CEN-CENELEC-ETSI Smart Grid Coordination Group

Date: 11/2014

Secretariat: CCMC

SG-CG/M490/K_SGAM usage and examples

SGAM User Manual -

Applying, testing & refining the Smart Grid Architecture Model (SGAM)

Version 3.0

1 Foreword

Based on the content of the M/490 EU mandate in its phase 1 (2011-2012), the general scope of work on
 standardization of the Smart Grid might be considered as follows:

4 CEN, CENELEC, and ETSI are requested to develop a framework to enable European Standardization 5 Organizations to perform continuous standard enhancement and development in the field of Smart 6 Grids, while maintaining transverse consistency and promoting continuous innovation.

In the light of the discussions held in late 2012 between the EC Reference Group (EG1) and the Smart Grid
 Coordination Group (SG-CG), the need to iterate the EC Mandate M/490 was considered and agreed by
 both sides.

As a main objective of the mandate phase 2, the SG-CG wishes to implement the methodology developed in phase 1, which set the foundations for managing the continuous engineering and deployment of standards to ensure a real end-to-end interoperability for all generic use cases, explicitly including security.

- A further refinement of the methodology will be used for the set of consistent standards [SG-CG/G] (under item 3.1 and 3.2 of M/490).
- 15 The work is based on [SG-CG/C] and [SG-CG/E].
- 16 A set of documents addresses this objective:
- The main report, which is a summary of different tools, elements and methodologies developed by the different working groups of the Smart Grid Coordination Group [SG-CG/F],
- and additional separate reports detailing specific issues addressed by the working group "Methodology and
 New Applications":
- The conceptual model and its relation to market models for Smart Grids [SG-CG/J]
- SGAM User Manual Applying, testing & refining the Concepts, Elements and Tools for the Smart
 Grid Architecture Model (SGAM) [SG-CG/K] (this document)
- An overview of the main concepts of flexibility management [SG-CG/L]
- 25 For this report:

26 One of the key objectives of phase 2 of the mandate was to demonstrate the application of the SGAM

27 methodology developed in phase 1, validating it by reference to use cases, systems and communications,

and testing it by consideration of new use cases. In this way, the SGAM can be seen to represent the

29 foundations for managing the continuous engineering and deployment of standards for all generic use cases,

30 explicitly including security, and helping to ensure real end-to-end interoperability

31

32	Т	able of contents	Page
33	Fo	preword 2	
34	1.	Executive summary	6
35	2.	References 6	
36	3.	Terms and definitions	9
37	4.	Symbols and abbreviations	9
38	5.	SGAM: Smart Grids Architecture Model description	10
39		5.1 Introduction 10	
40		5.2SGAM Smart Grid Plane	11
41		5.3SGAM interoperability layers	14
42		5.4SGAM framework	15
43		5.5SGAM levels of abstraction	15
44	6	The SGAM and use cases	17
45		6.1Overview 17	
46		6.2Use case analysis with SGAM	18
47		6.2.1 Classification of use case design scope	18
48		6.2.2 Relation of use case design scope to SGAM analysis pattern	21
49		6.2.3 Relation of use case template with SGAM analysis pattern	22
50		6.3Relation of security requirements with SGAM layer abstraction	24
51		6.4Use case checklist	26
52		6.5Use case repository	28
53	7	Mappings using the SGAM	29
54		7.1Mapping of a system breakdown on SGAM	29
55		7.1.1 Mapping systems on SGAM - Principles	33
56		7.2Role mapping	36
57		7.3Analysis of communication networks using SGAM	37
58		7.3.1 Description	37
59		7.3.2 Communication network type breakdown	37
60		7.2.3 Mapping of communication network type over the SGAM	39
61		7.3.4 Data modelling with the SGAM	39
62	8	Examples showing the use of the SGAM	41
63		8.1 Introduction 41	
64		8.2Example #1: Monitoring of the distribution grid (SG-CG WGSP-0600)	42
65		8.3Example #1.1: "Monitoring inside the distribution grid" (Business Use Case)	43
66		8.4Example #1.2: "Monitoring inside the distribution grid" (Device/system use case)	44
67		8.5Example #1.1.1: Detailing the secondary use case "Access Control"	45
68		8.6Example #1.1.2: "Monitor system interruptions and report to regulator"	48
69	9	Further example use cases to test the SGAM	52

70	9.10verview 52	
71	9.2High level use case WGSP-2135 Inter-CEMS energy trading	52
72	9.3Consideration of use cases against the SGAM	53
73	9.4 Implications of above analysis for the SGAM	54
74	9.5Conclusions of the work to date	54
75	Appendix A Use case descriptions and mapping to SGAM	56
76	A.1Introduction into the Appendix	
77	A.2 Primary use case WGSP-2136	56
78	A2.1 Description	56
79	A2.2 Implications: WGSP-2136	
80	A.3 Primary use case WGSP-2137	62
81	A.3.1 Description	62
82	A.3.2 Implications: WGSP-2137	63
83	A.3.3 Detailed mapping of WGSP-2137 to SGAM	65
84 85	List of figures	
86	Figure 1: Smart Grid Plane – Domains & zones of SGAM	12
87	Figure 2: SGAM – Smart Grid Architecture Model	15
88 89	Figure 3: Exemplary categorization of different abstraction levels per SGAM layer (SGAM analysis pattern)	16
90 91	Figure 4: Example of interrelationships between concepts on different levels in an SGAM model (for details refer to Appendix A)	18
92	Figure 5: Classification of use case design scope	19
93	Figure 6: Use case structure (based on SM-CG)	20
94	Figure 7: Relation of design-scope use case classifications with SGAM analysis pattern	22
95	Figure 8: Relation of use case templates with SGAM analysis pattern	23
96	Figure 9: Mapping of fields in the use case templates to SGAM analysis pattern - example	24
97	Figure 10: High level security requirements mapped on SGAM analysis patterns	25
98	Figure 11: Detailed security requirements (examples) mapped to SGAM analysis patterns	26
99	Figure 12 - Exemplary mapping of system usage on the SGAM plane	33
100	Figure 13: Mapping principles of systems over the SGAM planes	34
101	Figure 14: IEC Smart Grid mapping tool (Source: http://smartgridstandardsmap.com/	
102	Figure 15: Mapping of Harmonized Role Model to SGAM	36
103	Figure 16 - Mapping of communication networks on SGAM	
104	Figure 17 - Data modeling and harmonization work mapping	40
105	Figure 18: Overview of examples presented	41
106	Figure 19: Mapping of the use case "Monitoring of the distribution grid"	42
107	Figure 20: Primary use cases for "Monitoring the distribution grid"	43
108	Figure 21: Mapping of "Monitoring inside the distribution grid" on SGAM plane	44

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

109	Figure 22: SGAM analysis for "Monitoring inside the distribution grid"	45
110	Figure 23: SGAM Analysis of Role-based Access Control	46
111	Figure 24: SGAM Analysis "Monitoring system interruptions and report to regulator"	50
112	Figure 25: SGAM Analysis on the detailed level	52
113	Figure 26: SGAM Analysis "Generic functional description"	53
114	Figure 27: SGAM	53

115

116 List of tables

117	Table 1: SGAM domains	
118	Table 2: SGAM zones	
119	Table 3: SGAM layers	14
120	Table 4: Types of use cases	20
121	Table 5: Use case checklist	26
122	Table 6: Advantages of a use case repository	
123	Table 7: Smart Grids - list of the main systems	

124

125 History of document

Number	Date	Content
V1.0	18/12/2013	For publication and review by the BTs and TCs.
V2.0	29/08/2014	Final for distribution to the SG-CG, commenting phase
V3.0	31/10/2014	Final version after commenting period in SG-CG and integrating of the received comments

126

127

129 1. Executive summary

This report seeks to present a 'user manual' demonstrating the application of the SGAM methodology developed in phase 1, validating it by reference to use cases, systems and communications, and testing it by considering new use cases in order to identify whether any adaptations are required to the SGAM. The SGAM is also related to systems and communications in order to show its application and value as a methodology.

At a general and strategic level, the user manual presented in this report confirms the value of the SGAM and the approach to mapping of use cases against the SGAM, illustrating how use cases can be considered and incorporated within the present SGAM framework. The analysis shows that the SGAM is a powerful, useful and robust tool. It also demonstrates the need for ready access to the use case repository and to the templates and examples of use case descriptions and shows the desirability of ready access to the detailed mapping tools used in presentation of the SGAM.

141 The new high-level use cases selected for consideration deal with the co-ordination of distributed generation 142 and loads at neighborhood level based upon peer-to-peer communication between several Central Energy 143 Management Systems and brokerage within a multi-agent system. The choice of such a "leading edge" use 144 case was dictated by the desire to test the SGAM to the limits.

When the SGAM was applied to the selected new use cases, it was also clear that there is no lack of European standards for these two use cases. The main challenge presented by the possibility of peer-topeer communications as envisaged relates to the market, industry, legal and regulatory framework for such activity. Member States and others wishing to develop the concept at national level are still exploring what arrangements would be required, and it may be necessary to review this preliminary conclusion in the light of such national use cases.

151

152 2. References

153 Smart Grid Coordination Group Phase 1 Documents

- 154 [SG-CG/A] SG-CG/M490/A Framework for Smart Grid Standardization
- 155 [SG-CG/B] SG-CG/M490/B_ Smart Grid First set of standards
- 156 [SG-CG/C] SG-CG/M490/C_ Smart Grid Reference Architecture
- 157 [SG-CG/D] SG-CG/M490/D_ Smart Grid Information Security
- 158 [SG-CG/E] SG-CG/M490/E_ Smart Grid Use Case Management Process
- 159 Smart Grid Coordination Group Phase 2 Documents
- 160 [SG-CG/F] SG-CG/M490/F_ Overview of SG-CG Methodologies
- 161 [SG-CG/G] SG-CG/M490/G_ Smart Grid Set of standards
- 162 [SG-CG/H] SG-CG/M490/H_ Smart Grid Information Security
- 163 [SG-CG/I] SG-CG/M490/I_ Smart Grid Interoperability
- 164 [SG-CG/J] SG-CG/M490/J_ General Market Model Development
- 165 [SG-CG/K] SG-CG/M490/K_SGAM usage and examples (this document)
- 166 [SG-CG/L] SG-CG/M490/L_ Flexibility Management

167 Other references made in this report

168	[Cockburn]	"Writing Effective Use Cases", Alistair Cockburn, Addison-Wesley, 2001
169	[DPIA template]	Data Protection Impact Assessment Template
170 171	[EN 50438]	Requirements for micro-generating plants to be connected in parallel with public low-voltage distribution networks
172 173	[EN 50549-1]	Requirements for the connection of a generating plant to a distribution system - Part 1: Connection to a LV distribution system and above 16A (Draft)
174 175	[EN 50549-2]	Requirements for the connection of a generating plant to a distribution system - Part 2: Connection to a MV distribution system
176	[EnWG §52]	Energy Industry Act (Germany)
177 178	[GWAC:2008]	GridWise Interoperability Context-Setting Framework (March 2008), GridWise Architecture Council, online: <u>www.gridwiseac.org</u>
179 180	[IEC 60870-5-101]	Telecontrol equipment and systems - Part 5-101: Transmission protocols; Companion standard for basic telecontrol tasks
181 182	[IEC 60870-5-104]	Telecontrol equipment and systems - Part 5-104: Transmission protocols - Network access for IEC 60870-5-101 using standard transport profiles
183	[IEC 61131]	Programmable controllers
184	[IEC 61158]	Industrial communication networks - Fieldbus specifications
185 186	[IEC 61400-25-2]	Wind turbines - Part 25-2: Communications for monitoring and control of wind power plants - Information models
187 188	[IEC 61400-25-3]	Wind turbines - Part 25-3: Communications for monitoring and control of wind power plants - Information exchange models
189 190	[IEC 61400-25-4]	Wind turbines - Part 25-4: Communications for monitoring and control of wind power plants - Mapping to communication profile
191	[IEC 61499]	Function blocks
192	[IEC 61698]	Datasheets
193	[IEC 61784-1]	Industrial communication networks - Profiles - Part 1: Fieldbus profiles
194	[IEC 61850]	Communication networks and systems for power utility automation, 2010.
195 196	[IEC 61850-7-4]	Communication networks and systems for power utility automation - Part 7-4: Basic communication structure - Compatible logical node classes and data classes
197 198 199	[IEC 61850-7-410]	Communication networks and systems for power utility automation - Part 7-410: Basic communication structure - Hydroelectric power plants - Communication for monitoring and control
200 201	[IEC 61850-7-420]	Communication networks and systems for power utility automation - Part 7-420: Basic communication structure - Distributed energy resources logical nodes
202 203 204	[IEC 61850-8-1]	Communication networks and systems for power utility automation - Part 8-1: Specific communication service mapping (SCSM) - Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3
205	[IEC 61850-8-2]	Part 8-2, Web service mapping
206	[IEC 61850-90-10]	Part 90, IEC 61850-10, Object models for schedules
207	[IEC 61850-90-11]	Part 90-11, Methodologies for modeling of logics for IEC 61850 based applications
208	[IEC 61850-90-15]	Part 90-15, Hierarchical DER system model

