

607 flexibilities (control signals, technical information exchange) for interaction with grid operations.

608 This is shown in Figure 42.

609

610 611

Figure 42: Technical & commercial flexibilities

612 With the historical background in mind, as described above, this led to the formulation of starting 613 principles and to a clear definition of an (evolved) European Conceptual Model, addressing all 614 stakeholders' interests.

615 C.1.3 Starting Principles

616 Defining a European conceptual model, from which architectures and standards can be derived, 617 requires explicit starting principles, to be used as acceptance criteria for the Conceptual Model.

618 These starting principles are described in this paragraph. 619

The evolution of the European Conceptual Model in a way that it is aligned with the rather technical aspects of the extended NIST Model and with the rather future energy markets aspects of the SG-

622 CG/SP Flexibility Concept is guaranteed by the following approach and procedure, which is based
 623 on the 5 principles below.
 624

625 Approach

626 Domains are a grouping of roles and actors. So roles and actors in the domains of both models

627 can be used as a fix point for the alignment of the models. To identify the same roles and actors in

628 the domains of both models, the European harmonized electricity market role model will be used. 629 The alignment is based in detail on the following 5 principles, which form the basis for the

630 development of the EU Conceptual Model (described in C.1.4).

631

632Principle 1: Extract business roles and system actors from the EU extended NIST633conceptual model

634

The EU extension of the NIST conceptual model is organized in domains. These domains group
business roles and thereby system actors which perform tasks in these roles as shown in Figure
This figure illustrates the meta-model used for the European conceptual model for Smart Grids.

639 640

647

641

Figure 43: Meta-model for the European conceptual model for Smart Grids

The approach to model the conceptual model based on business roles and related system actors
ensures 'compatibility' between market and technologies/standards. Section 6.1 provides a more
detailed description of this approach.

646 **Principle 2:** Alignment with the European electricity market

In the WGSP flexibility model, the business roles are based on the European harmonized electricity market role model, developed by ENTSO-E, ebIX and EFET and defined in [ENTSO-E 2011]. This ensures alignment of technologies/standards which are developed from this model with the European electricity market. The grouping of roles of the harmonized electricity market role model into the domains of the WGSP flexibility model supports initial understanding of the European electricity market (at a higher level of abstraction than the 36 roles identified in [ENTSO-E 2011]).

656 Principle 3: Support central and distributed power system deployments

657

658 The EU conceptual model (described in the next part) must support fully centralized, fully 659 distributed and hybrid deployments of the power system. Energy resources connected to all levels 660 of the grid are relevant in Smart Grids, ranging from bulk generation and industrial loads down to 661 distributed energy resources and domestic loads. Also support for grids outside the traditional 662 public infrastructure should be supported, as e.g. analyzed in the use cases of the workgroup on 663 sustainable processes from the SG-CG. Examples include (non-public) grids used in local energy 664 cooperatives, ranging from industrial areas (sea- and airports) to agricultural areas (e.g. in the greenhouse sector). 665

and midsize generation units, all units are interconnected; large Power Plants did not exist)

667

668

Figure 44: Evolution of centralized/ decentralized power systems deployments

669 Principle 4: Support micro grids and a Pan European Energy Exchange System (PEEES)

670

The objective of micro grids is to start the optimization of the grid as locally as possible, e.g. to find a balance between production and consumption, in order to avoid transmission losses and increase transmission reliability through ancillary services such as reserves volt/var support, and frequency support. For other objectives to be met for micro grids see also use case WGSP-0400.

674 frequency support. For other objectives to be met for micro grids see also use case WGSP-0400.675

676 PEEES are essential to realizing the large-scale energy balance between regions with a low-loss
677 wide-area power transmission.
678

The <u>Pan European Energy Exchange System (PEEES)</u>, includes technologies in the transport network for low-loss wide-area power transmission systems (e. g. high-voltage direct current transmission, HVDC), better realizing the large-scale energy balance between the regions, which is essential due to the constantly changing weather situation, which has a significant influence on the power generation capacity of different regions.

The PEEES is here to be understood as a abstract model for further discussions to cover the
concepts for low-loss wide-area power transmission systems. As an example of this, the "Modular
Development Plan of the Pan-European Transmission System 2050" of the e-HIGHWAY2050
Project Consortium can be mentioned here. [ENTSO-E 2012]

- 690 Principle 5: Support providing flexibility in electricity supply and demand
- Providing flexibility in electricity supply and demand on all levels in the power system is
 paramount for integration of renewable energy sources in the Smart Grid. The EU conceptual
 model must support the use cases identified by the workgroup on sustainable processes on
 providing and using flexibility.

697 C.1.4 European Conceptual Model of Smart Grids

The definition of the European conceptual model of Smart Grids is defined through grouping of
(European harmonized) roles and system actors, in line with the European electricity market.
Figure 45 depicts the European conceptual model for the Smart Grid. The model consists of four
main domains, *Operations*, *Grid Users*, *Markets*, *and Energy Services*.

- 703 Each of these domains contains one or more subdomains which group roles which can be
- identified in the European electricity market. For this the European harmonized electricity market

role model developed by ENTSO-E, ebIX and EFET is used as defined in [ENTSO-E 2011] and
 introduced in C.2. Detailed definitions of the domains of the European conceptual model for the
 Smart Grid and the relationship to the role model used is provided annex C.2

708
 709 *Operations* and *Grid Users* are domains which are directly involved in the physical processes of
 710 the power system: electricity generation, transport/distribution and electricity usage. Also, these
 711 domains include (embedded) ICT enabled system actors. The *Markets* and *Energy Services*

712 domains are defined by roles and (system) actors and their activities in trade of electricity products

and services (markets), and the participation in the processes of trade and system operations

714 representing grid users (energy services).

715

716

717

725

Figure 45: European Conceptual Model for the Smart Grid

718 **Operations**

The *Operations* domain is defined by roles and actors related to the stable and safe operations of the power system; the domain ensures the usage of the grid is within its constraints and facilitates

the activities in the market. *Grid Operations*, *System Operations* and *Metering Operations* are

identified as sub-domains in the *Operations* domain. System actors in this domain include grid

723 assets such as transformers, switchgear, etc. in *Transmission* and *Distribution Grids*, metering 724 systems and control centre systems.

726 Grid Users

The *Grid Users* domain is defined by roles and actors involved in the generation, usage and

possibly storage of electricity; from bulk generation and commercial and industrial loads down to

distributed energy resources, domestic loads, etc. The roles and actors in this domain use the grid

to transmit and distribute power from generation to the loads. Apart from roles related to the

generation, load and storage assets, the *Grid Users* domain includes system actors such as
 (customer) energy management and process control systems.

734 Energy Services

The *Energy Services* domain is defined by roles and actors involved in providing energy services
to the *Grid Users* domain. These services include trading in the electricity generated, used or
stored by the *Grid Users* domain, and ensuring that the activities in the Grid Users domain are
coordinated in e.g. the system balancing mechanisms and CIS systems.

740 Through the *Energy Services* domain the *Grid Users* domain is connected to activities such as 741 trade and system balancing. From the *Grid Users* domain, flexibility in power supply and demand is 742 provided. This flexibility is used for system balancing (through e.g. ancillary services, demand 743 response, etc.) and trading on the market. Also roles are included which are related to trade in grid 744 capacity (as currently is traded on the transmission level).

745

752

733

Example (system) actors in this domain include systems for customer relationship management,
and billing, trading systems, etc.

I.e. the roles and actors from the *Energy Services* domain facilitate participation in the electricity
system, by representing the *Grid Users* domain in operations (e.g. balance responsibility) and
markets (trading).

753 Markets

The *Market* domain is defined by roles and actors which support the trade in electricity (e.g. on day ahead power exchanges) and other electricity products (e.g. grid capacity, ancillary services). Sub domains which are identified in this domain are: *Energy Market, Grid Capacity Market*, and *Flexibility Market*. Activities in the *Market* domain are coordinated by the *Operations* domain to ensure the stable and safe operation of the power system. Example (system) actors in this domain are trading platforms.

760 C.1.4.1 Alternative Figure: European Conceptual Model for the Smart Grid

The figure below is provided as a possible alternative for Figure 45. The main difference is in presentation: 1) in the grouping of grid assets (by introducing the transmission and distribution domains which only contains system actors) and 2) in different naming of the domains Grid Users and Energy Services. This is to be discussed in the next meeting of the architecture workgroup in Bilbao. The essence is the same as the figure above, however for commitment a graphical representation is chosen to accommodate more were we are coming from.

769

Alternative Figure: European Conceptual Model for the Smart Grid

The table below shows which domains contain business actors and which contain system actors inthis alternative figure.

772

773

Table C-1: Mapping of domains to roles and actors

Domain	ENTSO-E role	Business Actor	System Actor
Market	+	+	+
Operations	+	+	+
Service Provider	+	+	+
Flexibility Provider	+	+	+
Transmission	n/a		+
Distribution	n/a		+

774

775 C.1.5 Alignment

This paragraph identifies and describes the required alignment with other relevant initiatives/
activities that are required for building a smart grid based on standards and common reference
architectures.

779 C.1.5.1 Alignment with the EU flexibility concept

In the energy transition, Europe is focusing on managing flexibility of demand and supply.
This concept of flexibility is elaborated in the M490 WGSP, resulting in several related use cases.
These use cases on 'providing flexibility' concern control/management of flexible demand & supply.
Flexibility in demand and supply is provided by 'smart customers. In the conceptual model as

785 described in paragraph C.1.4 this is reflected by the *Grid Users* domain, which provides flexibility.

786 This flexibility is used by parties related to grid/power system management and electricity markets.

Operating this flexibility is performed by an actor 'Flexibility Operator'. In annex xx this use case is analyzed in the context of the European Harmonized Electricity Market Role Model (HEM-RM) which underpins the European conceptual model for Smart Grids. The Flexibility Operator relates to one of various roles in the *Energy Services* domain. Depending on the type of interaction with the 'smart customers' in the use cases of WGSP, the Flexibility Operator acts in the *Resource Provider, Balance Responsible Party, Balance Supplier* or *Grid Access Provider* role from [ENTSO 2011].

In the flexibility market flexibility in demand and supply (interchangeable) will be traded, by services
 providers with balance responsibilities that have access to this (wholesale) market.

798 C.1.5.2 Alignment with SG-CG/SP on Sustainable Processes

The SG-CG/SP Work Group on Sustainable Processes, in collecting use cases, has defined generic use cases. The deliverables coming from WG SP from these uses cases are:

801

802

804

805

- Actors (business actors and system actors)
- Identification and interaction between actors
- 803 Processes
 - Technical requirements

Based on these deliverables, SG-CG/RA is able to identify existing standards via the SGAM
framework (see 7.2), to be possible modified and used in the smart grid standards. In future work a
more refined functional architecture with well-defined interfaces and services definitions between
market parties will be defined. Since actors and transaction between actors will form the basis for
this reference architecture, alignment is guaranteed.

811 812 In the future smart grid eco system a well-defined interaction between the capacity market and the 813 energy market will be crucial. The traffic light concept as defined by WGSP will form the basis for 814 this. This interaction will be modeled between roles (and subsequently parties) as identified in the 815 EU Harmonized Electricity Market Role Model, leading to required information exchange on the 816 Smart Grid Connection Point (SGCP), being the information interface between the grid users' 817 domain and the other domains.

818 C.1.5.3 Alignment with NIST, SGIP, SGAC

819 Since market models in US and EU differ, it is important to derive standards which are, as much as 820 possible, market model independent. Also the Harmonized Electricity Market Role Model as 821 defined by ENTSO-E/ebIX/EFET is currently not used in the US. Alignment therefore is created 822 and maintained on the basis of common actor list and interactions between actors, driven from use 823 case analysis. From this common International standards can be derived and interoperability is 824 achieved. There for even if the market models and the conceptual model differ (grouping of roles 825 and actors), the same standards may be applicable (although priorities may differ). (The alignment 826 of actor lists and interactions between actors is currently on going work extended into 2013).

827 C.1.5.4 Alignment with Harmonized Electricity Market Role Model

The Harmonized Electricity Market role model has been picked up for use, both by WGSP as WGRA, leading to a consistent and solid approach for all future modeling exercises. From discussion within the M490 groups, as well in market model discussions (EG3) new roles in this model may become necessary. It therefore will be required to come to working arrangements with ENTSO-E on this, in order to establish adequate version control of the Harmonized Electricity Market Role Model.

834 C.1.5.5 Alignment with EU market model developments (EG3)

In the EU standardization activities, the Harmonized Electricity Market Role Model (HEM-RM) is
promoted to be used to map responsibilities of market parties to the harmonized roles. This means
that the interaction between actors, as defined by WGSP and translated to interaction between
roles, can define the interaction between market parties.

- The task force smart grid (EG3) recommended the EU commission that in the market model discussions, whatever the outcome will be, the roles & responsibilities of market parties, related to the market models, will be mapped onto the HEM-RM roles. In this way interaction between actors and roles can be translated tot interaction between market parties.
- 844
 845 In this way it becomes clear which standards on interfaces and business services are required, and
 846 is alignment between market model development and M490 standards.

847 C.1.6 Conclusions

839

849

853

854

855

856

865

881

- 848 As a conclusion from the above:
 - The conceptual model is solid and well defined, based on roles and actors
- It accommodates the flexibility concept
- It bridges the 2 approaches/cultures coming from power system management and IT technology; it forms a common ground for cooperation.
 - It accommodates alignment between M/490 Standardization activities and market model discussions
 - It identifies the way alignment should be reached with US (NIST, SGIP, SGAC)

857 C.2 The European Harmonized Electricity Market Role Model

The text in this section is an excerpt taken from the [ENTSO-E 2011] Harmonized Electricity Market Role Model, and included for informational purpose. Please refer to the original document for more detailed information on this role model.

A "Role Model" provides a common definition of the roles and domains employed in the electricity market which enables people to use a common language in the development of information interchange.

866 A party on the market may play several roles, for example a TSO frequently plays both the 867 role of System Operator and the role of Imbalance Settlement Responsible. However two 868 different roles have been defined since these roles are not always played by the same party. 869 Even in a large organisation the roles may not be played by the same business unit. 870 Consequently it is necessary to clearly define the roles in order to be in a position to correctly 871 use them as required. It is important to differentiate between the roles that can be found on a 872 given marketplace and the parties that can play such roles. ENTSO-E and the associated organisations have identified a given role whenever it has been found necessary to 873 874 distinguish it in an information interchange process. 875

- The model consequently identifies all the roles that intervene in the exchange of information
 in the electricity market. These roles define the external interfaces managed by a party for
 given processes. It also identifies the different domains that are necessary in the electricity
 market for information interchange. A domain represents a grouping of entities with common
 characteristics.
- 882 The objective of decomposing the electricity market into a set of autonomous roles and 883 domains is to enable the construction of business processes where the relevant role

884 participates to satisfy a specific transaction. Business processes should be designed to 885 satisfy the requirements of the roles and not of the parties.

886

887 C.2.1 Role model – role definitions

The table below quotes the definitions from [ENTSO-E 2011] of all the roles in the European harmonized electricity market role model.

Role	Description
Balance Responsible Party	A party that has a contract proving financial security and identifying balance responsibility with the Imbalance Settlement Responsible of the Market Balance Area entitling the party to operate in the market. This is the only role allowing a party to nominate energy on a wholesale level.
	Additional information: The meaning of the word "balance" in this context signifies that that the quantity contracted to provide or to consume must be equal to the quantity really provided or consumed.
	Equivalent to "Program responsible party" in the Netherlands. Equivalent to "Balance group manager" in Germany. Equivalent to "market agent" in Spain.
Balance Supplier	A party that markets the difference between actual metered energy consumption and the energy bought with firm energy contracts by the Party Connected to the Grid. In addition the Balance Supplier markets any difference with the firm energy contract (of the Party Connected to the Grid) and the metered production.
	Additional information: There is only one Balance Supplier for each Accounting Point.
Billing Agent	The party responsible for invoicing a concerned party.
Block Energy Trader	A party that is selling or buying energy on a firm basis (a fixed volume per market time period).
Capacity Coordinator	A party, acting on behalf of the System Operators involved, responsible for establishing a coordinated Offered Capacity and/or NTC and/or ATC between several Market Balance Areas.
Capacity Trader	A party that has a contract to participate in the Capacity Market to acquire capacity through a Transmission Capacity Allocator.
	<i>Note</i> : The capacity may be acquired on behalf of an Interconnection Trade Responsible or for sale on secondary capacity markets.
Consumer	A party that consumes electricity.
	Additional information: This is a Type of Party Connected to the Grid.

Role	Description
Consumption Responsible Party	A party who can be brought to rights, legally and financially, for any imbalance between energy nominated and consumed for all associated Accounting Points.
	<i>Additional information</i> : This is a type of Balance Responsible Party.
Control Area Operator	 Responsible for : 1. The coordination of exchange programs between its related Market Balance Areas and for the exchanges between its associated Control Areas. 2. The load frequency control for its own area. 3. The coordination of the correction of time deviations.
Control Block Operator	 Responsible for : The coordination of exchanges between its associated Control Blocks and the organisation of the coordination of exchange programs between its related Control Areas. The load frequency control within its own block and ensuring that its Control Areas respect their obligations in respect to load frequency control and time deviation. The organisation of the settlement and/or compensation between its Control Areas.
Coordination Center Operator	 Responsible for : The coordination of exchange programs between its related Control Blocks and for the exchanges between its associated Coordination Center Zones. Ensuring that its Control Blocks respect their obligations in respect to load frequency control. Calculating the time deviation in cooperation with the associated coordination centers. Carrying out the settlement and/or compensation between its Control Blocks and against the other Coordination Center Zones.
Grid Access Provider	A party responsible for providing access to the grid through an Accounting Point and its use for energy consumption or production to the Party Connected to the Grid.
Grid Operator	A party that operates one or more grids.
Imbalance Settlement Responsible	A party that is responsible for settlement of the difference between the contracted quantities and the realised quantities of energy products for the Balance Responsible Parties in a Market Balance Area. <i>Note</i> : The Imbalance Settlement Responsible has not the responsibility to invoice. The Imbalance Settlement Responsible may delegate the invoicing responsibility to a more generic role such as a Billing Agent.

Role	Description
Interconnection Trade Responsible	Is a Balance Responsible Party or depends on one. He is recognised by the Nomination Validator for the nomination of already allocated capacity.
	<i>Additional information</i> : This is a type of Balance Responsible Party.
Market Information Aggregator	A party that provides market related information that has been compiled from the figures supplied by different actors in the market. This information may also be published or distributed for general use.
	<i>Note</i> : The Market Information Aggregator may receive information from any market participant that is relevant for publication or distribution.
Market Operator	The unique power exchange of trades for the actual delivery of energy that receives the bids from the Balance Responsible Parties that have a contract to bid. The Market Operator determines the market energy price for the Market Balance Area after applying technical constraints from the System Operator. It may also establish the price for the reconciliation within a Metering Grid Area.
Meter Administrator	A party responsible for keeping a database of meters.
Meter Operator	A party responsible for installing, maintaining, testing, certifying and decommissioning physical meters.
Metered Data Aggregator	A party responsible for meter reading and quality control of the reading.
Metered Data Collector	A party responsible for the establishment and validation of metered data based on the collected data received from the Metered Data Collector. The party is responsible for the history of metered data for a Metering Point.
Metered Data Responsible	A party responsible for the establishment and qualification of metered data from the Metered Data Responsible. This data is aggregated according to a defined set of market rules.
Metering Point Administrator	A party responsible for registering the parties linked to the metering points in a Metering Grid Area. He is also responsible for maintaining the Metering Point technical specifications. He is responsible for creating and terminating metering points.
Merit Order List (MOL) Responsible	Responsible for the management of the available tenders for all Acquiring System Operators to establish the order of the reserve capacity that can be activated.

Role	Description
Nomination Validator	Has the responsibility of ensuring that all capacity nominated is within the allowed limits and confirming all valid nominations to all involved parties. He informs the Interconnection Trade Responsible of the maximum nominated capacity allowed. Depending on market rules for a given interconnection the corresponding System Operators may appoint one Nomination Validator.
Party Connected to the Grid	A party that contracts for the right to consume or produce electricity at an Accounting Point.
Producer	A party that produces electricity.
	Additional information: This is a type of Party Connected to the Grid.
Production Responsible Party	A party who can be brought to rights, legally and financially, for any imbalance between energy nominated and produced for all associated Accounting Points.
	Additional information: This is a type of Balance Responsible Party.
Reconciliation Accountable	A party that is financially accountable for the reconciled volume of energy products for a profiled Accounting Point.
Reconciliation Responsible	A party that is responsible for reconciling, within a Metering Grid Area, the volumes used in the imbalance settlement process for profiled Accounting Points and the actual metered quantities.
	<i>Note</i> : The Reconciliation Responsible may delegate the invoicing responsibility to a more generic role such as a Billing Agent.
Reserve Allocator	Informs the market of reserve requirements, receives tenders against the requirements and in compliance with the prequalification criteria, determines what tenders meet requirements and assigns tenders.
Resource Provider	A role that manages a resource object and provides the schedules for it.
Scheduling Coordinator	A party that is responsible for the schedule information and its exchange on behalf of a Balance Responsible Party. For example in the Polish market a Scheduling Coordinator is responsible for information interchange for scheduling and settlement.

Role	Description
System Operator	A party that is responsible for a stable power system operation (including the organization of physical balance) through a transmission grid in a geographical area. The System Operator will also determine and be responsible for cross border capacity and exchanges. If necessary he may reduce allocated capacity to ensure operational stability. Transmission as mentioned above means "the transport of electricity on the extra high or high voltage network with a view to its delivery to final customers or to distributors. Operation of transmission includes as well the tasks of system operation concerning its management of energy flows, reliability of the system and availability of all necessary system services". (Definition taken from the ENTSO-E RGCE Operation handbook Glossary). <i>Note</i> : additional obligations may be imposed through local market rules.
Trade Responsible Party	A party who can be brought to rights, legally and financially, for any imbalance between energy nominated and consumed for all associated Accounting Points. <i>Note</i> : A power exchange without any privileged responsibilities acts as a Trade Responsible Party. <i>Additional information</i> : This is a type of Balance Responsible Party.
Transmission Capacity Allocator	Manages the allocation of transmission capacity for an Allocated Capacity Area. For explicit auctions: The Transmission Capacity Allocator manages, on behalf of the System Operators, the allocation of available transmission capacity for an Allocated capacity Area. He offers the available transmission capacity to the market, allocates the available transmission capacity to individual Capacity Traders and calculates the billing amount of already allocated capacities to the Capacity Traders.

892C.3Relationship between the domains of the conceptual model893and the European harmonized electricity market role model

Figure 46 below shows the relationship between the domains of the conceptual model and the European harmonized electricity market role model.

898 Figure 46: Relationship between the domains of the conceptual model and the European 899 harmonized electricity market role model

900

Note that in the figure above, the Billing Agent role is not included in the relationship between
 domains of the conceptual model and the harmonized electricity market roles due to its generic
 nature. In [ENTSO-E 2011] the Billing Agent role is not associated to any other role.

904C.4 Relation between the flexibility operator actor and the905European harmonized electricity market role model

The use cases identified by the SG-CG/SP Sustainable Processes Work Group on 'providing flexibility' concerns control/management of flexible demand & supply. In these use case, flexibility

in demand and supply is provided by 'smart customers', for usage in use cases related to e.g.
system balancing, network constraint management, voltage / var optimization, network restoration
and black start, power flow stabilization, market balancing.

912 I.e. the flexibility is used by parties related to grid / power system management and/or electricity
913 markets. Pooling of this flexibility is performed by a so called 'Flexibility Operator'. The flexibility
914 use cases cover several means of interacting with 'smart customers', including:

- 916 Communication of price signals, tariffs and other economic incentives
- 917 Explicit trade in flexibility in demand and/or supply
- 918 Direct control of demand and/or supply

Although analyzed in combination in the flexibility use case, distinguishing between these
 approaches allows for better analysis in relation to the European electricity market. Below, each of
 these approaches is analyzed further in relationship to the organizational structure of the European
 electricity market.

924
925 The figures used throughout the analysis below show roles and their associations from the
926 European harmonized electricity market role model and how they relate to actors and their
927 associations from the use case. This is graphically represented according to the legend as shown
928 in Figure 47.

Leaend:

911

915

919

929

939

	Polo	Association	Actor	Association
930		Harmonized Electricity Market Role Model	Actor	use case

931Figure 47: Legend used in analysis of relation between the flexibility operator actor and the932European harmonized electricity market role model

933 C.4.1 Communication of price signals, tariffs and other economic incentives

Economic incentives can be given to parties connected to the grid, primarily based on state of the
grid or market. Within [ENTSO-E 2011], parties connected to the grid are 'associated' to the market
through the Balance Supplier role and connect to grid operations through the Grid Access Provider
role. Figure 48 provides a visualization of this mapping.

Figure 48: Economic incentives in the flexibility use cases in relation to European electricity market

942 C.4.2 Explicit trade in flexibility in demand and/or supply

The explicit trade in flexibility is closely related to the mapping of the use case wherein the
Flexibility Operator performs direct control; with the major differences that the 'smart customer'
moves in the value chain in the sense that it now takes the Resource Provider role itself instead of
the Flexibility Operator. This mapping is visualized in Figure 49.

948

(explicitly trading flexibility)

949

Figure 49: Explicit trade in flexibility in relation to European electricity market

950 C.4.3 Direct control of demand and/or supply

Within [ENTSO-E 2011] the role of Resource Provider is identified, actors with this role take part in
system operations by providing reserve (balancing) services, by up/down regulation of 'resource
(or reserve) objects' under its control. In case of direct control, the Flexibility Operator can be
considered performing the Resource Provider role. The mapping of this use case to the roles of
[ENTSO-E 2011] is visualized in Figure 50.

956

Figure 50: Direct control of demand and/or supply use case in relation to European electricity market

Note: the relationship between Party connected to the Grid and Resource Provider is not defined in [ENTSO-E 2011]. The relationship between Resource Object (a domain from [ENTSO 2012], not to be mistaken with the organizational domains of the European conceptual model) and the Party connected to the Grid is assumed.

- 964 965 Note: the Flexibility Operator in its role of Resource Provider connects to power system
- 966 management and the market via another party (or by itself) performing the Balance Responsible 967 Party role.
- 968

Annex D Functional Architecture

969 This section will be filled if applicable or necessary.

Annex E Information Architecture

Within the SGAM, one particular aspects of the layer is the level of data exchanged between the
various layers. The particular focus of the layer within the SGAM is the meaningful representation
and localization of the data models, abstract communication system interfaces towards the
communication layer and the functional (system) layers implementing the logics and the smart grid
component using standards and data models.

The Information layer is intended to show data models that are used by the sub-functions in order
to fulfill the use case. Within section 5 of this document, the SGAM use case has already outlined
the application of the mapping as depicted in the next graphic.

975

979

In addition to the standards already used and depicted, the JWG report form CEN/CENELEC and ETSI ³ and its annex 6 have already outlined the needed data model standards which will also be

³ JWG report on standards for smart grids, version 1.0

evaluated from the view of the first set of standards group. Harmonization on the view of data
integration technology vs. system/sub-system taxonomy of FSS 2.0 report is envisioned for version
3 of this SG-CG/RA report.

987 For this version of the report, relevant data models already identified are the following ones which 988 will be mapped onto the SGAM domain/zones plane (note: subject to further extension):

- Mapping of IEC 61850 Common Data Classes on IEC 60870-5-104 (IEC 61850-80-1 TS)
- 991 OASIS EMIX

989

998

999

1016

1017

1020

1021

1024

- 992 UN/CEFACT CCTS
- EN 60870-6-802:2002 + A1:2005, Telecontrol equipment and systems Part 6-802:
 Telecontrol protocols compatible with ISO standards and ITU-T recommendations TASE.2 Object models
- EN 60870-5-1:1993, Telecontrol equipment and systems Part 5: Transmission protocols –
 Section 1: Transmission frame formats
 - EN 60870-5-3:1992, Telecontrol equipment and systems Part 5: Transmission protocols Section 3: General structure of application data
- IEC 61850-7-410 Ed. 1.0, Communication networks and systems for power utility
 automation Part 7-410: Hydroelectric power plants Communication for monitoring and
 control
- IEC 61850-7-420, Communication networks and systems for power utility automation Part
 7-420: Basic communication structure Distributed energy resources logical nodes
- IEC 61400-25-2, Communications for monitoring and control of wind power plants Part
 25-2: Information models
- IEC 61400-25-3, Communications for monitoring and control of wind power plants Part
 25-3: Information exchange models
- IEC 61400-25-6, Communications for monitoring and control of wind power plants Part
 25-6 Communications for monitoring and control of wind power plants: Logical node
 classes and data classes for condition monitoring
- IEC 62056 series, *Electricity metering Data exchange for meter reading, tariff and load control*, Parts 21, 31, 41, 42, 46, 47, 51, 52, 53, 61, 62
- IEC 61334, Distribution automation using distribution line carrier systems Part 4 Sections 32, 511, 512, Part 5 Section 1
 - EN 61970-301:2004, Energy management system application program interface (EMS-API)
 Part 301: Common information model (CIM) base
- EN 61970-402:2008 Ed. 1.0, Energy management system application program interface
 (EMS- API) Part 402: Component interface specification (CIS) Common services
 - EN 61970-403:2007, Energy management system application interface (EMS- API) Part 403: Component Interface Specification (CIS) – Generic Data Access
- EN 61970-404:2007, Energy management system application program interface (EMS-API)
 Part 404: High Speed Data Access (HSDA))
 - EN 61970-405:2007, Energy management system application program interface (EMS-API)
 Part 405: Generic eventing and subscription (GES)
- EN 61970-407:2007, Energy management system application program interface (EMS-API)
 Part 407: Time series data access (TSDA)
- EN 61970-453:2008, Energy management system application interface (EMS- API) Part
 453: CIM based graphics exchange
- EN 61970-501:2006, Energy management system application interface (EMS- API) Part 501: Common information model resource description framework (CIM RDF) Schema
- EN 61968-:2004, Application integration at electric utilities System interfaces for distribution management Part 3: Interface for network operations
- EN 61968-4:2007, Application integration at electric utilities System interfaces for distribution management Part 4: Interfaces for records and asset management

- EN 61968-9:2009, System Interfaces For Distribution Management Part 9: Interface
 Standard for Meter Reading and Control
- FprEN 61968-11:2010, System Interfaces for Distribution Management Part 11:
 Distribution Information Exchange Model
 - EN 61968-13:2008, System Interfaces for distribution management CIM RDF Model Exchange Format for Distribution
 - IEC 61850-5 Ed. 1.0, Communication networks and systems in substations Part 5: Communication requirements for functions and device models
- IEC 61850-6 Ed. 1.0, Communication networks and systems in substations Part 6:
 Configuration description language for communication in electrical substations related to
 IEDs
- IEC 61850-7-1 Ed. 1.0, Communication networks and systems in substations Part 7-1:
 Basic communication structure for substation and feeder equipment Principles and
 models
- IEC 61850-7-2 Ed. 1.0, Communication networks and systems in substations Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)
- IEC 61850-7-3 Ed. 1.0, Communication networks and systems in substations Part 7-3:
 Basic communication structure for substation and feeder equipment Common data classes
- IEC 61850-7-4 Ed. 1.0, Communication networks and systems in substations Part 7-4:
 Basic communication structure for substation and feeder equipment Compatible logical node classes and data classes
- IEC 62325-301 Ed.1.0 : Common Information Model Market Extensions
- IEC 62325-501 Framework for energy market communications Part 501: General guidelines for use of ebXML
- IEC 62325-351 Framework for energy market communications Part 351: CIM European Market Model Exchange Profile
- IEC 62325-502 Framework for energy market communications Part 502: Profile of ebXML
- 1065

1041

1042

Annex F Communication Architecture

1066

1067 This section is provided as a separate document.

Annex G Bibliography

1069			
1070 1071	The following references are made in the main body of the Report:		
1072 1073 1074	[Dänekas 2011]	Christian Dänekas, Sebastian Rohjans, Carsten Wissing, Hans-Jürgen Appelrath: Future Energy Grid" - Migration Paths into the Internet of Energy, In: Proceedings of the eChallenges Conference (e-2011),	
1075	[Jonkers 2010]	TOGAF 9 and ArchiMate 1.0 White paper, The Open Group 2010	
1076 1077 1078	[Uslar et al 2012]	Mathias Uslar, Michael Specht, Sebastian Rohjans, Jörn Trefke, Jose M Gonzalez: The Common Information Model CIM: IEC 61970, 61968 and 62325, Springer Heidelberg, 2012	
1079			
1080	The following references are made in Annex F:		
1081		OPEN meter. Energy Project No 226369. Funded by EC	
1082		Cenelec TC205 new working group WG18 Kick of Presentation 24.11.2011	
1083			

CEN-CENELEC-ETSI Smart Grid Coordination Group

Date: 11/2012

Secretariat: CCMC

SG-CG/M490/C_Smart Grid Reference Architecture

Annex F Communication Architecture

(Version 3.0)

Contents 1

2	Table of contents							
3 4	Content	Page						
5	Main changes in this version	5						
6	1 References	6						
_								
7	2 Symbols and abbreviations	10						
8	3 Executive Summary	13						
9	3.1 Recommendations	13						
10	3.1.1 Recommendation 1	13						
11	3.1.2 Recommendation 2							
12	3.1.3 Recommendation 3							
13	3.1.4 Recommendation 4							
14	3.1.5 Recommendation 5							
15	3.1.6 Recommendation 6							
10	3.1.7 Recommendation 7							
17	3.1.8 Recommendation 8							
10	3.2 Small Gliu Sub-networks							
19 20	networks							
22 22 23 24 25	 4.1 Internet Protocol Technology	20 20 20 21 						
26	4 1 4 IPv6 Addressing							
27	4.2 Field, Neighborhood, home / building area networks overview							
28	4.2.1 Introduction							
29	4.2.2 Power Line Technology							
30	4.2.3 Mesh Network technologies							
31	4.2.4 Physical and MAC layers							
32	4.2.5 IPv6 adaptation layer	34						
33	4.2.6 IP protocols layer 3 and above	35						
34	4.2.7 EN 50090 family (KNX)							
35	4.2.8 EN 14908 family							
36	4.3 SCADA substation protocols	40						
37	4.3.1 IEC 60870							
38	4.3.2 IEC 60870-5-101 System topology							
39	4.3.3 IEC 60870-5-101 Message structure							
40	4.3.4 IEC 60870-5-101 Addressing							
41 40	4.3.5 IEC 60870 4 101 Networked Version							
4∠ ∕\2	4.3.0 IEC 00070-4-101 Application data objects							
43 11	4.4 WILLESS AUCESS & WILL ALEA TECHNOLOGIES							
44		43						