210 211 212	[IEC 61850-90-7]	IEC/TR 61850-90-7, Communication networks and systems for power utility automation - Part 90-7: Object models for power converters in distributed energy resources (DER) systems
213	[IEC 61850-90-9]	Part 90-9, Object Models for Batteries
214 215	[IEC 61968]	Application integration at electric utilities - System interfaces for distribution management
216 217	[IEC 61968-100]	Application integration at electric utilities - System interfaces for distribution management - Part 100: Implementation Profiles
218	[IEC 61970]	Energy management system application program interface (EMS-API)
219	[IEC 62056]	Electricity metering data exchange - The DLMS/COSEM suite
220	[IEC 62264:2003]	IEC 62262, Enterprise-control system integration
221	[IEC 62264-1]	Enterprise system integration - Part 1: Models and terminology
222 223 224	[IEC 62351-3]	IEC/TS 62351-3, Power systems management and associated information exchange - Data and communications security - Part 3: Communication network and system security - Profiles including TCP/IP
225 226	[IEC 62351-4]	IEC/TS 62351-4, Power systems management and associated information exchange - Data and communication security - Part 4: Profiles including MMS
227 228	[IEC 62351-6]	IEC/TS 62351-6, Power systems management and associated information exchange - Data and communication security - Part 6: Security for IEC 61850
229 230	[IEC 62351-8]	IEC/TS 62351-8, Power systems management and associated information exchange - Data and communications security - Part 8: Role-based access control
231 232	[IEC/TR 62357:2003]	IEC/TR 62357, Power system control and associated communications - Reference architecture for object models, services and protocols, 2003
233 234	[IEC/TR 62357:2012]	Power systems management and associated information exchange - Part 1: Reference architecture
235 236	[IEC 62559-2]	"Use case methodology – Part 2: Definition of the templates for use cases, actor list and requirements list", CDV, 2013
237 238	[IEC 62559-3]	Use case methodology - Part 3: Definition of use case template artefacts into an XML serialized format
239 240	[IEC 62746]	System-Schnittstelle zwischen Kunden-Energiemanagementsystemen und Energieversorgungsmanagementsystemen
241 242	[IEC 8/1356/NP]	"Specific application of method & tools for defining Part 1 – Generic smart grid requirements", NP, 2014
243 244	[IEC PAS 62559:2008]	IEC PAS 62559:2008-01, IntelliGrid Methodology for Developing Requirements for Energy Systems, 2008
245 246	[ISO 27001]	ISO/IEC 27001, Information technology - Security techniques - Information security management systems - Requirements
247 248 249	[Jonkers 2010]	TOGAF 9 and ArchiMate 1.0 White paper, The Open Group 2010 refer also to http://pubs.opengroup.org/architecture/archimate2-doc/ and http://pubs.opengroup.org/architecture/archimate2-doc/
250 251 252 253	[NIST:2009]	NIST Framework and Roadmap for Smart Grid Interoperability, Interoperability Standards Release 1.0 (2009), Office of the National Coordinator for Smart Grid Interoperability, National Institute of Standards and Technology, U.S. Department of Commerce.
254 255	[NIST IR-7628]	Guidelines for Smart Grid Cyber Security, <u>www.nist.gov/smartgrid/upload/nistir-7628_total.pdf</u> , 2010

- 256[R&TTE]Radio and Telecommunications Terminal Equipment (R&TTE) 2014/53/EU257(previous version 1999/5/EC).
- 258 [WGSP-0600, 2136, 2137] Use cases, refer to [SG-CG/E]
- 259

3. Terms and definitions

- 261 Refer to [SG-CG/F]
- 262

263 4. Symbols and abbreviations

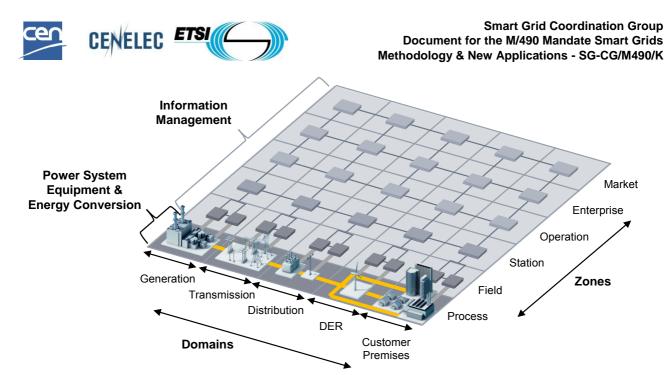
264 265 266	AC AES AMI	Altering Current Advanced Encryption Standard Advanced Metering Infrastructure
267 268 269 270 271	AS BACS BNetzA BRP BT	Building Automation and Control System German Federal Network Agency Balance Responsible Party Technical Board
272 273	BUC CA	Business Use Case Certification Authority
274 275	CapEx CEM	Capacity Expansion Customer Energy Management
276 277	CEMS CEN	Customer Energy Management System Comité Européen de Normalisation
278 279	CENELEC	Comité Européen de Normalisation Electrotechnique
279	CFC CIM	Continuous Function Chart Common Information Model
281	COSEM	Companion Specification Energy Metering
282 283	CRL CSP	Certificate revocation list Concentrated Solar Power
283	DER	Distributed Energy Resources
285	DMS	Distribution Management System
286	DSO	Distribution System Operator
287	EC	European Commission
288	EDM	Energy Data Management
289	EMG	Energy Management Gateway
290	EMS	Energy Management System
291	ETSI	European Telecommunications Standard Institude
292 293	EV FACTS	electric vehicle
293 294	FEP	Flexible Altering Current Transmission System Features, Events and Processes
295	FLIR	Forward looking infrared
296	FTP	File Transfer Protocol
297	GUC	Generic Use Case
298	HRM	Harmonized Role Model
299	HES	Hypertext Editing System
300	HL-UC	High Level Use Cases
301 302	HTTP HTTPS	Hypertext Transfer Protocol
302	HV/MV	Hypertext Transfer Protocol Secure High Voltage / Medium Voltage
303	HVAC	Heating, Ventilation and Air Conditioning
305	HVDC	High-Voltage Direct Current
306	HW/SW	Hardware/ Software

358 **5. SGAM: Smart Grids Architecture Model description**

359 5.1 Introduction

The Smart Grid Architecture Model (SGAM) [SG-CG/C] is a reference model to analyse and visualise smart
 grid use cases in a technology-neutral manner. Furthermore, it supports comparison of different approaches

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K


to Smart Grid solutions so that differences and commonalities between various paradigms, roadmaps, and
 viewpoints can be identified. By supporting the principles of universality, localization, consistency, flexibility
 and interoperability, it also provides a systematic approach to cope with the complexity of smart grids,
 allowing a representation of the current state of implementations in the electrical grid as well as the evolution
 to future smart grid scenarios.

The SGAM builds on proven approaches from power systems as well as interdisciplinary fields like systems engineering and combines them in a simple but comprehensive model. The work on the SGAM is specifically based on significant existing material such as the NIST Conceptual Model [NIST 2009], the GridWise Architecture Council Stack interoperability categories [GWAC 2008], the IntelliGrid Methodology [IEC PAS 62559:2008-01], the European Conceptual Model and architecture standards like TOGAF and Archimate [Jonkers 2010, refer also to http://pubs.opengroup.org/architecture/togaf9-doc/arch/ http://pubs.opengroup.org/architecture/archimate2-doc/].

- 374 The SGAM can be used in standardization and more widely:
- to enable a structured analysis of Smart Grid use cases,
- to visualize and compare different approaches to Smart Grid architectures, paradigms, roadmaps 377 and viewpoints,
- to provide a guide to analyze potential implementation scenarios,
- to ensure a common understanding between different stakeholders,
- to identify standards and standardization gaps,
- to visualize the scope of Smart Grid projects,
- and in summary, to cope with the complexity of Smart Grids.
- 383 It is important to qualify the main purpose of the SGAM as follows:
- the SGAM does not necessarily improve a proven architecture for a single domain or zone but shows it full strength modeling interactions between domains & zones,
- the SGAM supports the derivation of system requirements but does not replace a detailed
 requirements specification,
- the SGAM does not replace a detailed development specification,
- the SGAM focuses on the architecture and does not model in detail the power system in the process
 zone, e.g. effects of harmonics, voltage sags etc.,
- the SGAM does not replace detailed specifications on safety regulations or operational conditions.
- 392 The SGAM is outlined in detail in the remaining part of this section.

393 5.2 SGAM Smart Grid Plane

394 Power system management distinguishes between electrical process and information management. These 395 viewpoints can be partitioned into the physical domains of the electrical energy conversion chain and the 396 hierarchical zones for management of the electrical process (refer to [IEC 62357-1:2012, IEC 62264:2003]). 397 The Smart Grid Plane spans in one dimension the complete electrical energy conversion chain, partitioned 398 into five domains: (Bulk) Generation, Transmission, Distribution, DER and Customer Premises. And in the 399 other dimension the hierarchical levels of power system management, partitioned into six zones: Process, 400 Field, Station, Operation, Enterprise and Market. This smart grid plane enables the representation of the 401 zones in which power system management interactions between domains or inside a single domain take 402 place.

404

Figure 1: Smart Grid Plane – Domains & zones of SGAM

405 The domains are physically related to the electrical grid ((Bulk-) Generation, Transmission, Distribution,

406 DER, Customer Premises) and they are arranged according to the electrical energy conversion chain. The

407 conceptual domains Operations and Market¹ are part of the information management and represent specific
 408 hierarchical zones.

409 The *Smart Grid Plane* covers the complete electrical energy conversion chain. This includes the domains 410 listed in Table 1.

411

Table 1: SGAM domains

Domain	Description
(Bulk) Generation	Representing generation of electrical energy in bulk quantities typically connected to the transmission system, such as by fossil, nuclear and hydro power plants, off-shore wind farms, large scale solar power plant (i.e. PV, CSP).
Transmission	Representing the infrastructure which transports electricity over long distances.
Distribution	Representing the infrastructure which distributes electricity to customers.
DER	Representing distributed electrical resources directly connected to the public distribution grid, applying small-scale power generation and consumption technologies (typically in the range of 3 kW to 10,000 kW). These distributed electrical resources may be directly controlled by e.g. a TSO, DSO, an aggregator or Balance Responsible Party (BRP).
Customer Premises	Hosting both end users of electricity and also local producers of electricity. The premises include industrial, commercial and home facilities (e.g. chemical plants, airports, harbors, shopping centers, homes). Also generation in form of e.g. photovoltaic generation, electric vehicles storage, batteries, micro turbines.

¹ Refer to the conceptual model explained in [SG-CG/F] and more detailed in [SG-CG/J]

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

Although the domains DER and Customer Premises can include generation, the domains are separated from each other. The DER domain includes any kind of distributed energy resources or related processes, having as primary business goals the objective of contributing to the electricity grid as production and/or storage and/or any types of ancillary services. The Customer Premises domain on the other hand includes any kind of processes <u>not</u> having the primary business objective of contributing to the electricity grid (but using the grid as one energy source), such as home management processes, or building or industry management processes, or e-mobility systems.

The SGAM zones represent the hierarchical levels of power system management [IEC 62357-1:2012]. These zones reflect a hierarchical model that considers the concept of aggregation and functional separation in power system management. The basic idea of this hierarchical model is laid down in the Purdue Reference Model for computer-integrated manufacturing that was adopted by the IEC 62264-1 standard for "enterprise-control system integration" [IEC 62264-1:2003]. This model was also applied to power system management. This is described in IEC 62357 "Reference architecture for object models services" [IEC/TR 62357:2003, IEC/TR 62357-1:2012].

426 The concept of aggregation considers multiple aspects in power system management:

- Data aggregation data from the field zone is usually aggregated or concentrated in the station zone in order to reduce the amount of data to be communicated and processed in the operation zone.
- Spatial aggregation from distinct location to wider area (e.g. HV/MV power system equipment is usually arranged in bays, with several bays forming a substation; multiple DER form a plant station, and DER meters in customer premises are aggregated by concentrators for a neighborhood).

In addition to aggregation, the partitioning in zones follows the concept of functional separation. Different functions are assigned to specific zones. The reason for this assignment is typically the specific nature of functions, but also reflects user philosophies. Real-time functions are typically in the field and station zones (protection, phasor-measurement, automation...). Functions that cover an area, multiple substations or plants, or city districts are usually located in the operation zone (e.g. wide area monitoring, generation scheduling, load management, balancing, area power system supervision and control, meter data management...). The SGAM zones are described in Table 2.

439

Table 2: SGAM zones

Zone	Description
Process	Including the physical, chemical or spatial transformations of energy (electricity, solar, heat, water, wind) and the physical equipment directly involved (e.g. generators, transformers, circuit breakers, overhead lines, cables, electrical loads, any kind of sensors and actuators which are part or directly connected to the process,).
Field	Including equipment to protect, control and monitor the process of the power system, e.g. protection relays, bay controller, any kind of intelligent electronic devices which acquire and use process data from the power system.
Station	Representing the areal aggregation level for field level, e.g. for data concentration, functional aggregation, substation automation, local SCADA systems, plant supervision
Operation	Hosting power system control operation in the respective domain, e.g. distribution management systems (DMS), energy management systems (EMS) in generation and transmission systems, microgrid management systems, virtual power plant management systems (aggregating several DER), electric vehicle (EV) fleet charging management systems.
Enterprise	Including commercial and organizational processes, services and infrastructures for enterprises (utilities, service providers, energy traders), e.g. asset management, logistics, work force management, staff training, customer relation management, billing

Zone	Description
	and procurement
Market	Reflecting the market operations possible along the energy conversion chain, e.g. energy trading, retail market.

In general, organizations can have actors in several domains and zones. The areas of the activity of these actors can be shown in the smart grid plane. E.g. for the business area of a transmission utility it is likely that the utility covers all segments of the transmission domain, from process to market, whereas a service provider offering weather forecast information for distribution system and DER operators could be located to

the market zone interacting with the operation zone in the distribution and DER domains.

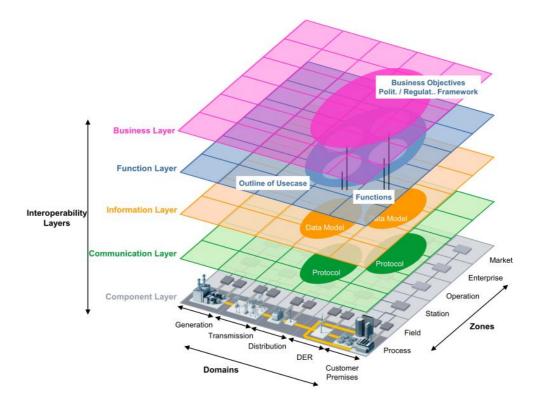
445 5.3 SGAM interoperability layers

For interoperability between systems or components, the SGAM consists of five layers representing
 business objectives and processes, functions, information exchange and models, communication protocols

business objectives and processes, functions, information exchange and models, communication protocols
 and components. These five interoperability layers represent an abstract and condensed version of the
 interoperability categories introduced by the GridWise Architecture Council [GWAC2008].

450

Table 3: SGAM layers


Layer	Description
Business	The business layer represents the business view on the information exchange related to smart grids. SGAM can be used to map regulatory and economic (market) structures (using harmonized roles and responsibilities) and policies, business models and use cases, business portfolios (products & services) of market parties involved. Also business capabilities, use cases and business processes can be represented in this layer.
Function	The function layer describes system use cases, functions and services including their relationships from an architectural viewpoint. The functions are represented independent from actors and physical implementations in applications, systems and components. The functions are derived by extracting the use case functionality that is independent from actors.
Information	The information layer describes the information that is being used and exchanged between functions, services and components. It contains information objects and the underlying canonical data models. These information objects and canonical data models represent the common semantics for functions and services in order to allow an interoperable information exchange via communication means.
Communication	The emphasis of the communication layer is to describe protocols and mechanisms for the interoperable exchange of information between components in the context of the underlying use case, function or service and related information objects or data models.
Component	The emphasis of the component layer is the physical distribution of all participating components in the smart grid context. This includes system & device actors, power system equipment (typically located at process and field level), protection and tele-control devices, network infrastructure (wired / wireless communication connections, routers, switches, servers) and any kind of computers.

451 Each layer covers the whole smart grid plane, which is spanned by electrical domains and information 452 management zones.

453 5.4 SGAM framework

- The SGAM framework is established by merging the concept of the interoperability layers with the previous introduced smart grid plane. This merging results in a model that spans three dimensions:
- SGAM domains
- 457 Zones
- Interoperability layers
- 459 The complete three-dimensional representation of SGAM is depicted in Figure 2.

460

461

Figure 2: SGAM – Smart Grid Architecture Model

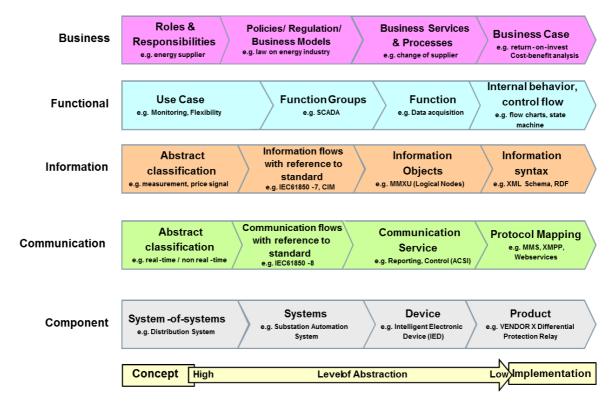
Using the SGAM, Smart Grid use cases can be visualized and detailed and mapped to the layers of the model to test if a use case is supported by existing standards or to identify gaps in standardization. A use case analysis with the SGAM is based on the use case description. The different fields in the use case template provide the information for the analysis, e.g. the field *Domain(s)/Zone(s)* specifies directly how the use case maps onto the Smart Grid Plane. Furthermore, the actor list in the use case description provides depending on the type of the actor - information on the roles involved to model the business layer in SGAM or information on the systems and devices involved to model the component layer.

Use case descriptions vary in their level of abstraction as well as in design scope as described in detail inchapter 6.2.1. Thus, analysis with SGAM also varies as described in the following section.

471 **5.5 SGAM levels of abstraction**

472 This section provides an overview for each interoperability layer in the SGAM on different levels of

473 abstraction on which an SGAM analysis can be applied. These SGAM analysis patterns are intended to


474 provide guidance on how to model with the SGAM on a level of abstraction chosen, starting from a concept

475 up to a detailed level required for implementation. There can be different abstraction levels defined for each

476 layer. Ideally a fixed number of abstraction levels is defined per SGAM layer including respective concepts

- 477 that are relevant in a specific SGAM development iteration. In addition to that, there could also be
- 478 interrelations between the abstraction levels on different layers. However, generally the number of abstraction levels depends on the purpose of the modelling effort/project and interrelations between
- 479
- 480 abstraction levels must not necessarily exist.
- 481 An overview of exemplary abstraction levels is given in Figure 3. Each layer therein depicts some concepts
- 482 (examples) used in steps of successive model refinements that can be carried out on the respective
- 483 interoperability layer. The identification may then finally support a definition of interoperability requirements. 484 The abstraction levels on different layers depicted in Figure 3 do not necessarily relate to abstraction levels
- 485 on the same level of abstraction on other layers.

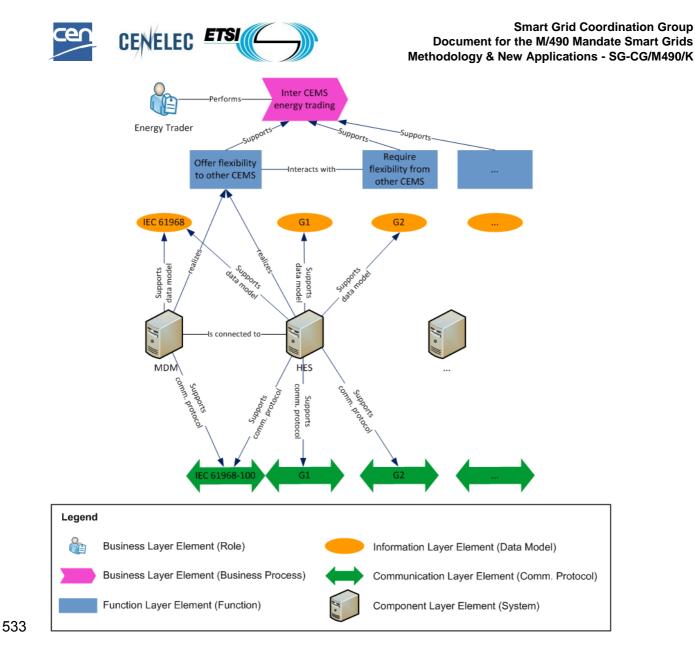
487 Figure 3: Exemplary categorization of different abstraction levels per SGAM layer (SGAM analysis 488 pattern)

489

486

491 6 The SGAM and use cases

492 6.1 Overview


493 The SGAM analysis patterns can also support the writing of use case descriptions, by providing sufficient 494 information needed for a SGAM analysis at the chosen level of detail. For example, on the business layer we 495 can start with a use case concept (e.g. the concept of demand and generation flexibility for technical and 496 commercial operations as described in [SG-CG/E]). This concept can be augmented by identifying the roles 497 and their responsibilities on the business layer (e.g. customer, supplier and aggregator). Based on a high 498 level use case the 'system-of-systems' involved (e.g. distribution system, marketplaces and smart buildings) 499 can also be defined on the component layer. Additionally, abstract classifications on the information layer 500 (e.g. price signals, incentives, control signals and measurements) and communication layer (e.g. real-time or 501 non-real-time requirements) are possible.

However, to derive the next level of detail we need further information from the use case description. For
 example, for the business layer the use case should also outline the business models including policies and
 regulations for the roles involved. Subsequently, the business services and processes can be specified,
 based on a step-by-step analysis.

506 The other layers from function to component provide more a technical view of system use cases. The use 507 case concept can be detailed on the function layer by defining function groups, functions and their internal 508 behavior e.g. as flow charts. Similarly, on the information and communication layer we can derive further 509 details by identifying the information & communication flows between the function groups and provide 510 references to standards that could be applied (see [SG-CG/B] for examples). This gives a first indication 511 which standards are relevant for the particular use case and which experts need to be involved in the 512 detailed analysis of the use case. In the next step the experts define the information objects exchanged on 513 the information layer and the communication services required on the communication layer. By identifying 514 these details for the use case under discussion we derive profiles for the information and communication 515 layers for the particular use case. Subsequently, by harmonizing the results from several use case 516 descriptions we can derive more complete profile descriptions. This detailing is followed by the definition of 517 the information syntax and the mapping on protocols for the information and communication layers 518 respectively. On the component layer we can identify the systems involved and in the following step of 519 detailing the devices also.

520 The SGAM framework and the analysis pattern presented are not only valid for standardization activities but 521 can be used in general as a methodology for Smart Grid projects. Hence, although it is beyond the scope of 522 the SG-CG we indicate in Figure 3 that the detailed level of abstraction can also include products on the 523 component layer and a business case on the business layer for the stakeholders concerned.

524 Figure 4 outlines the mapping of parts of an exemplary use case (WGSP 2136) to concepts on the different 525 SGAM interoperability layers. Beyond concepts being related to concepts on the same layer (like 526 components can be physically connected to other components or functions interacting with other functions, 527 or business processes are performed by roles) interrelations between concepts on different layers exist. In 528 Figure 4 for instance it is illustrated that certain elements from the component layer "support" data models 529 (as concepts from the information layer) or communication protocols (as concepts from the communication 530 layer). Also realization relationships are depicted: A business process (as concept from the business layer) is 531 realized by (technical) functions (of the function layer) and the latter ones are realized by physical elements 532 depicted on the component layer (systems).

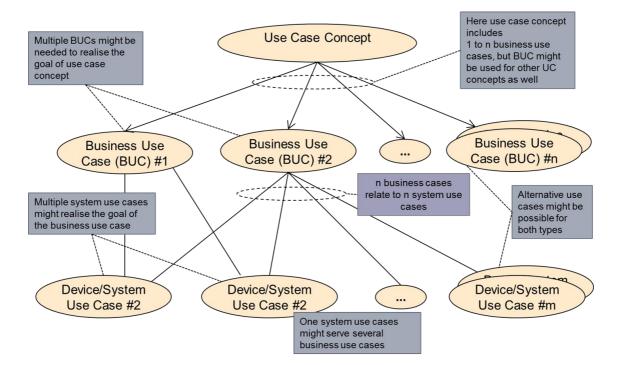
534 **Figure 4: Example of interrelationships between concepts on different levels in an SGAM model** (for details refer to Appendix A)

537 6.2 Use case analysis with SGAM

538 6.2.1 Classification of use case design scope

Use cases are a well-proven approach in systems engineering and used worldwide to derive a common understanding for Smart Grids. Despite (or because of) the large set of use cases available in different databases, the level of granularity differs widely in these use case descriptions. We use a simple classification for the design and scope of use cases to map the different types of use cases to the SGAM analysis pattern introduced in the previous section. We differentiate between use case concepts (or highlevel use cases), business use cases and device/system use cases.