45	4.4.2 GPRS / EDGE (General packet radio service / Enhanced Data rates for Global	
46	Evolution	45
47	4.4.3 UMTS (Universal Mobile Telecommunications System)	
48	4.4.4 Long Term Evolution (LTE) for Smart grid	50
49	4.4.5 Wireline access technologies	54
50	4.5 Core and metro networks overview	
51	4.5.1 Introduction	
52	4.5.2 IP MPLS	
53	4.5.3 MPLS-TP	
54	4.5.4 OTN	58
55	4.5.5 Data services over SDH	60
56	4.5.6 Mapping into SDH payloads	60
57	4.6 Higher level communication protocols	61
58	4.6.1 RESTful Web Services	61
59	4.6.2 SOAP/RPC Web Services	62
60	4.6.3 Architectures, Protocols and languages for Web Services	62
61	4.6.4 Performance considerations	64
62	5 Generic Use Cases and related Communication Architecture examples	66
63	5.1 Use cases	66
64	5.1.1 Demand Response	66
65	5.1.2 Distribution Automation FLISR	
66	5.1.3 Tele-protection using an IP/MPLS network	92
67	5.1.4 Workforce communication	96
68	5.2 Mapping Example Use Cases to the Conceptual Model	97
69	5.3 QoS requirements for different Smart Grid Applications	99
70	6 Description of selected communication profiles for the Smart Grid	
71	communications	100
72	6.1 Introduction	100
73	6.2 Profile Example 1: Field Area Network	100
74	6.2.1 Communication profile name: Field Area Network	100
75	6.2.2 Communication requirements and boundaries	101
76	6.2.3 Scalability:	101
77	6.2.4 Network diagram	101
78	6.2.5 List of systems if relevant	102
79	6.2.6 List of technologies	102
80	6.2.7 Specifications / standards	103
81	6.2.8 Security considerations	103
82	6.2.9 Configuration parameters	103
83	6.2.10 MAC / PHY configuration parameters:	107
84	6.2.11 Best current practice:	107
85	6.3 Profile Example 2: IP MPLS	107
86	6.3.1 Introduction	107
87	6.3.2 Communication requirements and boundaries	107
88	6.3.3 Detailed Network diagram for the profile	108
89	6.4 Initial list of profiles for future development by SDOs	111
90	6.5 Interoperability consideration/recommendations	112
91	7 Communication architecture topologies for the Smart Grid	113
92	7.1 Subscriber Access Network	113
93	7.2 Neighborhood Network	113
94	7.3 Field Area Network	
95	7.4 Low-end intra-substation network	
96	7.5 Intra-substation network	113

97 98	7.6 Inter substation network7.6.1 High voltage teleprotection network	114 114
99	7.6.2 Medium voltage inter-substation network	114
100 101	7.6.3 MV Substation to substation communication topology: Point to Multipoint (P2MP) using BPL	115
102 103	7.6.4 MV Substation to substation communication topology: Point to Point (P2P) using BPL	116
104	7.7 Intra Control Centre / Intra Data centre Network	116
105	7.8 Enterprise Network	117
106	7.9 Balancing Network	117
107	7.10 Interchange Network	117
108	7.11 Trans-Regional – Trans-National Network	117
109	7.12 Wide and Metropolitan Area Network	117
110	8 Security	118
111	Appendix A Industry Fora and Alliances References	120
112	Appendix B Relationship to the SGAM model	121
113		
114		
115	List of Figures	
116	Figure 1, SCAM Fromowork Architecture	15
11/ 110	Figure 2: Mapping of communication notworks on SCAM Communication Lover	15 17
110	Figure 2: ID standard protocol layors	17
120	Figure 3. IF Stariuaru protocor layers	21
120	Figure 4. Example of FLC usage	24
121	Figure 6: 6LoWPAN within IP protocol stack	32
122	Figure 7: EN 50090 protocol stack	38
120	Figure 8: EN 50090 HBES Standards Landscape	39
125	Figure 9: EN 14908 protocol stack	40
126	Figure 10: Evolution of 3GPP Family of Mobile Broadband Technologies	44
127	Figure 11: GSMA family of technologies development to date	45
128	Figure 12: Privacy issues associated with smart metering	50
129	Figure 13: MPLS TP context	58
130	Figure 14: OTN multiplexing	59
131	Figure 15: ETSI M2M architecture framework	64
132	Figure 16: Smart Home Communication Example architecture	69
133	Figure 17: Demand Response functional Architecture	70
134	Figure 18: Smart Home Communication Example architecture	79
135	Figure 19: FLISR (1) Example architecture	90
136	Figure 20: FLISR (2) Example architecture	91
137	Figure 21: FLISR Communication networks mapping to the SGAM model	91
138	Figure 22: Tele-protection Example architecture	92
139	Figure 23: Tele-Protection Architecture example	94
140	Figure 24: Delay incurred by the telecommunication equipment and the IP/MPLS network	95
141	Figure 25: Tele-Protection: Mapping of communication networks to the SGAM model	96
142	Figure 26: Workforce management example architecture	
143	Figure 27: Architecture for IP/IMPLS based teleprotection	107
144	FIGURE 28: IVIPLS SERVICES	108
145	Figure 29. Teleprotection using VPLS (Ethernet TPKS)	109
140	Figure 30. Teleprotection using VEVVS (TDIVETER)	. 109
147 170	Figure 31. Achieving protection for releptotection services.	
140	r igure 52. Substation communication architecture example	114

- 152 153

149

150

151

154 List of Tables155

156	Table 1: Applicability statement of the communication technologies to the smart grid sub-	
157	networks	19
158	Table 2: Relevant Narrowband PLC Standards	25
159	Table 3: Relevant Broadband PLC Standards	26
160	Table 4: Protocol Stack IEC 60870-5-104	43
161	Table 5: Information Object Type Groups	43
162	Table 6: FLISR communication requirements	89
163	Table 8: Tele-Protection communication requirements	93
164	Table 9: Mapping Example use Cases to the Conceptual Model Domains	97
165		

167 History of document

168

166

Number	Date	Content
v0.5	24/01/2012	First TR external version for SG-CG "Sanity Check"
v1.0	02/03/2012	First Interim TR draft for official comments
v2.0	31/07/2012	Second interim TR draft for official comments
v3.0	15/11/2012	Final TR Annex E for adoption by M/490

169 170

171 Main changes in this version

172 The document has been deeply changed, in particular with an entirely new structure.

173174 It has also a new Annex number, due to the changes to the main part of the Reference175 Architecture 3.0 Report.

178 **1 References**

179
180 It should be noted that the SG-CG First Set of Standards Work Group report [SG-CG/B] provides a
181 list of references that may include most of the references below. In case of doubt on the applicable
182 referenced documents, the [SG-CG/B] list prevails.

- 183 184 References
- 185 [1] OPEN meter. Energy Project No 226369. Funded by EC
- 186 [7] CENELEC TC205 new working group WG18 Kick of Presentation 24.11.2011
- 187 [57] IEEE ISPLC2007 Standards & Regulations Framework for LV-MV-HV Powerline 188 Communication Systems – Pisa, 2007 ITALY.
- 189 [60] IEC TC57 Working Group 20 works.
- 190 [61] CLC SC205A Working Groups 9 and 10 works.
- 191 [62] CIRED Communication Requirements for Smart Grids Frankfurt, June 2011, 192 GERMANY
- 193 [63] ADDRESS EC FP7 Project <u>http://portal.addressfp7.org/</u>
- 194 [66] A Standardized and Flexible IPv6 Architecture for Field Area Networks
- 195 [67] Cisco Gridblocks architecture for Smart Grid 196

197 List of standards

- 198 [1] ISO/IEC 7498-1:1994; Information Technology Open Systems Interconnect Basic
 199 Reference Model: The Basic Model
- 200 [2] ITU-T I.322 (02/99); Generic protocol reference model for telecommunication networks
- 201 [3] IETF RFC5654 Requirements of an MPLS Transport Profile
- 202 [4] IETF RFC5921 A Framework for PLS in Transport Networks
- 203 [5] CEN/CENELEC/ETSI JWG report on standards for smart grids V1.0
- 204 [6] CEN/CENELEC/ETSI First set of standards V1.0
- 205 [8]IETF RFC 6272: Internet Protocols for the Smart Grid. http://www.rfc-206editor.org/rfc/rfc6272.txt
- 207 [9] IETF RFC 5086: Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation
 208 Service over Packet Switched Network (CESoPSN)
- 209 [10] IETF RFC4553: Structure-Agnostic Time Division Multiplexing (TDM) over Packet 210 (SAToP)
- [11] IEEE P1901.2 Standard for Low Frequency (less than 500 kHz) Narrow Band Power Line
 Communications for Smart Grid Applications
- 213[12]IEEE802.11:alistofstandardsisavailableunderthislink214http://standards.ieee.org/about/get/802/802.11.html
- 215 [13] IEEE 802.3: a list of standards is available under this link 216 <u>http://standards.ieee.org/about/get/802/802.3.html</u>
- 217[14]IEEE802.16:alistofstandardsisavailableunderthislink218http://standards.ieee.org/about/get/802/802.16.html
- IEEE 802.15.4: standards 219 [15] а list of available this link is under 220 http://web.archive.org/web/20080224053532/http://shop.ieee.org/ieeestore/Product.aspx? product_no=SS95552 221
- 222 [16] ETSI 102 887
- Electrocompatibility and radio spectrum Matters (ERM); Short Range Devices; Smart
 Metering Wireless Access Protocol (SMEP). Part 1; PHY Layer
- Electrocompatibility and radio spectrum Matters (ERM); Short Range Devices; Smart
 Metering Wireless Access Protocol (SMEP). Part 2; MAC Layer
- 227 [17] RFC 4919: IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 228 Overview, Assumptions, Problem Statement, and Goals

229	[18]	IETF roll: a list of Internet RFC is available under: http://tools.ietf.org/wg/roll/
230		IETF RFC 6550: RPL IPv6 Routing Protocol for Low-Power and Lossy Network
231		IETF RFC 6551: ROLL routing metrics
232		IETF RFC 6552: ROLL objective Function Zero
233		■ IFTE REC 6206' ROLL Trickle
234		■ draft-jetf-roll-minrank-bysteresis-of -11 2012-06-30 REC Ed Oueue
207		■ draft-iotf-roll-socurity-framowork
230		- draft joff roll p2p magaurement
230		- draft-iett-roll-p2p-measurement
237		• <u>draft-left-roll-p2p-rpi</u>
238		■ <u>draft-ietf-roll-trickle-mcast</u>
239	[19]	EN 50090:
240		EN 50090-2-1:1994 : System overview-Architecture
241		EN 50090-3-1:1994 : Aspects of application-Introduction to the application structure
242		EN 50090-3-2:1995 : Aspects of application-User process
243		EN 50090-3-2:2004 : Aspects of application-User process for HBES Class 1
244		EN 50090-4-1:2004 : Media independent layers-Application layer for HBES Class 1
245		EN 50090-4-2:2004 : Media independent layers-Transport layer, network layer and
246		general parts of datalink layer for HBES Class 1
247		EN 50090-5-1:2005 : Media and media dependent layers-Power line for HBES Class 1
248		EN 50090-5-2:2004 : Media and media dependent layers-Network based on HBES
249		Class1, TwistedPair
250		EN 50090-7-1:2004 : System management-Management procedures
251	[00]	
252	[20]	LIE3GPP IS 36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
253		Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2
254		nttp://www.3gpp.org/ttp/Specs/ntml-info/36300.ntm
255		 15 36.201 Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer;
256		General description.
257		IS 36.211 EVOIVED UNIVERSAL LETRESTRIAL RADIO ACCESS (E-UTRA); Physical channels and machine tion.
258		and modulation.
259		 IS 36.212 Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and sharped adding
200		- TS 26.212 Evolved Universal Terrestrial Dadie Assess (EUTDA): Develoal lover
201		• 15 50.213 EVOIVED UNIVERSAL LETESTIAL RADIO ACCESS (E-UTRA), Physical layer
202		 F 26 214 Evolved Universal Terrestrial Padia Access (E LITRA): Develoal lover:
203		• 13 30.214 EVOIVED UNIVERSAL LETESTIAL RADIO ACCESS (E-UTRA), Physical layer,
204		TS 26 216 Evolved Universal Terrestrial Padia Assess (E LITRA): Develop layer for
200		- 13 50.210 EVOlved Universal Terrestinal Radio Access (E-UTRA), Filysical layer for
200		COPP TS 22.401 Conoral Packet Padia Sarvica (CPPS) and anomalis for Evolved
207		- JOFF 13 23.401 General Facket Radio Service (GFRS) eminancements for Evolved
200		COPP TS 22.268 Service requirements for Machine Type Communications (MTC):
209		- SGFF 15 22.500 Service requirements for Machine-Type Communications (MTC),
270		TR 23.888 System improvements for Machine-Type Communications (MTC) Service
277		requirements for Machine-Type Communications (MTC):
272		 3GPP TS 23 682 Architecture Enhancements to facilitate communications with Packet
274		Data Networks and Applications
275		 3GPP TS 24 312 Access Network Discovery and Selection Function (ANDSE)
276		Management Object (MO)
277		 3GPP TS 23 402 Architecture Enhancements for Non-3GPP Accesses (Release 10)
278	[21]	G 991 1 High bit rate digital subscriber line (HDSL) transceivers
279	[22]	G 991.2 Single-pair high-speed digital subscriber line (SHDSL) transceivers
280	[23]	G.992.1 Asymmetric digital subscriber line (ADSL) transceivers
	L - J	

 G. 121 G. 122. G. 123. G. 123. G. 123. G. 123. G. 123. G.	281 282	[24] [25]	G.992.2 Splitterless asymmetric digital subscriber line (ADSL) transceivers
 1201 G. 392.4 Spinetiss asymmetric bigital subscriber line transceivers (VDSL) 1285 G. 393.2 Very high speed digital subscriber line transceivers (VDSL) 1286 G. 393.2 Very high speed digital subscriber line transceivers 2 (VDSL) 1287 G. 393.4 Very high speed digital subscriber line transceivers 2 (VDSL) 1286 G. 393.5 Very high speed digital subscriber line (DSL) transceivers 1287 G. 394.1 Handshake procedures for digital subscriber line (DSL) transceivers 1298 G. 396.1 Test procedures for digital subscriber line (DSL) transceivers 1298 G. 396.1 Test procedures for digital subscriber line (DSL) transceivers 1298 G. 398.1 ATM-based multi-pair bonding 1298 G. 398.1 ATM-based multi-pair bonding 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.3 Multi-pair bonding using time-division inverse multiplexing 1298 G. 398.4 Inproved Impulse Noise Protection (INP) for DSL Transceivers 1298 G. 398.4 Inproved Impulse Noise Protection (INP) for DSL Transceivers 1298 G. 398.4 Inproved Impulse Noise Protection (INP) for GL and thevorks (PON) 1209 G. 398.4 Inproved Impulse Paiseve optical networks (GPON):	202	[26]	C 002 1 Splitterless asymmetric digital subscriber line transceivers 2 (splitterless ADSI 2)
 [27] G. 933.1 Very high speed digital subscriber line transceivers (VDSL2) [28] G. 933.5 Self-FEXT cancellation (vectoring) for use with VDSL2 transceivers [30] G. 934.1 Handshake procedures for digital subscriber line (DSL) transceivers [31] G. 936.1 Test procedures for digital subscriber line (DSL) transceivers [32] G. 936.1 Test procedures for digital subscriber line (DSL) transceivers [33] G. 936.1 Test procedures for digital subscriber line (DSL) transceivers [34] G. 937.1 Physical layer management for digital subscriber line (DSL) transceivers [35] G. 938.2 Ethernet-based multi-pair bonding [36] G. 938.2 Ethernet-based multi-pair bonding [37] G. 938.3 Multi-pair bonding using time-division inverse multiplexing [38] G. 939.1 Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [39] G. 938.2 Ethernet-based multi-pair bonding [39] G. 939.3.1 Proved Impulse Noise Protection (INP) for DSL Transceivers [30] G. 938.3.1 Proadband optical access system based on Passive Optical Networks (PON) [41] G. 938.3.2 ONT management and control interface specification for B-PON [42] G. 938.4.3.4 broadband optical access system with increased service capability by wavelength allocation [43] G. 938.4.4 broadband optical access system with enhanced survivability [44] G. 938.3.5 A broadband optical access system with enhanced survivability [45] G. 934.4.1 Gigabit-capable passive optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [46] G. 934.4.2 Gigabit-capable passive optical Networks (G-PON): ONT management and control interface specification [47] G. 938.4.3. Gigabit-capable passive optical networks (G-PON): Conreal requirements [48] G. 938.4.5 Gigabit-capable passive opti	203	[20] [27]	G 002.1 Vory high speed digital subscriber line transceivers 2 (spinteness ADOLZ)
 Carl Carl Science (Carl Carl Carl Carl Carl Carl Carl Carl	204	[27]	C 002.2 Very high speed digital subscriber line transceivers 2 (VDSL)
 G. 195.3 Self-Salf-California (DSC) (DSC)	200	[20]	G.995.2 Very high speed digital subscriber line transceivers 2 (VDSL2)
 G. 1941. Francsmake procedures for digital subscriber line (DSL) transceivers G. 1955. I Overview of digital subscriber line (DSL) transceivers G. 1965. Single-ended line testing for digital subscriber line (DSL) transceivers G. 1967. Physical layer management for digital subscriber line (DSL) transceivers G. 1998. I ATM-based multi-pair bonding G. 1998. I ATM-based multi-pair bonding G. 1998. I Multi-pair bonding using time-division inverse multiplexing G. 1998. I Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers G. 1998. I Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers G. 1998. I Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers G. 1998. I Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers G. 1983. I Broadband optical access systems based on Passive Optical Networks (PON) G. 983.4: A broadband optical access system with increased service capability by wavelength allocation G. 1983.4: A broadband optical access system with enhanced survivability G. 1984.1: Gigabit-capable passive optical networks (G-PON): Physical Media Dependent (PMD) layer specification G. 1984.2: Gigabit-capable Passive Optical Networks (G-PON): ONT management and control interface specification G. 1984.3: Gigabit-capable passive optical networks (G-PON): Chancement band G. 1984.4: Gigabit-capable passive optical networks (G-PON): Cong reach G. 1984.5: Gigabit-capable passive optical networks (G-PON): Cong reach G. 1987.1: 10-Gigabit-capable passive optical networks (CA-PON): Physical media dependent (PMD) layer specification G. 1987.2: 10-Gigabit-capable passive	200	[29]	G.993.5 Sell-FEXT cancellation (vectoring) for use with vDSL2 transceivers
 [31] G. 1995.1 Overview of digital subscriber line (USL) Recommendations [32] G. 1995.1 Test procedures for digital subscriber lines (DSL) [33] G. 1996.2 Single-ended line testing for digital subscriber lines (DSL) [34] G. 1997.1 Physical layer management for digital subscriber line (DSL) transceivers [35] G. 1998.2 Ethernet-based multi-pair bonding [36] G. 1998.2 Ethernet-based multi-pair bonding [37] G. 1998.3 Multi-pair bonding using time-division inverse multiplexing [38] G. 1998.1 Multi-pair bonding using time-division inverse multiplexing [39] G. 1998.2 Ethernet-based multi-pair bonding [39] G. 1998.2 Ethernet-based multi-pair bonding [39] G. 1998.3 Multi-pair bonding using time-division inverse multiplexing [39] G. 1998.4 Multi-pair bonding using time-division inverse multiplexing [30] G. 1998.3 Unitipair bonding using time-division for B-PON [41] G. 1983.3: A broadband optical access system with increased service capability by [42] wavelength allocation [43] G. 1983.4: A broadband optical access system with increased service capability using [44] G. 1983.5: A broadband optical access system with enhanced survivability [45] G. 1984.1: Gigabit-capable passive optical networks (G-PON): Ceneral characteristics [46] G. 1984.2: Gigabit-capable Passive optical networks (G-PON): NT management and control interface specification [47] G. 1984.3: Gigabit-capable passive optical networks (G-PON): Contrast and the control interface specification [48] G. 1984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G. 1984.7: 10-Gigabit-capable passive optical networks (G-PON): Contrast and to control interface specification [49] G. 1987.3: 10-Gigabit-capable passive optic	287	[30]	G.994.1 Handshake procedures for digital subscriber line (DSL) transceivers
 [32] G. 996.1 lest procedures for digital subscriber line (DSL) transceivers [33] G. 996.2 Single-ended line testing for digital subscriber line (DSL) [34] G. 997.1 Physical layer management for digital subscriber line (DSL) [35] G. 998.3 Hulti-pair bonding [36] G. 998.2 Ethernet-based multi-pair bonding [37] G. 998.3 Multi-pair bonding using time-division inverse multiplexing [38] G. 998.1 Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [39] G. 998.3 Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [39] G. 998.3 Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [40] G. 983.3: Broadband optical access systems based on Passive Optical Networks (PON) [41] G. 983.3: A broadband optical access system with increased service capability using dynamic bandwidth assignment [42] G. 983.5: A broadband optical access system with enhanced survivability [43] G. 984.2: Gigabit-capable passive optical networks (GPON): General characteristics [46] G. 984.3: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G. 984.3: Gigabit-capable passive optical networks (G-PON): NT management and control interface specification [48] G. 984.4: Gigabit-capable passive optical networks (GPON): Cong reach [49] G. 984.5: Gigabit-capable passive optical networks (GPON): Cong reach [49] G. 984.5: Gigabit-capable passive optical networks (GPON): Reach extension [41] G. 984.7: Gigabit-capable passive optical networks (CPON): Reach extension [42] G. 984.7: 10-Gigabit-capable passive optical networks (CPON): Cong reach [43] G. 984.7	288	[31]	G.995.1 Overview of digital subscriber line (DSL) Recommendations
 [33] G. 996.2 Single-ended line testing for digital subscriber line (DSL) transceivers [34] G. 997.1 Physical layer management for digital subscriber line (DSL) transceivers [35] G. 998.1 ATM-based multi-pair bonding [36] G. 998.3 Multi-pair bonding using time-division inverse multiplexing [37] G. 998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [38] G. 998.1 Interface between the link layer and the physical layer for digital subscriber line [39] G. 998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [39] G. 998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [40] G. 983.3: A broadband optical access systems based on Passive Optical Networks (PON) [41] G. 983.3: A broadband optical access system with increased service capability by wavelength allocation [42] G. 983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [43] G. 984.1: Gigabit-capable passive optical Networks (GPON): General characteristics [44] G. 983.3: A broadband optical access system with enhanced survivability [45] G. 984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [46] G. 984.4: Gigabit-capable passive Optical Networks (G-PON): Contransgement and control interface specification [47] G. 984.7: 10-Gigabit-capable passive optical networks (GPON): Contransgement and control interface specification [48] G. 987.1: 10-Gigabit-capable passive optical networks (GPON): Enhancement band [50] G. 987.2: 10-Gigabit-capable passive optical networks (GPON): Contransgement and control interface specification [51] G. 987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [53] G. 987.3: 10-Gigabit	289	[32]	G.996.1 Test procedures for digital subscriber line (DSL) transceivers
 [34] G.99/.1 Physical layer management for digital subscriber line (DSL) transceivers [35] G.998.2 Ethernet-based multi-pair bonding [36] G.998.2 Ethernet-based multi-pair bonding [37] G. 998.3 Multi-pair bonding using time-division inverse multiplexing [38] G.999.1 Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [39] G.998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [40] G.983.1: Broadband optical access systems based on Passive Optical Networks (PON) [41] G.983.2: ONT management and control interface specification for FPON [42] G.983.3: A broadband optical access system with increased service capability using dynamic bandwidth assignment [43] G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G.983.5: A broadband optical access system with enhanced survivability [45] G.984.4: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [46] G.984.4: Gigabit-capable Passive Optical Networks (G-PON): Nanagement and control interface specification [47] G.984.4: Gigabit-capable Passive Optical Networks (G-PON): CNT management and control interface specification [49] G.984.5: Gigabit-capable passive optical networks (XG-PON): CNT management and control interface specification [49] G.984.5: Gigabit-capable passive optical networks (XG-PON): CNT management and control interface specification [49] G.984.5: Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [50] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): CNT management and control interfaces perification [51] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Reache e	290	[33]	G.996.2 Single-ended line testing for digital subscriber lines (DSL)
 [35] G. 998.1 ATM-based multi-pair bonding [36] G. 998.2 Ethernet-based multi-pair bonding [37] G. 998.3 Multi-pair bonding using time-division inverse multiplexing [38] G. 998.3 Multi-pair bonding using time-division inverse multiplexing [39] G. 998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [40] G. 983.1: Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [41] G. 983.2: ONT management and control interface specification for B-PON [42] G. 983.3: A broadband optical access system with increased service capability by wavelength allocation [43] G. 983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G. 983.5: A broadband optical access system with enhanced survivability [45] G. 984.1: Gigabit-capable Passive Optical Networks (G-PON): General characteristics [46] G. 984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [47] G. 984.4: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G. 984.4: Gigabit-capable Passive Optical Networks (G-PON): Enhancement band [50] G. 984.7: Gigabit-capable passive optical networks (G-PON): Enhancement band [51] G. 984.7: Gigabit-capable passive optical networks (GPON): Rearel requirements [52] G. 987.1: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G. 987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G. 987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dep	291	[34]	G.997.1 Physical layer management for digital subscriber line (DSL) transceivers
 [36] G.998.2 Ethernet-based multi-pair bonding [37] G.998.3 Multi-pair bonding using time-division inverse multiplexing [38] G.999.1 Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [39] G.998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [40] G.983.1: Broadband optical access systems based on Passive Optical Networks (PON) [41] G.983.2: ONT management and control interface specification for B-PON [42] G.983.4: A broadband optical access system with increased service capability by wavelength allocation [43] G.983.4: A broadband optical access system with enhanced survivability [44] G.983.5: A broadband optical access system with enhanced survivability [45] G.984.4: Gigabit-capable Passive optical networks (G-PON): Characteristics [46] G.984.2: Gigabit-capable Passive optical Networks (G-PON): Transmission convergence layer specification [47] G.984.3: Gigabit-capable Passive optical networks (G-PON): ONT management and control interface specification [48] G.984.4: Gigabit-capable Passive optical networks (G-PON): NT management and control interface specification [49] G.984.5: Gigabit-capable Passive optical networks (GPON): Cong reach [50] G.984.7: Gigabit-capable passive optical networks (GPON): Congreach extension [51] G.984.7: Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [52] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Congreach [53] G.709: Interfaces for the Optical Transport Networks (CTN) [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Re	292	[35]	G.998.1 ATM-based multi-pair bonding
 [37] G.998.3 Multi-pair bonding using time-division inverse multiplexing [38] G.998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [39] G.998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [40] G.983.2: ONT management and control interface specification for B-PON [41] G.983.3: A broadband optical access system with increased service capability by wavelength allocation [42] G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [43] G.984.4: A broadband optical access system with enhanced survivability [45] G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics [46] G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): CNT management and control interface specification [49] G.984.4: Gigabit-capable passive optical networks (G-PON): CNT management and control interface specification [41] G.984.7: Gigabit-capable passive optical networks (GPON): Congreach [52] G.987.2: 10-Gigabit-capable passive optical networks (GPON): General requirements [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.2: 10-Gigabit-capable passive optical networks (CPON): Congreach [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [56] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV elect	293	[36]	G.998.2 Ethernet-based multi-pair bonding
 [38] G.993.1 Interface between the link layer and the physical layer for digital subscriber line (DSL) transceivers [39] G.998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [40] G.983.1: Broadband optical access systems based on Passive Optical Networks (PON) [41] G.983.2: ONT management and control interface specification for B-PON [42] G.983.3: A broadband optical access system with increased service capability by wavelength allocation [43] G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G.983.4: A broadband optical access system with enhanced survivability [45] G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics [46] G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable Passive Optical Networks (G-PON): ONT management and control interface specification [49] G.984.7: Gigabit-capable passive optical networks (GPON): Long reach [50] G.984.7: Gigabit-capable passive optical networks (GPON): Content requirements [51] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [52] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [53] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Content requirements [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE f	294	[37]	G.998.3 Multi-pair bonding using time-division inverse multiplexing
 (DSL) transceivers G.988.4 Improved Impulse Noise Protection (INP) for DSL Transceivers G.983.1: Broadband optical access systems based on Passive Optical Networks (PON) G.983.2: ONT management and control interface specification for B-PON G.983.3: A broadband optical access system with increased service capability by wavelength allocation G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment G.983.5: A broadband optical access system with increased service capability using dynamic bandwidth assignment G.984.4: Gigabit-capable passive optical networks (GPON): General characteristics G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification G.984.4: Gigabit-capable passive optical networks (G-PON): CNT management and control interface specification G.984.6: Gigabit-capable passive optical networks (G-PON): Enhancement band G.984.7: Gigabit-capable passive optical networks (G-PON): CNT management and control interface specification G.984.7: Gigabit-capable passive optical networks (GPON): Reach extension G.987.2: 10-Gigabit-capable passive optical networks (GPON): Physical media dependent (PMD) layer specification G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification	295	[38]	G.999.1 Interface between the link layer and the physical layer for digital subscriber line
 [39] G. 984.4 Improved Impulse Noise Protection (INP) for DSL Transceivers [40] G. 983.1: Broadband optical access systems based on Passive Optical Networks (PON) [41] G. 983.2: ONT management and control interface specification for B-PON [42] G. 983.3: A broadband optical access system with increased service capability by wavelength allocation [43] G. 983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G. 983.5: A broadband optical access system with increased service capability using dynamic bandwidth assignment [45] G. 984.1: Gigabit-capable passive optical networks (GPON): General characteristics [46] G. 984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G. 984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G. 984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G. 984.5: Gigabit-capable passive optical networks (G-PON): Congreach [50] G. 984.7: Ciapabit passive optical networks (GPON): Long reach [51] G. 987.3: 10-Gigabit-capable passive optical networks (GPON): Congreach [52] G. 987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [53] G. 987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G. 987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G. 709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [57] IEC 61334-4-1 - Distribution a	296		(DSL) transceivers
 [40] G. 983.1: Broadband optical access systems based on Passive Optical Networks (PON) [41] G. 983.2: ONT management and control interface specification for B-PON [42] G. 983.3: A broadband optical access system with increased service capability by wavelength allocation [43] G. 983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G. 983.5: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G. 983.5: A broadband optical access system with enhanced survivability [45] G. 984.1: Gigabit-capable passive optical Networks (G-PON): Characteristics [46] G. 984.2: Gigabit-capable passive Optical Networks (G-PON): Transmission convergence layer specification [47] G. 984.4: Gigabit-capable passive optical networks (G-PON): DNT management and control interface specification [48] G. 984.6: Gigabit-capable passive optical networks (G-PON): Enhancement band [50] G. 984.6: Gigabit-capable passive optical networks (G-PON): Long reach G. 984.7: 10-Gigabit-capable passive optical networks (XG-PON): General requirements [53] G. 987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G. 987.2: 10-Gigabit-capable passive optical networks (XG-PON): Transmission [55] G. 709: Interfaces for the Optical Transport Network (OTN) [56] [57] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G. 707: Network node interface for the synchronous digital hierarchy (SDH) [69] G. 707: Network node interfa	297	[39]	G.998.4 Improved Impulse Noise Protection (INP) for DSL Transceivers
 [41] G.983.2: ONT management and control interface specification for B-PON [42] G.983.3: A broadband optical access system with increased service capability by wavelength allocation [43] G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G.983.5: A broadband optical access system with enhanced survivability [45] G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics [46] G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G.984.5: Gigabit-capable passive optical networks (G-PON): Enhancement band [50] G.984.6: Gigabit-capable passive optical networks (GPON): Enhancement band [51] G.984.7: Gigabit-capable passive optical networks (GPON): Enhancement band [52] G.987.1: 10-Gigabit-capable passive optical networks (GPON): Cong reach [52] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [53] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (CTPON): Physical media dependent (PMD) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [57] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the	298	[40]	G.983.1: Broadband optical access systems based on Passive Optical Networks (PON)
 [42] G.983.3: A broadband optical access system with increased service capability by wavelength allocation [43] G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G.983.5: A broadband optical access system with enhanced survivability [45] G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics [46] G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G.984.5: Gigabit-capable passive optical networks (G-PON): Enhancement band [50] G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension [51] G.984.7: Gigabit-capable passive optical networks (GPON): Cong reach [52] G.987.1: 10-Gigabit-capable passive optical networks (CPON): Physical media dependent (PMD) layer specification [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [57] G.709: Interfaces for the Optical Transport Network (OTN) [58] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707: Network node interface for the synchronous digital hierarchy (S	299	[41]	G.983.2: ONT management and control interface specification for B-PON
 wavelength allocation G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment G.983.5: A broadband optical access system with enhanced survivability G.984.1: Gigabit-capable passive optical networks (G-PON): General characteristics G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification G.984.4: Gigabit-capable Passive optical networks (G-PON): Transmission convergence layer specification G.984.4: Gigabit-capable passive optical networks (G-PON): NT management and control interface specification G.984.6: Gigabit-capable passive optical networks (G-PON): Enhancement band G.984.6: Gigabit-capable passive optical networks (G-PON): Enhancement band G.984.6: Gigabit-capable passive optical networks (G-PON): Enhancement band G.984.7: Gigabit-capable passive optical networks (GPON): Reach extension G.984.7: Gigabit-capable passive optical networks (GPON): Congreach G.987.1: 10-Gigabit-capable passive optical networks (CA-PON): Physical media dependent (PMD) layer specification G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.709: Interfaces for the Optical Transport Network (OTN) IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt IEC 61334-4.1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707: Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adiustment scheme for virtual concatenated signals. 	300	[42]	G.983.3: A broadband optical access system with increased service capability by
 [43] G.983.4: A broadband optical access system with increased service capability using dynamic bandwidth assignment [44] G.983.5: A broadband optical access system with enhanced survivability [45] G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics [46] G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G.984.5: Gigabit-capable Passive optical networks (G-PON): Enhancement band [50] G.984.5: Gigabit-capable passive optical networks (GPON): Enhancement band [51] G.984.5: Gigabit-capable passive optical networks (GPON): Enhancement band [53] G.984.5: Gigabit-capable passive optical networks (GPON): Enhancement band [54] G.987.2: 10-Gigabit-capable passive optical networks (CPON): Long reach [55] G.709: Interfaces for the Optical Transport Networks (XG-PON): Physical media dependent (PMD) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rtc/rtc4090.txt [57] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [58] G.707: Network node interface for the synchronous digital hierarchy (SDH) [59] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	301		wavelength allocation
 dynamic bandwidth assignment [44] G.983.5: A broadband optical access system with enhanced survivability G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics [46] G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): Transmission convergence layer specification [49] G.984.4: Gigabit-capable passive optical networks (G-PON): NT management and control interface specification [50] G.984.5: Gigabit-capable passive optical networks (G-PON): Enhancement band [51] G.984.7: Gigabit-capable passive optical networks (GPON): Reach extension [52] G.987.1: 10-Gigabit-capable passive optical networks (CPON): Congreach [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [55] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [56] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707: Network node interface for the synchronous digital hierarchy (SDH) [67] G.7042: Link capacity adiustment scheme for virtual concatenated signals. 	302	[43]	G.983.4: A broadband optical access system with increased service capability using
 [44] G.983.5: A broadband optical access system with enhanced survivability [45] G.984.1: Gigabit-capable passive optical networks (G-PON): General characteristics [46] G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G.984.5: Gigabit-capable Passive Optical Networks (G-PON): ONT management and control interface specification [49] G.984.6: Gigabit-capable passive optical networks (GPON): Enhancement band [50] G.984.7: Gigabit-capable passive optical networks (GPON): Long reach [51] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): Congreating equipments [52] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [53] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [57] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	303		dynamic bandwidth assignment
 G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification G.984.5: Gigabit-capable passive Optical Networks (G-PON): Enhancement band G.984.6: Gigabit-capable passive optical networks (G-PON): Enhancement band G.984.7: Gigabit-capable passive optical networks (GPON): Enhancement band G.984.7: Gigabit-capable passive optical networks (GPON): Cong reach G.987.1: 10-Gigabit-capable passive optical networks (GPON): Cong reach G.987.2: 10-Gigabit-capable passive optical networks (CG-PON): General requirements G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.709: Interfaces for the Optical Transport Network (OTN) IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707: Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	304	[44]	G.983.5: A broadband optical access system with enhanced survivability
 G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification G.984.5: Gigabit-capable passive Optical Networks (G-PON): Enhancement band G.984.5: Gigabit-capable passive optical networks (GPON): Reach extension G.984.7: Gigabit-capable passive optical networks (GPON): Long reach G.984.7: Gigabit-capable passive optical networks (GPON): Long reach G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.709: Interfaces for the Optical Transport Network (OTN) IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.7042: Link capacity adjustment scheme for virtual concatenated sionals. 	305	[45]	G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics
 (PMD) layer specification G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification G.984.5: Gigabit-capable passive optical Networks (G-PON): Enhancement band G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension G.984.7: Gigabit-capable passive optical networks (GPON): Reach extension G.984.7: Gigabit-capable passive optical networks (GPON): Reach extension G.987.1: 10-Gigabit-capable passive optical networks (GPON): Reach extension G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.709: Interfaces for the Optical Transport Network (OTN) IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707 : Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	306	[46]	G.984.2: Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent
 [47] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G.984.4: Gigabit-capable passive optical Networks (G-PON): Enhancement band [50] G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension [51] G.984.7: Gigabit-capable passive optical networks (GPON): Long reach [52] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) [68] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	307		(PMD) layer specification
 layer specification [48] G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G.984.5: Gigabit-capable Passive Optical Networks (G-PON): Enhancement band [50] G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension [51] G.984.7: Gigabit-capable passive optical networks (GPON): Long reach [52] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707: Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	308	[47]	G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence
 [48] G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and control interface specification [49] G.984.5: Gigabit-capable Passive Optical Networks (G-PON): Enhancement band [50] G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension [51] G.984.7: Gigabit-capable passive optical networks (GPON): Long reach [52] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	309		layer specification
 control interface specification G.984.5: Gigabit-capable Passive Optical Networks (G-PON): Enhancement band G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension G.984.7: Gigabit-capable passive optical networks (GPON): Long reach G.984.7: Gigabit-capable passive optical networks (GPON): General requirements G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): General requirements G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.709: Interfaces for the Optical Transport Network (OTN) IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707: Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adiustment scheme for virtual concatenated signals. 	310	[48]	G.984.4: Gigabit-capable passive optical networks (G-PON): ONT management and
 [49] G.984.5: Gigabit-capable Passive Optical Networks (G-PON): Enhancement band [50] G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension [51] G.984.7: Gigabit-capable passive optical networks (GPON): Long reach [52] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707: Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	311		control interface specification
 [50] G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension [51] G.984.7: Gigabit-capable passive optical networks (GPON): Long reach [52] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707: Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	312	[49]	G.984.5: Gigabit-capable Passive Optical Networks (G-PON): Enhancement band
 G.984.7: Gigabit-capable passive optical networks (GPON): Long reach G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.709: Interfaces for the Optical Transport Network (OTN) IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707: Network node interface for the synchronous digital hierarchy (SDH) G.704: Link capacity adjustment scheme for virtual concatenated signals. 	313	[50]	G.984.6: Gigabit-capable passive optical networks (GPON): Reach extension
 [52] G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements [53] G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	314	[51]	G.984.7: Gigabit-capable passive optical networks (GPON): Long reach
 G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification G.709: Interfaces for the Optical Transport Network (OTN) IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707: Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	315	[52]	G.987.1: 10-Gigabit-capable passive optical networks (XG-PON): General requirements
 dependent (PMD) layer specification [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707: Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	316	[53]	G.987.2: 10-Gigabit-capable passive optical networks (XG-PON): Physical media
 [54] G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	317	[]	dependent (PMD) laver specification
 ich is interfaces for the Optical Transport Network (OTN) iETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt iEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. iEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. iEC 6133 iEC 6707: Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	318	[54]	G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission
 [55] G.709: Interfaces for the Optical Transport Network (OTN) [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	319	[0.]	convergence (TC) laver specification
 [60] EFFECT UNDERGED FOR the Optical Hamper Hamper Hermony (OFH) [51] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [52] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) [69] G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	320	[55]	G 709: Interfaces for the Optical Transport Network (OTN)
 [56] IETF RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels, http://www.ietf.org/rfc/rfc4090.txt [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	321	[00]	
 http://www.ietf.org/rfc/rfc4090.txt IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707 : Network node interface for the synchronous digital hierarchy (SDH) G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	322	[56]	IETE REC 4090. East Reroute Extensions to RSVP-TE for LSP Tunnels
 324 325 326 [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. 328 329 [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. 332 [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) 333 [69] G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	323	[00]	http://www.jetf.org/rfc/rfc4090.txt
 325 326 [58] IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. 328 329 [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. 332 [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	324		
 IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line carrier systems operating over EHV/HV/MV electricity grids. IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707 : Network node interface for the synchronous digital hierarchy (SDH) G.7042; Link capacity adjustment scheme for virtual concatenated signals. 	325		
 in the observed in the observed i	326	[58]	IEC 62488-1 (Formerly EN60663) - Part 1: Planning of analogue and digital power line
 328 329 [59] IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. 332 [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) 333 [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	327	[00]	carrier systems operating over EHV//HV//MV electricity grids
 IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4: Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707 : Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	328		carrier systems operating over Erry/Try/WV electricity grids.
 Mains. Data communication protocols - Section 1: Reference model of the communication system. G.707 : Network node interface for the synchronous digital hierarchy (SDH) G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	320	[59]	IEC 61334-4-1 - Distribution automation using distribution line carrier systems - Part 4:
 331 system. 332 [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) 333 [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	330	[00]	Mains Data communication protocols - Section 1: Reference model of the communication
 332 [68] G.707 : Network node interface for the synchronous digital hierarchy (SDH) 333 [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals. 	331		evetem
333 [69] G.7042: Link capacity adjustment scheme for virtual concatenated signals.	332	[68]	G 707 : Network node interface for the synchronous digital hierarchy (SDH)
	333	[69]	G.7042: Link capacity adjustment scheme for virtual concatenated signals.

334 [70] G.7041: Generic Framing Procedure (GFP) 335 G.803: Architecture of transport networks based on the synchronous digital hierarchy [71] 336 (SDH) G.783: Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks 337 [72] 338 339 340 [73] ISO/IEC 14908: 341 ISO/IEC 14908-1: Control network protocol stack 342 ISO/IEC 14908-2: Twisted-pair channel for networked control systems 343 ISO/IEC 14908-3: Power Line channel in the EN 50065-1 CENELEC C-Band 344 ISO/IEC 14908-4: Transporting over Internet Protocol (IP) networks 345 ETSI TS 103 908: Power Line channel in the EN 50065-1 CENELEC A-Band 346 [74] ITU- T G 9955 / 56 Narrow-band OFDM power line communication transceivers 347 [75] W3C REC-xml-20001006, Extensible Markup Language (XML) 1.0 348 [76] W3C WD-ws-arch-20021114, Web Services Architecture 349 [77] W3C REC-xml-names, Name spaces in XML 350 IETF RFC 2616Hypertext Transfer Protocol -- HTTP/1.1 [78] W3C RECsoap12-part1-20070427, SOAP Version 1.2 Part 1: Messaging Framework 351 [79] W3C REC-soap12-part2-20070427, SOAP Version 1.2 Part 2: Adjuncts, Section 7: SOAP 352 [80] 353 HTTP Binding, OASIS, wsdd-soapoverudp-1.1-spec-pr-01, OASIS Standard, SOAP-over-UDP 354 [81] [82] IETF RFC 5246The Transport Layer Security (TLS) Protocol, Version 1.2 355 W3C REC-ws-addrcore-20060509, Web Services Addressing 1.0 356 [83] W3C RECws-addr-soap-20060509, Web Services Addressing 1.0 - SOAP Binding 357 [84] 358 OASIS, wsdd-discovery-1.1-spec-os, Web Services Dynamic Discovery (WS-Discovery) [85] W3C, SUBM-WSEventing-20060315, Web Services Eventing (WS-Eventing) 359 [86] 360 [87] W3C, NOTEwsdl-20010315, Web Services Description Language (WSDL) 1.1, W3C, SUBM-wsdl11soap12-20060405, WSDL 1.1 Binding Extension for SOAP 1.2 361 [88] 362 [89] ETSI, TS 102690 Machine-to-Machine communications (M2M); Functional architecture 363 [90] ETSI, TS 102921 Machine-to-Machine communications (M2M); mla, dla and mld 364 interfaces 365 [91] IETF RFC 6120Extensible Messaging and Presence Protocol (XMPP): Core 366 [92] IETF RFC 6121Extensible Messaging and Presence Protocol : Instant Messaging and 367 Presence 368 [93] IETF RFC 6122Extensible Messaging and Presence Protocol : Address Format IETF RFC 3031 Multiprotocol Label Switching Architecture 369 [94] IETF RFC 3032MPLS Label Stack Encoding 370 [95] 371 [96] IETF RFC 791 Internet Protocol IETF RFC 2460Internet Protocol, Version 6 (IPv6) Specification 372 [97] 373 [98] ITU-T G.991.1 High bit rate digital subscriber line (HDSL) transceivers Characteristics of optical transport network hierarchy equipment functional 374 [99] ITU-T G.798 375 blocks 376 [100] ITU-T G.781 Synchronization layer functions Architecture of optical transport networks 377 [101] ITU-T G.872 378 [102] IETF RFC 6178Label Edge Router Forwarding of IPv4 Option Packets Characteristics of synchronous digital hierarchy (SDH) equipment 379 [103] ITU-T G.783 380 functional blocks 381 [104] ITU-T G.798 Characteristics of optical transport network hierarchy equipment functional 382 blocks ITU-T G.803 383 [105] Architecture of transport networks based on the synchronous digital 384 hierarchy (SDH) 385 [106] IEEE 802.1: list of standards is available under this link а 386 http://standards.ieee.org/about/get/802/802.1.html

387

388 2 Symbols and abbreviations

389	•	
390	Acronyms	
301	3GPP	3rd Generation Partnership Project
392	6LoWPAN	IPv6 over Low power Wireless Personal Area Networks
302		Asymmetric digital subscriber line
394	AES	Advanced Encryption Standard
395	ANSI	American National Standard Institute
396	ASHRAE	American Society of Heating Refrigerating and Air-Conditioning
397	ASK	Amplitude Shift Keving
398	ATM	Asynchronous Transfer Mode.
399	B-PON	Broadband PON
400	BPL	Broadband Power Line
401	BPSK	Binary Phase Shift Keving
402	CCM	Cloud Controls Matrix
403	CEMS	Customer Energy Management Systems
404	CEN	Comité Européen de Normalisation.
405	CENELEC	Comité Européen de Normalisation Electrotechnique
406	CO	Central Office
407	CSMA-CA	Carrier Sense Multiple Access with Collision Avoidance
408	DA	Distribution Automation
409	DLMS/COSEM	Device Language Message Specification / Companion Specification for Energy
410		Metering
411	DNP	Distributed Network Protocol
412	DODAG	Destination Oriented Directed Acyclic Graph
413	DRMS	Demand Response Management System
414	DSL	Digital Subscriber Line
415	DSSS	Direct Sequence Spread Spectrum
416	DWDM	Dense Wavelength-division multiplexing
417	E-UTRAN	Evolved UTRAN
418	EIRP	Equivalent Isotropically Radiated Power
419	ENC-MAC	Encrypted Message Authentication Code
420	ENODEB	Evolved Node B
421	ETSI	European Telecommunications Standard Institute
422	ETX	Expected Transmission
423	FAN	Field Area Network
424	FCC	Federal Communication Commission
425	FDD	Frequency-Division Duplexing
426	FLISR	Fault Location and Service Recovery
427	FR	Frame Relay
428	FIIB	Fiber To The Building (Business)
429	FIIC	Fiber to the Cabinet
430		FIDEr-to-the-Home
431	G-PUN	Gigabit capable Passive Optical Networks.
43Z 422	GIMPLS	Generalized Multi-Protocol Label Switching
433	GOUSE	Ceneral Dedict Defined Substation Events
404 125	GERO	Global System for Mobile
400 136	U2U	
430 127		Home Area Notwork
431 128		Home and Building Electronic Systems
-00		רוטווים מהע שעוועוווע בופטנוטווט פאפנפווופ

439	HDSL	High-bit-rate digital subscriber line
440	HeNB	Home eNodeB
441	HIPERMAN	HIgh PErformance Radio Metropolitan Area Network
442	HSPA	High Speed Packet Access
443	HV	High Voltage
444	IFD	Intelligent Electronic Device
445	IFFF	Institute of Electrical and Electronics Engineers
440 446	IFTE	Internet Engineering Task Force
440 1/17	IP	Internet Protocol
448		Internet Protocol Television
449	IP\/4	Internet Protocol Version 4
450	IPv6	Internet Protocol Version 6
450	ISM	Industrial Scientific and Medical (frequency band)
457 452		International Organization for Standardization
452		International Telecommunications Union for the Telecommunication
455	110-1	Standardization Sector
404		EN 50000 (was Konney)
400		Lever 2 Tuppelling Distance
400		Layer 2 Turinening Protocol
457		Low Frequency Narrow Band
458		Low power and Lossy Networks
459	LNAP	
460	LON	local operation network
461	LR WPAN	Low Rate Wireless Personal Area Network
462	LSP	Label Switched Path
463	LTE	Long Term Evolution
464	LV	Low Voltage
465	MAC	Media Access Control
466	MIMO	Multiple Input Multiple Output
467	MPLS	Multiprotocol Label Switching
468	MPLS-TP	MPLS Transport Profile
469	MV	Medium Voltage
470	NAN	Neighborhood Area Network
471	NNAP	Neighborhood Network Access Point
472	O-QPSK	Offset Quadrature Phase Shift Keying
473	O&M	Operation and Maintenance
474	OAM	Operations, Administration, and Maintenance
475	OFDM	Orthogonal Frequency Division Multiplexing
476	OFDMA	Orthogonal Frequency-Division Multiple Access
477	OLT	Optical Line Termination
478	ONU	Optical Network Unit
479	OPEX	Operation Expenditure
480	OSI	Open System Interconnection
481	OSS	Operations support system
482	OTN	Optical Transport Network
483	P2P	Point To Point
484	PAN	Personal Area Network
485	PBR	Performance Based Rates
486	PDH	Plesiochronous Digital Hierarchy
487	PEV	Plug in Electric Vehicle
488	PHP	Penultimate Hop Popping
489	PLC	Power Line Carrier
490	PLC	Programmable Logic Controller
491	PON	Passive Optical Network
	-	

492	PSN	Packet Switched Network
493	QoS	Quality Of Service
494	RF	Radio Frequency
495	RFC	Request for Comments
496	RPL	Routing Protocol for Low power and lossy networks (LLN)
497	SAIDI	System Average Interruption Duration Index
498	SC-FDMA	Single Carrier Frequency Division Multiple Access
499	SCADA	Supervisory control and data acquisition
500	SDH	Synchronous Digital Hierarchy
501	SHDSL	Single-pair high-speed digital subscriber line
502	SON	Self Organizing Network
503	SONET	Synchronous Optical Networking
504	SRD	Short Range Device
505	TDD	Time-Division Duplexing
506	TDM	Time-Division Multiplexing
507	TPR	Tele-Protection Relay
508	TTI	Transmission Time Interval
509	UE	User Equipment
510	UMTS	Universal Mobile Telecommunications System
511	VDSL	Very-high-bit-rate digital subscriber line
512	WAN	Wide Area Network
513	WASA	Wide Area Situation Awareness
514	WLAN	Wireless Local Area Network
515	WMAN	Wireless Metropolitan Area Network
516	WPA	Wi-Fi Protected Access
517	WPA2	Wi-Fi Protected Access version II
518	WPAN	Wireless Personal Area Network
519	XG-PON	10G PON
520	xDSL	Digital Subscriber Line
521		
522		

523 **3 Executive Summary** 524

525 This document deals with communication aspects of the Smart Grid. The main objective of the 526 study performed by the RAWG on Smart Grid communications is to identify gaps that need to be addressed in standardization organisations. This work considered generic Smart Grid use cases to 527 528 derive the requirements and to consider the adequacy of those requirements to the existing 529 communications standards in order to identify communication standards gaps. RAWG found that there are no specific standardisation gaps for Layer 1 to Layer 4 standards (according to OSI 530 531 model) mandating the immediate need for evolution of existing standards. However, there is an immediate need to develop profiling and interoperability specifications based on the existing 532 533 communications standards. The profiling work is the task of the SDOs, however for the purpose of explaining our vision of such profiling, a draft profile is proposed in this document for an example¹ 534 Smart Grid sub-network architecture. 535

536

537 The remaining of this document is organised as follows

- Clause 1 continues to provide a set of recommendations for standardisation work as well
 as a mapping of the communication technologies to Smart Grid communication sub networks
- 541 Clause 2 provides an overview of the Communication standards that are applicable for
 542 Smart Grid communications
- Clause 3 provides a description of generic Smart Grid use cases, their communication requirements, along with recommendations on how to setup the communication networks to address these requirements
- Clause 4 provides an example profile and develops interoperability considerations

547 **3.1 Recommendations**

548 3.1.1 Recommendation 1

RAWG has examined the communication needs of different Smart Grid use cases. There are cases that have very stringent communications requirements (PMU, Tele-protection, etc.), however we believe all these requirements can be addressed using existing communications standards with sufficient engineering guidelines (see R2). There is already a large set of communication standards for each network segment identified. RAWG did not identify any gaps mandating the need for new communication standards.

555 **3.1.2 Recommendation 2**

556 Communication network performance including QoS, reliability, and security must be managed so 557 to achieve the smart grid communications requirements. This mandates the need to develop 558 communication profiles on "how to use" the current communication standards for Smart Grids. IEC 559 in collaboration with bodies such as IETF, IEEE, ETSI, CEN and CENELEC is the right place to 560 develop such profiles. A profile is defined to be a description of how to use the different options 561 and capabilities within a set of standards for a particular use.

562 3.1.3 Recommendation 3

563 There is a need to develop a standardised Service Level Specification (i.e. the technical part of a 564 Service Level Agreement: availability, resiliency, DoS, etc.) that allows a utility network or 565 application to rely on predictable network performance when communication is provided by a 566 shared communication infrastructure.

¹ RAWG may develop more than one profile

567 3.1.4 Recommendation 4

568 Deployment constraints mandate the need for both wireline and wireless communications. Utility 569 access to wireless network resources is necessary. Where spectrum is allocated for use by utility 570 networks, this will help progress the Smart Grid deployments ensuring the standard work and 571 products take into account the allocated spectrum for utilities.

572 **3.1.5 Recommendation 5**

573 Given the plethora of L1 and L2 technologies (according to OSI) used in the different 574 communication standards (as well as the upcoming ones), IP shall be the recommended L3 575 technology to ensure communications are future proof and avoid the unnecessary need for 576 interworking gateways in different parts of the Smart Grid communication networks.

577 3.1.6 Recommendation 6

578 This document provides a list of applicable communication technologies as well as their 579 applicability statement to different sub-networks of the communications architecture. The choice of 580 a technology for a sub-network is left to implementations, which need to take into account a variety 581 of deployment constraints.

582 **3.1.7 Recommendation 7**

Profiles (see Recommendation 2) should be used as a basis for building interoperability test specifications. When interoperability test specifications / suites exist, those should be leveraged for building test specifications for the communication profiles.

586 3.1.8 Recommendation 8

588

587 ESOs should consider the approval of their specifications applicable to Smart Grid as ENs.

Recognizing the role of consortia in providing & developing specifications for communications and considering the fact that these consortia adopt an open standards approach (i.e. IEEE, IETF, W3C) the European Commission should endorse the importance of their specifications in building communications network, including for Smart Grid. There are globally recognized technologies & deployments for communications that use a selection of open specifications from ESOs, global SDOs and these consortia. The endorsement of the specifications into ENs, may not be reasonable in defined timeframe or achievable.

596 3.2 Smart Grid sub-networks

597 We are identifying the different networks that play a role in the overall communication architecture 598 and we are representing their scope using the SGAM model (figure 1, below).

599 600

609

Figure 1: SGAM Framework Architecture

The following networks could be defined, see figure 3-2 below where these terms are used:

603 • (A) Subscriber Access Network

Networks that provide general broadband access (including but not limited to the internet)
 for the customer premises (homes, building, facilities). They are usually not part of the
 utility infrastructure and provided by communication service providers, but can be used to
 provide communication service for Smart Grid systems covering the customer premises
 like Smart Metering and Aggregated prosumers management.

610 • (B) Neighborhood network

611 Networks at the distribution level between distribution substations and end users. It is 612 composed of any number of purpose-built networks that operate at what is often viewed as 613 the "last mile" or Neighborhood Network level. These networks may service metering, 614 distribution automation, and public infrastructure for electric vehicle charging, for example. 615

616 • (C) Field Area Network

617 Networks at the distribution level upper tier, which is a multi-services tier that integrates the 618 various sub layer networks and provides backhaul connectivity in two ways: directly back to 619 control centres via the WAN (defined below) or directly to primary substations to facilitate 620 substation level distributed intelligence. It also provides peer-to-peer connectivity or hub 621 and spoke connectivity for distributed intelligence in the distribution level. 622

623 • (D) Low-end intra-substation network

624 Networks inside secondary substations or MV/LV transformer station. It usually connects 625 RTUs, circuit breakers and different power quality sensors.

627 • (E) Intra-substation network

626

632

641

651

652

653

654

667

673

Network inside a primary distribution substation or inside a transmission substation. It is
involved in low latency critical functions such as tele-protection. Internally to the substation,
the networks may comprise from one to three buses (system bus, process bus, and multiservices bus).

633 • (F) Inter substation network

Networks that interconnect substations with each other and with control centres. These
 networks are wide area networks and the high end performance requirements for them can
 be stringent in terms of latency and burst response. In addition, these networks require very
 flexible scalability and due to geographic challenges they can require mixed physical media
 and multiple aggregation topologies. System control tier networks provide networking for
 SCADA, SIPS, event messaging, and remote asset monitoring telemetry traffic, as well as
 peer-to-peer connectivity for tele-protection and substation-level distributed intelligence.

642 • (G) Intra-Control Centre / Intra-Data Centre network

650 • (H) Enterprise Network

Enterprise or campus networks, as well as inter-control centre networks. Since utilities typically have multiple control centres and multiple campuses that are widely separated geographically.

655 • (I) Balancing Network

Networks that interconnect generation operators and independent power producers with
balancing authorities, and networks those interconnect balancing authorities with each
other. In some emerging cases, balancing authorities may also dispatch retail level
distributed energy resources or responsive load.

661 • (J) Interchange network

662 Networks that interconnect regional reliability coordinators with operators such as 663 transmission operators and power producers, as well as networks that connect wholesale 664 electricity markets to market operators, providers, retailers, and traders. In some cases, the 665 bulk markets are being opened up to small consumers, so that they have a retail-like 666 aspect that impacts networking for the involved entities.

668 • (K) Trans-Regional / Trans-National network

Networks that interconnect synchronous grids for power interchange, as well as emerging
national or even continental scale networks for grid monitoring, inter-tie power flow
management, and national or continental scale renewable energy markets. Such networks
are just beginning to be developed.

• (L) Wide and Metropolitan Area Network²

² Several of the shown networks could be based on WAN technologies. However since those networks –

Networks that can use public or private infrastructures. They inter-connect network devices
over a wide area (region or country) and are defined through SLAs (Service Level
Agreement).

679 • (M) Industrial Fieldbus Area Network

680 Networks that interconnect process control equipment mainly in power generation (bulk or distributed) in the scope of smart grids.

682

683

Figure 2: Mapping of communication networks on SGAM Communication Layer

- 684 Note 1: These areas of responsibility are an example mapping and cannot be normative to all business 685 models.
- 686 Note 2: It is assumed that that sub-networks depicted in the above figure are interconnected (where 687 needed) to provide end-to-end connectivity to applications they support. VPNs, Gateways and 688 firewalls could provide means to ensure network security or virtualization.

A. can be run / managed by different stakeholders,

B. could provide different level of security or different SLAs

⁻ they are depicted separately. It should be noted however that this is a logical view and that in practice multiple logical networks can be implemented using a single WAN technology. Implementation design choices are beyond the scope of this report

690 3.3 Applicability statement of the Communication Technologies to the Smart Grid 691 Sub-networks

The following table provides an applicability statement indicating the standardized communication technologies to the Smart Grid sub-networks depicted in the previous sub-clause. As per Recommendation 6, the choice of a technology for a sub-network is left to implementations, which need to take into account a variety of deployment constraints.

697

689

692

698
699Note:This report addresses communication technologies related to smart grid deployment. It includes
communication architecture and protocols that could be used in smart metering deployments as well
as other use cases (like feeder automation, FLISR etc.). For AMI only specific standards, refer to
CEN/CLC/ETSI TR 50572 and other future deliverables as listed in SMCG_Sec0025_DC_V0.3 Work
Program Document.

	Subscriber ^{accecc}	Veighbourt	inort 1000	ow end in	ntrastion ^{ura}	nter subst	hta control	ntra data C	Enterbrise	8 _{alancing}	nterchanes	r _{ans} resin	Trans natio	NaW Nav	holustrial Fieldur.
	А	В	C	D	E	F		G	н	1	J	1	<	L	м
Narrow band PLC (Medium and Low voltage)	x	x	×												
Narrow band PLC (High and very High voltage)		~			x	x									
Broadband PLC	х	х													
IEEE 802.15.4	х	х	х												
IEEE 802.11	х	х		х	х										
IEEE 802.3/1				х	х		х	х	х						х
IEEE 802.16	х	х	х												
ETSI TS 102 887		х	х												
IPv4	х	х	х	х	х	х	х	х	x	х	х	х	х	х	
IPv6	х	х	х	х	х	х	х	х	x	х	х	х	х	х	
RPL/6LowPan	х	х	х												
IEC 61850		х	х	х	х	х								х	
IEC 60870-5				х	х	х								х	
GSM / GPRS / EDGE	x	x												x	
3G / WCDMA /															
UMTS / HSPA	х	х					х	х	х	х	х	х	х	х	
LTE/LTE-A	х	х	х	х		х	х	х	х	х	х	х	х	х	
SDH/OTN	х	х	х	х	х	х	х	х	х	х	х	х	х	х	
IP MPLS / MPLS															
TP	х	х	х	х	х	х	х	х	х	х	х	x	х	х	
EN 13757		х													
DSL/PON	х	х				x								х	
Higher layer comm protocol	x	x	x			x	x	x	x	x	x	x	x	x	

Table 1: Applicability statement of the communication technologies to the smart grid sub-networks

705

 $^{^{3}}$ IEEE GEPON and EPON are considered to be part of DSL/PON line

706 **4 Communication Standards for the Smart Grid**

707 4.1 Internet Protocol Technology

708 4.1.1 The Key Advantages of Internet Protocol

An end-to-end IP Smart-Grid architecture can leverage 30 years of Internet Protocol technology development [RFC 6272] guaranteeing open standards and interoperability as largely demonstrated through the daily use of the Internet and its two billion end-users [Stats].

- Note: Using the Internet protocol suite does not mean that an infrastructure running IP has to be
 an open or publicly accessible network-indeed, many existing mission-critical but private
 and highly secure networks leverage the IP architecture, such as inter- banking networks,
 military and defense networks, and public-safety and emergency-response networks, to
 name a few.
- 717 One of the differences between Information and Communications Technology (ICT) and the more 718 traditional power industry is the lifetime of technologies. Selecting the IP layered stack for Smart 719 Grid infrastructure brings future proofing through smooth evolutionary steps that do not modify the 720 entire industrial workflow. Key benefits of IP are:
- Open and Standards-based: Core components of the network, transport and applications layers standardized by the Internet Engineering Task Force (IETF) while key physical, data link, and applications protocols come from usual industrial organizations, such as, IEC, ANSI, SAE, IEEE, ITU, etc.
- Lightweight: Devices installed in the last mile such as smart meters, sensors, and
 actuators are not like PC and servers. They have limited resources in terms of power, CPU,
 memory, and storage. Therefore, an embedded networking stack must work on few kilobits
 of RAM and a few dozen kilobits of Flash memory. It has been demonstrated over the past
 years that production IP stacks perform well in such constrained environments.
- Versatile: Last mile infrastructure in Smart Grid has to deal with two key challenges. First,
 one given technology (wireless or wired) may not fit all field deployment's criteria. Second,
 communication technologies evolve at a pace faster than the expected 15 to 20 years
 lifetime of a smart meter. The layered IP architecture is well equipped to cope with any type
 of physical and data link layers, making it future proof as various media can be used in a
 deployment and, over time, without changing the whole solution architecture and data flow.
- **Ubiquitous:** All recent operating systems releases from general-purpose computers and servers to lightweight embedded systems (TinyOS, Contiki, etc.) have an integrated dual (IPv4 and IPv6) IP stack that gets enhanced over time. This makes a new networking feature set easier to adapt over time.
- Scalable: As the common protocol of the Internet, IP has been massively deployed and tested for robust scalability. Millions of private or public IP infrastructure nodes, managed under a single entity have been operational for years, offering strong foundations for newcomers not familiar with IP network management.
- Manageable and Secure: Communication infrastructure requires appropriate management and security capabilities for proper operations. One of the benefits of 30 years of operational IP networks is its set of well-understood network management and security protocols, mechanisms, and toolsets that are widely available. Adopting IP network management also helps utility operational business application by leveraging network-

749 management tools to improve their services, for example when identifying power outage
750 coverage through the help of the Network Management System (NMS).

- Stable and resilient: With more than 30 years of existence, it is no longer a question that IP is a workable solution considering its large and well-established knowledge base. More important is how we can leverage the years of experience accumulated by critical infrastructures, such as financial and defense networks as well as critical services such as Voice and Video that have already transitioned from closed environments to open IP standards. It also benefits from a large ecosystem of IT professionals that can help designing, deploying and operating the system solution.
- End-to-end: The adoption of IP provides end-to-end and bi-directional communication
 capabilities between any devices in the network. Centralized or distributed architecture for
 data manipulations are implemented according to business requirements. The removal of
 intermediate protocol translation gateways facilitates the introduction of new services.

762 4.1.2 IP layered architecture

The IP architecture offers an open standard layered architecture that perfectly fit in the smart grid new requirements. It offers also a migration path for some non-IP protocols and implementations like DNP, Modbus and KNX.

767 The following diagram is representing such architecture:

769 770

766

768

Figure 3: IP standard protocol layers

Note: this Protocol Architecture is promoting the use of IP in the protocol layers; innovative data transport solutions may be developed in the future.

773 4.1.3 The Technical Components of IPv6 Smart Grid Infrastructure

774 Today, the Internet runs mostly over IP version 4 (IPv4), with exceptions in academic and research 775 networks, leading Internet Service Providers or Enterprises, and government networks (where IPv6 is increasingly being deployed). However, the Internet faces a major transition [OECD] due to the 776 777 exhaustion of address pool managed by IANA since February 2011. With little existing IPv4 networking legacy in the areas of AMI and Distribution Automation, there is an opportunity to start 778 deploying IPv6 as the de facto IP version from Day One. The industry has been working on IPv6 779 780 for nearly 15 years, and the adoption of IPv6 —which provides the same IP services as IPv4 would 781 be fully aligned with numerous recommendations (U.S. OMB and FAR, European Commission 782 IPv6 recommendations, Regional Internet Registry recommendations, and IPv4 address depletion countdown) and latest 3G cellular evolution known as LTE (Long Term Evolution). 783

Moreover, all new developments in relation to IP for Smart Objects and LLNs as discussed above,
 make use of or are built on IPv6 technology. Therefore, the use of IPv6 for Smart Grid deployment
 benefits from several features, some being extensively reviewed in the next sections:

- A huge address space accommodating any expected multi-millions meter's deployment (AMI), thousands of sensors (DA) over the hundred thousands of secondary substations and additionally all standalone meters. It includes additional flexibility of address configuration that helps adapting with the size of deployments as well as the need to lower field workers tasks when installing small devices. The structure of the IPv6 address is also flexible enough to manage a large number of sub-networks that may be created by futures services such as e-vehicle charging stations or distributed renewable energy
- IPv6 is used IP version for meter communication over RF Mesh wireless (IEEE 802.15.4g, DECT Ultra Low Energy) and Power Line Communications infrastructures (IEEE P1901.2) using the 6LoWPAN adaptation layer that only defines IPv6 as its protocol version.
- IPv6 is the de facto IP version for the standardized IETF Routing Protocol for Low Power and Lossy Networks (RPL)—IETF RoLL WG—RPL is an IPv6-only protocol.

799 4.1.4 IPv6 Addressing

The adoption of IPv6 requires an Energy Provider to consider all steps required by an IP network design and particularly an understanding of IPv6 addressing and how internal policies may help the operations.

803 Global, public, and private address space have been defined for IPv6, therefore a decision must be 804 made regarding which type of IPv6 addressing scheme should be used in utility networks. Global addressing means the utility must follow the Regional Internet Registries (RIR) policies (such as 805 806 ARIN https://www.arin.net/policy/nrpm.html) to register an IPv6 prefix that is large enough for the 807 expected deployment and its expansion over the coming years. This does not mean the address 808 space allocated to the infrastructure must be advertised over the Internet allowing any Internet users to reach a given device. The public prefix can be advertised if representing the entire utility 809 corporation-or not-and proper filtering mechanisms are in place to block all access to the Field 810 811 Area Networks and devices. On the other end, using a private address space means the prefix not 812 be advertised over the Internet, but, in case there is a need for B2B services and connectivity, a 813 private address would lead to the deployment of additional networking devices known as IPv6-IPv6 NPT (Network Prefix Translation, RFC 6296) gateways. 814

- 815 Once the IPv6 addressing structure (see RFC 4291, 4193) and policies are well understood and a 816 prefix is allocated to the infrastructure, it is necessary to structure the addresses according to the 817 number of sites and end- points that would connect to it. This is no different to what an ISP or a 818 large Enterprise has to perform. (See 6NET)
- 819 Internal policies may be defined by the way an IPv6 address is assigned to an end-device, by 820 using a global or private prefix.
- 821 Three methods to set an IPv6 address on an end-point are available:
- Manual configuration-This is appropriate for Head-End and NMS servers that never change their address, but is inappropriate to millions of end-points, such as meters, in regards to the associated operational cost and complexity
- Stateless auto-configuration-A mechanism similar to Appletalk, IPX and OSI, meaning
 an IPv6 prefix gets configured on a router interface (interface of any routing device such as
 a meter in a mesh or PLC AMI network), which is then advertised to nodes attached to the

- interface. When receiving the prefix at boot time, the node can automatically set-up its IPv6address
- 830 Stateful auto-configuration-Through the use of DHCPv6 Individual Address Assignment, 831 this method requires DHCPv6 Server and Relay to be configured in the network but benefits of a strong security as the DHCPv6 process can be coupled with AAA 832 authentication, population of Naming Services (DNS) available for Head-End and NMS 833 834 The list above is the minimum set of tasks to be performed, but as already applications. indicated; you must also establish internal policies and operational design rules. This is 835 particularly true when considering security and management tasks such as registering IPv6 836 addresses and names in DNS (Domain Name System) and in NMS (network management 837 838 station(s) or setting-up filtering and firewalling across the infrastructure.

4.2 Field, Neighborhood, home / building area networks overview

840 4.2.1 Introduction

These networks are different from the access network and Wide area network in the sense that they mainly interconnect the end devices each together as an autonomous network or to the access network. Some examples of these networks are:

- HAN (Home area networks which interconnects home devices)
- PAN (Personal area networks which interconnects body sensors, personal display, personal phones or smart phones etc...
- FAN (Field Area networks which in the case of smart grid interconnects smart meters, power sensors, EVs, etc...).
- NAN (Neighbor area networks: other name for the FAN)
- 851 This section will list the main specifications of technologies that are based on open standards.

852 4.2.2 Power Line Technology

853 4.2.2.1 Introduction

850

857

Under the term of **Power Line Communication (PLC)** a wide class of technologies is identified which allow the exploitation of almost all type of power line cables. PLC can be applied to multiple Smart Grid sub-networks such as inter substation networks and neighbor area networks.

The figure below, provided for the sole purpose of illustration, gives some examples of PLC communications.

860 861

Figure 4: Example of PLC usage

PLC has been used since long time providing for both specific solutions for power utility applications as well as communications access solutions and more recently due to increasingly interest and market needs has been extended to cover in-home systems needs.

865

Furthermore power lines provide a communication path that puts the utility in control of the communication capabilities.