545 Use case concepts describe a general idea by defining the roles involved and sketching their responsibilities 546 but not the underlying business models or processes. The target audience is system engineers, business 547 developers, regulators and key experts in standardization having a very good overview on the whole Smart 548 Grid landscape. Conceptual business requirements are refined in one or several business use cases written 549 by business architects or regulators which describe them within an enterprise scope (i.e. the operation of 550 businesses) and the interaction between different roles, e.g. to contract or negotiate services. In the next



551 step of refinement the technical view is added by specifying one or multiple device/system use cases to 552 realize the goal of a business use case. For these technical use cases we can define the device/system

553 boundaries. Requirements for HW/SW engineers describe the interactions between the system(s) and 554 external actors (i.e. other systems/devices).

The following figure as well as following table clarifies the use case classification for the design scope in further detail. We would note that this classification of the use case design scope is complementary to the level of abstraction of the use case description outlined in clause 5.. Each use case type can be described additionally with different levels of abstraction. As outlined in [Cockburn], the key difference between the classification of design scope and the level of abstraction for use case descriptions is that

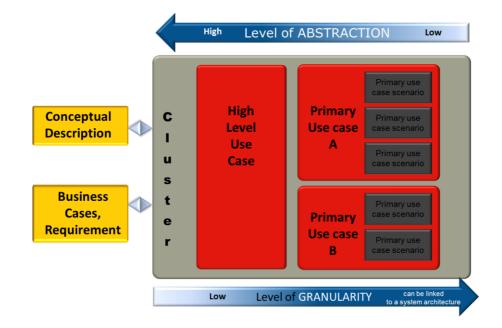
- the design scope defines the boundary box of the use case, i.e. "what is in?", "what is out?" for the system under design.
- the level of abstraction refers to the details in describing the objective of the use case.

563

564

Figure 5: Classification of use case design scope

565 Because use case descriptions support various tasks, the granularity, type and content of the use case 566 description vary widely. In general a use case describes the functions of a system and related information 567 exchange, mainly in a technology-neutral way (depending on the level of detail). It identifies participating 568 actors that for instance can be other systems or human actors which are linked to the particular use case.


569 In the following, various use case types are classified highlighting different views and task of the respective 570 use cases, e.g.:

- Level of detail (see Figure 6 below): for brainstorming / collection (cluster, high level use cases, conceptual description), engineering or testing;
- Nature of the use case: Business (business use case) or technical (system use case)²;
- Users of the use case: Project (Individual use cases), technology group (specialized use cases), standardization (generic use cases)

² or even political / legislative use cases might be possible.

- Geographical view: national, regional or international use cases
- Maturity of the use case (e.g. vision, R&D or near to real implementation)

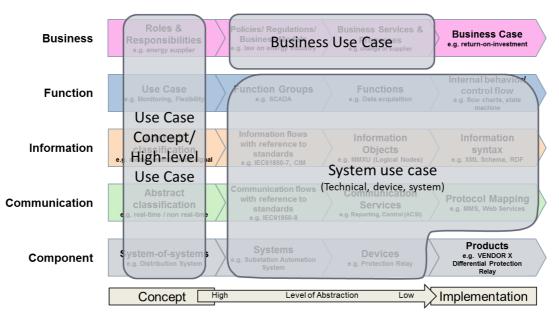
Figure 6: Use case structure (based on SM-CG)

- 580 Therefore the following list describes those different characteristics of use cases :
- 581

Table	4:	Types	of	use	cases
-------	----	-------	----	-----	-------

Types of use cases	Description
Conceptual description / Use case concept / User stories	A conceptual description describes a general idea or concept, provides an overview or background for a cluster of use cases and does not use necessarily the use case template. The conceptual description reflects the iterative work of describing different use cases, analyzing them, detailing them further and linking them to architectures, actors and systems. It may defines the roles involved and sketches their responsibilities (possibly with alternatives, incl. their security impact for the use case) but not the underlying business model or process. EXAMPLE: flexibility concept.
Use Case cluster	A use case cluster represents a group of use cases. EXAMPLE: Smart Charging
High level use case	A high-level use case (HL-UC) describes the general idea of a function together with generic actors. The HL-UC can be realized in different ways, so the HL-UC cannot be mapped to a specific system or architecture. Example: Fault Location, Isolation, Restoration (FLIR) in general.
Business use case ³	Business Use Cases describe business processes that the actors of a given system must and may execute. These processes are derived from roles which have been previously identified and defined (-> Business Layer of SGAM) [based on IEC 8/1356/NP]. There is no technical view.

³ Depending on the level of detail and purpose of the use case this might be a conceptual description, a user story, a high level use case


Types of use cases	Description
System use case ⁴ (Technical or device use case)	System Use Cases describe the Smart Grid functions required to enable / facilitate the business processes described in Business Use Cases. Their purpose is to detail the execution of those processes from an information system perspective (-> Function Layer of SGAM) [based on IEC 8/1356/NP]. Here device or system boundaries can be defined and interactions between the system(s) and external actors (i.e. other systems/devices) to fulfil a goal for the actor(s) can be described.
Primary use case	A primary use case (PUC) is a use case implemented in a specific system characterized by a defined boundary (i.e. it can be mapped on a defined architecture). This means that a higher-level abstract use case might be broken down into one or more implementation possibilities, called specializations. These use cases can be mapped to a proposed architecture (SGAM). EXAMPLE: Different FLIR use cases implementing the basic functionality within a central or decentralized architecture or which are related to different network topologies.
Scenarios (in the template)	Scenarios define different routes within one UC according to different trigger signals (within the template). EXAMPLE: Scenarios describing normal, alternative or error sequences
Steps (in the template)	Steps are used to describe activities within a scenario in a sequential order (refer to the step-by-step analysis of the use case template).
Secondary use case	A secondary use case is used to describe core functionalities that are used by multiple PUCs.
Specialized use case	A specialized use case is a UC, which is already describing specific technologies like a specific protocol (e.g. FLIR with a protocol defined by IEC 61850 or flexibility use cases within a house using one or more home automation standards).
Generic use case (GUC)	Use cases will be called generic when their description is broadly accepted in standardization and not project or technology specific. They should address the various possible approaches and answer the request for use case harmonization, which means that duplicate use cases should be avoided. The GUC can be used for further work inside standardization (e.g. mapping to architecture, development of standards or test use cases).
	GUC might be described on a high or more detailed level implying different systems design scope.
Individual use case	In real projects, a company might subsequently combine generic use cases, developing them further and including their own individual, company-specific use cases that belong to its knowledge base and its business cases.
Test use cases	Test use cases are developed based on the use cases in order to test interoperability, functions and processes.

583 6.2.2 Relation of use case design scope to SGAM analysis pattern

584 We introduced in the previous sections the SGAM analysis pattern and a classification for the use case 585 design scope. Figure 7 shows how most of the concepts can roughly relate to each other.

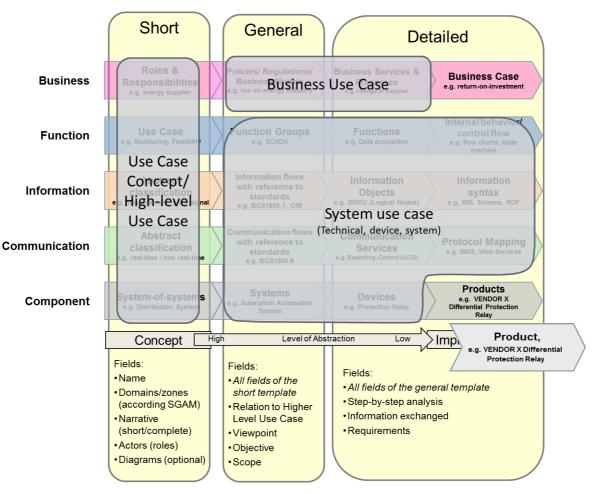
⁴ Depending on the level of detail and purpose of the use case this might be a generic, specialized, individual, primary, or secondary use case

587

Figure 7: Relation of design-scope use case classifications with SGAM analysis pattern

588 Use Case Concepts (or High-level Use Cases) describe the conceptual model of a use case. This may 589 include information on all SGAM layers at a high level of abstraction. Business Use Cases and 590 Device/System Use Cases can be used to detail the use case concept

590 Device/System Use Cases can be used to detail the use case concept.


- 591 Business use cases describe the SGAM business layer. Based on the roles involved and their
- responsibilities, relevant policies and regulations as well as business models should be identified. In a further
 step of detailing, the business service(s) and process(es) should be described.
- 594 The technical view of the use case is provided in the system use case description, including details on the 595 function, information, communication and component layer of SGAM on different levels of abstraction.
- 596 Details on products and business cases are excluded from the use case description as depicted in the figure 597 because they are specific to the company-internal strategy. Nevertheless, they might be relevant for real-598 world use cases projects.

599 6.2.3 Relation of use case template with SGAM analysis pattern

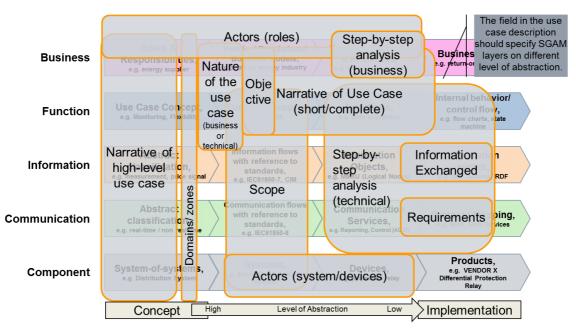
600 Use case templates provide a uniform way to document use case descriptions. Based on IEC PAS "Intelligrid 601 Methodology for developing Requirements for Energy Systems", the SG-CG/SP ("Sustainable Processes" 602 WG) provided a use case template in the three versions short, general and detailed as examples. The short 603 version included only a small number of fields and provides simple way to document use cases. The general 604 version included e.g. additional fields on the relation to other use cases, the nature of the use case and 605 scope & objective. Later, the detailed version included a step-by-step analysis by which exchanged 606 information and requirements can be identified. The use case template is also explained in detail [IEC 607 62559-2], which also allows the definition of further versions of the template on individual demand. However, 608 it is recommended that the definitions for the use of the fields in the template are followed.

- These use case templates with different level of detail fit to the SGAM analysis pattern as depicted in Figure
 8. Selected fields of the templates are listed in the figure. A use case description should provide enough
 information in these fields to describe the relevant level of abstraction for the SGAM layer(s). Additional fields
- 612 for the management of the use case apply to all three templates and are added at the bottom of the figure.

614

Figure 8: Relation of use case templates with SGAM analysis pattern

615 The short template can be used to document use case concepts. Most of the information is provided in the


616 narrative of the use case supported by diagrams. Actors and roles can be extracted from the narrative.
 617 Furthermore, the use case can be mapped on the SGAM Smart Grid Plane to identify affected domains and

618 zones.

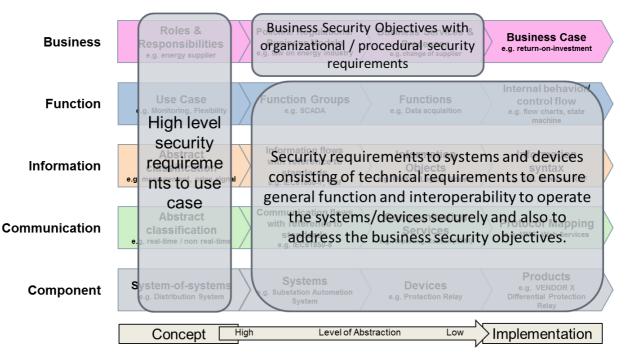
619 The general and detailed templates can be used for both, business as well as system use cases. However, 620 the nature of the use case should not be mixed in a single use case description; two separate documents 621 should be created and linked to each other and the related use case concept. The business or technical 622 orientation of the use case description can be defined in the field nature of the use case. For a business use 623 case, actors are specified as roles as opposed to technical use case where actors are devices and/or 624 systems. The fields on objective and scope should provide further information on system boundaries that, 625 projected on all layers, may provide a reference for definition of interfaces and standards supporting the use 626 case.

627 The detailed template includes a step-by-step analysis that is necessary to derive a detailed understanding 628 of the use case. For the business layer the step-by-step analysis can be used to define the related business 629 process(es) for the business use cases. For system use cases the step-by-step analysis provides details of 630 the information exchanged, requirements at the communication layer, and non-functional requirements.

632 Figure 9: Mapping of fields in the use case templates to SGAM analysis pattern⁵ - example

633 The mapping of some fields from the use case templates to SGAM analysis pattern is shown in Figure 9 634 depicting how information contained in use case descriptions can help to define interoperability requirements 635 at each interoperability layer. Only those fields from the templates which provide information for the SGAM 636 analysis are shown. These fields should specify SGAM layers on different levels of abstraction.

637 6.3 Relation of security requirements with SGAM layer abstraction


638 As depicted in the figure below, high level security requirements based on use cases have to be defined.

These high level security requirements are based on a determination of the risk level and lead to the

640 required security level. This approach is part of the SGIS concept [SG-CG/D].

⁵ Please, note that this actor definition refers to the use case template [IEC 62559-2] and is slightly different from the actor / role definition used with the conceptual meta-model and role concept of the HEM-RM described in [SG-CG/J].

642

Figure 10: High level security requirements mapped on SGAM analysis patterns

643 The next figure provides a more detailed overview about the steps necessary to determine the security 644 requirements. Going from the upper left to the lower right the security requirements become more detailed. 645 Starting from functional requirements describing the requested security functionality required to protect the assets (integrity, authentication, confidentiality), these requirements get more detailed in terms of selected 646 647 mechanisms to address the functional requirements by specific security measures. These measures relate to 648 technical implementation security requirements (e.g. AES 128 bit for encryption, application of attribute 649 certificates for role-based access control) but also to procedural security requirements necessary to operate 650 the technical security measures (e.g. key updates, association of roles and rights for role-based access 651 control).

Business	Roles & Responsibilities, e.g. energy supplier	Determination of security business (e.g. legal fran distinct business driven rec	neworks, (e.g. SLA) securing the business
Function	Focus on high level security requirements, most likely covering	Definition of Security Information Distribution (e.g. Integrity, Confidentiality)	Security Functional Building Blocks (e.g., Authentication Elements)
Information	both, business assets as well as system assets. The assets as well as the risk impact shall be determined	System level security requirements targeting interoperability (selected	Security mechanism selection (cipher suites (e.g. AES), key length (e.g. 128 bit), policies,
Communication	based on the use case description with a threat and risk analysis (refer to SGIS concepts)	secure communication protocols, e.g. IEC 62351);	etc.). Derivation of additional security commun supporting components Services
Component	System-of-systems, e.g. Distribution System	Component level security requirements to secure implementation (e.g. secure coding guidelines)	Selection of secure implementation options (e.g. pure SW, HSM support)
	Concept	ligh Level of Abstr	raction Low Implementation

653 Figure 11: Detailed security requirements (examples) mapped to SGAM analysis patterns

654 6.4 Use case checklist

The following checklist should assist the authors of use cases in writing complete and good use case descriptions⁶. Subsequently, the information in the different fields of the use case description is used to specify the details for the SGAM layers.

658

Table 5: Use case checklist

Use case field	Description
(acc. IEC 62559-2)	
Name of use case	Is it an active-verb goal phrase, i.e. it refers to the activity of the Use Case itself using "Verb + description"? EXAMPLE: "Measure power"
Domain(s) & zone(s)	Does the description define domains & zones of SGAM?
Scope	Does the use case description define the system boundary?
Narrative of use case (short/complete)	 Is it clear what functions are needed to specify SGAM function layer? Which legal requirements have to be considered?

⁶ refer also to [Cockburn]

Use case field	Description
(acc. IEC 62559-2)	
Actors	 Is the list of actors consistent in type and with nature of the use case, i.e. on the same SGAM layer (e.g. roles for business use cases or system/devices for component layer)? Are the actors defined in relationship to the (business) roles / responsibilities they are aimed to support?? Ensure that for business use cases the roles are based on the roles in the Conceptual Model or the Harmonized Role Model to ensure EU-wide applicability. For standardization purposes it is recommended that actor or role definitions do not force a combination of multiple in a single party. Grouped actors or roles should be used only for simplification, when commonly used (e.g. DSO).
Relation to other use cases	Does the use case relate to higher or lower level use cases, e.g. use case concept or business use case? Is there a consistent relationship of refinement (specialization) between roles and actors?
Nature of the use case	Does the description of the use case address the same SGAM layers that can be used to express the nature of the use case (e.g. business or technical (component, communication, information))?
References	Are there reference to be considered for the use case: e.g. standards, legislation, regulation, grid codes.
Step by step analysis (for	detailed use case description)
Information exchanged	Is it clear what information is being passed in each step? \rightarrow Column specifies SGAM information layer. Is there a relation with a standard data model?
Requirements	Does the step-by-step analysis specify the applicable requirements (configuration, QoS, data management, privacy, security, etc.)? For example, Quality of Service (QoS) requirements for the SGAM communication layer.
Threat & risk analysis	The selection of security and privacy requirements should be based on a threat and risk analysis. The SGIS concept (security) and EG2 DPIA template (privacy) offer a mechanism to perform this selection. Resulting requirements can be linked in the template to information objects or to the step-by-step analysis.

660 6.5 Use case repository

Although it is possible to describe use cases in a word processing format, establishing a use case repository
 will provide many advantages for a standardization organization when the methodology is introduced on a
 broader scale.

664

Table 6: Advantages of a use case repository

Advantages	Description
Administration	Considering the different iterative working steps from draft via discussion to a validated use case, there is a need for a tool support: e.g. the tracking of changes or contributing authors, discussions, etc.
	The latest use cases and related data should always be available in the database.
Collaborative platform	As previously noted the use cases should enable an exchange of basic ideas across the different sectors and stakeholders of the industry, different TC's or even different organization. Such an exchange needs a collaborative platform, which increases the transparency of the design and the common development of new systems.
Search functions / Transparency	It will be easier to find an appropriate use case. Duplication of use cases can be minimized by using a repository for the whole community. Therefore transparency is increased, when use cases, related discussions, and the development process are visible for the community.
Harmonization of use cases	The repository provides pre-defined content for some fields like actors or domain / zones. This will be useful for the use case author, but also aligns different use cases with each other as they use the same terms.
Voting / Validation of use cases	Validated use cases are fundamental, enabling the evolution of new standards in the different TCs. The repository supports the process of validation.
Different templates	The complete template is complex and designed for a detailed analysis. Especially at the start, a use case repository provides easier short templates. Without rewriting these short templates, they can be extended in a repository. Further fields and cells can be added according to the needs of the users and the phase of the design process.
Analysis of use cases	Some fields of the use case template and some features of the use case repository support the analysis of use cases: filter functions, e.g. according to a specific actor, specific reports out of the database, gathering information from various use cases, e.g. the information exchanged between different actors in order to defined the message load or common requirements. Additionally use cases can be sorted according to the classification fields: prioritisation, maturity, etc.
	Another advantage of the use case repository is identification of gaps in the existing use case library when addressing new requirements during the analysis of use cases in order to provide a complete, but coherent set of use cases.
Link to other use cases	In a repository it is easier to link the use case to other use cases and to administrate / report these links (use case networks, clusters, interrelations).

Advantages	Description
Further engineering / export functions	The repository provides export functionalities, including a link to UML for further detailed engineering, reusing the developed use case (IEC 62559-3).
Status of the use case	The repository should support a work flow and the current status of a use case indicating e.g. if the use case is validated, under discussion or in editing mode.

660

666 IEC introduces on short term a use case repository for the international standardization community.

667 A prototype of a use cases repository had been developed in phase 1 of the M/490. This repository still is 668 available under:

009	
670	Link: <u>https://usecases.dke.de/sandbox/</u> (please use Browsers Chrome or Firefox)
671	User with Read-only rights
672	Name: LookatMe
673	Password: LookatMe

674 It contains the Generic Use Cases which had been evaluated and developed by WGSP in phase 1 [SG-675 CG/E].

676 **7 Mappings using the SGAM**

677 **7.1** Mapping of a system breakdown on SGAM⁷

678 In the scope of this document, a system is a typical industry arrangement of components and systems,679 based on a single architecture, serving a specific set of use cases.

In the following there are the systems which are been considered in [SG-CG/G] for the "Smart Grid Set of Standards", and which de facto form the set of the Smart Grid systems and can be mapped to the SGAM plane (Figure 12). The guidelines mentioned in [SG-CG/G] indicate the purpose and limits associated to system definition and completeness of the considered list.

- This list of systems (Table 7) is actually made of three types of systems:
- Domain specific systems (Generation, Transmission, Distribution, DER, Customer Premises)
- Function specific systems (usually crossing domain borders) (Marketplace systems, Demand flexibility systems, Smart metering systems, Weather observation and forecast systems)
- Other systems usually focusing on administration features (asset management, clock reference, communication management, device management, ...). These so-called "Administration systems" are usually present in all the above one, but are generally implemented to co-habit with the domain specific domain. Depending on the implementation such cohabitation may lead to really separated systems and 692 roles, or completely integrated systems and roles.

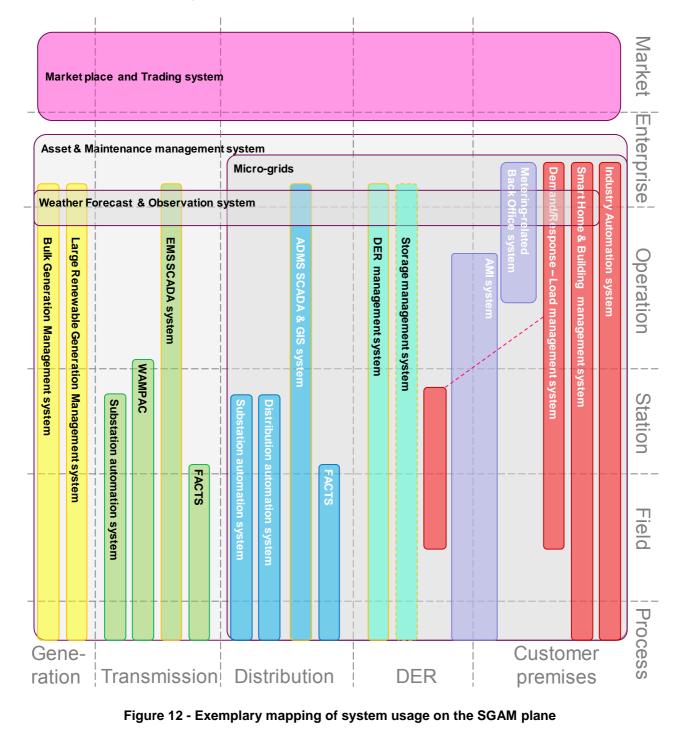
⁷ Provided by WG SS

Table 7: Smart Grids - list of the main systems

Domain or	Systems	Brief introduction/comments
function	- Oystems	Brief introduction/comments
Generation	Generation management system (Bulk)	Generation management system is the control centre for Bulk or Large renewable generation plant.
	Generation management system (Large Renewable)	Even if there may be some specificities for each of these, the rest of the document will mostly merge both into one system type.
Transmission	Substation automation system	Refer to Distribution
	Black-out prevention - WAMS Wide Area Monitoring Protection and control systems	Real-time blackout prevention systems, usually based on measurement coming from phase measurement units
	EMS SCADA system	The Energy Management System (EMS) is the control centre for the Transmission Grid. Today customers require an open architecture to enable easy IT integration and better support to avoid blackouts (e.g. visualization of the grid status, dynamic network stability analysis).
	Flexible AC Transmission Systems FACTS	Power Electronics is among the "actuators" in the power grid. Systems like HVDC and FACTS enable actual control of the power flow and can help to increase transport capacity without increasing short circuit power.
Distribution	Advanced DMS SCADA system (including Geographical Information system – GIS and outage management system - OMS)	The Distribution Management System (DMS) is the counterpart to the EMS and is therefore the control center for the distribution grid. In countries where outages are a frequent problem, the Outage Management System (OMS) is an important component of the DMS. Other important components are fault location and interfaces to Geographic Information Systems.
	Distribution automation systems - Feeder automation/smart reclosers system	Whereas automated operation and remote control is state of the art for the transmission grid, mass deployment of Distribution Automation is only recently becoming more frequent, leading to "Smart Gears". Countries like the United States of America, where overhead lines are frequently used, benefit most. Advanced distribution automation concepts promote automatic self-configuration features, reducing outage times to a minimum ("self-healing grids"). Another step further is the use of distributed energy resources to create self-contained cells ("MicroGrids"). MicroGrids can help to assure energy supply

Domain or function	Systems	Brief introduction/comments
		in distribution grids even when the transmission grid has a blackout.
	Substation automation system	Substation Automation & Protection is the backbone for a secure grid operation. During recent years serial bus communication has been introduced (IEC 61850). Security is based on protection schemes.
	FACTS system	Refer to Transmission
DER	DER management system	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Electrical storage systems	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
Customer premises	AMI system	The Advanced Metering Infrastructure (AMI) system allows remote meter configuration, dynamic tariffs, power quality monitoring and load control. Advanced systems may integrate the metering infrastructure with distribution automation. (Smart Meter is a generic term for electronic meters with a communication link.)
	Metering-related back office system	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Demand-Response / Load management system	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Smart homes and buildings systems	Smart Homes are houses which are equipped with a home automation system that automates and enhances living. A home automation system interconnects a variety of control products for lighting, shutters and blinds, HVAC, appliances and other devices with a common network infrastructure to enable energy-efficient, economical and reliable operation of homes with increased comfort.
		Building Automation and Control System (BACS) is the brain of the building. BACS includes the instrumentation, control and management technology for all building structures, plant, outdoor facilities and other equipment capable of automation. BACS consists of all the products and services required for automatic control including logic functions, controls, monitoring, optimization,