868 4.2.2.2 PLC Technologies Classification

For our initial considerations, PLC technology can be classified taking into account three key features:

- The level of voltage where they are operated (Low, Medium, High, Extra High Voltage LV/MV/HV/EHV)
- The allocated ranges of frequencies
- Data rates (throughput)
- A) Narrowband PLC technologies, also known as Distribution Line Carrier (DLC), is
 capable of data rates of few kilobits per second operate in Europe in the so called *CENELEC bands*:
- CENELEC A band: 3–95 kHz reserved exclusively to power utilities;
- CENELEC B band: 95–125 kHz any application;
- CENELEC C band: 125–140 kHz in-home networking;
- CENELEC D band: 140–148.5 kHz alarm and security systems.

884 In countries out of Europe Narrowband PLC could be allocated within 3–500 kHz bands.

885

- Recently advanced multicarrier modulation technologies, using the same allocated CENELEC
 bands, made it possible to reach data rates in the order of hundreds of kilobits per second.
- B) Broadband PLC (BPL) technologies supporting both high data rate bidirectional transmission as well as last mile internet-access providing for data rates ranging between tens of kilobits per second up to ten of megabits per second. They can be operated over Medium and Low Voltage electricity Power Lines.

893 4.2.2.3 PLC Standards

There are several existing and ongoing standards that deal with PLC communications. These standards have been ratified by Standards Developing Organizations (SDOs) like IEC, ISO, CENELEC, ETSI, ITU-T, and IEEE or based on industry fora or alliances.

897

898

Table 2: Relevant Narrowband PLC Standards

899 Note: fora/consortia specifications are depicted in Appendix A.

SDOs - Alliance - Industry	Standard Name	Frequency Bands	Power Line Segment		
IEC	IEC62488-X	40-492kHz (1MHz)	High and Extra High Voltage		
IEC	IEC 61334-X	3-500kHz	Medium and Low Voltage		
IEC	IEC61334-3-1 IEC61334-5-1 IEC61334-5-2 IEC61334-4-32	CENELEC A 20kHz-95kHz	Low Voltage		
ISO/IEC	14908-3	125 kHz to 140 kHz	Low Voltage		
ISO/IEC	ISO/IEC 14908-3	A (86kHz & 75.543kHz 125kHz-140kHz F_c=131.579kHz) CENELEC A/B/C	Low Voltage		
ISO/IEC BS	ISO/IEC 14543-3-5 EN 50090	PL110 (95kHz-125kHz F- c=110kHz) PL132 (125kHz-140kHz F- c=132.5kHz)	Low Voltage		
ITU-T	G.9955 (PHY) G.9956 (DLL)	CENELEC A (G.hnem) CENELEC B (G.hnem) CENELEC CD (G.hnem)	Medium and Low Voltage		
ETSI	TS 103 908	9 kHz to 95 kHz	Low Voltage		
IEEE P1901.2	P1901.2 (Draft)	CENELEC A	Medium and Low Voltage		

900

901

902

903

Table 3: Relevant Broadband PLC Standards

904 Note: fora/consortia specifications are depicted in Appendix A

SDOs - Alliance - Industry	Standard Name	Frequency Bands	Power Line Segment
CLC	prEN 50412-4 - LRWBS	2-4MHz	Low Voltage
ISO/IEC	ISO/IEC 12139-1	2-30MHZ	Low Voltage
ΙΤυ	ITU G.h : - G.9960 (PHY) - G.9961 (DLL) - G.9962 (MIMO) - G.9964 (PSD)	2-100MHz	Low Voltage
IEEE	IEEE 1901	2-50MHz	Low Voltage

905

906 4.2.3 Mesh Network technologies

907 4.2.3.1 RF mesh network

908 4.2.3.1.1 Introduction

909 A RF mesh network (or wireless mesh network) is a communications network made up of radio 910 nodes organized in a peer-to-peer or mesh topology. In this topology, mains-powered radio nodes route and forward data traffic on behalf of other adjacent, mains-powered radio nodes; routing and 911 forwarding of traffic can occur at L2 or L3. In the Smart Grid, a RF mesh network is most often 912 used for "last mile" communications, often referred to as a Field Area Network (FAN) or 913 914 Neighborhood Area Network (NAN). RF meshes support 2-way communication involving the following Domains: Markets, Operations, Distribution and Customer (as described in the 915 916 Conceptual Model). The RF mesh network typically consists of mains-powered RF nodes, including but not limited to: 917

- Access Points: a dedicated infrastructure device that provides ingress and egress to the
 FAN via a WAN. The WAN interface is typically an IP-based backhaul that uses cellular
 connectivity (e.g., 3G), xDSL, or other commodity backhaul connectivity collocated at DSO
 substations. These devices may also be referred to as concentrators, take-out points, or
 ingress/egress devices. These devices might perform simply as a router or have more
 complex application state and persistent storage.
- Relays: a dedicated infrastructure device that is designed to extend coverage and range to the FAN. These devices are often referred to as repeaters.
- 926 RF nodes such as RTUs connected to devices such as EVSEs, transformer/substation
 927 monitors, faulted circuit indicators, switch reclosers, load tap changers, capacitor bank
 928 controllers, streetlights, etc.

- RF nodes deployed in Smart Meters (either tightly integrated or as "standalone" telecommunications hubs or multi-utility controllers) may also be leveraged to route and forward certain distribution automation traffic within the mesh in accordance to DSO policy.
- 933 Some typical Smart Grid applications that may be supported by a RF mesh network are:
- Conservation voltage reduction
- Voltage monitoring
- Transformer monitoring
- 937 FLISR
- Grid reliability applications such as with teamed switch reclosers
- EVSE monitoring and round-robin charging schemes
- DER management including integrated micro-inverters
- Load control applications such as DR or DSM
- 942

943 Smart Grid applications may utilize a mesh network exclusively within an orthogonal, overlay 944 network, but in many cases, the same RF mesh FAN may be configured to interface with the 945 Smart Metering infrastructure. In the latter case, the communications architecture should not preclude the exchange of smart metering and smart grid traffic, but appropriate policy mechanisms 946 (e.g., authentication, authorization, network admission control) need to intrinsic to the 947 implementation. An often-cited advantage of RF mesh networks is that it allows for the distribution 948 of compute power and intelligence deep into the network, which in turn allows for local, low 949 950 latency, cost-effective communications.

951

952 One advantage of mesh networks is reliability and redundancy by way of rich path diversity; mesh 953 nodes may typically count many adjacencies or "neighbors". A radio integrated into a Smart Grid device may also associate with one or more concentrators (for ingress/egress diversity) and with 954 955 other RF mesh nodes, which act as stepping-stones for extending the coverage. All together this 956 forms a mesh network with multiple alternative communication paths for a node to reach multiple concentrators. When one node can no longer operate, the rest of the nodes can still communicate 957 958 with one another, directly or through one or more intermediate nodes. The concentrators may contain intelligence ensuring that communication is always updated and optimized. 959

960 4.2.3.1.2 Radio frequency

A wide range of radio frequency bands may be exploited by RF mesh technologies that could be operated under "licensed", "light-licensed" or "unlicensed" regulatory regimes.

- For Field Area Network RF meshes, spectrum bands below 1 GHz are often preferred. Standards
 have been defined that exploit spectrum in the bands 169 MHz, 433 MHz, 444 MHz, 868 MHz
- used for short range devices (SRD), and 870 876 MHz. Some RF mesh implementations are
 also available in the band 2.45 GHz. The standards that cover these particular bands are EN
- 967 13757-4, EN 13757-5, IEEE 802.15.4g, IEEE 802.15.4-2006, and ETSI TS 102 887-1.

968 4.2.3.2 Mesh networking technologies using power line

969 When you are using power line as the carrier media for information transport, you are using a

- 970 shared media (the copper) sensitive to radio interferences and signal attenuation.
- 971 The issues that you are getting are quite similar to the ones you will get using Air Radio
- 972 Frequency.
- 973

- The use of repeaters along the line has been very challenging to deploy, as there is no way to formally predict where to position these repeaters. Signal level is fluctuating and the antenna that
- 976 the power line is forming is very sensitive to external radio interferences. 977
- 978 One solution to this issue is to use routing mesh technologies equivalent to RF mesh. Each of the 979 equipment along the line is acting as a router in the same way we do for RF mesh. 980
- 981 The routing protocol and routing algorithms are able to compute the best path between these 982 equipments while the conditions are changing.
- 983
- 984 RPL routing protocol (IETF RFC 6550) is designed to satisfy these requirements.

985 4.2.4 Physical and MAC layers

The following Technologies are a set of those most well known & collected in the meetings there is no aim to be exhaustive.

9884.2.4.1P1901.2 - Standard for Low Frequency (less than 500 kHz) Narrow Band Power Line989Communications for Smart Grid Applications

990

991 <u>http://grouper.ieee.org/groups/1901/2/</u> 992

993 This standard specifies communications for low frequency (less than 500 kHz) narrowband power 994 line devices via alternating current and direct current electric power lines. This standard supports 995 indoor and outdoor communications over low voltage line (line between transformer and meter, less than 1000 V), through transformer low-voltage to medium-voltage (1000 V up to 72 kV) and 996 997 through transformer medium-voltage to low-voltage power lines in both urban and in long distance 998 (multi- kilometre) rural communications. The standard uses transmission frequencies less than 500 999 kHz. Data rates will be scalable to 500 kbps depending on the application requirements. This 1000 standard addresses grid to utility meter, electric vehicle to charging station, and within home area 1001 networking communications scenarios. Lighting and solar panel power line communications are 1002 also potential uses of this communications standard. This standard focuses on the balanced and 1003 efficient use of the power line communications channel by all classes of low frequency narrow 1004 band (LF NB) devices, defining detailed mechanisms for coexistence between different LF 1005 NB standards developing organizations (SDO) technologies, assuring that desired bandwidth may 1006 be delivered. This standard assures coexistence with broadband power line (BPL) devices by 1007 minimizing out-of-band emissions in frequencies greater than 500 kHz. The standard addresses 1008 the necessary security requirements that assure communication privacy and allow use for security 1009 sensitive services. This standard defines the physical layer and the medium access sub-layer of 1010 the data link layer, as defined by the International Organization for Standardization (ISO) Open 1011 Systems Interconnection (OSI) Basic Reference Model.

1012 4.2.4.2 IEEE 802.3 Ethernet

Ethernet is a widely used networking technology spanning the physical layer and the Media
Access Control (MAC) layer. Ethernet is standardized in IEEE 802.3-2008 and ISO/IEC 88023:2000. Ethernet is specified for the exchange of data between devices (e.g., PC, printer, switch)
connected in a wired network. Ethernet was originally specified for Local Area Networks (LAN), of
which the Home Area Network (HAN) is an application specific subset. Ethernet is also applied to,
e.g., Metro networks or Wide Area Networks. Ethernet is deployed within sub-stations and power
generation plants.

- 1020
- 1021 Ethernet is based on Carrier Sense Multiple Access with Collision Detection (CSMA/CD) as a 1022 shared media access method. Today, point-to-point full duplex communication is also used. The

1023 standard defines the frame format for the data communication, the data rates, the line codes, the 1024 cable types, and interfaces. 1025

1026 The specified data rates are 10 Mbit/s, 100 Mbit/s (Fast Ethernet), 1000 Mbit/s (Gigabit Ethernet) 1027 and 10 GBit/s. 40-Gbit/s and 100-Gbit/s.

1028 1029 Table 4 contains a sample of specified interface types with the corresponding technical data. 1030 Several media types as coax cable, twisted-pair cable and fiber cable are possible. The interface 1031 types have different line codes.

- 1032
- 1033

Table 4: Sample of specified interface types

Interface type	Data rate	Cable type	Maximum segment length	Line code
10Base2	10 Mbit/s (half duplex)	Thin coax	185 m	Manchester code
10BaseT	10 Mbit/s (half duplex) 20 Mbit/s (full duplex)	2-pairs CAT3 or CAT5 cable	100 m	Manchester code
100BaseTX	100 Mbit/s (half duplex) 200 Mbit/s (full duplex)	2-pairs CAT5 unshielded cable	100 m	4B/5B
1000BaseT	1000 Mbit/s (half duplex) 2000 Mbit/s (full duplex)	4-pairs CAT5 cable	100 m	PAM5
1000BaseSX	1000 Mbit/s (half duplex) 2000 Mbit/s (full duplex)	2 multi-mode fiber cables	550 m	8B/10B

1034

1035 Ethernet is compatible with some other protocols. IEEE 802.11 supports the Ethernet data format. The Media Redundancy Protocol is a solution to compensate for failures in a ring topology like the 1036 1037 Rapid Spanning Tree Protocol in IEEE 802.1 (LAN bridging and architecture). The Media Redundancy Protocol is specified in IEC 62439 and can be applied to Ethernet networks. IEC 1038 1039 62439 is used in industrial automation. Recently this standard has been referenced by IEC TC57 in IEC TR 61850-90-4 to be applied to substations. 1040

1041

1046

1047

1049

1042 Ethernet is extended to be applicable in telecommunications networks with the operator's 1043 requirements. These extensions are called Carrier Ethernet. Metro Ethernet Forum (MEF) defined 1044 Carrier Ethernet Services to be certified, which the operator can provide their customers: 1045

- E-line (point-to-point Ethernet service over a WAN),
- E-LAN (multipoint-to-multipoint Ethernet service),
- E-tree (point-to-multipoint Ethernet service).

1048 The Carrier Ethernet services are carried over the WAN using different technologies:

- Ethernet over SDH or OTN (ITU-T).
- 1050 . Ethernet over MPLS / MPLS-TP (IETF),
- Provider Backbone Bridge Traffic Engineering PBB-TE (IEEE), 1051 1052

1053 PBB-TE supports connection oriented packet transport, traffic engineering and OAM.

1054 Synchronous Ethernet (G.8262), Precision Time Protocol (IEEE 1588), and Audio Video Bridges 1055 (AVB, IEEE 802.1) can be used for time sensitive applications.

1056 **4.2.4.3 IEEE 802.11 (WIFI) [5]**

1057 Technology Overview

There is a set of standards comprised under the IEEE 802.11 family [7], aiming at low cost
wireless LAN functionality, with the goal of providing a service equivalent to Ethernet layer 2 wired
connectivity. These standards use Direct Sequence Spread Spectrum (DSSS) and Multi Carrier
Orthogonal Frequency Division Multiplexing (OFDM) radio technologies. Unlike other wireless
communication technologies, IEEE 802.11 makes use of unlicensed frequency bands in the range
of 2.4 and 5GHz. This fact has the following key attributes:

- Plenty of equipment and vendors available.
- Guaranteed interoperability via an independent product certification entity (WiFi Alliance).
- Worldwide availability of (at least some channels) on the same frequency bands.
- Transmission data rates of the order of tens of megabits can be achieved (802.11a/g technology has a limit of 54Mbps).
- Low cost of the devices and no exploitation costs for the service. On the other hand, there are some drawbacks that must be taken into account:
- The maximum allowed radiated power (EIRP) is very low, typically 100mW in many countries, including Europe. The link distance is therefore limited by both transmitted power and antenna directivity.
- These frequency bands are very sensible to attenuation from water molecule absorption. In
 this way fog, rain and snow can degrade seriously the link power budget.
- The frequency bands are free for anyone to use them, and thus there may be some interference problems arising from congestion, both by 802.11 devices and other appliances using the same unlicensed band. This is particularly important in the 2.4GHz ISM band.
- Last, but not least, security aspects are mandatory, as IEEE 802.11 systems can be easily sniffed. Strong encryption mechanisms, such as WPA and preferably WPA2, have proved secure enough to let this technology be used in different environments such as meter reading.
- These standards were not designed with lowest power consumption in mind, so these technologies have slightly higher standby power consumptions than other WLAN/WPAN solutions, usually in the order of 1W. The IEEE 802.11 family currently includes multiple over-the-air modulation techniques that all use the same basic protocol. The segment of the radio frequency spectrum varies between countries and includes 2.4 GHz and 5GHz.
- 1090 IEEE 802.11b and 802.11a were the first widely accepted wireless networking standard, followed 1091 by 802.11g and then 802.11n. Other standards in the family (c–f, h, and j) are service amendments 1092 and extensions or corrections to previous specifications.
- 1094 IEEE 802.11n is based on a new multi-streaming modulation technique and at the time of
 preparation of the present document, is still under draft development, although proprietary
 products based on pre-draft versions of the standard are available on the market.
- 1097

1089

Frequency Bands IEEE 802.11 technology operates in unlicensed frequency bands. Some of
 these bands are not available worldwide, even though frequency spectrum harmonization tasks
 have been carried out since these technologies hit the market. The frequency bands in use are:

- 1101
- 1102 2.4GHz ISM band for IEEE 802.11b, g, n.
- 1103 5GHz band (5.15-5.825GHz) for IEEE 802.11a, n.
- 1104

1118

1105 Key Applications The relative low cost and use of unlicensed frequency bands makes possible 1106 the usage of IEE802.11 technologies in many application scenarios, such as the following: • 1107 Provide wireless bridging between fixed Ethernet networks. In this case a fixed Ethernet network 1108 can be reached by means of two wireless bridges, which create a wireless link between them, and 1109 create a layer 2 bridge. This is very useful when the deployment of a fixed Ethernet connection is 1101 not feasible due to physical constraints or high costs. Link distances in the order of kilometres may 1111 be reached using standard equipment.

1112 4.2.4.4 IEEE 802.16 (WIMAX)[5]

1113 Technology Overview

1114 IEEE802.16 is working group within IEEE focused in Wireless Metropolitan Area (WMAN) access
 1115 technology [8]. Since its initial conception, two main standards have been developed:

- 802.16d fixed IEEE 802.16d ("802.16-2004") is aimed at fixed applications and providing
 a wireless equivalent of DSL broadband data.
- 1119802.16d is able to provide data rates of up to 75 Mbps and as a result it is ideal for fixed,1120DSL replacement applications. It may also be used for backhaul where the final data may1121be distributed further to individual users. Cell radii are typically up to 75 km.
- 1122 802.16e Nomadic / Mobile
- 1123 This standard is also known as "802.16-2005". It currently provides the ability for users to 1124 connect to a cell from a variety of locations, and there are future enhancements to provide 1125 cell handover.
- 802.16e is able to provide data rates up to 15 Mbps with cell radius distances typically 2÷4 km.
- 11291130 Frequency Bands
- 1131 The IEEE 802.16 standard allows data transmission using multiple broadband frequency ranges.
- 1132 The original 802.16a standard specified transmissions in the range 10÷66 GHz, but 802.16d 1133 allowed lower frequencies in the range 2 to 11 GHz. The lower frequencies used in the later
- specifications provide improved range and better coverage within buildings; this means that
- 1135 external antennas are not required.
- 1136 Different bands are available for IEEE802.16 applications in different parts of the world.
- 1137 The frequencies commonly used are 3.5 and 5.8 GHz for 802.16d and 2.3, 2.5 and 3.5 GHz for
- 1138 802.16e but the use depends upon the countries.

1139 The 5.8GHz band is not available in most European countries.

1140 IEEE802.16 uses OFDM (Orthogonal Frequency Division Multiplex) as its modulation scheme. For

- 802.16d, 256 carriers are used, but for 802.16e the system is scalable according to the conditionsand requirements.
- 1143 More advanced versions including 802.16e utilize MIMO (Multiple Input Multiple Output) and 1144 support for multiple antennas. The use of these techniques provides potential benefits in terms of
- support for multiple antennas. The use of these techniques provides potential benefits in terms of coverage, self-installation, power consumption, frequency re-use and bandwidth efficiency.
- 1146 The IEEE 802.16a (256 OFDM PHY) and ETSI HIPERMAN (High Performance Radio Metropolitan 1147 Area Network) standards share the same PHY and MAC. The purpose of 802.16e is to add limited 1148 mobility to the current standard which is designed for fixed operation.

1149 Key Applications

- 1150 IEEE802.16 technologies are further along in terms of deployments with several operators
- throughout the world using it to provide *fixed* wireless broadband services. But so far, the
- 1152 technology has had a slow start as a *mobile* technology.
- 1153 Most of new 802.16-based operators come from the fixed network space, and they are looking to
- 1154 use these technologies as an enhanced DSL service.

1155

1156

Figure 5: WiMAX usage model

- 1157 **4.2.4.5 IEEE 802.15.4**
- 1158 <u>http://www.ieee802.org/15/pub/TG4.html</u>

1160 The IEEE 802.15.4 standard ([IEEE-802-15-4]) describes a LR WPAN (Low Rate Wireless

- Personal Area Network). In addition to low rate the standard also attempts to achieve several goals
 simultaneously: extremely low cost, short-range operation with a reasonable battery life. Finally,
 the networks should be simple to install and offer reliable data transfer.
- 1164
 1165 The two major parts of the standard are the PHY and the MAC. These two layers are the common
 1166 foundation layers of the OSI model and are found in almost all other communication protocols.
- 1167

¹¹⁵⁹

1168 The PHY layer describes the modulation, operating frequency, over the air data rates, channels 1169 and other important aspects of radio operation such as receiver sensitivity and transmission power.

1171 Frequency range

- 1172 There are four frequency ranges that the standard defines (IEEE 802.15.4 C defines the Chinese 1173 band). The ranges are:
- 1174 China: 779 to 787 MHz
- 1175 Europe: 863 to 870 MHz
- North America: 902 to 928 MHz
 - Worldwide: 2400 to 2483.5 MHz

1179 Channels

The Chinese band allows for 4 channels with channel spacing of 2 MHz and center frequencies at 780, 782, 784 and 786 MHz. One channel is available for the European band at 868.3 MHz. Ten channels are available in the North American ISM band with 2 MHz channel spacing and center frequencies at 906, 908, 910, 912, 914, 916, 918, 920, 922 and 924 MHz. Finally, 16 channels are available in the worldwide band with 5 MHz channel spacing and center frequencies at 2405, 2410, 2415, 2420, 2425, 2430, 2435, 2440, 2445, 2450, 2455, 2460, 2465, 2470, 2475 and 2480 MHz.

1187 Modulation

1188 In IEEE 802.15.4 standard for the RF transmission there are two modulation modes described, 1189 BPSK (Binary Phase Shift Keying) and O-QPSK (Offset Quadrature Phase Shift Keying.

1190

1186

1170

1177

1178

1191 Bit rates

1192 There are various bit rates within the channels and modulation modes. These are summarized as 1193 follows:

1194

PHY Frequency Band	Channel(s)	Modulation	Bit Rate (kb/s)
868 MHz	0	BPSK	20
902 - 928 MHz	1 - 10	BPSK	40
868 MHz (optional mode)	0	ASK	250
902 - 928 MHz (optional mode)	1 - 10	ASK	250
868 MHz (optional mode)	0	O-QPSK	100
902 - 928 MHz (optional mode)	1 - 10	O-QPSK	250
2400 - 2480 MHz	11 - 26	O-QPSK	250

Table 5: 802.15.4 main characteristics

1195

1196

1197 Transmission power

- 1198 Maximum transmission power is regulated by government agencies such as the FCC in the United
- 1199 States and ETSI in Europe. Generally, in 802.15.4 systems, a node must be capable of
- 1200 transmitting at least -3 dBm.
- 1201 Clear channel assessment
- 1202

1203 The PHY needs to be able to detect whether or not another radio is transmitting and employ a 1204 method to avoid interference. The mechanism used is CSMA-CA (Carrier Sense Multiple Access

1205 with Collision Avoidance). In this algorithm the radio first listens for energy or modulated data on

1206 the air. If any is sensed the algorithm provides for random wait times (backoffs) to retry the

- 1207 transmissions.
- 1208

- 1209 The Media Access Control (MAC) layer provides the network and higher layers an interface to the
- radio (PHY) layer. Its primary function is to limit when each node transmits on the shared media
- (the wireless channel) so that transmissions occur one at a time. Like most links, IEEE 802.15.4
 supports a Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) mechanism.
- 1213 4.2.4.6 ETSI 102 887

1214 The requirement to wirelessly interconnect Smart Meters is one of the responses to the EC

- mandate 441 [include reference to CEN, CENELEC and ETSI arch development] for an open
 architecture for utility meters. The EC Short Range Device (SRD) Decision and associated
- 1217 spectrum rules (CEPT REC 70-03) have been identified as suitable regulations to govern

1218 interconnection of meters to the Local Network (LNAP) and Neighborhood Network Access Points

- 1219 (NNAP), and potential MESH networks built from these APs, identified in the M/441 Technical 1220 Report on Communications.
- 1221
- To that end, reference document ETSI TS 102 887-1 provides the necessary modifications for use
 in Europe of the IEEE 15.4 Amendment g, Physical Layer Specification for Low Data Rate
 Wireless Smart Meter Utility Networks standard, and specifies the necessary RF performance
- 1225 parameters to meet the provisional requirements identified in TR 102 886. The PHY specification
- 1226 in TS 102 887-1 is supported by a MAC specification in TS 102 887-2."

1227 4.2.5 IPv6 adaptation layer

1228 4.2.5.1 6LowPan

1229 <u>http://tools.ietf.org/html/rfc4919</u>

1230

1231 The 6LoWPAN format defines how IPv6 communication is carried in 802.15.4 frames and specifies 1232 the adaptation layer's key elements. 6LoWPAN has three primary elements:

- Header compression. IPv6 header fields are compressed by assuming usage of common values. Header fields are elided from a packet when the adaptation layer can derive them from link-level information carried in the 802.15.4 frame or based on simple assumptions of shared context.
- Fragmentation. IPv6 packets are fragmented into multiple link-level frames to accommodate the IPv6 minimum MTU requirement.
- Layer-two forwarding. To support layer-two forwarding of IPv6 datagrams, the adaptation layer can carry link-level addresses for the ends of an IP hop.

1242 Alternatively, the IP stack might accomplish intra-PAN routing via layer-three forwarding, in which 1243 each 802.15.4 radio hop is an IP hop.

1244

6LoWPAN is an Adaptation Layer

1245 1246

Figure 6: 6LoWPAN within IP protocol stack

1247 4.2.6 IP protocols layer 3 and above

1248 There is a broad consensus that Internet Protocol (IP), especially its most advanced iteration 1249 (IPv6), will serve as an important element in Smart Grid Information networks. This, as there are 1250 several significant attributes that address many smart grid communication requirements, including: 1251 wide range of available standards, proven at scale, large development community, an inherent 1252 benefit of adaptation between applications and the underlying communication medium (affording 1253 application independence of the underlying communication data-link infrastructure), and bindings 1254 with emergent utility app layer protocols such as DLMS/COSEM.

1254 With

1256 It is expected that the Smart Grid will be formed from a number of interoperable systems. Of
1257 particular note here is the inherent benefit of access to a wide range of available standards. To that
1258 end, the use of IP facilitates the use of a number of existing and future innovations pertaining
1259 privacy/confidentiality and a variety of gateway routing protocols. Specific examples of such
1260 standards are referenced here.

1261 4.2.6.1 IPv6 routing protocol RPL (RFC 6550)

1262 <u>http://tools.ietf.org/html/draft-ietf-roll-rpl</u>

1263

1264 The ROLL Working Group conducted a detailed analysis of the routing requirements focusing on 1265 several applications: urban networks including smart grid, industrial automation, home and building 1266 automation. This set of applications has been recognized to be sufficiently wide to cover most of 1267 the applications of the Internet of Things. The objective of the WG was to design a routing protocol 1268 for LLNs, supporting a variety of link layers, sharing the common characteristics of being low 1269 bandwidth, lossy and low power. Thus the routing protocol should make no specific assessment on 1270 the link layer, which could either be wireless such as IEEE 802.15.4, IEEE 802.15.4g, (low power) 1271 Wi-Fi or Powerline Communication (PLC) using IEEE 802.15.4 such as IEEE P1901.2.

1273 Note that RPL operates at the IP layer according to the IP architecture, and thus allows for routing 1274 across multiple types of link layers, in contrast with other form of "routing" operating at lower layer 1275 (e.g. link layers).

1276

1289

1272

1277 RPL is a Distance Vector IPv6 routing protocol for LLNs that specifies how to build a Destination 1278 Oriented Directed Acyclic Graph (DODAG sometimes referred to as a graph in the rest of this 1279 document) using an objective function and a set of metrics/constraints. The objective function 1280 operates on a combination of metrics and constraints to compute the 'best' path. There could be 1281 several objective functions in operation on the same node and mesh network because 1282 deployments vary greatly with different objectives and a single mesh network may need to carry 1283 traffic with very different requirements of path quality. For example, several DODAGs may be used 1284 with the objective to (1) 'Find paths with best ETX [Expected Transmissions] values (metric) and 1285 avoid non-encrypted links (constraint)' or (2) 'Find the best path in terms of latency (metric) while avoiding battery-operated nodes (constraint)'. The objective function does not necessarily specify 1286 1287 the metric/constraints but does dictate some rules to form the DODAG (for example, the number of 1288 parents, back-up parents, use of load-balancing,...).

The graph built by RPL is a logical routing topology built over a physical network to meet a specific criteria and the network administrator may decide to have multiple routing topologies (graphs) active at the same time used to carry traffic with different set of requirements. A node in the network can participate and join one or more graphs (in this case we call them "RPL instances") and mark the traffic according to the graph characteristic to support QoS aware and constraint based routing. The marked traffic flows up and down along the edges of the specific graph.

1297 RPL and Security

Security is critical in smart object networks but implementation complexity and size is a core concern for LLNs such that it may be economically or physically impossible to include sophisticated security provisions in a RPL implementation. Furthermore, many deployments can utilize link-layer or other security mechanisms to meet their security requirements without requiring the use of security in RPL. Therefore, the security features in RPL are available as optional extensions.

1305 When made available, RPL nodes can operate in three security modes. In the first mode, called 1306 "unsecured," RPL control messages are sent without any additional security mechanisms. Unsecured mode implies that the RPL network could be using other security primitives (e.g. link-1307 1308 layer security) to meet application security requirements. In the second mode, called "pre-1309 installed," nodes joining a RPL instance have pre-installed keys that enable them to process and 1310 generate secured RPL messages. In the third mode, called "authenticated", nodes can join as leaf 1311 nodes using pre-installed keys as in pre-installed mode, or join as a forwarding node by obtaining a 1312 key from an authentication authority.

1313

Each RPL message has a secure variant. The level of security (32-bit and 64-bit MAC and ENC-MAC modes are supported) and the algorithms (CCM and AES-128 are supported) in use are indicated in the protocol messages. The secure variants provide integrity and replay protection and confidentiality and delay protection as an added option.

1318 4.2.7 EN 50090 family (KNX)

1319 The CLC EN 50090 describes Home and Building Electronic Systems (HBES).

- 1320 KNX, the system behind CLC EN 50090, it is the mature HBES system with more than 20 years 1321 experience in the market.
- 1322
- 1323 KNX is a worldwide open standard, the associated standards are:

- 1324 International Standard ISO/IEC 14543-3
- 1325 European Standards CLC EN 50090 and CEN EN 13321-1
- 1326 Chinese Standard GB/Z 20965
- US Standard ANSI ASHRAE 135).
 1328
- Home and Building Electronic Systems (HBES) according EN 50090 are able to handle whole
 commercial and residential buildings, *independent of it being HVAC or a BMS application*.
- EN 50090-5 which describes different PHY layers secures that all different needs from existing andnew Buildings will be fulfilled
- 1334
 1335 KNX standardizes the layers 1 to 7 of the OSI reference model. It additionally standardizes a rich
 1336 set of application specifications to allow for a single and common information exchange.
- 1337 4.2.7.1 Communication security
- 1338 The KNX communication security provides for
- Authentication

1331

- Confidentiality
- For this, AES-128 encryption is again used and the data integrity is controlled over an HMAC-MD5signature.
- 1343
 1344 The communication security is situated in the Application Interface Layer, making it available to all
 1345 services for runtime and for configuration, yet not requiring explicit support on Retransmitters or
 1346 Couplers, which would be a security risk.
- 1347
 1348 The configuration uses Diffie-Hellman key exchange supported in the multiple Configuration
 1349 Modes. This keeps the security transparent to the application and maintains the Interworking.

1350 4.2.7.2 Proposed EN 50090 developments

1351 Create a neutral interface between Smart Grid and HBES (Smart Grid demand side) within CLC1352 TC205 WG18

1353 4.2.7.3 Stack architecture

1357 4.2.7.4 The EN 50090 Standard Landscape

EN 50090 HBES Standards Landscape

1358

1359

Figure 8: EN 50090 HBES Standards Landscape

1360 4.2.8 EN 14908 family

1361

1364

1366 1367

1368

1369

1370

EN 14908 is a family of standards for control networking that is widely used in smart grid, smartbuilding, and smart grid applications.

1365 The full suite of worldwide, open standards includes the following associated standards:

- ISO/IEC 14908-1, which specifies a multi-purpose control network protocol stack optimized for smart grid, smart building, and smart city applications
- ISO/IEC 14908-2, which specifies a free-topology twisted-pair channel for networked control systems in local area control networks and is used in conjunction with ISO 14908-1
- ISO/IEC 14908-3, which specifies a control network Power Line (PL) channel that operates
 in the EN 50065-1 CENELEC C-Band and serves as a companion document to ISO 14908 1
- ISO/IEC 14908-4 specifies the transporting of the control network protocol packets for
 commercial local area control networks over Internet Protocol (IP) networks and is used in
 conjunction with ISO 14908-1
- ETSI TS 103 908, which specifies a high-performance narrow band power line channel for control networking in the smart grid that operates in the EN 50065-1 CENELEC for use with ISO 14908-1
- US standards ANSI 709.1, .2, .3. and .4
- EU standards EN 14908-1, -2, -3, -4, -5 and -6
- China standards GB/Z 20177.1

- US standard IEEE 1473-L
- US standard SEMI E54

EN 14908 family standardizes layers 1 to 7 of the OSI reference model as shown in the figure
below. It includes standard definitions for a number of physical layer channels optimized for
specific control networking applications such as smart grid and smart buildings, and includes a rich
set of data models to promote interoperable devices in smart building, smart city and smart grid
applications.

1391

1392 1393

Figure 9: EN 14908 protocol stack

1394 4.3 SCADA substation protocols

1395 4.3.1 IEC 60870

1396 IEC 60870-5 refers to a collection of standards produced by the International Electrotechnical 1397 Commission (IEC) which provides an open standard for the transmission of SCADA telemetry 1398 control and information. The standard provides a detailed functional description for remote control 1399 equipment and systems for controlling geographically widespread processes, in other words for 1400 SCADA systems.

When the IEC 60870-5 set of standards was initially completed in 1995 with the publication of the IEC 870-5-101 profile, it covered only transmission over relatively low bandwidth bit-serial communication circuits. With the increasingly widespread use of network communications technology, IEC 60870-5 now also provides for communications over networks using the TCP/IP protocol suite.

- 1406 The IEC 60870 standard is structured in a hierarchical manner, comprising parts, sessions and 1407 companion standards. The companion standards extend the definition provided by the main parts 1408 of the standard by adding specific information objects for the field of application.
- 1409 The parts of IEC 60870 are as follows:
- 1411 a. Main Part
- 1412 IEC 60870-1, General Considerations
- 1413 IEC 60870-2, Operating Conditions
- 1414 IEC 60870-3, Interfaces (electrical characteristics)
- 1415 IEC 60870-4, Performance Requirements
- 1416 IEC 60870-5, Transmission Protocols
- 1417 IEC 60870-6, Telecontrol Protocols Compatible With ISO and ITU-T Recommendations 1418
- 1419 b. Sections of IEC 60870-5
- 1420 IEC 60870-5-1, Transmission Frame Formats
- 1421 IEC 60870-5-2, Link Transmission Procedures
- 1422 IEC 60870-5-3, General Structure of Application Data
- 1423 IEC 60870-5-4, Definition and Coding of Application Information Elements
- 1424 IEC 60870-5-5, Basic Application Functions
- 1425

- 1426 c. Companion Standards of IEC 60870-5
- 1427 IEC 60870-5-101, Companion Standard for Basic Telecontrol Tasks
- 1428 IEC 60870-5-102, Companion Standard for Transmission of Integrated Totals
- 1429 IEC 60870-5-103, Companion Standard for Protection Communication
- 1430 IEC 60870-5-104, Network Access using Standard Transport Profiles 1431
- 1432 The IEC 60870-5-104 defines the transport of IEC 60870-5 application messages over networks.