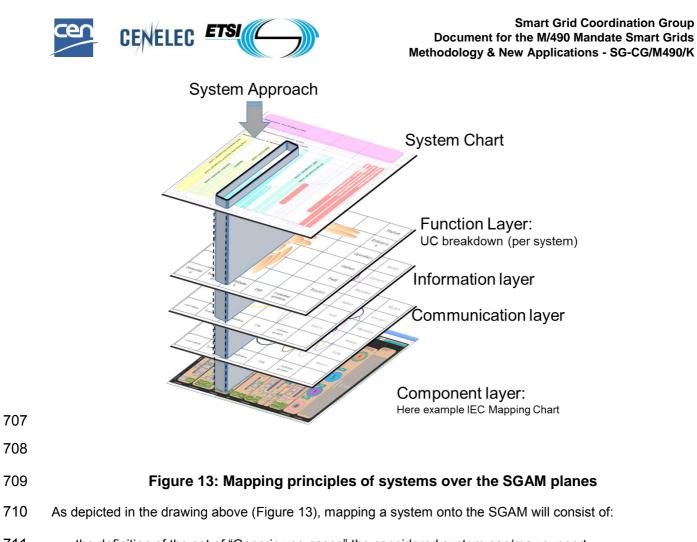
Domain or function	Systems	Brief introduction/comments
		operation, manual intervention and management, for the energy-efficient, economical and reliable operation of buildings
	Industrial Automation systems	Brain of the industrial plant in charge of monitoring and controlling the industrial process, and associated facilities.
	E-mobility systems	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
Transverse	Micro-grid systems	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Market places (including trading systems)	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Weather observation and forecast system	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Asset management and condition monitoring system	Asset Management Systems and Condition Monitoring devices are promising tools to optimize the OpEx and CapEx spending of utilities. Condition-based maintenance, for example, allows the reduction of maintenance costs without sacrificing reliability. Furthermore they may also be used to utilize additional transport capacity due to better cooling of primary equipment, e.g. transmission lines on winter days.
Administration	Communication network management system	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Clock reference system	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards
	Authentication authorization accounting system	Please refer to the system description in the [SG-CG/G] SG-CG/M490/G_Smart Grid Set of standards


695 696 697

NOTE So called "Administration" systems can/may be implemented superseding previous "operational systems". There in most of the cases re-use communication capabilities already present in the "operational system".

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

An overall view of all these domain or function specific systems onto the SGAM plane allows positioning each system in the domains and zones as shown in Figure 12. Note that not all administrative systems and cross-cutting technologies are shown in order to keep the figure readable.


704

702

703

705 7.1.1 Mapping systems on SGAM - Principles

For a structured system description, each system may be mapped to the SGAM model described above.

- the definition of the set of "Generic use cases" the considered system can/may support.
- the drawing of the typical architecture and components used by this system (component layer).
- a list of standards to be considered for interfacing each components within this system as shown in [SG-CG/G].

The basic idea can be found also in the following example shown in Figure 14 using the SGAM plan for a

716 more detailed breakdown to a component and device level. This mapping chart is combined with interactive

lists of use cases (yellow dots) and standards (mouse-over). Similar to [SG-CG/G] the mapping tool aims to
 provide an overview and to guide standard users and the standard community in selecting appropriate

719 standards.

720

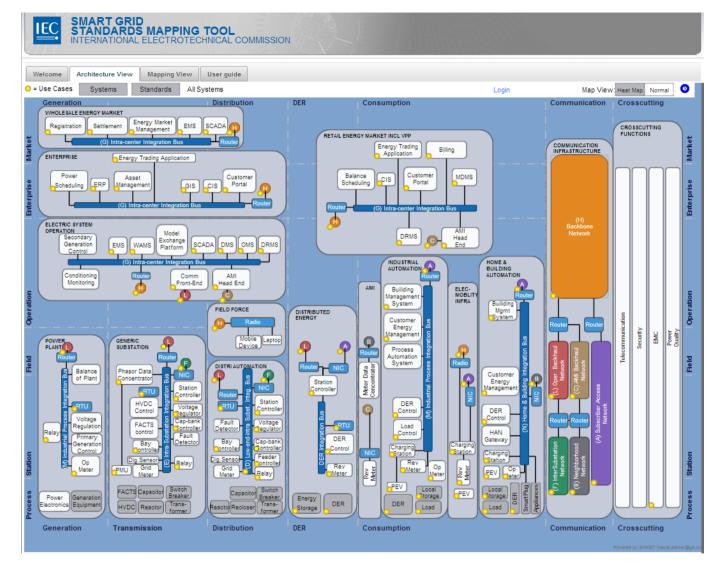


Figure 14: IEC Smart Grid mapping tool (Source: http://smartgridstandardsmap.com/

723 7.2 Role mapping

Furthermore, for the business layer, we can map the Harmonized Role Model (HRM) to SGAM as depicted partly in Figure 15.

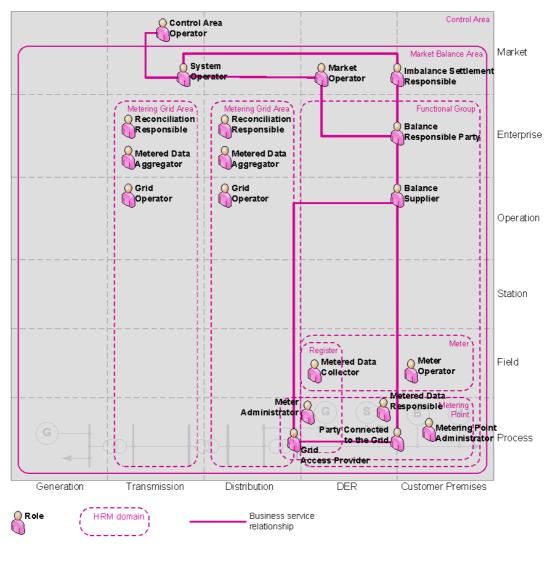


Figure 15: Mapping of Harmonized Role Model to SGAM

728

730 7.3 Analysis of communication networks using SGAM⁸

731 7.3.1 Description

A secure, reliable and economic power supply is closely linked to a fast, efficient and dependable
 telecommunication services communications.

A telecommunication service is any service provided by a telecommunication network through a
 communications system. A communications system is a collection of individual communications networks
 and communication end points capable of interconnection and interoperation to form an integrated whole.

The planning and implementation of communications systems, needed to support the expected
 services mentioned above, requires the same care as the installation of the power supply systems
 themselves.

- 740 One way to categorize the different types of telecommunications networks is by means of transmission:
- Wireless: communication through the air
- Wire line: communication through cable dedicated to telecommunications services
- Powerline: communication through cable designed for electric power transmission, but used for carrying data too.

Wireless communications may have to comply with local or regional regulations (such as the European
 Directive for Radio and Telecommunications Terminal Equipment (R&TTE) 2014/53/EU (previous version
 1999/5/EC).

For Smart Grid communication architecture/technology, products based on specifications from (industry)
consortia (e.g. IETF, W3C) have been deployed widely, notably in the area of IP protocols and web services.
In the section below, the list of standards/specifications takes into account the ones which fulfill market
requirements.

[SG-CG/C], Annex F provided some detailed information on standards pertaining to Smart Grid
 communications. This list of standards will now be hosted in the new edition of the "Set of Standards" [SG-CG/G].

755 7.3.2 Communication network type breakdown

Depending on the Smart Grid target applications, different types of communication networks and also
 collections of communication networks using different transmission technologies may be selected in order to
 transmit and deliver Smart Grid data.

759 The following network types could be defined for the Smart Grids:

760 • (A) Subscriber Access Network

- networks that provide general broadband access (including but not limited to the internet) for the
 customer premises (homes, building, facilities). They are usually not part of the utility infrastructure
 and provided by communication service providers, but can be used to provide communication
 service for Smart Grid systems covering the customer premises like Smart Metering and aggregated
 prosumers management.
- 766

⁸ Provided by WG SS

768 • (B) Neighborhood Network

769 networks at the distribution level between distribution substations and/or end users. They are
770 composed of any number of purpose-built networks that operate at what is often viewed as the "last
771 mile" or Neighborhood Network level. These networks may service metering, distribution automation,
772 and public infrastructure for electric vehicle charging, for example.

773 • (C) AMI backhaul Network

networks at the distribution level upper tier, which is a multi-services tier that integrates the various
sub layer networks and provides backhaul connectivity in two ways: directly back to control centers
via the WAN (defined below) or directly to primary substations to facilitate substation level distributed
intelligence. It also provides peer-to-peer connectivity or hub and spoke connectivity for distributed
intelligence in the distribution level.

779 • (D) Low-end intra-substation Network

networks inside secondary substations or MV/LV transformer station. It usually connects RTUs,
 circuit breakers and different power quality sensors.

782 • (E) Intra-substation Network

- network inside a primary distribution substation or inside a transmission substation. It is involved in
 low latency critical functions such as tele-protection. Internally to the substation, the networks may
 comprise from one to three buses (system bus, process bus, and multi-services bus).
- (F) Inter substation Network networks that interconnect substations with each other and with control centers. These networks are wide area networks and the high end performance requirements for them can be stringent in terms of latency and burst response. In addition, these networks require very flexible scalability and due to geographic challenges they can require mixed physical media and multiple aggregation topologies. System control tier networks provide networking for SCADA, SIPS, event messaging, and remote asset monitoring telemetry traffic, as well as peer-to-peer connectivity for tele-protection and substation-level distributed intelligence.

*** (G) Intra-Control Centre / Intra-Data Centre Network**

networks inside two different types of facilities in the utility: utility data centers and utility control
centers. They are at the same logical tier level, but they are **not** the same networks, as control
centers have very different requirements for connection to real time systems and for security, as
compared to enterprise data centers, which do not connect to real time systems. Each type provides
connectivity for systems inside the facility and connections to external networks, such as system
control and utility tier networks.

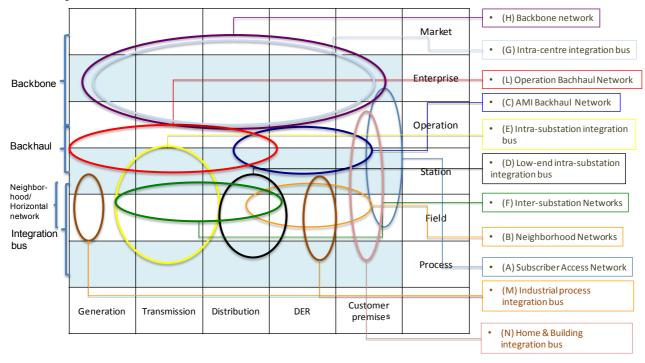
800 • (H) Backbone Network

inter-enterprise or campus networks, including backbone Internet network, as well as inter-control
 center networks.

803 • (L) Operation Backhaul Network

804networks that can use public or private infrastructures, mostly to support remote operation.. They805usually inter-connect network devices and/or subsystems to the "Operation level" over a wide area806(region or country).

807 • (M) Industrial Fieldbus Area Network


808 networks that interconnect process control equipment mainly in power generation (bulk or distributed) in the scope of smart grids.

810 • (N) Home and Building integration bus Network

811 networks that interconnect home and / or building communicating components and sub-systems to 812 form a home or building management sub-system or system.

813 7.2.3 Mapping of communication network type over the SGAM

- Figure 16 below provides a mapping of the different Smart Grid networks to the SGAM model.
- 815 NOTE where a circle is tangent to a zone, this means that the corresponding network type can support the interface 816 with the tangent zone.

817 818

Figure 16 - Mapping of communication networks on SGAM

Note 1: These areas are a mapping example and cannot be normative to all business models.
Note 2: It is assumed that sub-networks depicted in the above figure are interconnected (where needed) to provide end-to-end connectivity to applications they support. VPNs, Gateways and firewalls could provide means to ensure network security or virtualization.

823 7.3.4 Data modelling with the SGAM

- Because of the increasing need of many Smart Grid stakeholders to deploy solutions offering a semantic
 level of interoperability, data modeling appears as the cornerstone and foundation of the Smart grid
 framework.
- 827 In addition data modeling seems much more stable than communication technologies, which makes this828 foundation even more important.
- 829 Currently the IEC framework relies on 3 main pillars, as far as data modeling is concerned, represented in 830 Figure 17.

- 831 The same figure represents also the 3 harmonization work items (i.e. the definition of unified shared
- semantic sub-areas, or formal transformation rules) which need to be performed in order to allow an easy
 bridging of these semantic domains:
- Harmonization between CIM⁹ and IEC 61850, mostly to seamlessly connect the field to operation and enterprise level
- Harmonization between CIM and COSEM¹⁰, mostly to seamlessly interconnect electricity supply and grid operation,
- Harmonization between COSEM and IEC 61850, where smart metering may co-habit with Power
 Utility Automation systems.
- 840 For further information about the current standardization work in this area, please refer to [SG-CG/G].