1433 4.3.2 IEC 60870-5-101 System topology

- 1434 IEC 60870-5-101, or T101, supports point-to-point and multidrop communication links carrying bit-
- serial low-bandwidth data communications. It provides the choice of using balanced or unbalanced communication at the link level.
- 1437 With unbalanced communication, only the master can initiate a communication by transmitting
- primary frames. All communications are initiated by master station requests, which poll for userdata if available.
- 1440 Balanced communication is available, but it is limited to point-to-point links only.
- 1441 Therefore whilst T101 can support unsolicited messages from a slave, it cannot do so for a
- 1442 multidrop topology and must employ a cyclic polling scheme to interrogate the secondary stations.
- 1443 A 'monitor direction' and a 'control direction' are also defined: monitored data such as analog
- values from the field are sent in the monitoring direction, and commands are sent in the control
- 1445 direction. If a station both sends monitored data and sends commands, it is acting both as a
- 1446 controlled and a controlling station: this last is defined as dual-mode operation. It is accommodated
- 1447 by the protocol, but requires the use of originator addresses in the ASDU⁴.

1448 4.3.3 IEC 60870-5-101 Message structure

1449 The message structure under IEC 60870-5-101 is composed by a data link layer frame carrying 1450 link address and control information, a flag to indicate if Class 1 data (highest priority information)

- 1451 is available, and optional application data. Each frame can carry a maximum of one application
- service data unit, or ASDU. The following figure shows the data link frame structure, and the
- 1453 structure of the application layer ASDU carried by it.

^{4 &}quot;Practical Modern SCADA Protocols" – Gordon Clarke and Deon Reynders

Variable Length Frame

1456 1457

1455

1454

Figure 10: Message Structure of IEC 60870-5-1015

1458 4.3.4 IEC 60870-5-101 Addressing

1459 Under IEC 60870-5-101 addressing is provided the link at the application level. The link address 1460 field may be 1 or 2 octets for unbalanced and 0, 1 or 2 octets for balanced communications. As 1461 balanced communications are point-to-point the link address is redundant, but may be included for 1462 security. The link address FF or FFFF is defined as a broadcast address, and may be used to 1463 address all stations at the link level.

At the application level, the ASDU contains a 1 or 2 octet common address. This is defined as the address of the controlling station in the 'control direction', and the address of the controlled station in the 'monitoring direction'. The common address of the ASDU combined with the information object address contained within the data itself combine to make the unique address for each data element.

1471 There may be more than one logical or common address per device. As for the link level, the 1472 address FF or FFFF is defined as a broadcast address. Therefore to send a broadcast message it 1473 is necessary to include this address in both the data link and application address fields.

1474 4.3.5 IEC 60870-5-104 Networked version

1475 Under IEC 60870-5 there are two different methods of transporting messages. The first is IEC 1476 60870-5-101, or T101, which provides for bit-serial communications over low-bandwidth 1477 communications channels.

1478

1470

1479 The second method was defined with the release of the IEC 60870-5-104, or T104 profile. In this 1480 protocol the lower levels of the protocol have been completely replaced by the TCP and IP

^{5 &}quot;Practical Modern SCADA Protocols" - Gordon Clarke and Deon Reynders

- 1481 transport and network protocols. These protocols provide the transport of the application service 1482 data units (ASDUs) over corporate local area networks and wide area networks.
- 1482 data units (ASDUs) over corporate local area networks and wide area networks
 1483 The structure of the protocol or 'protocol stack' is shown in Table 4.
- 1484
- 1485

Table 4: Protocol Stack IEC 60870-5-104⁶

1489

1488 Whereas T101 provides full definition of the protocol stack right down to the physical level, this is 1489 not provided under T104 as existing and varied physical and link layer operations are employed.

1490 4.3.6 IEC 60870-4-101 Application data objects

- 1491 IEC 60870-5 includes a set of information objects that are suited to both general SCADA
- 1492 applications and electrical system applications in particular. Each different type of data has a
- unique type identification number. Only one type of data is included in any one ASDU, and the type
- 1494 identification is the first field in the ASDU.
- 1495
- 1496 The information object types are grouped by direction and by type of information, as follows:1497

1498

Table 5: Information Object Type Groups

Group	Example in Monitoring Direction	Example in Control Direction
Process Information	A measured value, E.g. bit or analog	A command E.g. to set a bit or a set point value
System Information	End of initiation flag	Interrogation command, reset process command
Parameter		Set a filter time
File Transfer	Read data file, w	rite a configuration file

1499

1500 **4.4 Wireless Access & Wide Area Technologies**

1501 **4.4.1 Overview of GSM Family of Cellular Communication Systems**

1502 **4.4.1.1 GSM family of cellular communication systems – overview**

1503 GSM technology has been in development since 1987. The evolution of GSM standard-based 1504 mobile communication systems will be consistent globally, and will follow a clear path from the 1505 second and third generation of mobile networks that is widely available today to LTE technology 1506 [Figure 10].

^{6 &}quot;Practical Modern SCADA Protocols" - Gordon Clarke and Deon Reynders

Figure 10: Evolution of 3GPP Family of Mobile Broadband Technologies

1510 Note: HSPA+ peak theoretical data rate reaches up to 42 Mbps when using single carrier with 1511 QAM 64 and 2x2MIMO

1512

1513

Table 6: Technical Characteristics of Different Generations of Mobile Technology

		Peak Data rate* (downlink)	Latency/Round-trip time
2G	GSM	9.6kbps	150-200ms
	GPRS	40kbps	>500ms
	EDGE	236.8kbps EDGE Evolution has downlink speeds of up to 1.3Mbps in the downlink and 653Kbps in the uplink	100-200ms
3G	UMTS	384kbps	200-250ms
	HSPA	14.4Mbps	50-100ms
	HSPA+	28Mbps in Rel-7 42Mbps in Rel-8 84Mbps in Rel-9 168Mbps in 20MHz in Rel-10 336+Mbps in 40 MHz in Rel-11	28+ms
4G	LTE	170Mbps in Rel-8 and Rel-9	5-10ms
	LTE- Advanced	 >300 Mbps by aggregating multiple 20 MHz carriers in Rel-10 >1Gbps in 80 MHz and 4x4 MIMO in Rel-11 	5-10ms

- 1515 Note: Theoretical maximum data rates are quoted in this table achievable throughput tends to $1/5^{th}$ to $1/7^{th}$ of this theoretical maximum
- 1517 Source: GSMA

Figure 11: GSMA family of technologies development to date

15214.4.2GPRS / EDGE (General packet radio service / Enhanced Data rates for Global1522Evolution

1523

1530

1535

1524 Technology Overview

GPRS (General packet radio service) is a second generation (2G) wireless broadband technology,
originally standardized by the European Telecommunications Standards Institute (ETSI), and
currently maintained by the Third Generation Partnership Project (3GPP) industry trade group.
GPRS (Release 97) and EDGE (Release 98) are largely specified in the GSM EDGE Radio
Access Network (GERAN) group of 3GPP.

Based on specifications in Release 97, GPRS typically reaches speeds of 40Kbps in the downlink
and 14Kbps in the uplink by aggregating GSM time slots into one bearer. Enhancements in
Releases R'98 and R'99 meant that GPRS could theoretically reach downlink speeds of up to
171Kbps.

In practice, GPRS is a best-effort service, which means that throughput and latency can be
variable depending on the number of other users sharing the service concurrently.

EDGE (Enhanced Data rates for Global Evolution) or Enhanced GRPS is the next advance in GSM
radio access technology. EDGE re-uses the existing GSM spectrum, with a new modulation
technique yielding a three-fold increase in bit rate (8PSK replacing GMSK) and new channel
coding for spectral efficiency.

1544 On-going standards work in 3GPP has delivered EDGE Evolution as part of Release 7, designed 1545 to complement high-speed packet access (HSPA).

- 1547 EDGE Evolution, resulting from the HUGE and RED HOT work items, has:
- 1548 Improved spectral efficiency with reduced latencies down to 100ms
- 1549 Increased throughput speeds to 1.3Mbps in the downlink and 653Kbps in the uplink
- 1550

- 1551 4.4.3 UMTS (Universal Mobile Telecommunications System)
- 1552

1566

1568

1575

1584

1586

1553

Technology Overview

- 1554 UMTS is an umbrella term for the third generation (3G) radio technologies developed within 3GPP. 1555 The 3G radio technologies include:
- W-CDMA (Wideband Code Division Multiple Access), the radio technology, which is a part 1556 1557 of the ITU IMT-2000 family of 3G Standards, and
- HSPA (High-Speed Packet Access), the radio technology largely covered by the Radio 1558 Access Network (RAN) group of 3GPP. 1559
- HSPA+ (Evolved High-Speed Packet Access), the radio technology first defined in 3GPP's 1560 -1561 Release 7.

1563 W-CDMA was specified in Release 99 and Release 4 of the specifications. High Speed Packet 1564 Access (HSPA) was introduced in Releases 5 (Downlink) and 6 (Uplink) giving substantially 1565 greater bit rates and improving packet-switched applications.

- 1567 HSPA improvements in UMTS spectrum efficiency are achieved through:
- 1569 New modulation (16QAM) techniques
- 1570 Reduced radio frame lengths
- 1571 New functionalities within radio networks (including re-transmissions between NodeB and 1572 the Radio Network Controller)
- 1573 Consequently, throughput is increased and latency is reduced (down to 100ms and 50ms for HSDPA and HSUPA respectively). 1574

1576 HSPA+ a natural evolution of 3G networks, much like HSPA was an evolution of UMTS and EDGE 1577 was an evolution of GSM. HSPA+ generally only requires a software upgrade to the infrastructure 1578 as well as increased backhaul and transport capabilities in order to support the significantly higher 1579 data rates offered by the technology. For certain legacy systems new hardware may be required to 1580 make the transition, although this requirement has not stopped some operators from moving 1581 forward with HSPA+. In other situations operators may upgrade their infrastructure as part of the 1582 natural hardware refreshment process or to take advantage of more power efficient and smaller 1583 form factor solutions, at which point only new software would be required for HSPA+.

- 1585 HSPA+ introduces the following new functionalities for HSPA:
- 1587 Release 7 added multiple input/ multiple output (MIMO) antenna capability and 16QAM (Uplink)/ 64QAM (Downlink) modulation. 64QAM (Quadrature Modulation Scheme) enables 1588 theoretical peak data rates in the downlink direction of up to 21Mbps. This compares with a 1589 peak data rate of 14.4Mbps with HSPA. 1590 1591
- 1592 The data capacity of HSPA+ in Rel-7 is double of HSPA Rel-6, which is an important improvement for Smart Grid applications. 1593
- 1595 MIMO (Multiple Input, Multiple Output) enables theoretical peak data rates of up to 28Mbps in a single 2x5MHz radio channel. MIMO uses two antennas at the cell site (transmitter) 1596 and two antennas at the mobile terminal (receiver) to send data bits in parallel streams 1597 1598 down two separate transmission paths. MIMO is a key feature in all next-generation wireless technologies, including LTE and LTE Advanced. 1599
- 1600

1601 HSPA+ is backwards compatible with HSPA, meaning that MIMO-enabled HSPA+ devices 1602 work in an HSPA network and that legacy UMTS/HSPA devices work in a MIMO-enabled 1603 HSPA+ network. 1604 1605 Enhanced CELL FACH significantly increases signalling load and improves the capacity -1606 for bursty traffic. 1607 Coupled with improvements in the radio access network for continuous packet connectivity. -1608 HSPA+ allows Uplink speeds of 11Mbps and Downlink speeds of 42Mbps within the 1609 Release 8 time frame. 1610 1611 Further improvements were introduced in Dual-cell or Dual-carrier HSPA (DC-HSPA). Dual cell or 1612 Dual carrier HSPA was defined in 3GPP Release 8, specifying carrier aggregation for increased 1613 spectrum efficiency and load balancing across the carriers. 1614 1615 DC-HSPA+ (Rel-8) can double the capacity for bursty applications, which includes most 1616 Smart Grid applications. 1617 Release 7, MIMO deployments can benefit from the DC-HSDPA functionality as defined in _ 1618 Release 8. 1619 Release 8, DC-HSPDA operates on adjacent carriers -1620 Release 9, paired cells can operate on two different frequency bands, possible to use DC-1621 HSDPA in combination with MIMO. In Release 9, it will also be possible to implement DC-1622 HSPA in the uplink, thus doubling the peak data rate to 11Mbps or 23Mbps with the addition of 16QAM. 1623 1624 1625 Release 9 also supports an innovative feature called Supplemental Downlink, which combines unpaired spectrum (e.g. TDD) with the downlink of paired spectrum, and 1626 1627 significantly increases the downlink capacity. 1628 HSPA+ Rel-10, which is already standardized, supports aggregation of up to 4 carriers 1629 1630 enabling 20 MHz deployments. HSPA+ through its many features allows operators leverage all of their spectrum resources. 1631 1632 1633 HSPA+ Advanced consists of enhancements being defined in Release 11 and beyond, introducing 1634 a range of new performance improvements. These enhancements can be divided into five broad 1635 areas: 1636 1. Evolving Multicarrier to utilize all available spectrum assets; 1637 2. Introducing features such as MultiFlow to exploit uneven network loading; 1638 3. Optimizing HetNets to get even higher performance from small cells: 1639 4. Further leveraging advanced antenna techniques; 1640 5. Efficiently connecting the next explosion of interconnected, low-traffic and bursty machine-1641 to-machine devices, which are forecast to reach billions in the next 5-10 years, and 1642 supporting the continued growth of smartphones. 1643 1644 Users of HSPA+ networks would benefit from the backwards compatibility of HSPA+ with 1645 UMTS/HSPA as well as the large ecosystem of device and chipset suppliers that are available. 1646 LTE and HSPA+ are considered to be complementary technologies and an operator's initial 1647 support of one technology will not come at the expense of their support for the other technology. 1648 Many of the operators who have already deployed HSPA+ are also in the process of deploying 1649 LTE. Still other operators may opt to deploy LTE first and then upgrade their HSPA networks to 1650 HSPA+ to augment the capabilities and coverage of their LTE network. LTE is best suited for new 1651 and wider bandwidth (10 MHz or more) as well as TDD spectrum. HSPA+, on the other hand, is 1652 well suited for the existing spectrum or new spectrum with 5MHz bandwidths. 1653

1654 The HSPA/HSPA+ system development have benefitted from large-scale adoption worldwide. 1655 Following an explosive rise in demand for smartphones, connected tablets and Mobile Broadband 1656 dongles across the globe, there are now more than 590 million HSPA Mobile Broadband 1657 connections worldwide, making it the fastest growing wireless technology ever. Mobile Broadband 1658 adoption in its first six years was ten times faster than the take up of 2G mobile phones when they 1659 were first introduced in the early 1990s. The global mobile industry is now connecting 19 million 1660 new HSPA devices each month and is on course to reach one billion HSPA connections by the 1661 end of 2012. HSPA Mobile Broadband networks have now been deployed in 135 countries.

1662

Over the next five years, Rethink Technology Research forecasts that mobile operators will invest
almost US\$100 billion in HSPA, HSPA+ and next-generation LTE networks, which offer peak
download speeds of up to 100Mbps – ten times faster than the average wired broadband
connection today.

1667 4.4.3.1 Mobile Network Resilience

Mobile networks are built to deliver "five nines" availability: the networks are up for 99.999% of the
time, which translates into 38 minutes/year downtime.

Equipment is deployed with 'N+1' or '1+1' redundancy and has stand-by powering available in case of power outage. For every piece of equipment in the network there is always a 'spare' that is in 'warm stand-by', so that if a fault occurs, the stand by equipment takes over. In reality, both pieces of equipment are active and load balancing is taking place between the two. This means that there is always spare capacity in the network elements since both have to run at low efficiency so they can handle the calls/sessions the other is managing if there is a failure.

1677

1679

1680

1681

1682

1678 Links between network equipment are usually installed with:-

- Sufficient capacity to handle busy hour traffic peaks and unexpected surges in demand
- Redundancy (often including geo-redundancy) to offset the risk of link breakage disrupting service.

1683 Critical network elements are installed in geo-redundant locations. If one site is attacked, another 1684 site has all information stored and can take up service.

1685

1686 All mobile networks have a Network Operations Centre (NOC) where all faults and outages are 1687 reported and necessary repairs are coordinated from.

1688 4.4.3.2 Embedded SIM

The UICC (Universal Integrated Circuit Card) is the smart card used in mobile devices in GSM and
 UMTS networks. In a GSM network, the UICC contains a Subscriber Identity Module (SIM)
 application and in a UMTS network it is the Universal Subscriber Identity Module USIM application.

1692

1693 The Embedded SIM is a separately identifiable hardware component (tamper-resistant 1694 microprocessor with secure memory), which is installed in a device at manufacture, replacing the 1695 need for a traditional SIM. It is not intended to be removed or replaced, and it has functionality 1696 allowing its secure remote management including loading/reloading of mobile operator credentials 1697 and applications. It is supported by a set of secure interfaces and standards that allow operator credentials to be transported securely from the Operator to the Embedded SIM, thus providing the 1698 1699 integrity and trust necessary to protect users and operators during the transport and provisioning of 1700 sensitive data. This is a fundamental change to current models of hard coded SIM applications.

1701

Embedded SIM allows selection of a mobile operator and country to happen independently ofdistribution channel, which is a significant benefit to manufacturers through the reduction of stock

1705 smart grid products is in excess of 10-15 years. The Embedded SIM also permits removal of MNO 1706 credentials from SIM card (termination) with re-use of device/eUICC on the same or another 1707 network. 1708 1709 Embedded SIM will have the potential to support the following major business use cases relevant 1710 to the smart grid: 1711 a. Provisioning of multiple Machine subscriptions, where an Service Provider sets-up 1712 subscriptions for a number of connected data devices to start telecommunication 1713 services with a Network Operator; b. Subscription change, where a subscriber changes the subscription for a device to stop 1714 services with the current Mobile Network Operator and start services with a new Mobile 1715 1716 Network Operator; 1717 c. Stop subscription remotely, where a subscriber stops services with the current MNO 1718 d. Transfer subscription, where a subscription is transferred between devices 1719 1720 The standardization of the Embedded SIM is taking place at ETSI SCP (Smart Card Platform) 1721 technical committee (http://portal.etsi.org/scp), which is currently defining the requirements. 1722 1723 It is worth noting that the Embedded SIM preserves the traditional advantages of the SIM/UICC 1724 card platform, some of which may be of particular interest in the smart grid context and especially 1725 in smart metering: 1726 1. A programmable tamper-resistant microprocessor able to support multiple applications, 1727 which could be used as the security module in the gateway of a smart metering systems to 1728 comply with the requirements of the BSI Protection Profile for Smart Meter Gateway issued 1729 in Germany. 1730 2. An standardized programming environment (JavaCard virtual machine) and Application Programming Interface (Card Application Toolkit) enabling the interoperable downloading 1731 1732 and remote management of third-party applications 1733 3. Support of Global Platform specifications, which enable the following features: a. Provisioning and management of third party applications in confidentiality from the 1734 1735 communication service provider, where desired 1736 b. Ability for each third party application to run in its own "Security Domain", providing 1737 firewall protection for its private information 1738 c. Ability for each third party application to establish a secure channel with its service 1739 provider independently from the other applications. 1740 1741 The combination of these features may assist in resolving the privacy issues associated with smart 1742 metering as depicted in the following figure, where raw energy data are processed independently 1743 in the applications Security Domains of the embedded SIM to extract only the information of 1744 interest to their service providers:

items needed. It enables subscribers to switch operator during product life cycle, which for many

1745

1747

Figure 12: Privacy issues associated with smart metering

1748 4.4.4 Long Term Evolution (LTE) for Smart grid

1749 **4.4.4.1 Overview of LTE**

1750 LTE (Long Term Evolution) is the next generation wireless broadband technology developed and 1751 standardized by the Third Generation Partnership Project (3GPP) industry trade group. LTE is the 1752 next step in a progression from GSM (2G), & UMTS (3G), providing increased data rates, reduced 1753 latency, and scalable bandwidth capacity. The air interface (originally specified in 3GPP Release 8) combines OFDMA based modulation and multiple access scheme for the downlink, with SC-1754 1755 FDMA for the uplink. The available spectrum is split into a thousand or more of narrowband carriers, each carrying a part of the signal. In LTE, the innate spectral efficiency of OFDM is further 1756 1757 enhanced with higher order modulation schemes (64QAM), sophisticated error correction 1758 schemes, and radio techniques such as MIMO and Beam Forming with up to four antennas per 1759 station enables greater throughput. 1760

The combined effect of these radio interface features is significantly improved radio performance
with up to 300 Mbit/s per 20 MHz of spectrum for the downlink and 75 Mbit/s per 20 MHz of
spectrum for the uplink.

1764

A key characteristic of LTE technology is that bandwidths are scalable from 1.4 MHz to 20 MHz.
3GPP release 8 defines LTE bandwidths of 1.4, 3, 5,10, 15 and 20 MHz. OFDMA, the chosen
transmission scheme for LTE 's physical layer enables such bandwidth flexibility. Bandwidth
scalability inherent in LTE provides a flexible and easy way to increase capacity on the air interface
into the future to meet the demands of higher data throughputs, new applications and changes.

1771

Table 7: 3GPP Long Term Evolution Requirements

Metric	Description	Requirement
Bandwidth	Support of scalable bandwidth	1.4,3,5,10,20MHz
Peak data rate	Downlink	100Mbps
	Uplink	50Mbps
Latency	Transfer delay in RAN	5ms (one way)
	Connection setup delay	100ms

Every 3GPP LTE UE is required to support these afore mentioned bandwidths already from
Release-8, therefore increasing system capacity in terms of cell throughput is as simple as scaling
up the LTE allocated bandwidth. Where spectrum is shared with other systems such as GSM,
scalability allows for progressive spectrum allocation, conserving capacity for legacy systems until
such time as the extra bandwidth is required for LTE applications.

1779 Existing and Proposed LTE features

1780 1781

1782 1783

1784 1785

1786 1787

1788

1789

1790 1791

1792

1798

1799

1819

- Dual-Stack IPv4/IPv6 support IPv6 addressing is essential for large "machine communities", and allows applications to work seamlessly across mobile and fixed broadband connections.
- Very low latency on user plane, control plane and scheduling (Short setup time & Short transfer delay, Short TTI,) essential for Grid applications handling thousands of devices within a cell. Previous generation technologies have slower radio reestablishment procedures and require larger overheads.
- Support of variable and scalable bandwidth (1.4, 3, 5, 10, 15 and 20 MHz) to effectively
 address capacity issues whilst optimizing spectrum utilization by legacy applications
 (GSM/UMTS). This is essential in enabling efficient and simple spectrum sharing, and
 allows a smooth migration, increasing bandwidth as the demands on the network
 increases (as the number of devices increases, or data requirements increase).
- Simple protocol architecture (Shared channel based, Packet Switched optimized with VoIP capability). Grid applications are data based; LTE is a network made especially to handle data as first priority.
- Simple Architecture (eNodeB as the only E-UTRAN node) reduces system complexity, reduces latency and enhances scalability.
 - Efficient Multicast/Broadcast. This is a desirable feature for future deployment of applications intended to make use of broadcast data.
- Support of Self-Organizing Network (SON) operation reduces the need for OPEX
 intensive O&M tasks through automatic neighbour optimization and automatic interference
 management. This saves costs associated with manually configuring and tuning the
 network.
- Guard bands are part of the LTE specification, meaning that no extra consideration needs to be taken in calculating spectrum requirements. LTE can be put right next to GSM/HSPA without any extra guard band required.
- 1807 Increased spectrum efficiency in DL from 15bps/Hz to 30bps/Hz. This provides capacity
 expansion into the future to meet the needs of new applications and faster downlink data
 transfer rates.
- Support for non-contiguous bandwidth scalability, allowing aggregation of non-adjacent bandwidth allocations (increasing capacity). This provides greater flexibility for capacity expansion into the future without the need to secure contiguous spectrum.
- 1813
 Improved support for heterogeneous deployments and relaying, reducing the cost of network coverage expansion.
 1815
- 1816 In addition to the technological and business reasons for selecting it, LTE also benefits from its
 1817 foundation as a global standard. With the selection of LTE, the following benefits are guaranteed:
 1818
 - Backwards compatibility: Future releases maintain compatibility with existing releases, so that old equipment is not made obsolete.
- Robust evolution: LTE is constantly being improved and operators are constantly upgrading their networks. It is envisaged that LTE radio access technology could be evolved for the coming 20 years.

- Large ecosystem: The reliance on standardized solutions ensures that there is healthy competition and a large menu of products available.
- Standardization of not only the radio technology, but of a coherent system as a whole
 including the core network, services aspects, security aspects, and management aspects.
- 1828 High bandwidth, low latency, high reliability, QoS, secure ecosystem,

1829 **4.4.4.2 LTE and Wide Area Networks**

1830 LTE is primarily a wide area technology. It is developed for data communications (voice is 1831 considered just another type of data). It is being considered extensively for machine-to-machine 1832 communications. As it is a next generation technology, meaning that 3GPP has a considerable base of previous knowledge to work with in developing wireless networks. Much of this worked 1833 1834 focused not only on specifying a system with improved performance, but also on standards to 1835 reduce the total cost of ownership. Within 3GPP many of the standardized technologies such as 1836 SON or Minimization of Drive Tests are focused on simplifying the deployment and maintenance of 1837 the network.

3GPP also allows for various business types of arrangements that may reduce costs such asharing of the network between multiple operators or virtual network operators.

Since LTE is global standard, this requires a large amount of flexibility. LTE must be able to be
deployed within various national frequency band plans. It must be able to coexist with other
technologies, and conform to various nation regulations. In Release 10, LTE was defined for 25
FDD bands and 11 TDD bands with new bands being added all the time. In addition to individual
bands, 3GPP has the concept of carrier aggregation, which allows different bands to be
aggregated to act as a wideband carrier.

1849 LTE is required to exist in many radio environments such as rural areas, urban canyons, subways 1850 etc. For this reason, 3GPP allows for a variety of sizes of cells ranging from macro cells that cover 1851 100 square miles to micro cells, pico cells, and recently home eNodeb's that are intended to work 1852 in residential or hotspot type of environments. LTE is specified to fullfil the full performance 1853 requirements in cells with 5 km radius, with slight performance degradations (reasonable 1854 performance) in cells with 30 km radius and should not preclude (acceptable performance) cells 1855 with 100 km radius. 100 km radius translates to around 12000 square miles while 30 km radius 1856 covers around 1100 square miles. 1857

Even when LTE devices are not mobile, the radio environment can vary wildly over time. LTE is
designed to make optimal use of the available micro cells and macro cells to provide throughput
and increase reliability.

- Although LTE was designed for data communications, it was realized that not all data
 communications are the same. LTE allows for different QoS characteristics to be associated with
 different data streams. These characteristics include aspects such as:
 - Guaranteed bit rate or not
- 1866 Allocation retention priority
- 1867 Priority
 - Bit rate
 - Delay
- 1870 Maximum bit loss 1871
- 1872 LTE Release 8 supported bit rates of 100Mbit/sec, latencies in the order of 10ms on the radio
 1873 interface, and maximum bit error rates as low as10[^]-5. These numbers are constantly improving
 1874 with each release.
- 1875

1865

1868 1869

1838

Support for these parameters is integrated into the system and extends from the terminals through
the radio network and through the core network. In addition, 3GPP is working on further optimizing
the system to cater to machine-to-machine type characteristics such as bursty traffic, infrequent
message sending and greater uplink traffic than downlink.

- 1881 Optimizations will improve the efficiency of the network; whilst maintaining backwards 1882 compatibility. This means that whatever changes are made to improve efficiency or improve 1883 performance will not affect the ability of existing devices and applications to continue to work. 1884 3GPP Release 10 addressed Overload Control mechanisms to protect mobile networks from data 1885 signaling congestion and overload, e.g. the distributed ability to reject connection requests from 1886 delay-tolerant services to maintain critical services. Whereas in Release 10 the focus was in the 1887 core network overload control, in Release 11 3GPP is working on overload control of the radio 1888 network and Random Access Channel in particular.
- 1889 1890 One specific expectation with machine-to-machine type of devices is that there will be a large 1891 number of devices. LTE devices are dual stack (ipv4/ipv6) to ensure that growth is not limited by 1892 IP addresses. Other identifiers are not seen as an immediate problem, however 3GPP is also 1893 working to ensure that there are no limitations in that area.3GPP Release 11 is currently working 1894 on System improvement for Machine Type Communication focusing on reachability aspects e.g. 1895 addressing and identifiers, Device triggering and architectural enhancements for machines & 1896 meters. 1897
- Another area were LTE has a strong heritage is in security. The need for security is a fundamental
 requirement on LTE systems. 3GPP ensures that the systems are not only secure, but that
 backup algorithms exist in case the primary algorithms are ever compromised.

1901 4.4.4.3 LTE and Field Area Networks

LTE is designed to work in licensed bands. This will in many cases mean that it is more reliable
than networks deployed on the ISM band. The 3GPP standard certainly allows for small cell sites
and many such products exist and are currently deployed today.

- However, another option is to use a commercial LTE network and thus completely eliminate the
 need for a field area network. LTE may of course also be deployed in dedicated bands owned by
 the utilities. 3GPP can consider standardizing additional bands if required. 3GPP will not however
 extend the technology to the ISM bands.
- 1910
 1911 It should be noted that LTE is ideally suited to scenarios where large populations of devices
 1912 require concurrent data communication within a sector. This is a key requirement during scenarios
 1913 such as soft starting a network after a blackout (remotely disconnecting a large volume of
 1914 residences and then turning them on in smaller groups so as not to overload the systems with high
 1915 start-up current), suburb-by-suburb off-peak tariff control, street light control, distributed generation
 1916 and so on.
- Typically, the devices on the network are fixed geographically and spend most of their time in an idle mode. When a traffic event occurs (initiated either by the terminal device or a system external to the LTE network), the devices attach to the network using standard 3GPP LTE protocols, and are then able to send or receive data, depending on the application and traffic case.
- In general, the devices do not move, and have no need to use the various mobility management
 functions inherent in the LTE system. However, devices that are situated in marginal coverage
 areas (towards the edge of a coverage cell) will be able to signal via different sectors as the need
 arises.
- 1927

1917

One of the areas currently being investigated by 3GPP is the specification of low cost LTE devices.
 These are devices or modules, which are suitable for low demand applications and achieve a
 lower price point than full-fledged LTE modules.

1931 4.4.4.4 LTE and Premises Networks

- 1932 LTE has two methods of addressing premises networks:
- Home ENodeBs (femtocells) are small base stations that are specified to connect to the cellular network over the customer's broadband connection. These use LTE (or HSPA)
- WLAN integration allows for cellular traffic to be tunneled over the customer's broadband connection. This requires devices that are Wi-Fi capable.

For these two options, there are various possibilities with respect to steering traffic, offloading
 traffic, and access/visibility of local network resources.

1941 These two methods have been specified within 3GPP. The primary advantage of these methods 1942 over traditional Wi-Fi only is that it provides the mobility, security, management, QoS capabilities 1943 inherent in 3GPP networks.

1944
1945 A special case within this scenario is the Plug in Electric Vehicle (PEV). PEVs are expected to
1946 sometimes be part of the premises network, but also require mobility. LTE is an obvious candidate
1947 for such mobility. With a LTE HeNB or integrated Wi-Fi, then the same applications that work in
1948 the premises continue to work while on the road.

1949 **4.4.5 Wireline access technologies**

1950 4.4.5.1 Digital Subscriber Lines, xDSL

For the past twenty years, digital subscriber lines technologies have been adopted worldwide with a high penetration by the operators and users. The main driver of its success is the constant increase of the bit rate over existing copper wires, which opens the doors to numerous new services like high speed internet and IPTV (Internet Protocol Television). This highlighted the importance of guaranteed rate and almost error free transmission. Accompanying this trend to higher and more stable bit rates, the ITU-T has generated a series of Recommendations dedicated to DSL systems and updated them regularly.

1958 1959

1937

1940

Table 8: ITU-T Recommendations on DSL systems

(S)HDSL	HDSL	SHDSL			
	G.991.1	G.991.2			
ADSL	ADSL	Splitterless ADSL	ADSL2	Splitterless ADSL2	ADSL2plus
	G.992.1	G.992.2	G.992.3	G.992.4	G.992.5
VDSL	VDSL	VDSL2	VDSL2 with		
	G.993.1	G.993.2	Vectoring		
			G.993.5		
Common	Handshake	Overview DSL	Test	Single ended line	
aspects	G.994.1	systems	procedures	testing	
-		G.995.1/G.sup50	G.996.1	G.996.2	
	Physical layer	Multi-pair bonding	Interfaces	Improved impulse	
	management for	G.998.1/2/3	PHY / Link	noise protection for	
	DSL		Layer	DSL transceivers	
	G.997.1		G.999.1	G.998.4	

1961 The first series of ITU-T Recommendations, G.991.x, on DSL targets business services. They are 1962 characterized by single carrier baseband system using the same frequencies in upstream and 1963 downstream directions. They provide symmetric services up to 6 Mbit/s with very low latency.

The second series of ITU-T Recommendations, G.992.x, targets residential services from the central office. Using a multi-carrier modulation and frequency division duplexing, they provide asymmetric services up to 16 Mbit/s in the downstream direction and 800 Kbit/s to the central office. The variants ITU-T G.992.1 (ADSL), ITU-T G.992.3 (ADSL2), and ITU-T G.992.5 (ADSL2plus) are the most widely deployed DSL systems in the world.

1969 The third series of ITU-T Recommendations, G.993.x, is intended for residential and business 1970 services from the cabinet. The first variant is ITU-T G.993.1 (VDSL). It was quickly followed by the 1971 second variant, ITU-T G.993.2 (VDSL2). The latter is now the most deployed one. ITU-T G.993.2 1972 is a multi-carrier system with a frequency division multiplexing similar to ITU-T G.992.3, but using a 1973 wider frequency band to provide bit rates up to 100 Mbit/s. VDSL2 has been designed to keep as 1974 many common functions with ADSL2. The third variant, ITU-T G.993.5, is an addition to VDSL2 1975 that permits to increase the rate or to extend the reach by using crosstalk cancellation between the 1976 pairs.

1977 On top of those three series, a set of Recommendations applicable to multiple ITU-T

1978 Recommendations were developed. For examples, ITU-T G.994.1 is a common protocol to 1979 negotiate between different xDSL technologies, ITU-T G.997.1 provides a common management 1980 interface to DSL technologies, ITU-T G.998.1/2/3 describes common bonding protocol for DSL,

and ITU-T G.998.4 specifies a common retransmission technique for VDSL2 and ADSL2.

1982 4.4.5.2 Passive Optical Access Networks (PON)

1983 Optical fibre is capable of delivering bandwidth intensive integrated voice, data and video services 1984 at distances beyond 20 km in the access network. Various configurations can be imagined for the 1985 deployment of the optical fibre in the local access network. The most well known are Fibre to the 1986 Home (FTTH), Fibre to the Building (FTTB) and Fibre to the Curb (FTTC).

Passive Optical Network (PON) is a technology viewed by many network operators as an attractive solution to minimize the amount of optical transceivers, central office terminations and fibre deployment. A PON is a point-to-multipoint optical network with no active element in the signal path from source to destination. The only interior elements used in a PON are passive optical components such as fibre, splices and splitters.

The PON is completely passive and the maximum distance between the OLT and the ONU is typically limited to 20 km at nominal split ratios. However, there are also solutions that include deployment of active elements in the network structure (e.g., optical amplifiers) when it is necessary to achieve a longer reach (e.g., up to 60 km) or to reduce the number of CO sites (CO concentration), or to connect a larger number of users to a single OLT port (e.g., where higher power budget is required due to a higher split ratio). Such solutions are typically referred to as "long-reach PON".