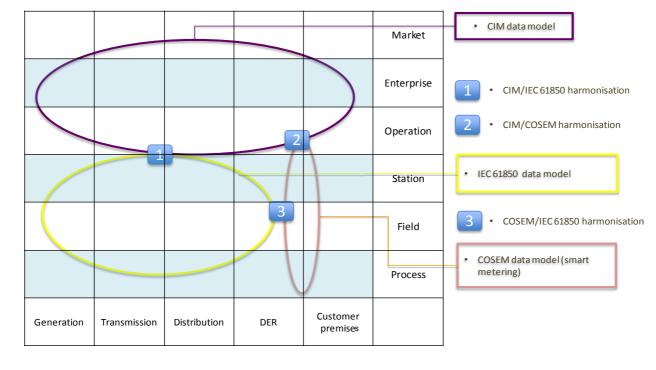
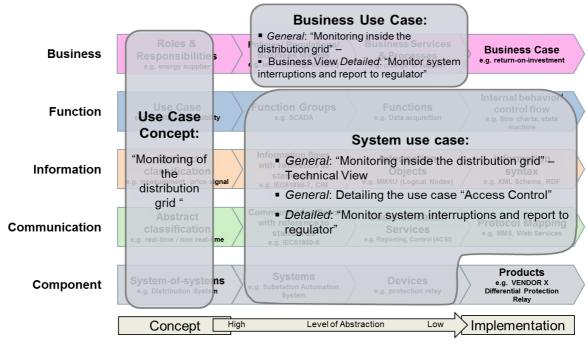


Figure 17 - Data modeling and harmonization work mapping

⁸⁴³

⁹ CIM Common Information Model, IEC 61968, IEC 61970

¹⁰ COSEM Companion Specification for Energy Metering, IEC 62056



845 8 Examples showing the use of the SGAM

846 8.1 Introduction

- 847 With the help of an example we like to validate the SGAM Methodology and justify the following key points:
- The SGAM analysis pattern provides a valuable scheme to analysis, visualize and compare Smart
 Grid use cases from high-level to detailed specifications.
- A Use Case Concept with its short template is a simple way to document general ideas in an easy manner. It provides abstract information on all SGAM layers, allows alternatives and leaves room for the experts to specify the details.
- The mapping of the use case to the Smart Grid plane is a simple way to compare, cluster/group and harmonize several use cases.

In the following sub-sections we discuss use cases related to "*Monitoring*" on very different levels of abstraction. We will start with a high-level use case taken from the previous work done in [SG-CG/E] and analyze it as a use case concept on all SGAM layers in an abstract manner. Further detailing will be done for selected, more detailed use cases and different views – business as well as technical / system. Figure 18 shows an overview of the different examples outlined in the following sections, where each description provides information on the related SGAM layers with the defined level of abstraction.

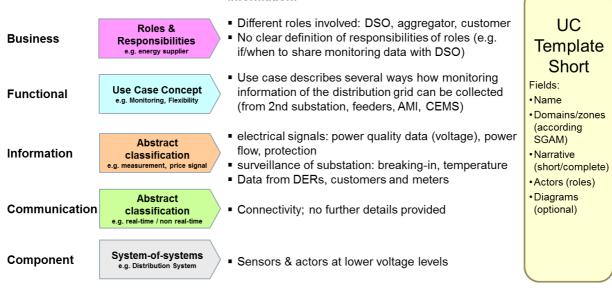
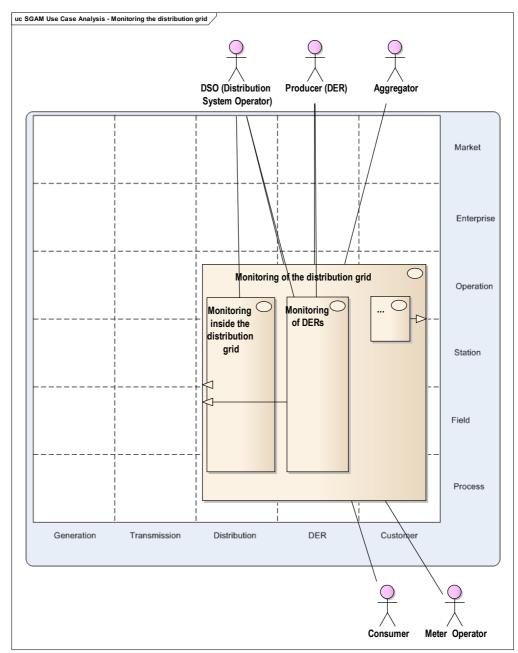

861 862

Figure 18: Overview of examples presented

864 8.2 Example #1: Monitoring of the distribution grid (SG-CG WGSP-0600)

- WGSP-0600 use case description is used as an example of the Use Case Concept / High-level
 Use Case.
- Several sources for monitoring data and different roles are involved, e.g. sensors, meters, DERs, CEMSs.
- A mapping of the use case to the SGAM Smart Grid Plane plus involved market roles is depicted in Figure 20.

WGSP-0600 Use description provides following information:


871

872

Figure 19: Mapping of the use case "Monitoring of the distribution grid"

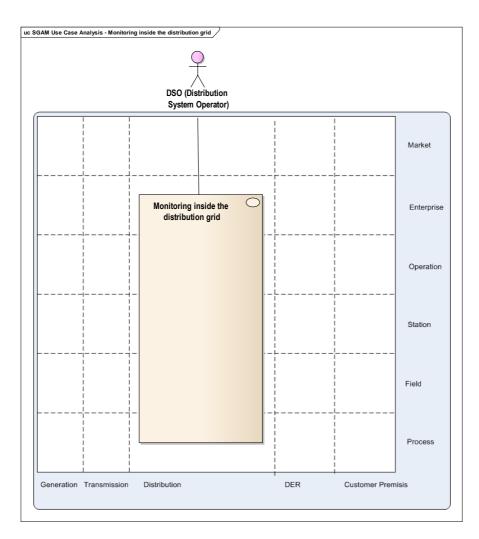
- 873
- 874 To reach the next level of detail primary use cases needs to be defined
- 875 Primary use cases
- Monitoring inside the distribution grid
- Monitoring of DERs by the DSO
- 878 ...

880

Figure 20: Primary use cases for "Monitoring the distribution grid"

881 8.3 Example #1.1: "Monitoring inside the distribution grid" (Business Use Case)

Roles & Responsibilities


Use case includes a role with a clear responsibility. According to HRM the following role is a grouped role (refer to [SG-CG/J])

From EG1: **Distribution System Operator (DSO)**: according to the Article 2.6 of the Directive: "a natural or legal person responsible for operating, ensuring the maintenance of and, if necessary, developing the distribution system in a given area and, where applicable, its interconnections with other systems and for ensuring the long-term ability of the system to meet reasonable demands for the distribution of electricity". Moreover, the DSO is responsible for regional grid access and grid stability, integration of renewables at the distribution level and regional

load balancing.

- Policies/ Regulation/ Business Models e.g. law on energy industry
- Monitoring information is the basis for several other use cases, e.g. FLISR, Volt/VAr control.
- These use cases ensure the stable operation of the distribution grid and improve performance indexes like SAIDI (System Average Interruption Duration Index) and SAIFI (System Average Interruption Frequency Index).
- The business value of this use case has to be evaluated together with the use cases it enables.
- Security requirements: Regulative, e.g.: NERC CIP; Information Security Management: ISO 27001/02/19; from guidelines: NIST IR 7628, BDEW White Paper)

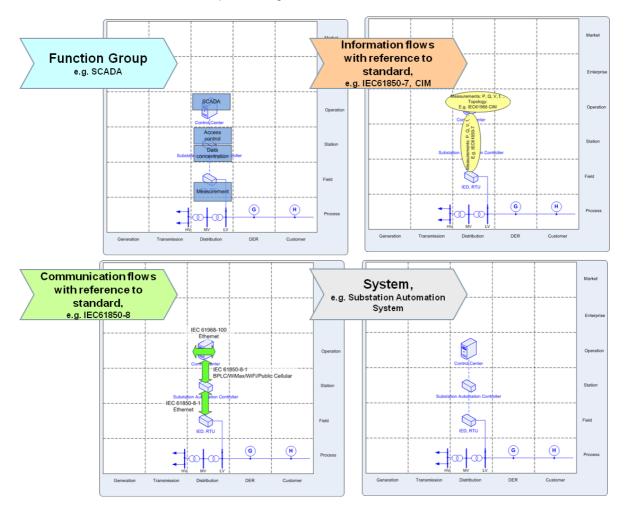
883 884

Figure 21: Mapping of "Monitoring inside the distribution grid" on SGAM plane

885 8.4 Example #1.2: "Monitoring inside the distribution grid" (Device/system use case)

A rich monitoring functionality is the prerequisite to determine the state and performance of the distribution
 grid. Monitoring has to provide:

888 • Measurements of the grid at field level,



- Data concentration and access control at the station level,
- SCADA system to process, visualize, archive etc. the monitoring information.

Bata to be collected are e.g. voltage, current, frequency, phase angle, active and reactive power, and state
 of the control elements. These data need different monitoring approaches depending on their time horizons.
 A measurement of these quantities could be time-critical and partially need high sample rates.

Further measurements are sent only when they exceed thresholds or every time a state change occurs. The
 task is to optimize data collection ,finding a compromise between getting precise enough system states and
 not overloading the monitoring network.

The monitoring protocols have to support all timescales with high reliability. All information collected should be stored in an archive for further processing.

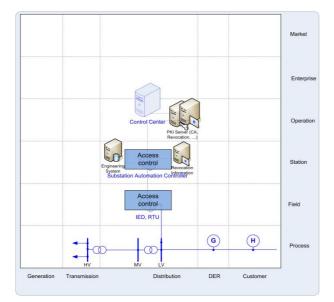
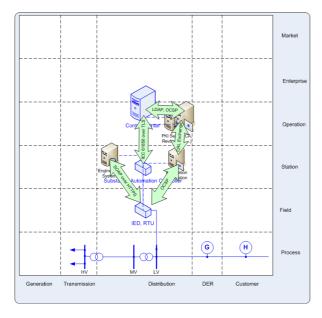
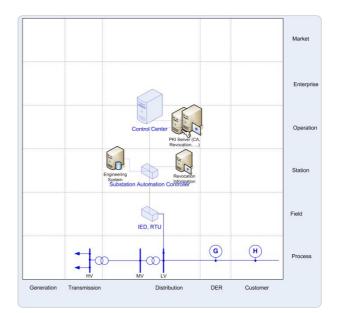

900

Figure 22: SGAM analysis for "Monitoring inside the distribution grid"


901 8.5 Example #1.1.1: Detailing the secondary use case "Access Control"

Access control as depicted as secondary use case in Figure 22 is often required for the operation of critical infrastructures. This is being requested by regulation and also by standards and guidelines addressing Smart Grid as mentioned in the business use case description in Section "8.3 Example #1.1: "Monitoring inside the distribution grid" (Business Use Case)". In the following, SGAM is used to identify the detailed requirements to support Role-Based Access Control (RBAC) by mapping a technical solution to the SGAM function, information, communication and component layers.




a) Function Layer

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

b) Information Layer

c) Communication Layer

908

Figure 23: SGAM Analysis of Role-based Access Control

Based on the requirements stemming from the business layer in Section 0, the functional layer reflects the
functional security requirements for role-based access control related to dedicated zones and domains.
Through mapping to different zones, one can already distinguish between local and remote access. The
function layer comprises access control to components but also command execution authentication and
authorization control as functional requirements. Functional requirements are typically related to an existing
functional architecture during the design of an appropriate security architecture addressing discovered
potential security risks (e.g. according to a risk assessment based on use cases).

The SGAM analysis for the information and communication layers shows the application of [IEC 62351-8] in
 the context of Smart Grid systems applying protocols like IEC 61850 or IEC 60870-5-104. It has been

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

chosen here to provide an example of the application of SGAM in the context of identifying security
requirements as well as mapping special solutions to these requirements. IEC 62351-8 addresses the
integration of role-based access control to ease the burden of access management in power systems. It
enables verification of authorization before command execution, e.g. in substation automation in terms of
who is authorized to perform a specific switching command. This information can be required e.g. for
auditing purposes. The roles¹¹ are bound to different credentials as defined in [IEC 62351-8]. The standard
distinguishes between:

- Public Key (Identity) certificate with included role information;
- attribute certificate bound to an identity certificate;
- software token (HMAC-protected structure, Kerberos like).
- 928 The standard IEC 62351-8 describes merely the token providing the role information as well as a set of 929 mandatory roles (and associated rights):
- **930** VIEWER;
- 931 OPERATOR;
- 932 ENGINEER;
- 933 INSTALLER;

936

- SECADM (Security Administrator);
- SECAUD (Security Auditor);
 - RBACMNT (Role-based Access Management).

937 This list of roles and associated rights can be extended with own specific roles and rights information. The 938 predefined list above is intended for interoperability between different components. It is expected that all 939 enhancements are installed on the entities involved, to facilitate interoperability.

940 The information layer requires RBAC credential specification and also mapping of entities to roles. As stated,
 941 IEC 62351-8 provides predefined roles and associated rights. Nevertheless, these role definitions and rights
 942 associations can be enhanced according to deployment needs.