A PON can be deployed in a FTTH (fiber to the home) architecture, where an ONU / ONT is provided at the subscriber's premises, or in FTTB (fiber to the building), FTTC (fiber to the curb) or FTTCab (fiber to the cabinet) architectures, depending on local demands. In the latter cases, the optical link is terminated at the ONU, and the last stretch to the subscriber's premises is typically deployed as part of the copper network using e.g., existing xDSL lines. Typically, Various types of xDSL technology are used, from the xDSL family of technologies, e.g., VDSL2 (Very high speed Digital Subscriber Line 2).

2006 Several versions of PON are at present specified in ITU-T: B-PON (G.983.x series), G-PON (G.984.x series), 10G-PON (G.987.x series). These three PON architectures have the same

- infrastructure, design and installation. The main difference among the three solutions is related todownstream and upstream data rates, as shown in Table 9.
- 2010

Table 9: Downstream and upstream data rates for PON technologies

Туре	Downstream (max.)	Upstream (max.)
	Standard:1.2 Gbit/s	Standard: 622Mbit/s
	In service: 622 Mbit/s	In service: 155 Mbit/s
ITU G.983.x series		
(BPON)		
	2.5 Gbit/s	Standard: 2.5 Gbit/s
ITU G.984.x series		In service: 1.2 Gbit/s
(GPON)		
	10 Gbit/s	2.5 Gbit/s
ITU G.987.x series		
(XG-PON1)		
IEEE802.3ah (GEPON)	1 Gbit/s	1 Gbit/s
IEEE802.3av	10 Gbit/s	10 Gbit/s
(10G-EPON)		

2011

2012 The ITU-T G.983.x series described PON systems based on ATM technology (A-PON / B-PON)

2013 and consisted of five Recommendations. The first described the base system, including the

2014 requirements, architecture, physical interfaces, and transmission convergence functions. The 2015 following four described features that were added subsequently.

2015 2016

The ITU-T G.984.x series described gigabit PON systems (G-PON), and consisted of seven
Recommendations and one Supplement. The first four defined the base system, with one
document each handling requirements, physical layer specifications, transmission convergence
layer specifications, and management functions. The other four documents contained additional
features and enhancements that arose later.

The ITU-T G.987.x series described 10 Gigabit capable Passive Optical Networks (XG-PON) systems, and consists of five Recommendations. The first provides defined terms and acronyms, and then the following three defines the base system, using the similar structure as for G-PON, with the exception of ONU management, which is handled by ITU-T G.988. The fifth document describes reach extension for XG-PON.

IEEE has defined Ethernet based PON solution (EPON). 802.3ah provides 1 Gbit/s and 802.3av
10 Gbit/s bit rates. 802.3av supports simultaneous operation with 802.3ah by using separate
wavelengths downstream and a shared wavelength upstream.

2032

2033 **4.5 Core and metro networks overview**

2034 4.5.1 Introduction

2035 4.5.2 IP MPLS

- 2036 To be completed in a subsequent release
- 2037

2038 4.5.3 MPLS-TP

The MPLS Transport Profile (MPLS-TP) is an extension of the original MPLS protocol to optimize
 MPLS operation in transport (Layer 2) networks.

2057

2062

2068

2069

2070

2071

2073

2077

A transport network provides efficient, reliable, qualitative and scalable connectivity over which
 multiple services can be supported, with a clear separation between the operations and
 management of the service layer from those of the transport layer. MPLS-TP is designed to satisfy
 transport network challenges like:

- Providing efficient, reliable, long-standing, aggregated transport paths
- Traffic Engineering for efficient utilization of the network resources
- Efficient support of all kind of services
- Transparent for service creation and modification
- Effective and scalable bandwidth management, resiliency, and QoS
- QoS with guaranteed bandwidth, controlled jitter and delay
- Robust carrier-grade OAM
- Protection and restoration mechanisms to provide high reliable services
- Simple provisioning
- Scalable to support millions of connections and global reach
- Optimal interworking with upper and lower layer network technologies
- MPLS-TP is a technology applicable for packet-switched transport networks and a profile of the extended MPLS toolkit defined by IETF. The IETF (bringing IP and MPLS packet expertise) and ITU-T (bringing transport expertise) together define the capabilities and ensure compatibility with the MPLS architecture and Mechanisms.
- Much of the original MPLS design, architecture and mechanisms can be used in transport networks. However MPLS-TP is being extended in the following areas to fully support the transport's requirements:
- 2066 1. Architecture: 2067 Both Op
 - Both Operation Support System (OSS) based and dynamic control plane based provisioning or/and management
 - Enhancements to work as pure Layer 2 technology without relying on IP functionality.
 - Transmission of OAM messages in-band at all levels, i.e. along with the data traffic, subjecting them to the same treatment.
- 2072 2. Data-plane
 - Support of bidirectional and co-routed connections
- MPLS path merging features such as multipoint-to-point and Penultimate Hop Popping
 (PHP) are disabled to ensure there is a unique label to identify a path end-to-end
- 2076 3. Resilience
 - MPLS and GMPLS recovery mechanisms can be provisioned by the management plane.
- Support of linear protection mechanism with bi-directional operation to ensure co-routing of traffic in protection state.
- Support of hold-of timers to allow protection switching a several MPLS-TP levels.
- On-going work to optimize the protection operation of MPLS-TP in ring topologies.
- 2082 4. OAM
- Support of carrier grade transport network OAM mechanisms:
- 2084 Continuity Check, Connectivity Verification, Alarm notifications, Performance monitoring, 2085 Diagnostics
- 2086 OAM support at all MPLS-TP levels
- 2087 5. Management-plane and control-plane

- Management-plane and control-plane can be used in conjunction or independently to
 provision paths and services
 - Mechanisms are provided to provision and manage QoS and performance measurement parameters.

MPLS-TP provides transport services for various kinds of protocols, from IP, IP/MPLS to Ethernet,
 ATM, SDH, PDH, Frame Relay and others and enables therefore a migration from legacy transport
 network and protocols (e.g. circuit switched technologies like PDH and SDH). It can run over
 various transport infrastructures like Ethernet, OTN and SDH.

2097
2098 MPLS-TP supports point-to-point and point-to-multi point connectivity and can be used in access,
2099 aggregation and core networks scenarios providing a unified end-to-end solution.
2100 The traffic engineering, carrier-grade OAM and resilience mechanisms make MPLS-TP very
2101 suitable for applications, which require high reliability, low packet loss and low and deterministic
2102 delay/latency. The capability to differentiate between traffic classes allows to prioritize important
2103 traffic and to support different Service Level Agreements as needed.

2104

2090

2091

2092

2105

2106

Figure 13: MPLS TP context

2107 General application areas for MPLS-TP are for mobile backhaul for cellular networks from the base 2108 stations to the core network, wireline aggregation networks and core router inter-connection and 2109 off-loading.

- 2110
 2111 In the Smart Grid context MPLS-TP fits very well for sub-station to sub-station and sub-station to
 2112 control centre communication including support for low latency applications and Ethernet services
 2113 (e.g. teleprotection, IEC61850 GOOSE messages). Also high precision timing applications, using
- 2114 for example IEEE1588, benefit from the predictable delay of MPL-TP services.
- 2115
- 2116 The first phase of MPLS-TP specifications includes requirements (e.g. RFC5654[3]) and
- 2117 frameworks (e.g. RFC5921[4]) documents; architectural elements; a comprehensive set of
- 2118 transport-based operations, administration, and management tools for fault management and
- 2119 performance measurement; and a mechanism for transport-like linear protection.

2120 **4.5.4 OTN**

2121 The Optical Transport Network (G.709) technology offers a multi-service capable infrastructure

2122 supporting lambda and sub-lambda services with guaranteed quality. OTN is characterized by a

- feature set and granularity that suits metro and core transport requirements, while mixing photonic and electronic technology in a complimentary way to achieve carrier grade OAM and resilience.
- and electronic technology in a complimentary way to achieve carrier grade OAM and resilience.

2126 Some key features include:

- Future proof flexibility and scalability for any service mix and traffic distribution, enabling
 flexible grooming at lambda, port, and sub-port levels.
- Connection-oriented transport of any variable bit-rate, leveraging its flexible-sized container
 (1.25 Gbps increments), to enable full utilization of network resources
- Optimized support for Gigabit Ethernet services, ranging from 1 Gb/s to 100 Gb/s,
 - Gigabit/ Multi-Gigabit -level bandwidth granularity required to scale and manage Multi-Terabit networks.
 - Enhanced SLA verification capabilities in support of multi-carrier, multi-service environment.

2135
2136 Initial OTN technology built upon the industry's positive experience with SDH/SONET, providing
2137 support for new revenue generating services, and solutions for offering enhanced OAM capabilities,
2138 while addressing inherent optical transmission challenges that did not exist for SDH (e.g., DWDM
2139 system engineering rules with/without flexible Optical NEs). Current OTN technology like OTUflex
2140 extends and enriches the foundation OTN hierarchy as a seamless transition towards enabling
2141 optimized service transparent support for an increasingly abundant service mix.

2132

2133

2134

2143

Figure 14: OTN multiplexing

- Integration of GMPLS optical control plane technology has enabled dynamically configurable OTN
 networking, with control plane survivability schemes expanding the data-plane protection solutions
 toolkit for network reliability and availability.
- 2147 2148
- As a scalable, survivable, and manageable L1/L0 transport infrastructure, OTN complements
- 2150 higher Layer Packet Transport technologies in offering a robust foundation for Smart Grid
- 2151 applications.

2152 4.5.5 Data services over SDH

2153 SDH was first introduced into the world's telecommunications networks in the early 1990s, yet 2154 within five years of its launch had all but displaced the deployment of its predecessor, the 2155 Plesiochronous Digital Hierarchy (PDH) [3].

- 2156 2157 That this transition took place so quickly is not so difficult to explain [4]. User interfaces on SDH 2158 equipment remained those of the standard PDH rates of 2Mbit/s (E1), 34Mbit/s (E3) and 140Mbit/s 2159 (E4), whilst SDH technology delivered a decided improvement in the efficient dropping and 2160 inserting of any individual payload directly from the aggregate optical stream, without the need for 2161 PDH's more convoluted de-multiplexing and re-multiplexing processes. Coupled with its 2162 comprehensive performance, fault management and sub-50ms autonomous payload protection, 2163 SDH offered operators greater networking flexibility, faster provisioning and substantial total cost of 2164 ownership benefits.
 - 2165

SDH's benefits of adding and dropping traffic, together with its fast protection schemes, was best realized within fibre ring topologies, with their inherent spatial diversity and reduced fibre demands, compared to PDH's previously established hub and mesh topologies. This had an immediate and lasting impact on network build, as fibre rings became the preferred topology, particularly in the access and metro environment.

2171

2172 Given all of SDH's benefits, its almost universal deployment throughout all of today's public 2173 telecommunications networks and its established operational practices, the key question now is

- whether and over what period SDH might, itself, succumb to the pressures from Ethernet, as the next generation transport technology.
- 2176 **4.5.6 Mapping into SDH payloads**

The starting point was SDH (or its North America SONET counterpart). Its adoption was not only a major factor in shaping global network technology and operating practice, it was, also, instrumental in the literal shaping of the [ring based] fibre topologies.

Unsurprisingly, the first phase in handling Ethernet was built on SDH's incumbency and proven
performance. The addition of a simple process to map Ethernet into the SDH frame became the
basis of what has become known as "Next Generation SDH (NG SDH)".

Frequently, this capability was developed as an add-in card or "blade", which could replace existing traffic cards in both existing and installed SDH equipment. This process of TDM to packet migration allowed the installed base to be progressively "upgraded" to support the introduction of Ethernet, in line with demand and without the need to replace existing equipment.

Very quickly, virtually all SDH equipment became NG SDH, consigning any product that did not
come up to this level with the pejorative label, "legacy". More specifically, to qualify as NG SDH,
the minimum requirement was that traffic presented on a given Ethernet port could be mapped,
using the ITU-T Generic Framing Procedure (GFP), into one or more SDH Virtual Containers
(VCs).

2195 2196 To counter the large step in VC payload sizes (a VC-12 has an approximate 2Mbit/s payload capacity; VC-3 = 45Mbit/s; VC-4=150Mbit/s), an extension of the mapping procedure enabled the 2197 2198 otherwise coarse steps of the individual VC payload granularities to be replaced by the 2199 construction of more elastic payloads from multiple smaller individual VCs to form a single, larger 2200 virtual concatenated payload (VCAT). In this way, for example, a 10Mbit/s Ethernet could be 2201 carried more efficiently in five VC-12s (5x 2Mbit/s) than if it had to be mapped into its nearest 2202 equivalent VC-3 (34Mbit/s) payload. 2203

- The efficiency enabled by VCAT and GFP could be further extended to handle any fractional rate
 Ethernet service, down to granularities as small as 64kbit/s, depending on the implementation
 adopted by the NG SDH equipment vendor.
- This ability to size the SDH payload to match the Ethernet rate led to two further opportunities to enhance NG SDH.
- The first was the introduction of the ITU-T's Link Capacity Adjustment Scheme (LCAS), which allowed the size of the VCAT to be seamlessly and automatically increased or decreased in service, in line with changes in payload requirements or under fault conditions.
- 2213

2210

- The second was that the policing and shaping required for handling fractional Ethernet, laid the foundations for introducing Layer 2 bridging, aggregation, switching, grooming and for the handling of multiple flows per port, QoS levels etc.
- Throughout, the initial deployment was characterized by a continuous process of adding packet functionality to an established SDH product architecture, with the advantages that existing SDH functionality was not compromised and the cost of migration was incurred only incrementally.
- 2223 It, offered a quick and relatively painless first step on the road to deliver wide area packet
- networking for best effort, statistical gain services and for business services, such as E-LINE and
- 2225 VLAN services, on the shoulders of SDH's proven carrier class performance.
- 2226 4.6 Higher level communication protocols
- 2227

Smart grid applications and standards rely heavily on Web Services for the upper layers protocols.
Web Services are defined to be the methods to communicate between applications over
communication networks, generally IP based. Two major classes of Web Services can be
distinguished (the pros/cons of each class are beyond the scope of this document). These are
RESTful Web Services and SOAP/RPC based Web Services. More information on these two
classes of Web Services is provided by the W3C under this link: http://www.w3.org/TR/ws-arch/#relwwwrest

2235

The Web Services messaging protocols are designed to be independent of the underlying
 transport protocols. HTTP, XMPP and CoAP are the most relevant messaging /transport protocols.

2239 The IEC TC57 WG17 is currently working on Web Services profiles for 61850 specifications.

2240 4.6.1 RESTful Web Services

2241

REST (Representational State Transfer) is an architectural style defined by Roy T. Fielding in
2000.

- It is a set of principles that enable distributed systems to achieve greater scalability and allow
 distributed applications to grow and change over time, thanks to loose-coupling of components and
 stateless interaction.
- 2248
 2249 The main concept of REST is that a distributed application is composed of RESOURCES, which
 2250 are stateful pieces of information residing onto one or more servers.
- Regardless of their content, in REST it is possible to manipulate them through a uniform interface
 that is composed of 4 basic interactions: CREATE, UPDATE, DELETE and READ.
- 2254

- Each of these operations is composed of a request and a response messages, and, with the exception of CREATE, they are IDEMPOTENT, meaning that the end result of each operation does not change regardless how many times the operation itself is repeated. In other words, these operations do not have side-effects. This makes it distribute resources around and to proxy them, since the lack of side effects allows more efficient caching and scalability.
- Most importantly however, since the same set of operations can manipulate the most diverse kind of resources, it is not necessary to develop a dedicated client or infrastructure whenever the application domain changes. Rather, the same underlying architecture can be reused times and times again in face of changes in the application space.
- 2265

The most common implementation of REST is HTTP, where the above operations are mapped into the methods of this protocol: CREATE is mapped on HTTP POST, READ on HTTP GET, UPDATE on HTTP PUT and DELETE on HTTP DELETE.

2269

2280

However other implementations are possible: CoAP (Constrained Application Protocol), XMPP(Extensible Messaging and Presence Protocol), etc.

2272 4.6.2 SOAP/RPC Web Services

SOAP/RPC based Web Services: applications expose interfaces that are described in machine processable format, the Web Service Description Language (WSDL). It is also possible for applications to interact through SOAP interfaces which provide a means to describe message format. These messages are often transported over HTTP and encoded using XML.

- 2278 SOAP is method for exchanging XML based message over the Internet for providing and 2279 consuming web services. SOAP message are transferred forming the SOAP-Envelope.
- 2281 RPC (remote procedure call) is another way of providing and consuming web services. It uses 2282 XML to encode and decode the remote procedure call along with its parameter.

2283 **4.6.3** Architectures, Protocols and languages for Web Services

2284 **4.6.3.1 HTTP**

- According to Wikipedia, "The Hypertext Transfer Protocol (HTTP) is an application protocol for
 distributed, collaborative, hypermedia information systems. HTTP is the foundation of data
 communication for the World Wide Web".
- Hypertext is a multi-linear set of objects, building a network by using logical links (the so-called
 hyperlinks) between the nodes (e.g. text or words). HTTP is the protocol to exchange or transfer
 hypertext.
- 2292
- The standards development of HTTP was coordinated by the Internet Engineering Task Force (IETF) and the World Wide Web Consortium (W3C), culminating in the publication of a series of Requests for Comments (RFCs), most notably RFC 2616 (June 1999), which defines HTTP/1.1, the version of HTTP in common use."
- 2297
- 2298 HTTPS is the secure version of HTTP based on Transport Layer Security (TLS).

2299 4.6.3.2 CoAP

- 2300 CoAP is an IETF defined **protocol** that aims at porting the features of a REST-based architecture
- to a wireless sensor network (although it can be used in other environments), in particular
- 2302 constrained networks supporting 6-LoWPAN.

CoAP is a non-HTTP approach to REST. The reason for specifying CoAP is mainly motivated by
 the difficulty to implement HTTP in small, constrained devices or networks. Therefore, CoAP
 defines some primitives that allow REST on top of UDP.

2307

2316

2320

2321

2322

2323

In order to simplify the message format, the HTTP headers have been simplified to fixed-position, fixed-size binary fields inside a CoAP payload, and only a limited set of MIME types are available.

2310 4.6.3.3 XMPP

XMPP is a communications protocol that permits bi-directional exchange of messages between
 entities using globally addressable clients and servers. In order to exchange messages between
 entities, the entities connect to a server as a client. The clients may connect to the same or
 different servers. In the case clients connecting to multiple servers, the servers to which the
 client(s) connect are themselves connected.

- In order to exchange messages between XMPP clients, the client establishes an XML stream witha server by:
- Setting up a TCP session
 - Negotiating a TLS encrypted XMPP channel
 - Authenticating the XMPP channel using SASL credentials
 - Binds the resource of full JID of the client
- 2324 Once the client establishes the XML stream, the client then exchanges messages with other clients 2325 using XML Stanzas.

2326 4.6.3.4 ETSI M2M

2327 ETSI M2M architecture defines a set of standards that allow M2M communications using a REST

- architecture style. In ETSI M2M, applications publish resources which can be addressed using
- 2329 URLs. Every resource can be read, created, deleted or updated subject to access rights and
- related permissions which provide an adequate means to ensure privacy and security.
- 2331 The high level architecture framework for ETSI M2M is provided in the following figure:

2333

Figure 15: ETSI M2M architecture framework

2334

2335 In this architecture figure resources can be stored in the device M2M Service Capabilities, in the M2M gateway Service Capabilities or the in the M2M Service Capabilities in the Network domain. 2336 2337 mld, mla and dla denote reference points which are specified according to the REST architecture 2338 style where both HTTP and CoAP can be supported (the dla reference point, not shown in the 2339 figure, allows a device application to communicate to the M2M service capabilities in the Device). Mapping to other protocols is possible (e.g. XMPP) but the current ETSI specifications provide a 2340 2341 mapping to HTTP and CoAP only. M2M service capabilities can be seen as a set of functions 2342 (such as data sharing, security and device management) which are exposed to applications via the 2343 RESTful reference points.

2344 **4.6.3.5 XML**

According to Wikipedia: "Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machinereadable. It is defined in the XML 1.0 Specification produced by the W3C, and several other related specifications,[5] all gratis open standards.

2349

The design goals of XML emphasize simplicity, generality, and usability over the Internet. It is a textual data format with strong support via Unicode for the languages of the world. Although the design of XML focuses on documents, it is widely used for the representation of arbitrary data structures, for example in web services."

2354 4.6.4 Performance considerations

To keep the cost of network at reasonable level and at the same time assuring the right performance under any traffic condition specific rules for sizing and optimize the network design

have to be clearly defined. Network dimensioning aspects pertaining to the use of Web Services
 performance aspects will be handled in future versions of this document.

23605GenericUseCasesandrelatedCommunicationArchitecture2361examples

The intention of this section is to reference the generic use cases coming from the sustainable process group and to add the communication requirements, which will lead to proposed communication architecture.

In this version of the document only 3 use cases have been developed, more will be added insubsequent version.

2368

2365

- Note: While the communication within the home network is out of scope for M490, the below use
 case provide information flows inside the residential environment for the sake of
 completeness and to aid the understanding of the use cases.
- 2372 **5.1 Use cases**

2373 5.1.1 Demand Response

2374 5.1.1.1 High level overview

2375 Demand response is the key reliability resource to the power system. It helps reduce the electricity 2376 consumption or smooth the load in peak demand in response to emergency, peak-load, and highprice conditions. Utilities and policymakers at all levels of government have long recognized the 2377 2378 benefits of demand response. Demand response refers to all functions and processes applied to influence the behavior of energy consumption. In order to facilitate DR, feedback and visualization 2379 2380 of energy consumption are necessary and as such, fast real-time (moderate latency 30-100 ms) & 2381 high availability network communication will be the critical component enabler. The communication 2382 aspect can range from simple signaling, e-mail, SMS, or a phone call to a person who manually 2383 switches a load on or off, to fully integrated load management, where many consumption devices 2384 are dynamically controlled according to profiles based on the availability or price of energy (tariffs).

2385 5.1.1.2 Communications requirements

The table below lists the network communication requirements. Within the smart home which is not controlled by the utility providers, the requirements may vary.

	Data useCategory	
Parameter	Control/Protection Data	Monitoring/Manage mentĐata
Latency	In the range of seconds	5 – 10 Minutes
Data occurrence interval	Minutes	Minutes/Hours
Method of Communication	Multicast/Broadcast /Unicast	Unicast/multicast
Reliabilit	High	Medium
Data security	High	High
Data volume	Bytes/Kildbytes	Kilobytes/Megabytes
Priorit	High	Medium
Level assurance	High	Low

Table 10: Demand Response communication requirements

2390

2389

In addition to the above traditional communication requirement, 'Smart Grid demand side' network would have some non-traditional communication requirements. For example,

- Longer Life Time Support once deployed, the appliance may be used for more than ten years. This is as opposed to consumer electronics products that are normally replaced within 3-5 years
- Plug and Play network- some may want to connect their appliances after purchase which may be 5 years later. Some may want to purchase appliances one by one, not at once.
- Maximum Commonality- different markets/regions (e.g., EU/US/CN) and regulatory
 domains may require different set of data communication features among networked
 appliances, however, maximum data communication commonality may achieve broad
 market potential.
- Lightweight- low processing ability is assumed in many existing home appliances.

2403 **5.1.1.3 Controlling energy consumption or generation via CEMS**

- The home is one of the very important components in the overall Smart Grid System. The home is full with appliances that consume, generate or store energy and the vast majority of appliances have no connectivity other than to the power socket. As today's home becomes smarter (aka the Smart Grid demand side) the majority of the demand side devices is not yet networked and connected to the Smart Grid. In order to fill the gap between today's and tomorrow's 'Smart Grid demand side', data communication technologies & Customer Energy Management systems (CEMS/DRMS) will play a key role.
- Demand Response event signals are not sent to appliances directly, but to the customer's Energy
 Management System (CEMS/DRMS) to trigger a user manually or a program that automatically
 manages load by interacting with a number of object devices associated with the CEMS/DRMS.
- 2414 This is based on a Flow of Communication from the Energy Service Provider to the Customer
- 2415 Energy Management system (CEMS/DRMS).

2416 **5.1.1.4 Proposed communication architecture setup – CEMS/DRMS**

Demand	Mechanisms and incentives for utilities, business, industrial, and residential customers to
Response (DR)	cut energy use & smooth demand at peak times.

2417 2418

2419

0	A Price change schedule or signal is received from the Energy Service Provider to the CEMS & Displayed on the IHD
1	Customer Reduces Their Usage in Response to variable or real-time Pricing or Voluntary Load Reduction Events
2	Customer Uses an EMS or IHD for real-time feedback on their usage, costs and projected bill.
3	Customer Uses Smart Appliances
4	CEMS/DRMS Manages Demand Through Direct Load Control (Out of Scope)
5	CEMS/DRMS Manages Demand in Response to Pricing Signal
6	External clients use the AMI to interact with devices at customer site (e.g. measurement and
	verification)
7	Dynamic pricing - ESP Energy and Ancillary Services Aggregation
8	Utility Procedures Energy and Settles Wholesale Transactions Using Data from AMI System
9	Voltage, Var, and Watt Control (VVWC) with DR, DER, PEV, and ES
10	Energy control
11	Energy management service
12	Dynamic pricing related service
13	Dynamic pricing information transfer to BEMS through ESI
14	DR message transfer to BEMS through ESI
15	Demand response signal generation for controlling home appliances (Out of Scope)
16	Verification of a price change signal.

2	4	2	0	
_		-		

2421	Communication Requirements
2422	

- 2423 2424
- End to end delay shall aim to be less than: 5s.
- Support for communication includes short and long range.
- Resiliency: the impact of failure in the telecommunications networks should not be noticed by applications.
- Standard Data Model that can work seamlessly over any communication media
- Time synchronization

High Level functions

- Secure Communication
- Confidentiality data Integrity
- Mutual Authentication
- Notify transactions for informational & metering services
- Acknowledged transactions for time critical services
- Different regulations will exist for the Interface from ESP to CEMS. DRMS, hence a variety of communication Standards & paths are required.
- 2436
- Proposed Communication Architecture Setup
- 2437 2438
- The figure below depicts an example communication architecture whereby 'Smart Grid demand side² devices are connected via network adapter and each adapter represents a communication interface point through which the network controller is connected. The utility network is connected either via AMI networks or neighborhood area network (NAN) or directly using broadband network
- 2443 such as cellular data network.
- 2444
- Note: Dashed circles indicate the likely home networks. Red dashed ellipse is the Utility Smart
 Meter network. The Green dashed ellipse is the ISP Home entertainment/appliance

network. These networks may overlap at the IP layer with communications Gateways to the
NAN/LAN. The IP Router & PC are illustrative and do not imply the location of routing,
gateway & controller functionality, as the entire Home network may be a tree, bus or mesh
it is not clear where the controller functions reside. IP routers may exist in every node &
appliance, IP Gateways are required by the Premises(CPN), NAN & LAN owners.

2452

2453

Figure 16: Smart Home Communication Example architecture

2454 5.1.1.5 Flows for Demand response with CEMS

2455 **5.1.1.5.1 Functional Architecture for Demand response**

This is a generic Demand Response Architecture taken to represent the Functional entities in scenario with communication via a CEMS and scenario with direct communication from Smart appliances (and an optional CEMS).

2459 2460

Figure 17: Demand Response functional Architecture

24615.1.1.5.2Use case scenario 1a: Information regarding power consumption or generation of2462individual appliances/generators

Information regarding power consumption / generation of individual appliances

2464

2465 Step by Step Analysis of Use Case

2466

S.No	Primary Actor	Triggering Event	Pre-Condition	Post-Condition
	Smart appliance / Generator	New consumption / generation information is available in the smart appliance / generator	Communication connection between all actors is established	(forecasted) consumption / generation is received by actor A and/or actor B and/or display

Scen	ario Name :						
Step	Event	Description of	Information	Information	Information	Zones / Domains	Ref.
No.		Process/Activity	Producer	Receiver	Exchanged		
1	New consumption /	Smart appliance /	Smart	CEMS	Individual	Field / Customer	FINS-
	generation	generator sends	appliance /		appliance	premise	0089 p
	information is	information	generator		consumption		2
	available in the	regarding			/ generation		
	smart	consumption to					
	appliance/generator	the CEMS					

Scen	ario Name :						
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Zones / Domains	Ref.
2	CEMS received consumption / generation information per individual appliance	The CEMS aggregates and/or forecasts total consumption and sends this information to the display	CEMS	Display	Total and/or forecasted house consumption / generation	Field / Customer premise	FINS- 0090 p 2 FINS- 0089 p 2
3a	CEMS received consumption / generation information per individual appliance	The CEMS aggregates and/or forecasts total consumption and sends this information to the Energy Management Gateway (alternative)	CEMS	Energy Management Gateway	Total and/or forecasted house consumption / generation	Field / Customer premise	
3b	Energy Management Gateway received (forecasted) consumption / generation	Energy Management Gateway forwards information to Actor A	Energy Management Gateway	Actor A	Total and/or forecasted house consumption / generation	Field - Enterprise / Customer premise	
4a	CEMS received consumption / generation information per individual appliance	The CEMS aggregates and/or forecasts total consumption and sends this information to Smart Metering Gateway (LNAP) (alternative)	CEMS	Smart Metering Gateway (LNAP)	Total and/or forecasted house consumption / generation	Field / Customer premise	
4b	SmartMeteringGateway(LNAP)receives(forecasted)(forecasted)/consumption/generation	Smart Metering Gateway (LNAP) forwards information to HES (optional: signal is sent through NNAP)	Smart Metering Gateway (LNAP)	HES	Total and/or forecasted house consumption / generation	Field-station- operation/Customer premise	
4c	HES receives (forecasted) consumption / generation	HES forwards information to MDM	HES	MDM	Total and/or forecasted house consumption / generation	Operation – Enterprise /Customer premise	ESMIG- 0001 7.2.1
4d	MDM receives (forecasted) consumption / generation	MDM forwards information to Actor B	MDM	Actor B	Total and/or forecasted house consumption / generation	Enterprise/customer premise	ESMIG- 0001 7.2.1

2468

24695.1.1.5.3Use case scenario 1b: Information regarding total power consumption or
generation2470generation

2472 Drawing or Diagram of Use Case

Information regarding total power consumption

2473

2474 Step by Step Analysis of Use Case

S.No	Primary Actor	Triggering Event	Pre-Condition	Post-Condition	
	Smart Meter	New	Communication connection	(forecasted)	
		consumption/generation	between all actors is	consumption/generation	
		information is available in	established	information is received by	
		the Smart Meter		actor A and/or or Actor B	
				and/or display	

Scenario Name :							
Step	Event	Description of	Information	Information	Information	Zones / Domains	Ref.
No.		Process/Activity	Producer	Receiver	Exchanged		
1	New	The Smart Meter	Smart Meter	Smart	Consumption	Field / Customer	
	consumption/	forwards the		Metering	information	premise	
	generation	consumption		Gateway			
	information is	information to the		(LNAP)			
	available in the	Smart Metering					
	Smart Meter	Gateway (LNAP)					
2	Smart	Smart Metering	Smart	CEMS	Consumption	Field / Customer	
	Metering	Gateway (LNAP)	Metering		information	premise	
	Gateway	forwards the	Gateway				
	(LNAP)	consumption	(LNAP)				
	receives the	information to CEMS					
	information						

Scen	ario Name :			-	-		-
Step	Event	Description of	Information	Information	Information	Zones / Domains	Ref.
No.		Process/Activity	Producer	Receiver	Exchanged		
3	New consumption information is available in the CEMS	The CEMS may forecast total consumption and sends (forecasted) consumption information to the display	CEMS	Display	Total and/or forecasted house consumption	Field / Customer premise	FINS- 0089 p 2 FINS- 0090 p 2
4a	CEMS received consumption information per individual appliance	TheCEMSaggregatesand/orforecaststotalconsumptionandsendsthisinformationtoEnergyHanagementGateway(alternative)	CEMS	Energy Management Gateway	Total and/or forecasted house consumption	Field / Customer premise	DKE0014
4b	Energy Management Gateway received (forecasted) consumption	Energy Management Gateway forwards information to Actor A	Energy Management Gateway	Actor A	Total and/or forecasted house consumption	Field - enterprise/ Customer premise	DKE0014
5a	CEMS received consumption information per individual appliance	TheCEMSaggregatesand/orforecaststotalconsumptionandsendsthisinformationto SmartMeteringGateway(LNAP)(alternative)	CEMS	Smart Metering Gateway (LNAP)	Total and/or forecasted house consumption	Field / Customer premise	DKE0014
5b	Smart Metering Gateway (LNAP) receives (forecasted) consumption	Smart Metering Gateway (LNAP) forwards information to HES (optional: signal is sent through NNAP)	Smart Metering Gateway (LNAP)	HES	Total and/or forecasted house consumption	Field-station- operation/Customer premise	
5c	HES receives (forecasted) consumption	HES forwards information to MDM	HES	MDM	Total and/or forecasted house consumption	Operation - Enterprise/customer premise	ESMIG- 0001 7.2.1
5d	MDM receives (forecasted) consumption	MDM forwards information to Actor B	MDM	Actor B	Total and/or forecasted house consumption	Enterprise/customer premise	ESMIG- 0001 7.2.1

2476

2477 **5.1.1.5.4** Use case scenario 2: Price and environmental information

2478 Drawing or Diagram of Use Case

Price & environmental information

2479

2480 Step by Step Analysis of Use Case

2481

S.No	Primary Actor	Triggering Event	Pre-Condition	Post-Condition
	Actor A or actor B	New price and environmental information is available in Actor A or Actor B	Communication connection between all actors is established	Price and environmental information is received by Smart Appliances

Scena	ario Name :						
Step	Event	Description of	Information	Information	Information	Zones /	Ref.
No.		Process/Activity	Producer	Receiver	Exchanged	Domains	
1a	New price and/or	Actor A sends information to	Actor A	Energy	Price and/or	Enterprise -	DKE00
	environmental is	Energy Management		Managemen	environmental	field	14p 7
	available in actor A	Gateway		t Gateway	information	/customer	
	(alternative)					premise	
1b	Energy	Energy Management	Energy	CEMS	Price and/or	Field/	DKE00
	Management	Gateway forwards price	Managemen		environmental	customer	14p 7
	Gateway received	and/or environmental	t Gateway		information	premise	
	information	informatio n to CEMS					
1c	Energy	Energy Management	Energy	Actor A	Confirmation	Field –	DKE00
	Management	Gateway sends confirmation	Managemen			Enterprise /	14p 7
	Gateway received	to Actor A (alternative)	t Gateway			Customer	
	information					premise	
2a	New price and/or	Actor B esends price and/or	Actor B	MDM	Price and/or	Enterprise /	ESMIG
	environmental is	environmental information to			environmental	Customer	0006

Scen	ario Name :						
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Zones / Domains	Ref.
	available in actor B	MDM			information	premise	
2b	MDM receives price and/or environmental information	MDM determines all consumers involved by the price and/or environmental information and routes the information to the HES	MDM	HES	Price and/or environmental information	Enterprise- Operation / Customer premise	ESMIG 0006
2c	HES receives information by MDM	HES forwards price and/or environmental information to Smart Metering Gateway (LNAP) (optional: signal is sent through NNAP)	HES	Smart Metering Gateway (LNAP)	Price and/or environmental information	Operation – station – field / customer premise	
2d	Smart Metering Gateway (LNAP) receives information	Smart Metering Gateway (LNAP) forwards price and/or environmental information to CEMS	Smart Metering Gateway (LNAP)	CEMS	Price and/or environmental information	Field / Customer premise	TC205 p4-40 DKE00 14p 7
3a	Smart metering Gateway (LNAP) received information	Smart metering gateway sends confirmation to HES (alternative) (optional: signal is sent through NNAP)	Smart Metering Gateway	HES	Confirmation	Field – Operation / Customer premise	
3b	HES received confirmation	HES forwards confirmation to MDM	HES	MDM	Confirmation	Operation – Enterprise / Customer premise	ESMIG 0006
4	CEMS received new price and/or environmental information	CEMS identifies relevant Smart Appliances and forwards the new price and/or environmental information to the Smart Appliances	CEMS	Smart Appliciances	Price and/or environmental information	Field / Customer premise	DKE00 14p 7
5	CEMS received new price and/or environmental information	CEMS forwards the new price and/or environmental information to the Display	CEMS	Display	Price and/or environmental information	Field / Customer premise	
6	Smart Appliances receive new price and/or environmental information	Smart Appliances confirm reception to CEMS	Smart Appliances	CEMS	Confirmation	Field / Customer premise	DKE00 14p 7

2483 5.1.1.5.5 Use case scenario 3a: Warning signals based individual appliances consumption

2486

2487 Step by Step analysis of Use Case

S.No	Primary Actor	Triggering Event Pre-Condition		Post-Condition
	Smart appliance	The CEMS received information on a new	The subscribed power limits are made known to	Warning signal is received by display
		operation to be executed	the smart appliance	and/or smart appliances

2488

Scenario Name :							
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Zones / Domains	Ref.
1	The CEMS received information on a new operation to be executed	The CEMS sends information on total house consumption and subscribed power to the appliance involved	CEMS	Smart appliance	Total house consumption and subscribed power	Field / Customer premise	FINS0088 p2 FINS0048 p27
2	The smart appliance received information on total house consumption and subscribed power to the appliance	The smart appliance estimates the maximum power tobe consumed for the operation and deducts this from the available power. In case there is insufficient power available, it displays a warning message and sends a warning message to the CEMS	Smart Appliance	CEMS	Warning message	Field / Customer premise	FINS0088 p2 FINS0048 p27
3	The CEMS received a warning message	The CEMS sends the warning message to the external display	CEMS	Simple external consumer display	Warning message	Field / Customer premise	FINS0088 p2 FINS0048 p27

2489

5.1.1.6 Proposed communication architecture setup – Smart Home with direct communication with Smart Appliances

The home is one of the very important components in the overall Smart Grid System. The home is full with appliances that consume, generate or store energy the vast majority of appliances will have direct connectivity with the Internet & Smart Grid, as well as connectivity via the power. As today's home becomes smarter (a.k.a. the Smart Grid demand side) the majority of the demand side appliances will be networked and connected to the Internet & Smart Grid. Within tomorrow's 'Smart Grid demand side', data communication technologies will play a key role.

- 2498 Demand Response event signals are sent to smart appliances directly and to the customer's
- 2499 Energy Management System (CEMS/DRMS). The pre-configured program that automatically
- 2500 manages load by interacting with a number of object devices associated with the CEMS/DRMS 2501 becomes less important.
- 2502 This is based on a Flow of Communication from the Energy Service Provider to the Smart
- 2503 Appliances.
- 2504

Demand
Response (DR)Mechanisms and incentives for utilities, business, industrial, and residential customers to
cut energy use & smooth demand at peak times.

2505 2506

6 High Level functions

2507

0	A Price change schedule or signal is received from the Energy Service Provider to the CEMS &
	Smart appliances
2	Customer Uses an EMS or IHD for real-time feedback on their usage, costs and projected bill.
3	Customer may use Smart Appliances
4	CEMS/DRMS Manages Demand Through Direct Load Control (Out of Scope)
6	External clients use the AMI to interact with devices at customer site (e.g. measurement and
	verification)
7	Dynamic pricing - ESP Energy and Ancillary Services Aggregation
8	Utility Procedures Energy and Settles Wholesale Transactions Using Data from AMI System
9	Voltage, Var, and Watt Control (VVWC) with DR, DER, PEV, and ES
10	Energy control
11	Energy management service
12	Dynamic pricing related service
13	Dynamic pricing information transfer to BEMS through ESI
14	DR message transfer to BEMS through ESI
15	Demand response signal generation for controlling home appliances (Out of Scope)
16	Verification of Price change signal

2514

- End to end delay shall aim to be less than: 5s for control signals.
- Support for communication includes short and long range.
- Resiliency: the impact of failure in the telecommunications networks should not be noticed by applications.
- Standard Data Model that can work seamlessly over any communication media
- Time synchronization
- Secure Communication
- Confidentiality data Integrity

Communications requirements

- Mutual Authentication
- Notify transactions for informational & metering services
- Acknowledged transactions for time critical services
- Non repudiated delivery for critical and billing type transactions.
- Different regulations will exist for the Interface from ESP to Smart Home, hence a variety of communication Standards & paths are required.
- 2526 2527

2525

Proposed communications architecture setup

The figure below depicts an example communication architecture whereby 'Smart Grid demand side' devices & appliances are directly connected & controlled to the Smart Grid and endpoint is a communication interface point where controller is connected. The utility network is connected

- either via AMI networks or neighborhood area network (NAN) or directly using broadband networksuch as cellular data network.
- 2533
 2534 Note: Dashed circles indicate the likely home networks. Red dashed ellipse is the Utility Smart
 2535 Meter network. The Green dashed ellipse is the ISP Home entertainment/appliance
 2536 network. These networks may overlap at the IP layer with communcations Gateways to the
 2537 NAN/LAN. The IP Router & PC are illustrative and do not imply the location of routing,
 2538 gateway & controller functionality, as the entire Home network may be a tree, bus or mesh
- it is not clear where the controller functions reside. IP routers may exist in every node & appliance; IP Gateways are required by the Premises (CPN), NAN & LAN owners.
- 2541

Figure 18: Smart Home Communication Example architecture

2544 5.1.1.7 Flows for Demand response - with Direct control of Smart Appliances

2545 5.1.1.7.1 Functional Architecture for Demand response

This is a generic Demand Response Architecture taken to represent the Functional entities in scenario with communication via a CEMS and scenario with direct communication from Smart appliances (and an optional CEMS).

Figure 18: Demand Response functional Architecture

25525.1.1.7.2Use case scenario 1: Direct load management - appliance has end-decision about2553its load adjustment

- 2554 Note: in order to keep this use case clear, only "load management" and "changes in 2555 consumption" are described. Please note that this use case is also applicable on 2556 generation management or storage management.
- 2557 Drawing or Diagram of Use Case

DIRECT LOAD MANAGEMENT - appliance has end-decision about its load adjustment

2558

2559 Step by Step Analysis of Use Case

S.No	Primary Actor	Triggering Event	Pre-Condition	Post-Condition
	Actor A or Actor B	Actor A or Actor B wants to send a load management command to the market	Communication connection between all actors is established The consumer configured the CEMS and/or the participating devices (appliances and generators). The consumer configured the device settings and thresholds	The Smart Appliance / generator executed the load management command and Actor A or Actor B received the feedback with a load curve recorded for this period
			Information on total consumption or consumption per appliance is available in the CEMS	

2561	
2562	

Scenario Name :				-	-	-	-
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Zones / domains	Ref.
1a		Actor A sends a load management command to Energy Management Gateway	Actor A	Energy Managemen t Gateway	Load management command	Enterprise – field / Customer premise	DKE0020
1b	Energy Management Gateway receives a load management command from Actor A	Energy Management Gateway forwards the load management command to CEMS	Energy Managemen t Gateway	CEMS	Load management command	Field/ Customer premise	DKE0020
2a	Actor B wants to send a load management command to the market (alternative)	Actor B sends a load management command to MDM	Actor B	MDM	Load management command	Enterprise / Customer premise	ESMIG00 17
2b	MDM receives a load management command from Actor B	MDM decides on which loads to adjust and sends an announcement of the load adjustment notification to CCM	MDM	ССМ	Announcement of load adjustment	Enterprise / Customer premise	FINS- 0048 3.5.4 p30, ESMIG00 14
2c	MDM receives a load management command from Actor B	MDM decides on which loads to adjust and sends a load management command to HES	MDM	HES	Load management command	Enterprise - operation/ Customer premise	DKE-0020 ESMIG00 17
2d	HES receives the load management command from MDM	HES forwards the load management command to Smart Metering Gateway (LNAP) (optional: signal is sent through NNAP)	HES	Smart Metering Gateway (LNAP)	Load management command	Operation - station - field/ Customer premise	FINS- 0048 3.5.4 p30
2e	SmartMeteringGateway(LNAP)receivestheloadmanagementcommandfromHES	Smart Metering Gateway (LNAP) forwards the load management command to CEMS	Smart Metering Gateway (LNAP)	CEMS	Load management command	Field/ Customer premise	
3	CEMS receives the load management command from Energy Management Gateway or Smart Metering Gateway (LNAP)	CEMS sends the start of load management notification to Display	CEMS	Display	Load management command	Field/ Customer premise	FINS- 0048 3.5.4 p30

Scena	ario Name :						
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Zones / domains	Ref.
4	CEMS receives the load management command from Energy Management Gateway or Smart Metering Gateway (LNAP)	CEMS decides which Smart Appliances needs to be adjusted and sends an order of load adjustment to the Smart Appliances / generators	CEMS	Smart Appliances / generators	Order of load adjustment	Field/ Customer premise	DKE- 0021p8 TC205 – 0001 to 0043 p80
5	Smart Appliances / generators receive the order of load adjustment	The Smart Appliances / generators decide to switch on/off based on the consumer's settings and send feedback to CEMS	Smart Appliances / generators	CEMS	Load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30 DKE- 0021p8 TC205 – 0001 to 0043 p80
6a	CEMS receives feedback from smart appliances / generators	CEMS informs Energy Management Gateway on which change in consumption to expect. (alternative)	CEMS	Energy Managemen t Gateway	Change in consumption	Field/ Customer premise	DKE0020
6b	Energy Management Gateway receives the change in consumption from CEMS	Energy Management Gateway forwards the change in consumption to Actor A	Energy Managemen t Gateway	Actor A	Change in consumption	Field - enterprise / Customer premise	DKE0020
7a	CEMS receives feedback from smart appliances	CEMS informs Smart Metering Gateway on which change in consumption to expect. (alternative)	CEMS	Smart Metering Gateway	Change in consumption	Field/ Customer premise	FINS- 0048 3.5.4 p30
7b	Smart Metering Gateway receives the change in consumption from CEMS	Smart Metering Gateway forwards the change in consumption to HES (optional: signal is sent through NNAP)	Smart Metering Gateway	HES	Change in consumption	Field – station - operation/ Customer premise	
7c	HES receives the change in consumption from Smart Metering Gateway	HES forwards the change in consumption to MDM	HES	MDM	Change in consumption	Operation - enterprise / Customer premise	ESMIG00 17
7d	MDM receives the change in consumption from HES	MDM forwards the change in consumption to Actor B	MDM	Actor B	Change in consumption	Enterprise / Customer premise	ESMIG00 17
8	Load adjustment period is finished	CEMS sends an end of load adjustment to Smart Appliances	CEMS	Smart Appliances / generators	End of load adjustment	Field/ Customer premise	FINS- 0048 3.5.4 p30
9	Smart Appliances / generators receive the end of load adjustment from CEMS	The Smart Appliances / generators switch on/off and send feedback to CEMS	Smart Appliances / generators	CEMS	End of load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30

Scena	ario Name :						
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Zones / domains	Ref.
10	CEMS receives the feedback from Smart Appliances / generators	CEMS sends the end of load adjustment notification to Display	CEMS	Display	End of load adjustment	Field/ Customer premise	FINS- 0048 3.5.4 p30
11a	CEMS receives the feedback from Smart Appliances	CEMS sends the end of load adjustment period to Energy Management Gateway and sends a load curve recorded for this period (alternative)	CEMS	Energy Managemen t Gateway	Load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30
11b	Energy Management Gateway receives the feedback from CEMS	Energy Management Gateway forwards the feedback to Actor A	Energy Managemen t Gateway	Actor A	Load adjustment feedback	Field - enterprise / Customer premise	FINS- 0048 3.5.4 p30
12a	CEMS receives the feedback from Smart Appliances	CEMS sends the end of load adjustment period to Smart Metering Gateway (LNAP) and sends a load curve recorded for this period (alternative)	CEMS	Smart Metering Gateway (LNAP)	Load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30
12b	SmartMeteringGateway(LNAP)receivesthefeedbackfromCEMS	Smart Metering Gateway (LNAP) forwards the feedback to HES (optional: signal is sent through NNAP)	Smart Metering Gateway (LNAP)	HES	Load adjustment feedback	Field – station - operation/ Customer premise	
12c	HES receives the feedback from Smart Metering Gateway (LNAP)	HES forwards the feedback to MDM	HES	MDM	Load adjustment feedback	Operation - enterprise / Customer premise	FINS- 0048 3.5.4 p30 ESMIG00 17
12d	MDM receives the feedback from HES	MDM forwards the feedback to Actor B	MDM	Actor B	Load adjustment feedback	Enterprise / Customer premise	FINS- 0048 3.5.4 p30 ESMIG00 17

2563

2565

2566

2567

2568

2564 Alternative scenarios

1. Customer derogates before the start of the load management period (FINS-0048 3.5.4 p30)

2. Customer derogates during the load management period (FINS-0048 3.5.4 p30)

- a. CEMS sends an end of load management to Smart Appliances (FINS-0048 3.5.4 p30)
- b. Smart Appliances send feedback to CEMS

25695.1.1.7.3Use case scenario 2: Direct load management – the appliance has no control over2570its own load adjustment

- Note: initially for this Use Case only "load management" and "changes in consumption" are
 described. Please note that this use case is equally applicable on generation
 management or storage management.
- 2574 Drawing or Diagram of Use Case

DIRECT LOAD MANAGEMENT - appliance has end-decision about its load adjustment

2575

2576 Step by Step Analysis of Use Case

2577

S.No	Primary Actor	Triggering Event	Pre-Condition	Post-Condition
	Actor A or Actor B	Actor A or Actor B wants to send a load management command to the market	Communication between all actors can be established	The appliance executed the load management command and Actor A or
			The consumer configured the CEMS and/or the participating devices (appliances and generators). The consumer configured the device settings and thresholds	Actor B received the feedback
			Information on total consumption or consumption per appliance is available in the CEMS	

Scena	ario Name :						
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Technical Require- ments ID	Ref.
1a	Actor A wants to send a load management command to the market (alternative)	Actor A sends a load management command to Energy Management Gateway	Actor A	Energy Managemen t Gateway	Load management command	Enterprise - field/ Customer premise	DKE0020
1b	Energy Management Gateway receives a load management command from Actor A	Energy Management Gateway forwards the load management command to CEMS	Energy Managemen t Gateway	CEMS	Load management command	Field/ Customer premise	DKE0020
2a	Actor B wants to send a load management command to the market (alternative)	Actor B sends a load management command to MDM	Actor B	MDM	Load management command	Enterprise/ Customer premise	ESMIG00 17
2b	MDM receives a load management command from Actor B	MDM decides on which loads to adjust and sends a load management command to HES	MDM	HES	Load management command	Enterprise - operation/ Customer premise	FINS- 0048 3.5.4 p30, ESMIG00 14
2c	HES receives the load management command from MDM	HES forwards the load management command to Smart Metering Gateway (LNAP) (optional: signal is sent through NNAP)	HES	Smart Metering Gateway (LNAP)	Load management command	Operation – station - field/ Customer premise	
2d	Smart Metering Gateway (LNAP) receives the load management command from HES	Smart Metering Gateway (LNAP) forwards the load management command to CEMS	Smart Metering Gateway (LNAP)	CEMS	Load management command	Field/ Customer premise	FINS- 0048 3.5.4 p30 TC205 – 0001 to 0043 p60
3	CEMS receives the load management command from Energy Management Gateway or Smart Metering Gateway	CEMS sends the start of load adjustment notification to Display	CEMS	Display	Load adjustment notification	Field/ Customer premise	FINS- 0048 3.5.4 p30
4	CEMS receives the load management command from Energy Management Gateway or Smart Metering Gateway	CEMS decides which generator/smart appliance needs to be adjusted and sends an order of load adjustment	CEMS	Smart Appliance/G enerators	Order of load adjustment	Field/ Customer premise	DKE- 0021p8 TC205 – 0001 to 0043 p60

Scena	ario Name :			-			-
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Technical Require- ments ID	Ref.
5	Smart Appliance/generato r receives the order of load adjustment	The Smart Appliance/generator switches on/off and sends feedback to CEMS	Smart Appliance/G enerator	CEMS	Load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30 DKE- 0021p8 TC205 – 0001 to 0043 p60
6	Smart Appliance / generator adjustment period is finished	CEMS sends an end of load adjustment to Smart Appliance/generator	CEMS	Smart Appliance/G enerator	End of load adjustment	Field/ Customer premise	FINS- 0048 3.5.4 p30
7	Smart Appliance/Generat or receives the end of load adjustment from CEMS	The Smart Appliance/Generator switchs on/off and sends feedback to CEMS	Smart Appliance/G enerator	CEMS	End of load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30
8	CEMS receives the feedback from Smart Appliance/Generat or	CEMS sends the end of load adjustment notification to Display	CEMS	Display	End of load adjustment	Field/ Customer premise	FINS- 0048 3.5.4 p30
9a	CEMS receives the feedback from Smart Appliance/Generat or	CEMS sends the end of load adjustment period and a load curve recorded for this period to the Energy Management Gateway (alternative)	CEMS	Energy Managemen t Gateway	Load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30
9b	Energy Management Gateway receives the end of load adjustment period with feedback from CEMS	Energy Management Gateway forwards the end of load adjustment period with feedback to Actor A	Energy Managemen t Gateway	Actor A	Load adjustment feedback	Field - enterprise/ Customer premise	FINS- 0048 3.5.4 p30
10a	CEMS receives the feedback from Smart Appliance/Generat or	CEMS sends the end of load adjustment period and a load curve recorded for this period to the Smart Metering Gateway (LNAP) (alternative)	CEMS	Smart Metering Gateway (LNAP)	Load adjustment feedback	Field/ Customer premise	FINS- 0048 3.5.4 p30
10b	SmartMeteringGateway(LNAP)receives the end ofloadadjustmentperiodwithfeedbackfromCEMS	Smart Metering Gateway (LNAP) forwards the end of load adjustment period with feedback to HES (optional: signal is sent through NNAP)	Smart Metering Gateway (LNAP)	HES	Load adjustment feedback	Field- station- operation/ Customer premise	
10c	HES receives the end of load adjustment period with feedback from Smart Metering Gateway (LNAP)	HES forwards the end of load adjustment period with feedback to MDM	HES	MDM	Load adjustment feedback	Operation - enterprise/ Customer premise	ESMIG00 17

Scen	ario Name :						
Step No.	Event	Description of Process/Activity	Information Producer	Information Receiver	Information Exchanged	Technical Require- ments ID	Ref.
10d	MDM receives the end of load adjustment period with feedback from HES	MDM forwards the end of load adjustment period with feedback to Actor B	MDM	Actor B	Load adjustment feedback	Enterprise/ Customer premise	ESMIG00 17

2581 5.1.2 Distribution Automation FLISR

2582 **5.1.2.1 FLISR: Fault Location Isolation and Service Recovery**

2583 5.1.2.1.1 High level overview

FLISR automates the management of faults in the distribution grid. It supports the localization of the fault, the isolation of the faulty equipment(s) from the healthy equipment and the restoration of the healthy equipment. FLISR is typically applied in the MV network. During disturbances the automatic fault handling shortens outage time and offloads the operators in the distribution control center for more complicated situations. Therefore FLISR may help to improve performance indexes like SAIDI (System Average Interruption Duration Index).

2590

2591 Utilities that operate networks have a need for fast fault awareness, faulty section identification, 2592 rapid information gathering and analysis of switching options to restore service when a part of the consumers, attached to the concerned feeder is lost. Without this capability, it makes 8 hours or 2593 more to restore power should an inner city substation be lost. This application runs at a control 2594 2595 centre level, with tight connection with field devices acting either as sensors or actuators. 2596 Implementing FLISR helps Utility to improve the performance based rates (PBR) and reduce the 2597 risk of penalties. The rules for PBR will vary from country to country, or even from state to state, 2598 however most include the performance measures of SAIDI and often system average interruptions 2599 per mile of line. Another business approach can be to measure the quantity of Non-Distributed-Energy due to un-2600

- 2601 availability of power at consumer side. The quicker the restoration is performed after a fault, the 2602 less is the quantity of non-distributed energy.
- 2603

2604 **5.1.2.1.2 Communications requirements**

2605 The FLISR use case is divided into four sequences:

- Fault detection and clearance The protection devices in the grid are detecting the fault and issuing suitable breaker tripping.
- 2608 2. Fault localization Identify the physical location of the fault by analysing the telemetered 2609 alarms received from protection devices in the grid
- 2610
 3. Fault isolation Determine switching actions which will isolate the faulty equipment(s) from the rest of the grid
- 2612
 2613
 4. System restoration (optional) Re-supply those healthy parts of the grid, which are deenergized during the fault clearing.

The execution within these steps is typically highly automated, while the continuation with the next sequence typically requires a control room operator interaction.

2616

2617 Data flow:

- Intelligent Electronic Devices / Programmable Logic Controllers / Relays communicate
 through serial, Ethernet or RF Mesh
- Centralized or Distributed Intelligence reachable through the WAN
- Potentially P2P traffic between reclosers, sensors, feeders.
- Fault Intelligence Application receiving traffic from IED/PLC
- Grid State Database collect all data
- Distribution Management System Real-Time information
- Time synchronization
- Support of legacy devices: Serial to IP translation
- Data volume could be bytes (or higher) depending on field automation penetrations and density and inclusion of other systems such as AMI data for resolution.

Table 6: FLISR communication requirements

	Data use Category				
Parameter	Control/Protection Data	Monitoring/Manage ment Data			
Latency	Low (20 ms to 2 seconds)	Medium (<10 S			
Data occurrence interval	Millisecond	Seconds			
Method of Communication	Unicast, Multicast/Broadcast	Unicast/multicast			
Reliabilit	High	Medium			
Data security	High	High			
Data volume	Bytes/Kilo bytes	Kilobyte			
Priorit	High	Medium			
Level assurance	High	Low			

2631

2632 **5.1.2.1.3** Proposed communication architecture setup

2633 Scenario I

2634 In this scenario it is assumed that a communication network allows for a hop by hop

2635 communication between the primary substation and all the secondary substation in between. A

- 2636 field area router allows the communication to the central application. The field router is typically
- 2637 placed in one of the primary substations although not show as such in the figure 5.1 below.

2641

2642 2643

Figure 19: FLISR (1) Example architecture

2640 In this scenario in Figure 5.1 above, 3 modes of communication are depicted:

- (1) P2P communication (1hop): secondary substation to adjacent secondary substation
 - (2) P2P communication (multi-hop): secondary substation to non adjacent secondary
 - substation where an intermediate substation allows to router the traffic
- (3) Upstream and downstream communication to a central control system via a field area router which is typically equipped with a WAN communication interface and an area network communication interface. Any of the secondary or primary substations could communicate to the central applications via this router, and the area network that connects this router.

For the purpose of robustness it could be recommended to deploy two field area routers: one in each substation. Dynamic IP routing allows rerouting the traffic in case of failure of one of the WAN interfaces.

2653 2654 **Scenario II**

In this scenario, in figure 5.2, each of the secondary substations implement a (typically WAN) point
to point communication interface toward the field area router: typically this can be achieved
through the deployment of a cellular communication module (e.g. GPRS).

2658

In this scenario the traffic from a secondary substation to a secondary substation needs to go via
 the field area router in a hub and spoke mode. The traffic to a central application is routed via the
 field area router.

Figure 21: FLISR Communication networks mapping to the SGAM model

2670 5.1.3 Tele-protection using an IP/MPLS network

2671 5.1.3.1 High level overview

2672 What is protected: lines and devices.

2673

2687

2698

Tele-protection consists in quickly and reliably detecting a (power) network fault and then ensuring the faulty equipment is isolated before the fault has a greater effect on the power grid. Teleprotection typically applies to protection implemented between substations within the high voltage network.

2678 2679 Tele-protection systems monitor and compare conditions with distance relays at the two high 2680 voltage line ends to determine if there is a fault on the protected line section. When a fault is 2681 detected, TPR (tele-protection relay) tripping signals will activate the protection equipment 2682 (typically a circuit breaker) to isolate the affected part in the adjacent substation to prevent 2683 damages to expensive substation equipment and instability in the power system. To ensure the 2684 power system is protected, relay signals need to be transferred between distance relays without a 2685 sufficient delay so as to prevent the fault to not propagate to the other equipment & substations 2686 before the telecommunications signals reach the target equipment.

The end-to-end delay tolerance for relay signals with the **number of cycles that can vary** depending on the distance, types of relays, etc. of the electricity transmission at 60Hz (NA) or 50Hz (Europe). This translates to 10msnode top node delay including time for propagation from substation to substation.

This end-to-end delay includes the latency of the telecom network (IP/MPLS for the purpose of this use case) as well as the detection and activation time of the protection circuits.

2695 The interface from the TPR can be G.703, E&M, RS-232, X.21, IEEE c33.67, etc.

2696 2697 Use Case Diagram

2699 2700

Figure 22: Tele-protection Example architecture

2701

2702 Use Case Stakeholders

- Circuit breaker: is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by overload or short circuit. Its basic function is to detect a fault condition and, by interrupting continuity, to immediately discontinue electrical flow.
- 2706 2. Tele-protection Relay (TPR): activate the protection equipment to isolate the affected part in
- adjacent substation to prevent damages to expensive substation equipment and instability in thepower system

- 2709 3. Telecommunication Equipment: interface to TPR in order to adapt and transfer control signals
 2710 between the TPRs. Provides circuit emulation services in order to transport TDM based
 2711 interfaces over a Packet Switched Network (PSN)
- 2712 4. Telecommunication network (IP/MPLS): provides packet-based communication between the
- 2713 Telecommunication Equipment end points. It supports the QoS and path protection
- 2714 mechanisms needed by the targeted services.

2715 5.1.3.2 Communications requirements

- 2716 The table below lists the network communication requirements for the Tele-protection scenario.
- 2717

Table 7: Tele-Protection communication requirements

	Data Category	
Parameters	Control/Protection Data	Monitoring/Manage ment Data
Latency	Less than 10ms	100ms
Data occurrence interval	Unpredictable (based on Network conditions)	Periodic
Method of Communication	Unicast	Unicast
Reliability	Very High	High
Data security	High	High
Data volume	Few Kilo bytes	Kilobytes
Priority	Very High	Medium
Level assurance	High	High

- 2718 2719 The following provides additional clarifications as regards the communication requirements:
- The end to end latency of 10 ms includes the TDM-related packetization delay
- Symmetry: The end to end delay in one direction shall not exceed the end to End delay in the other direction by more than 2ms
- Resiliency: All traffic paths shall be protected, where the protection delay shall not take more than 100ms (50ms is preferred)
- Denial of service: the IP/MPLS network shall support denial of service protection
 mechanisms in order to avoid disrupting the control plane and incurring excessive delay for
 the tele-protection signals
- Time synchronization: The IP/MPLS network shall provide accurate time synchronization needed to support TDM services (1ms granularity)
- QoS: The IP/MPLS network shall implement a Strict Priority scheduling algorithm that allow minimal delay per IP/MPLS node: the delay incurred by each traversed node shall be less than 250µs

2733 5.1.3.3 Proposed communication architecture setup

TeleprotectionMechanisms for detecting a (power) network fault and then ensuring the fauover IP/MPLSisolated through sending teleprotection signals via an IP/MPLS network										
2734 2735 2736	High le	vel fun	ctions							
2150	0	Subs	tation detect a fault	detection						
	1	Subs	tation isolates a fau	It by acting upon a	circuit breaker					
	2	er teleprotection rela	ay located at							
	3	Telecommunication equipment provides adaptation of a TDM signal to a packet based IP/MPLS network (and vice versa)								
	4	IP/M	PLS network transp	orts packetized TD	DM traffic					
	5	Circu	iit breaker at peer s	ubstation activated						
2737 2738	Commu	unicatio	ons requirement	S						
2739 2740 2741 2742	• E r	End to e not exce	end latency betweer eed 10 ms including	n the egress port of the TDM packetiz	f the TPR and the ation delay (when	ingress port of the applicable)	other TPR shall			
2742 2743 2744 2745 2746	• 5 0 1	 Symmetry: The end to end delay in one direction (TPR1 to TPR2) shall not differ from the end to End delay in the other direction (TPR2 to TPR1) by more than 2ms (750 micro seconds may be preferred by some deployments) 								
2747 2748 2749	•	 Resiliency: All traffic paths shall be protected, where the protection delay shall not take more than 100ms (50ms is preferred) 								
2750 2751 2752	• [0	 Denial of service: the IP/MPLS network shall support denial of service protection mechanisms in order to avoid disrupting the control plane and incurring excessive delay for the tele-protection signal 								
2753 2754 2755	• -	 Time synchronization: The IP/MPLS network shall provide accurate time synchronization needed to support TDM services (1ms granularity) 								
2756 2757 2758	• () (QoS: Th delay pe	e IP/MPLS network er IP/MPLS node: th	shall implement a delay incurred b	Strict Priority sch y each traversed	neduling algorithm th node shall be less t	hat allow minimal han 250µs			
2759	Propos	ed con	nmunications are	chitecture setup)					
2760 2761 2762	The figu	ire belc	w provides the pr	oposed commun	ication architect	ure setup.				
		Substation					Substation			
		G.703			<u>\</u> t	E&M	G.703			
			RS-232 Ethernet		WPLS	RS-232 Ethernet	MUX E1/T1			
		Τe	ele communica tion	Edge router	Eige router	Telecommunicatio	n			
2763			equipment			equipment				
2764			Figure 2	3: Tele-Protecti	on Architecture	e example				
2765			_							

In this figure the Telecommunication equipment provide TDM over packet and vice versa
communication. The Edge router allows for traffic marking in order to ensure that the teleprotection
traffic gets the highest scheduling priority. Additionally the Edge router allows routing the
teleprotection IP packets over specific LSPs (Label Switched Paths) that are reserved for high
priority traffic. Those LSPs are path protected by the Fast Reroute mechanism as described in
IETF RFC 4090.

- 2772
- 2773

The total end-to-end latency is calculated by summing the packetization delay (PD), network delay (ND) and jitter buffer delay (JBD) as shown in the below figure.

2776

Assuming a PD of 2ms, a JBD of 4ms, the network shall be dimensioned in order to provide the remaining delay budget.

2779

Figure 24: Delay incurred by the telecommunication equipment and the IP/MPLS network

- 2782
- 2783 Circuit emulation: RFC 5086, RFC4553
- 2784 Specific LSP(s) for tele-protection traffic: primary + backup path
- 2785 Traffic marking: done at the telecommunication equipment
- 2787 Mapping of communication networks to the SGAM model:
- 2788

2790 Figure 25: Tele-Protection: Mapping of communication networks to the SGAM model

2791 5.1.4 Workforce communication

This use case will be developed in a subsequent release. 2792

2793 5.1.4.1 Proposed communication architecture setup

2794

Remote Workforce Management Network Diagram

Figure 26: Workforce management example architecture

2797

2798 **5.2 Mapping Example Use Cases to the Conceptual Model**

Here is a mapping of the above Use Case examples chosen for the Communications to the Smart Grid Conceptual Model Domains, "x" means that the domain is involved in the use case.

2801

Table 8: Mapping Example use Cases to the Conceptual Model Domains

Use Case	Markets	Operations	Services	Bulk	DER	Transmission	Distribution	Customer
Demand Response				Generation	2x Use Cases emerging			
- via gateway and Energy	x	х	х		(x)		х	x
Manager			maybe. Depending on		maybe. Depending DER in Customer		maybe. Depending on	
			national split of ops. &		Domain (2 meter solutions) & on national		communication	
			BSS deregulation.		deregulation.		technology used.	
- Smart appliances	x	x	х		(x)		x	x
			varies on national split of		maybe, depending DER in Customer		maybe, depending on	
			ops. & BSS deregulation.		Domain (2 meter solutions) & on national		communication	
			Also 3 rd party Appliance		deregulation.		technology used.	
			Service providers.					
Distributed source of Energy		x	х		x		x	x
			for billing & accounting					
Substation Automation				Use Case	not specified: covered in the Architecture			
(Primary)								
Electric Vehicles					2x Use Cases emerging			
- Adhoc		x	х				x	x
			for eBilling					
- Smart Charging	x	x	х		x		x	x
			maybe depending on		maybe depending EV Storage & on			
			national split of ops. &		national deregulation.			
			BSS deregulation.					
Energy Trade Market				-	Use Case not specified			
Distribution Automation		x					x	x
(Secondary)/FLISR								
Wide Area Situation				x	x	x	x	
Awareness - Recent								
Teleprotection						x		
Remote workforce				x	x	x	x	x
management- Recent								

2802 This table is based on the use cases in clause 3.1 above, these are a subset of the 450 use cases that exist in the Sustainable Process use

2803 cases repository. The items in this table are aligned with the descriptions in the repository; no attempt was made to survey all 450 use cases.

2804 There is a close relationship between the cases in this table and the descriptions in clause 3.1 above. This mapping could be viewed as a

summary of the chosen use cases above. These use cases were selected as they are demonstrating the communications requirements.

2807 **5.3 QoS requirements for different Smart Grid Applications**

2808 This will be elaborated in the next version.

2810 6 Description of selected communication profiles for the Smart Grid 2811 communications

2812 **6.1 Introduction**

2816

2817

2819

2824

2826

2828

2813 Generally a profile defines a subset of an entity (e.g. standard, specification or a suite of 2814 standards/specifications). Profiles enable interoperability and therefore can be used to reduce the 2815 complexity of a given integration task by:

- Selecting or restricting standards to the essentially required content, e.g. removing options that are not used in the context of the profile
- By setting specific values to defined parameters (frequency bands, metrics, etc.)

A standard profile for communications standards may contain a selection of communication capabilities applicable for specific deployment architecture. Furthermore a profile may define instances (e.g. specific device types) and procedures (e.g. programmable logics, message sequences) in order to support interoperability.

2825 It may also provide a set of engineering guidelines to ease the deployment of new technologies.

2827 A standard profile may contain the following information:

- Communication profile name
- 2830 Communication requirements and boundary • Delay / Latency, Jitter 2831 Routing convergence time 2832 2833 Bi directional iitter 2834 Nb of nodes 2835 BER Admissible Packet loss rate 2836 2837 . . . 2838 Network diagram • Drawings / Schema 2839 List of use cases / systems if relevant 2840 • List of technologies 2841 • Specifications / standards 2842 Security considerations 2843 • 2844 Standards 2845 AAA Overall diagram 2846 Configuration parameters 2847 • Best current practice 2848 2849
- The following paragraphs are giving 2 examples of communication profiles. These profiles have been developed to illustrate the concept. This should be considered as example only, no validation have been performed and some pieces have not been fully developed.

2853 6.2 Profile Example 1: Field Area Network

2854 6.2.1 Communication profile name: Field Area Network

2855 The FAN may serve the following systems: smart metering, feeder automation, FLIR (Fault 2856 Location, Registration, Isolation and Restoration), EHV charging, demand response, voltage 2857 regulation, distributed generation.

The following profile will primarily focus on 2 of these systems: Smart metering and Feeder automation. This is a multiservice network; the profile should combine the requirements from both use cases.

2863 Feeder automation:

- A Feeder automation system refers to the system and all the elements needed to perform automated operation of components placed along the MV network itself (feeders), including (but not limited to) fault detectors, pole or ground mounted MV-switches, MV-disconnectors and MV-circuit-breakers - without or with reclosing functionality (also called reclosers) between the HV/MV substation (MV side included) and the MV/LV substations.
- 2869 The typical considered operations are protection functionalities (from upwards and/or 2870 distributed), service restoration (after fault conditions) or feeder reconfiguration.
- 2871

2862

2872 Advanced Metering Infrastructure:

This network may connect meter concentrator (NNAP) and smart meters (LNAP) in this sense, it could overlap with the Neighborhood Network. It is also use to connect the MNAP to the HES via the uplink. The AMI system or the feeder automation system may benefit from each other and share the same network infrastructure but using QOS and/or VPN technologies to differentiate the flow of data.

	Data use Category	
Parameter	Control/Protection Data	Monitoring/Manage ment Data
Latency	Low (20 ms to 2 seconds)	Medium (<10 S
Data occurrence nterval	Millisecond	Seconds
Method of Communication	Unicast, Multicast/Broadcast	Unicast/multicast
Reliabilit	High	Medium
Data security	High	High
Data volume	Bytes/Kilo bytes	Kilobyte
Priorit	High	Medium
Level assurance	High	Low

2878 6.2.2 Communication requirements and boundaries

- 2879
- 2880 **6.2.3 Scalability:**
- 2881Feeder automation: tens of nodes2882Smart metering: 10,000
- 2883 6.2.4 Network diagram
- 2884

The profile is focusing on the light orange part of the figure. The different MAC/PHY may imply the development of different sub-profiles as MAC/PHY specificities may lead to different configuration parameters in the upper communication layers.

2913 6.2.7 Specifications / standards

2914 This paragraph should give the list of all relevant standards used for implementing the profile.

2915 6.2.8 Security considerations

- 2916Access control:2917802.1x2918EAP2919Security encryption:2920TLS
- 2921 DTLS

2922 6.2.9 Configuration parameters

2923 6.2.9.1 IPv6 addressing scheme

2924 Manual configuration

This is appropriate for Head-End and NMS servers that never change their address, but is inappropriate to millions of end-points, such as meters, in regards to the associated operational cost and complexity. This may be used for the feeder automation as the number of devices will be limited but not recommended.

2930 Stateless auto-configuration

An IPv6 prefix gets configured on a router interface (interface of any routing device such as a meter in a mesh or PLC AMI network), which is then advertised to nodes attached to the interface. When receiving the prefix at boot time, the node can automatically set-up its IPv6 address

2935 Stateful auto-configuration

2936 Through the use of DHCPv6 Individual Address Assignment, this method requires DHCPv6 Server and Relay to be configured in the network but benefits of a strong security as the DHCPv6 process 2937 2938 can be coupled with AAA authentication, population of Naming Services (DNS) available for Head-2939 End and NMS applications. The list above is the minimum set of tasks to be performed, but as 2940 already indicated; you must also establish internal policies and operational design rules. This is 2941 particularly true when considering security and management tasks such as registering IPv6 2942 addresses and names in DNS (Domain Name System) and in NMS (network management 2943 station(s) or setting-up filtering and firewalling across the infrastructure.

2944

2929

2945 6.2.9.2 Routing protocol:

- 2946 RPL Profile
- 2947 This section outlines a RPL profile for a representative AMI and Feeder automation 2948 deployment. 2949
- (Source: Applicability Statement for the Routing Protocol for Low Power and Lossy Networks (RPL)
 in AMI Networks <u>draft-ietf-roll-applicability-ami-05</u>)

2952 6.2.9.2.1 RPL Features

2953 6.2.9.2.1.1 RPL Instances

RPL operation is defined for a single RPL instance. However, multiple RPL instances can be
supported in multi-service networks where different applications may require the use of different
routing metrics and constraints, e.g., a network carrying both Smart Metering data and feeder
automation traffic.

We may need to define one instance per application. This allows taking into account the specific requirements of each application (QOS, delay, jitter...) and allowing RPL to establish one topology per RPL instance (i.e. application).

2962 6.2.9.2.1.2 Storing vs. Non-Storing Mode

In most scenarios, electric meters are powered by the grid they are monitoring and are not
energy-constrained. Instead, electric meters have hardware and communication capacity
constraints that are primarily determined by cost, and secondarily by power consumption. As a
result, different AMI deployments can vary significantly in terms of memory size, computation
power and communication capabilities.

- For this reason, the use of RPL storing or non-storing mode SHOULD be deployment specific. When meters are memory constrained and cannot adequately store the route tables necessary to support hop-by-hop routing, RPL non-storing mode SHOULD be preferred. On the other hand, when nodes are capable of storing such routing tables, the use of storing mode may lead to reduced overhead and route repair latency.
- 2974

2958

However, in high-density environments, storing routes can be challenging because some nodes
may have to maintain routing information for a large number of descendants. When the routing
table size becomes challenging, it is RECOMMENDED that nodes perform route aggregation,
similarly to the approach taken by other routing protocols, although the required set of mechanism
may differ.

2980 6.2.9.2.1.3 DAO Policy

Two-way communication is a requirement in AMI systems. As a result, nodes SHOULD send DAO messages to establish downward paths from the root to them.

2983 6.2.9.2.1.4 Path Metrics

2984 Smart metering deployments utilize link technologies that may exhibit significant packet loss and 2985 thus require routing metrics that take packet loss into account. To characterize a path over such 2986 link technologies, AMI deployments can use the Expected Transmission Count (ETX) metric as 2987 defined in [I-D.ietf-roll-routing-metrics]. For water- and gas-only networks that do not rely on 2988 powered infrastructure, simpler metrics that require less energy to compute would be more 2989 appropriate. In particular, a combination of hop count and link quality can satisfy this requirement. 2990

As minimizing energy consumption is critical in these types of networks, available node energy should also be used in conjunction with these two metrics. The usage of additional metrics

specifically designed for such networks may be defined in companion RFCs, e.g., [<u>I-D.ietf-roll-</u>
 <u>routing-metrics</u>].

2995 6.2.9.2.1.5 Objective Function

RPL relies on an Objective Function for selecting parents and computing path costs and rank.
This objective function is decoupled from the core RPL mechanisms and also from the metrics in
use in the network. Two objective functions for RPL have been defined at the time of this writing,
OF0 and MRHOF, both of which define the selection of a preferred parent and backup parents,
and are suitable for AMI deployments.

Neither of the currently defined objective functions supports multiple metrics that might be required
 in heterogeneous networks (e.g., networks composed of devices with different energy constraints)
 or combination of metrics that might be required for water- and gas-only networks. Additional
 objective functions specifically designed for such networks may be defined in companion RFCs

3006 6.2.9.2.1.6 DODAG Repair

3001

To effectively handle time-varying link characteristics and availability, AMI deployments SHOULD utilize the local repair mechanisms in RPL. Local repair is triggered by broken link detection and in storing mode by loop detection as well. The first local repair mechanism consists of a node detaching from a DODAG and then re-attaching to the same or to a different DODAG at a later time. While detached, a node advertises an infinite rank value so that its children can select a different parent. This process is known as poisoning and is described in Section 8.2.2.5 of [I-D.ietf-3013 roll-rpl].

3014 3015 While RPL provides an option to form a local DODAG, doing so in AMI deployments is of little 3016 benefit since AMI applications typically communicate through a LBR. After the detached node has 3017 made sufficient effort to send notification to its children that it is detached, the node can rejoin the 3018 same DODAG with a higher rank value. The configured duration of the poisoning mechanism needs to take into account the disconnection time applications running over the network can 3019 3020 tolerate. Note that when joining a different DODAG, the node need not perform poisoning. The second local repair mechanism controls how much a node can increase its rank within a given 3021 3022 DODAG Version (e.g., after detaching from the DODAG as a result of broken link or loop 3023 detection). Setting the DAGMaxRankIncrease to a non-zero value enables this mechanism, and 3024 setting it to a value of less than infinity limits the cost of count-to-infinity scenarios when they occur. thus controlling the duration of disconnection applications may experience. 3025

3026 6.2.9.2.1.7 Multicast

RPL defines multicast support for its storing mode of operation, where the DODAG structure built
for unicast packet dissemination is used for multicast distribution as well. In particular, multicast
forwarding state creation is done through DAO messages with multicast target options sent along
the DODAG towards the root. Thereafter nodes with forwarding state for a particular group forward
multicast packets along the DODAG by copying them to all children from which they have received
a DAO with a multicast target option for the group. Multicast support for RPL in non-storing mode
will be defined in companion RFCs.

3034 6.2.9.2.1.8 Security

AMI deployments operate in areas that do not provide any physical security. For this reason, the link layer, transport layer and application layer technologies utilized within AMI networks typically provide security mechanisms to ensure authentication, confidentiality, integrity, and freshness. As a result, AMI deployments may not need to implement RPL's security mechanisms and could rely on link layer and higher layer security features.

3040 6.2.9.2.1.9 P2P communications

- 3041 Distribution Automation and other emerging applications may require efficient P2P
- 3042 communications. Basic P2P capabilities are already defined in the RPL RFC [I-D.ietf-roll-rpl].
- 3043 Additional mechanisms for efficient P2P communication are being developed in companion RFCs.

3044 6.2.9.2.2 Recommended Configuration Defaults and Ranges

3045 6.2.9.2.2.1 Trickle Parameters

Trickle was designed to be density-aware and perform well in networks characterized by a wide range of node densities. The combination of DIO packet suppression and adaptive timers for sending updates allows Trickle to perform well in both sparse and dense environments. Node densities in AMI deployments can vary greatly, from nodes having only one or a handful of neighbors to nodes having several hundred neighbors. In high density environments, relatively low values for Imin may cause a short period of congestion when an inconsistency is detected and DIO updates are sent by a large number of neighboring nodes nearly simultaneously.

3054 While the Trickle timer will exponentially backoff, some time may elapse before the congestion 3055 subsides. While some link layers employ contention mechanisms that attempt to avoid congestion, 3056 relying solely on the link layer to avoid congestion caused by a large number of DIO updates can 3057 result in increased communication latency for other control and data traffic in the network. To 3058 mitigate this kind of short-term congestion, this document recommends a more conservative set of 3059 values for the Trickle parameters than those specified in [RFC6206]. In particular, DIOIntervalMin 3060 is set to a larger value to avoid periods of congestion in dense environments, and DIORefundancyConstant is parameterized accordingly as described below. 3061

- 3062 3063 These values are appropriate for the timely distribution of DIO updates in both sparse and dense 3064 scenarios while avoiding the short-term congestion that might arise in dense scenarios. Because 3065 the actual link capacity depends on the particular link technology used within an AMI deployment, 3066 the Trickle parameters are specified in terms of the link's maximum capacity for transmitting link-3067 local multicast messages. If the link can transmit m link-local multicast packets per second on average, the expected time it takes to transmit a link-local multicast packet is 1/m seconds. 3068 3069 DIOIntervalMin: AMI deployments SHOULD set DIOIntervalMin such that the Trickle Imin is at 3070 least 50 times as long as it takes to transmit a link-local multicast packet.
- 3071

3053

3072 This value is larger than that recommended in [RFC6206] to avoid congestion in dense urban 3073 deployments as described above. In energy-constrained deployments (e.g., in water and gas 3074 battery-based routing infrastructure), DIOIntervalMin MAY be set to a value resulting in a Trickle 3075 Imin of several (e.g. 2) hours. DIOIntervalDoublings: AMI deployments SHOULD set 3076 DIOIntervalDoublings such that the Trickle Imax is at least 2 hours or more. For very energy 3077 constrained deployments (e.g., water and gas battery-based routing infrastructure), 3078 DIOIntervalDoublings MAY be set to a value resulting in a Trickle Imax of several (e.g., 2) days. 3079 DIORedundancyConstant: AMI deployments SHOULD set DIORedundancyConstant to a value of 3080 at least 10. This is due to the larger chosen value for DIOIntervalMin and the proportional 3081 relationship between Imin and k suggested in [RFC6206].

3082

This increase is intended to compensate for the increased communication latency of DIO updates
 caused by the increase in the DIOIntervalMin value, though the proportional relationship between
 Imin and k suggested in [RFC6206] is not preserved. Instead, DIORedundancyConstant is set to a
 lower value in order to reduce the number of packet transmissions in dense environments.

3087 6.2.9.2.2.2 Other Parameters

AMI deployments SHOULD set MinHopRankIncrease to 256, resulting in 8 bits of resolution (e.g., for the ETX metric).

 To enable local repair, AMI deployments SHOULD set MaxRankIncrease to a value that allows a device to move a small number of hops away from the root. With a MinHopRankIncrease of 256, a MaxRankIncrease of 1024 would allow a device to move up to 4 hops away.

3094 6.2.10 MAC / PHY configuration parameters:

According to the MAC/PHY chosen, you will find here the frequency band, the different parameters to configure the MAC and Physical layer with the default values.

3097 6.2.11 Best current practice:

This paragraph may describe some largely deployed solutions using this profile with the parameter's default values, the scalability number and any useful information.

3100 6.3 Profile Example 2: IP MPLS

3101 **6.3.1 Introduction**

- 3102 This communication profile considers the case where an IP/MPLS network is used as WAN
- 3103 communications network to interconnect substations (to each other), Utility control center and Bulk3104 power stations.
- 3105

3106 In particular the focus of this profile is on the use of the IP/MPLS network for the purpose of inter-

- substation Teleprotection. The same IP/MPLS network can be used for other smart gridcommunications.
- 3109

3111

3110 The communication architecture considered for this profile is depicted in the figure below:

- 3112
- 3113

Figure 27: Architecture for IP/MPLS based teleprotection

- For the sake of simplicity only two substations are depicted in this architecture; however the described profile is applicable to an arbitrary number of substations sharing the same IP/MPLS infrastructure.
- 3117
- The IP/MPLS network can either be owned operated and managed by the Energy provider or communication network operator.

3120 **6.3.2 Communication requirements and boundaries**

- 3121 The following requirements shall be fulfilled by the communications network. 3122
- The End to end latency between the egress port of the TPR and the ingress port of the
 other TPR shall not exceed 10 ms. This delay includes the TDM packetization delay (when
 applicable).

- Symmetrical delay: The end to end delay in one direction (TPR1 to TPR2) shall not differ
 from the end to End delay in the other direction (TPR2 to TPR1) by more than 2ms.
 - Security/Denial of service attacks: the IP/MPLS network shall support denial of service protection mechanisms in order to avoid disrupting the control plane and incurring excessive delay for the tele-protection signal
 - Time synchronisation: The IP/MPLS network shall provide accurate time synchronisation needed to support TDM services
- QoS: The IP/MPLS network shall implement a Priority scheduling algorithm that allows for
 minimal delay per IP/MPLS node

3139 6.3.3 Detailed Network diagram for the profile

3140 End-to-End Layer 1 and Layer 2 communications services over MPLS are shown in the figure 3141 below:

3142 3143

3126

3129

3130

3131

3132

3133

3134

3135

3136

Figure 28: MPLS services

The choice of VPLS or VPWS for the purpose of our profile depends on the interface that is implemented by the TPR.

3146 6.3.3.1 The TPR implements an Ethernet interface

- 3147 In case the TPR implements an Ethernet Interface, a VPLS (Virtual Private LAN Service) service
- 3148 as defined in RFC 4762 is preferred because it allows a multipoint to multipoint connectivity. VPLS
- 3149 is a Layer 2 VPN (Virtual Private Network) service and is used to provide multi-point to multi-point
- 3150 Ethernet connectivity between the TPRs (for the purpose of teleprotection) and for the overall
- 3151 communication between the substations, the data and control center and the bulk generation sites.
- 3152 VPLS emulates an Ethernet bridge connecting these endpoints. In a converged MPLS network,
- 3153 this Layer 2 VPN is achieved using a full mesh of LSPs between the participating sites.
- 3154 Conceptually, a number of secure tunnels are constructed, allowing multipoint connectivity.

Figure 29: Teleprotection using VPLS (Ethernet TPRs)

For the sake of simplicity, Figure 4 shows a partial view representing a point to point VPLS connecting the substation TPRs.

3159 **6.3.3.2 The TPR implements a TDM interface**

In case the TPR implements a TDM interface, a circuit emulation service is required. Two modes of circuit emulation can be supported (depending on the TDM interfaces): unstructured and structured.

- Unstructured mode is supported for DS1 and E1 channels per RFC 4553, Structure Agnostic Time Division Multiplexing (TDM) over Packet (SAToP).
 - Structured mode is supported for n*64 kbps circuits as per RFC 5086, Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN).

Both circuit emulation services (structured and unstructured), a VPWS (Virtual Pseudo Wire Service) service as defined in RFC 4447 should be used. In VPWS a pseudo-wire is a point-topoint connection between two end points: the TPRs in this case. Circuit/TDM services can be carried over MPLS pseudo wires.

3173

3165 3166

3167

3168

3177 In Figure 30, the MPLS edge router (also referred to as Provide Edger - PE- router) must

implement a circuit emulation mechanism to allow the transport of a circuit/TDM interface over the
 IP/MPLS network. Depending on the type of the TDM interface RFC 4553 or RFC 5086 can be
 used.

3181 6.3.3.3 Path protection

- 3182 MPLS Fast Reroute provides path protection mechanisms where the switching time is estimated at
- 50 ms. For the purpose of Teleprotection which mandates a delay bound of 10 ms, Fast Reroute does not provide an adequate answer.
- 3184 does not provide an adequate answer.
- 3185 To provide 10 ms protection, two separate MPLS LSP paths should be provisioned and used by
- 3186 the TPRs to send teleprotection signals simultaneously over the two LSPs. The same protection
- 3187 mechanism can be used for both the VPLS and the VPWS as depicture in Figure 31 below:

3188

3189

Figure 31: Achieving protection for Teleprotection services.

3190 6.3.3.4 Quality of Service and scheduling

The IP/MPLS network shall support the DiffServ QoS architectural model mapped to MPLS as defined in RFC 3270

3193 6.3.3.5 Achieving path symmetry

- To achieve path symmetry the network should support IP/MPLS traffic engineering capabilities as defined in RFC 3209 for RSVP-TE.
- 3196 The path in each directed is determined (traffic engineered) offline and provided to the ingress PE
- 3197 (Provider Edge) routers to set the LSP according to an explicit route. The explicit route in one
- direction and in the other direction shall provide comparable end to end delay (with a tolerance of
- 2ms) and shall take into account the packetization delay if applicable (VPWS case).
- Editor's note: optionally OSPF-TE as defined in RFC 3639 and IS-IS TE as defined in RFC 3784
 can be used to allow for Shared Risk Link Group (SRLG) based LSP path diversity. This use if for
 further study

3203 6.3.3.6 Timing and synchronisation

In order to support TDM service (TPRs supporting TDM interfaces) the PE router must support timing and synchronization as specified in: ANSI T1.403 and ITU-T G.2861

3206 6.3.3.7 System reliability

- 3207 System reliability is generally achieved through redundancy; therefore, the network equipment 3208 must provide redundant cooling, and redundant power.
- For continuity of service, functions such as non-stop-signaling and non-stop routing and an intranodal high availability control plane failover mechanism must be supported for all active services.
- 3211 The deployed system shall support both hardware and software redundancy.
- 3212 Hardware redundancy:
- 3213 Component redundancy
- 3214 Dual switching fabric
- 3215 Redundant cooling system
- 3216 Redundant power
- 3217 Software redundancy
- 3218 Configuration Redundancy
- 3219 Service Redundancy
- 3220 Accounting Configuration Redundancy
- 3221 Synchronization

3239

3240 3241

- 3222 6.3.3.8 Network reliability
- 3223 The network equipment forming the solution must embody the following reliability traits.
- Inter-nodal failover with multi-chassis APS for CES, IP/MPLS and MLPPP (IP)
- Multiple link, card, and node fault restoration scenarios
- Pseudowire redundancy protection for IP/MPLS, as specified in RFC 5254
- 3227 CES, ETH over redundant pseudowires

With the evolution towards IP/MPLS, devices providing the aggregation layer for a significant
proportion of revenue generating services, having a single point of failure at the core layer may
cause a significant loss of revenue. Multi-chassis developments have effectively removed that
single point of failure. Multi-chassis support can be extended to both Ethernet and SDH interfaces.

3232 6.4 Initial list of profiles for future development by SDOs

The following list gives a first outlook of different communication profiles. This list is not exhaustive and do not represent the complete scope of smart grid system needs: 3235

- Neighborhood Area: smart metering, EHV charging, demand response, voltage regulation,
 street lighting, transformer management, distributed generation
 - FAN: smart metering, feeder automation, FLIR (Fault Location, Registration, Isolation and Restoration), EHV charging, demand response, voltage regulation, distributed generation
- Low-end intra substation Ethernet: Substation automation, Distributed Energy Resources, asset management, energy storage
 3244
- Intra substation Ethernet based: Substation automation, Distributed Energy Resources,
 asset management, energy storage, synchrophasor, WAMS, WASA

- 3247 3248 Inter substation: Transmission Grid Management, Distribution Grid Management, Distributed Energy Resources, asset management, energy storage, synchrophasor, 3249 3250 WAMS, WASA .
- 3251

. . .

Interoperability consideration/recommendations 3252 6.5

3253 The goal of developing communication profiles is to ensure interoperability as defined in the Reference Architecture document (SG CG RA document paragraph 5.1 "Interoperability in the 3254 3255 context of the Smart Grid"). It is aligned with the GridWise Alliance GWAC stack. 3256

3258 **7 Communication architecture topologies for the Smart Grid**

- 3260 This section aims at providing detailed architecture topologies for the communications networks as 3261 listed in section 1.3.
- 3262 7.1 Subscriber Access Network
- 3263 To be developed in a subsequent release

3264 7.2 Neighborhood Network

3265 To be developed in a subsequent release

3266 7.3 Field Area Network

3267 To be developed in a subsequent release

3268 **7.4 Low-end intra-substation network**

3269 To be developed in a subsequent release

3270 7.5 Intra-substation network

3271 Currently communication within most substations is limited to SCADA. IEDs and RTUs in the
 3272 substation use point-to-point communication between them, often through a "data concentrator".
 3273 Most protocols are proprietary. The SCADA communication link between the substation and the
 3274 SCADA control center are often point to point TDM connections.

3276 If there are other applications located at the substations (such as teleprotection, synchrophasors,
3277 and CCTV), they each have a separate communication links to their respective counterparts.
3278

3279 The substation LAN evolution will be on two different levels. At one level, the substation 3280 architecture of the utility operations applications such as SCADA and teleprotection will evolve to the architecture specified in the IEC 61850 standard [4]. On another level, traffic generated by 3281 many new smart grid and other applications that will be resident at the substation such as the 3282 3283 meter concentrators and CCTV will be aggregated at the substation router along with the SCADA 3284 and other operations traffic. The substation router is an ER in our integrated architecture of Figure 3285 32. The router at a (large) substation may additionally aggregate traffic generated in the vicinity of 3286 the substation.

3287

3275

Figure 32: Substation communication architecture example

3290 IEC 61850 define a process bus that is an Ethernet bus. All SCADA IEDs and optionally the
 3291 teleprotection IEDs and PMUs connect to the process bus. For legacy equipment gateways may
 3292 be used to connect into the process bus. There may be more than one process bus.
 3293

The station bus is used to connect the process busses as well as other operation systems such as the distribution automation traffic concentration from the feeder IEDs (if thus designed).

Access to all these operation elements are protected by protecting the station bus behind firewall
 and/or Intrusion detection and protection (IDS/IPS) systems.

The substation may use another Ethernet network for connecting other smart grid and utility systems such as the CCTV, meter concentrators, and demand response systems; access to these systems is protected by another firewall and/or IDS/IPS system.

Finally the substation router aggregates all traffic generated at the substation and possibly traffic generated at (smaller) substations in the vicinity as well as traffic from other endpoints in the vicinity – examples of which are shown in Figure 32.

- 3307 **7.6 Inter substation network**
- 3308 **7.6.1** High voltage teleprotection network
- 3309 To be developed in a subsequent release.

3310 **7.6.2 Medium voltage inter-substation network**

- 3311 The following figure provides a typical European Grid topology, source KEMA report.
- 3312

3322

3323

3336 3337

3338

Figure 33: Distribution grid: typical substation topology for European markets (Source 3314 3315 Kema)

- 3316 In this topology one can distinguish the ring topology that connects a primary distribution
- substation as part of the distribution network together with the secondary substations. Two cases 3317 3318 can be distinguished:
- 3319 Urban areas: The primary substation connects to the secondary substations using a ring 3320 topology. Often the ring is based on an **open ring**, through acting on a breaker switch 3321 connecting a secondary substation.
 - Rural areas: the primary substation connects to the secondary substation using a bus topology.

3324 7.6.3 MV Substation to substation communication topology: Point to Multipoint (P2MP) 3325 using BPL

- 3326 Figure X below provides an example of a Point to Multipoint topology that can be used for 3327 communication between a primary substation and the secondary substation. This topology uses 3328 MV BPL standards where each substation is equipped with a single MV BPL modem. This 3329 architecture assumes that a L2 frame sent on the communication bus is received by the entire 3330 substation but handled only by the substation has the correct destination address of the L2 frame 3331 (similar to Ethernet in bus topologies). 3332
- 3333 The advantage of such a topology is the reduced cost because a single MV BPL is deployed. 3334 However, it has two main disadvantages: 3335
 - Disconnection of the power cable will cut the communication
 - Switching will change the impedance of the cable and degrades the communication performance
- It can be advocated for Hub and Spoke topologies (star) or in bus technologies (rural areas). 3339 3340

Secondary substation Secondary substation Primary substation 3341

3342 Figure 34: MV communication using MV BPL model, Point to multipoint topology

3343 7.6.4 MV Substation to substation communication topology: Point to Point (P2P) using BPL 3344

- 3345 Figure X below provides an example of a Point to Point topology that can be used for
- communication between a primary substation and the secondary substation. This topology uses 3346
- MV BPL standards where each substation is equipped with a two MV BPL modems. 3347 3348
- 3349 Compared to the topology presented in 7.6.3, this incurs additional cost pertaining to the use of an 3350 additional BPL modem. The main advantages of this topology are: 3351
 - Disconnection of the power cable will NOT cut the communication
 - No degrades to the communication performance on switching

3354 It can be advocated for ring (including open ring) topologies for urban deployments. 3355

3356 3357

3352 3353

> Secondary substation Figure 35: MV communication using MV BPL model, Point to point topology

3358 7.7 Intra Control Centre / Intra Data centre Network

- 3359 To be developed in a subsequent release
- 3360

Secondary substation

Smart Grids Coordination Group Document for the M/490 Mandate Smart Grids Reference Architecture Annex F – Communication Architecture

3361 **7.8 Enterprise Network**

3362 To be developed in a subsequent release

3363 **7.9 Balancing Network**

3364 To be developed in a subsequent release

3365 7.10 Interchange Network

3366 To be developed in a subsequent release

3367 **7.11** Trans-Regional – Trans-National Network

3368 To be developed in a subsequent release

3369 **7.12 Wide and Metropolitan Area Network**

- 3370 To be developed in a subsequent release
- 3371

3372 8 Security

3378

3383

Coupling data communications capabilities with the power transmission, distribution, and
consumption infrastructures increases the efficiency of the power grid, but also creates a long list
of operational challenges— Security tops that list. Thus, security represents a key challenge for
enabling a successful rollout of Smart Grids and AMIs. It needs to be addressed in a holistic,
end-to-end fashion, leveraging the concept of "Security by Design".

In the past it was sometimes claimed that the use of open standards and protocols may itself
represent a security issue, but this is overcome by the largest possible community effort,
knowledge database and solutions available for monitoring, analyzing and fixing flaws and
threats—something a proprietary system could never achieve.

3384 Said otherwise, a private network, IP-based architecture based on open standards has the best 3385 understood and remedied set of threat models and attack types that have taken place and have 3386 been remedied against, on the open Internet. This is the strongest negation of the now deprecated 3387 concept of "security by obscurity" that argues that the use of non-standard networking protocols 3388 increases security and which is unanimously rejected by the network security expert community. 3389 Security per se is not a new topic to utilities as they are already operating and maintaining largescale data communication networks. Using IP as a common technology in the core of Smart Grids 3390 3391 and AMIs will help to ensure security knowledge is available within the involved organizations. 3392

3393 It is important to note that IPv6 security has at least the same strengths as IPv4, but both IPv4 and 3394 IPv6 are certainly not worse than proprietary networking protocols. We recommend people 3395 focusing on FAN security to review documents such as NISTIR 7628, Guidelines for Smart Grid 3396 Cyber Security or UCAIUG, AMI System Security Requirements. In Europe, Smart Grid Information Security requirements are currently under definition by the standardization organizations; several 3397 3398 guidelines and requirements have been issued or are under definition by the Member States. All 3399 are asking for open standards. With Security being a multi-layer challenge, it is important to review 3400 some additional features that provide nodes authentication and data integrity and privacy on a FAN 3401 deployment.

Strong authentication of nodes can be achieved by leveraging a set of open standards
mechanisms. For example, after a node discovered a RF or PLC Mesh network leveraging IEEE
802.15e enhanced Beacon frames, it can get properly authenticated through IEEE 802.1x, PKI,
certificate and AAA/Radius mechanisms before beginning to communicate using a Link-local IPv6
address. From there, the node can join its RPL domain before getting a global IPv6 address
through DHCPv6 as well as other information (DNS server, NMS, etc.).

3410 Data integrity and privacy leverages the encryption mechanisms available at various layers of the 3411 communication stack. For example, an IPv6 node on a last mile subnet has options to encrypt data 3412 at layer 2 (AES-128 on IEEE 802.15.4g or IEEE P1901.2), layer 3 (IPsec), layer 4 (DTLS) or per 3413 application at layer 7, i.e.: encryption of ANSI C12.22 or DLMS/COSEM for the metering traffic. 3414 While multiple levels of encryption may be implemented on a constraint node, the processing 3415 resources (processor speed and memory, energy consumption) requirements must be evaluated in 3416 regards of the additional hardware cost this could generate. With multiple options available it can 3417 be assured that nodes can be integrated into existing security architectures, relying on Link, 3418 Transport and/or Application Layer encryption. Furthermore, this will ease the integration and 3419 enhancement of existing Application Layer protocols (i.e. ANSI C12.22 or DLMS/COSEM) where 3420 certain security functions could convert at a lower layer, e.g. by providing a secured end-to-end 3421 path, and where other functionalities (i.e. message integrity / proof of origin) can remain at the 3422 Application Layer.

3423

3409

The choice of a given layer for data encryption and devices performing the encryption also impact the network services, performances and scalability of a deployment. For example, when software

- upgrade, demand/response or dynamic pricing should use Multicasting, the choice of encrypting
 data at transport layer (L4 DTLS) precludes leveraging the replication capabilities of IP Multicast
 routers on the infrastructure.
- Whatever the encryption layer selected on the NAN devices, an IP Edge router can also perform
 Layer 3 encryption (IPsec) for all traffic forwarded over the backhaul links. Therefore, hardware
 cost and resources may limit to layer 2 authentication and encryption and potentially encryption at
 layer 3 or 7 on constrained devices while Layer 3 encryption on the IP Edge router takes care of all
 traffic sent over the WAN without loosing network services capabilities.
- 3435

- Combined with more traditional security features such as digital signatures for firmware images or
 data objects on devices (i.e. for meter reads or critical commands), traffic filtering, firewalling and
 intrusion prevention on the IP Edge routers, the last mile of a Smart Grid deployment can get
 strong security reinforcement whatever the traffic patterns.
- With IP offering the possibility of end-to-end communication down to the last mile, also, in case this is required, end-to-end encryption can be established in an efficient manner. Moreover, Application Layer protocol translation would not be required within the communication network. Multiple protocols do not have to be maintained, this would represent a clear advantage for the efficiency and security of the network.
- In addition, IP, as well known technology, offers already available, tested, certified software stacks,
 implementing proven security algorithms and Computer Security Incident Response Teams
 (CSIRTs) and Computer Emergency Response Team (CERT)). Thus, the Security of Smart Grids
 and AMIs can directly benefit from security findings within the Internet Community, now and in the
 future.
- 3452

Appendix A Industry Fora and Alliances References

- 3453 This Appendix references Industry Fora and Alliances documentation for information purpose only.
- 34543455 Power Line Technologies:
- 3456
- 3457 Narrow band:

SDOs-Alliance-Industry	Standard Name	Frequency Bands	Power Line Segment
ndustry	INSTEON	131.65kHz	Low Voltage
ndustry	HomePlug C&C	FCC (120-400kHz) CENELEC A, B	Low Voltage
ndustry	Meters and More	CENELEC A 20kHz-95kHz	Low Voltage
ndustry	OSGP	CENELEC A 20kHz-95kHz	Low Voltage
ndustry	PRIME	CENELEC A (~42kHz-~89kHz) FCC 159kHz to 490kHz	Low Voltage
ndustry	G3 PLC	35.9-90.6kHz CENELEC A Field tested (capable up to 180kHz)	Low Voltage
ndustry	UPB	4-40kHz	Low Voltage
ndustry	X10	120kHz	Low Voltage
ndustry	A10	120kHz	Low Voltage
ndustry	G3 Lite MAX2990 (FCC band extension being developed)	CENELEC & FCC 10kHz-490kHz	Low Voltage
ndustry	TDA5051A	FCC within 95kHz-145kHz (132.5kHz typical)	Low Voltage
ndustry	PLM-1	50-500kHz (262kHz expected)	Low Voltage
ndustry	C&C Turbo (fully comply with HomePlug C&C)	FCC (120-400kHz) CENELEC A, B	Low Voltage

3459 3460 3461 3462

Broadband:

SDOs-Alliance-Industry	Standard Name	Frequency Bands	Power Line Segment
Industry	Home Plug AV	2-30MHZ	Low Voltage
Industry	Home Plug GreenPHY	2-30MHZ	Low Voltage
Industry	Home Plug AV Extended	2-75MHz	Low Voltage
Industry	Home Plug AV Mediaxtreme	2-30MHz 50-300MHz	Low Voltage
Industry	WPCLRWB5	2-4MHz	Low Voltage

Appendix B Relationship to the SGAM model

This section provides a mapping of the communication architecture to the SGAM model. Such a

3467 3468	mapping is performed using the tele-protection use case.
3469 3470 3471 3472 3473 3474	 The SGAM is a framework for: Hosting functional and information architectures in appropriate layers Identify top-level elements Fit in EU high level functions Map architectures to smart grid plane (domains/zones)
3475 3476 3477 3478 3479	The component layer of SGAM is the physical distribution of all participating components in the smart grid context. This includes power system equipment (typically located at process and field level), protection and tele-control devices, network infrastructure (wired / wireless communication connections, routers, switches, servers) and any kind of computers
3480 3481	The Figure below provides the component layer pertaining to the Tele-protection use case. The Figure depicts the following main components
3482 3483 3484 3485 3486 3487	 Process components: The circuit breaker: an automatically operated electrical switch designed to protect an electrical circuit from damage caused by overload or short circuit. Its basic function is to detect a fault condition and, by interrupting continuity, to immediately discontinue electrical flow. Field components:
3488 3489 3490	 Protection Relay: activate the protection equipment to isolate the affected part in adjacent substation to prevent damages to expensive substation equipment and instability in the power system
3491 3492 3493 3494	 Gateway: interface to Protection Relay in order to adapt and transfer control signals between the Protection Relays. Provides circuit emulation services in order to transport TDM based interfaces over a Packet Switched Network (PSN), in the case of IP WAN infrastructure
3495 3496 3497	 WAN infrastructure: Provides reliable and low delay/jitter transport of the protection signals. This WAN infrastructure might be different from the one used to connect a substation to central control systems.
3498 3499 3500 3501	 The Station components: Station controller: provide communication toward the central operation systems via a WAN infrastructure.

3507

The **Communication layer** as depicted in the figure below provides the list of standards applicable for the communication stack of the Teleprotection use case.

The Figure depicts the following list of applicable standards:

- 3508 IEC 61850-8-1 (Goose)
- 3509 IEC 61850-9-2 (Sampled Values)
- 3510 IEC 61850-90-1 (SS-SS Com.)
 - IEC 62351 (E2E Security)
- 3511 3512

3513

3514 3515

The figure below provides the **Information layer** pertaining to the Teleprotection use case. These are:

- 3518 IEC 61850-7-2/3/4 (Services, Data Models)
- 3519 IEC 61850-90-1 (SS-SS Com.)
- 3520 IEC 62351 (E2E Security)
- 3521

3526

3527

3528

The figure below provides the **function layer** pertaining to the Teleprotection use case. The different functions shown are:

- Supervision performed at the central operations systems
- DAQ, Supervision and Control
- Secure Information exchange
- Protection