943 On the communication layer, roles are transmitted bound to credentials within IEC protocols. IEC 62351-6 944 defines the structure of the RBAC token and also guidance how to transmit this token as part of utilized 945 protocols. One example is the application of X.509 attribute certificates bound to X.509 Public Key 946 certificates. The communication layer in this example includes the following protocols:

- 947
 IEC 61850 protected through IEC 62351-3/4: Here TLS is used to protect the communication on transport layer. Within TLS X.509 certificates are used to support mutual authentication. The X.509
 949
 950
 attribute certificate can be bound to the X.509 ID certificate to enable a short-term binding.
- SOAP (Simple Object Access Protocol) over HTTPS: Engineering using web services transported over HTTPS, which is protected by TLS. Here again, X.509 certificates may be used for mutual authentication and thus also allow for realizing RBAC based on mechanisms described in IEC 62351-8.
- LDAP (Lightweight Directory Access Protocol): Protocol used to access directory services to retrieve certificates. May be used using TLS.
- OCSP (Online Certificate Status Protocol): Protocol to retrieve fresh revocation information for single certificates. Avoids storing certificate revocation list (CRLs) on single field devices

¹¹ The understanding of roles in this standard is similar as described in [SG-CG/J], but these roles are not related to the HRM. Here they are related to different responsibilities and access rights as explained.

ORL retrieval: Protocols used to request a CRL from a Certification Authority (CA). These protocols may be FTP, SSH, or HTTP. Unsecure protocols should be protected e.g. by using an underlying security protocol like TLS. The CRL is protected by itself, as it is signed by the CA.

962 The component layer comprises additional components for credential handling like the generation or 963 revocation of X.509 key material. This task is commonly performed by a Public Key Infrastructure (PKI). The 964 additional components needed here comprise a Certification Authority issuing the X.509 certificates including 965 the role information and also a repository for querying the RBAC information. A component is also needed 966 for storing revocation information for the case when a RBAC credential is revoked before its validity period 967 has ended.

- As shown above, IEC 62351-8 can be used to support RBAC for the discussed use case and in general for Smart Grid Systems. Nevertheless, regarding IEC 62351-8 there are also gaps, which can be identified:
- for interoperability reasons a mandatory profile for RBAC support is necessary. The standard currently defines three different profiles, without requiring concrete support for at least one. This would be necessary to ensure interoperability and avoid a full implementation of this standard;
- transport profiles also for other protocols than TCP/IP (e.g. application for UDP/IP or even Ethernet based communication) may be outlined. The current standard only takes TLS as concrete example for application. Nevertheless, there are other standards utilizing X.509 certificates for authentication on transport but also on (OSI) application layer. They may leverage the approach of enhancing either the X.509 public key certificate with the role information (as an extension) or by providing an attribute certificate containing the role information for a holder of a dedicated X.509 public key certificate.

980 8.6 Example #1.1.2: "Monitor system interruptions and report to regulator"

981 As outlined in the previous sections the *Monitoring use case* supports a wide range of other use cases. For 982 the short and general descriptions of the Monitoring use case it was not necessarily required to define how 983 the monitoring data is used. This allows us to consolidate a set of monitoring use cases into a single 984 harmonized description. However, to derive a primary use case description providing all information on all 985 levels of details as depicted in [Cockburn], we have to define the goal of the use case precisely. Hence, we 986 outline in this section a specialized use case that monitors system interruptions in the distribution grid and 987 reports them to the regulator. The use case was chosen because measures for reliability are reported for many years in various countries. Thus, the required information for the use case description is based on 988 989 existing sources and not derived completely new. Regulatory rules differ from country to country including 990 also the guidelines for reporting system interruptions. In the following we focus on the regulations in 991 Germany without any intention beyond demonstrating the SGAM methodology.

- As defined in Germany in the law of energy industry EnWG §52, system operators including DSOs have the
 obligation to report system interruptions on a yearly basis to the German Federal Network Agency
 (Bundesnetzagentur (BNetzA)). Furthermore, the German Federal Network Agency has the right to specify
- 995 formal guidelines for reporting¹².

996 Business View:

Business Process e.g. change of supplier

- BNetzA has the right to define the guidelines for reporting
- Two types of reporting are defined:
 - Web form for manual input
 - o XML-based report using web services

¹² As specified the website on of the German Federal Network Agency (in German only): http://www.bundesnetzagentur.de/cln 1932/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen Institutionen/Versorgung ssicherheit/Stromnetze/stromnetze-node.html

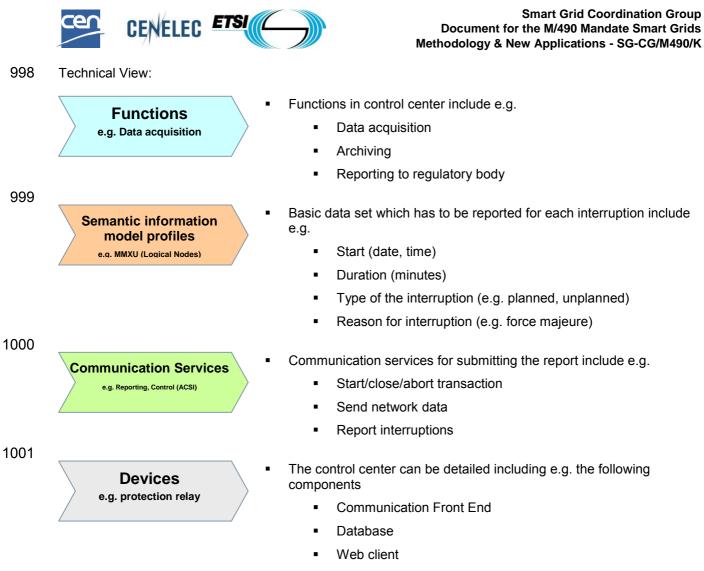
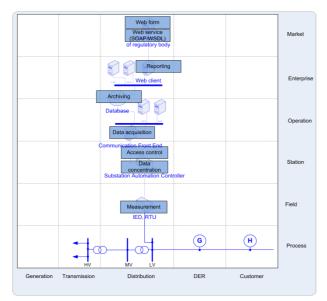
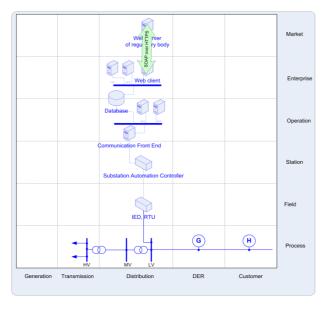
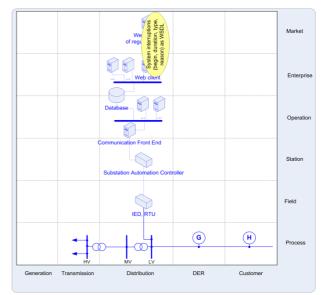
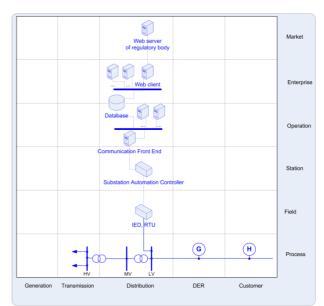




Figure 24 depicts the SGAM analysis for this use case with a special focus on the interaction between components of the DSO and the regulator.




e) Function Layer

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

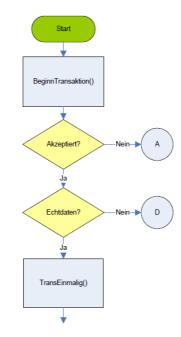
f) Information Layer

g) Communication Layer

h) Component Layer

Figure 24: SGAM Analysis "Monitoring system interruptions and report to regulator"

1006



Flow charts

e.g. CFC

- 1008 According to Figure 3 "SGAM Analysis Pattern", the function, information and communication layer can be
- 1009 further detailed to specify flow charts, the information syntax and the communication protocols, respectively. 1010 The following provides an example for the lowest level of detail.

- BNetzA defines flow charts for reporting system interruptions
- Following excerpt is provided as example:

Information syntax e.g. XML Schema, RDF

- BNetzA uses WSDL to provide the service description for reporting system interruptions with web services (which is available online¹³)
- Following excerpt is provided as example:

vsdl:definitions targetNamespace="https://app.bundesnetzagentur.de/WsVersorgUnterbrStrom">
<wsdl:documentation>Version 2.0.1.3 vom 15.09.2009</wsdl:documentation>
<wsdi:types></wsdi:types>
- <s:schema elementformdefault="qualified" targetnamespace="https://app.bundesnetzagentur.de/WsVersorgUnterbrStrom"></s:schema>
- <s:element name="BeginnTransaktion"></s:element>
- <s:complextype></s:complextype>
- <s:sequence></s:sequence>
<s:element maxoccurs="1" minoccurs="1" name="betriebsNummerBT" type="s:int"></s:element>
<s:element maxoccurs="1" minoccurs="0" name="kontrollNummerBT" type="s:string"></s:element>
<s:element maxoccurs="1" minoccurs="1" name="netznummerBT" type="s:int"></s:element>
<s:element maxoccurs="1" minoccurs="1" name="berichtsJahrBT" type="s:int"></s:element>
<s:element maxoccurs="1" minoccurs="1" name="leermeldungBT" type="s:boolean"></s:element>
<s:element maxoccurs="1" minoccurs="1" name="paketeGesamtBT" type="s:int"></s:element>
<s:element maxoccurs="1" minoccurs="1" name="anzahlUntGesamtBT" type="s:int"></s:element>
<s:element maxoccurs="1" minoccurs="1" name="anzahlUntInPaketBT" type="s:int"></s:element>
<s:element maxoccurs="1" minoccurs="1" name="tranArtBT" type="tns:TransBeginnArtEnum"></s:element>
- <s:simpletype name="TransBeginnArtEnum"></s:simpletype>
- <s:restriction base="s:string"></s:restriction>
<s:enumeration value="EchtDaten"></s:enumeration>
<s:enumeration value="TestVerweigert"></s:enumeration>
<s:enumeration value="TestGesperit"></s:enumeration>
<s:enumeration value="TestAusserBetrieb"></s:enumeration>
<s:enumeration value="TestAkzeptiert"></s:enumeration>
<s:enumeration value="TestNichtAkzeptiert"></s:enumeration>
<s:enumeration value="TestFehler"></s:enumeration>
- <s:element name="BeginnTransaktionResponse"></s:element>
- <s:complextype></s:complextype>
- <s:sequence></s:sequence>
<s:element maxoccurs="1" minoccurs="0" name="BeginnTransaktionResult" type="tns:BeginnTranAntwort"></s:element>
- <s:complextype name="BeginnTranAntwort"></s:complextype>
- <s:complexcontent mixed="false"></s:complexcontent>
- <s:extension base="tns:TranAntwort"></s:extension>
- <s:sequence></s:sequence>

¹³ <u>https://app.bundesnetzagentur.de/WsVersorgUnterbrStrom/WsVersUnterbrechungenStrom.asmx?WSDL</u>

Protocol Mapping

e.g. MMS, Web Services

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

BNetzA provides definitions for SOAP messages of each communication service

Following excerpt is provided as example

50AP 1.2	
The following is a sample SOAP 1.2 request and response. The placeholders shown need to be replaced with actual values.	
0027 /W/W/wescylbicebr/Sicco/WW/weschCrechungenStrom.asmx HTTP/1.1 Moni: app:buscherstargenzu: Content-Type: application/scapium1; charget=utf=0 Content-Length: Length (fam1 vescion="1.0" encoding="utf=0")>	
<pre>(desp12fxvelops malma:sis="metrop://www.v3.org/2001/XELSchema-instance" mmlma:sad="http://www.v3.org/2001/XELSchema" mmlma:sad="http://www.v3.org/2 cheginTimasAkion_malma="http://www.v3.org/2 cheginTimasAkion_wakion_malma="http://www.v3.org/2 cheginTimasAkion_wakion_malma="http://www.v3.org/2 cheginTimasAkion_wakion_malma="http://www.v3.org/2 cheginTimasAkion_wakion_malma="http://www.v3.org/2 cheginTimasAkion_wakion_cheginTimasAkion_wakion_malma="http://www.v3.org/2 cheginTimasAkion_wakion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasAkion_cheginTimasA</pre>	203/
<pre>HTTP/1.1 200 06 Consent-Type application/scap-sml; charser=uf-8 Consent-Type splication/scap-sml; charser=uf-8 Consent-Type smlnsist="%ttp://www.w3.org/2001/XELSchema-instance" smlns:ssd="%ttp://www.w3.org/2001/XELSchema" smlns:scap12="%ttp://www.w3.org/2 chapinTranseticnBesponse smlna="%ttp://www.w3.org/2001/XELSchema" smlns:scap12="%ttp://www.w3.org/2 chapinTranseticnBesponse smlna="%ttp://www.w3.org/2001/XELSchema" smlns:scap12="%ttp://www.w3.org/2 chapinTranseticnBesponse smlna="%ttp://www.w3.org/2 chapinTranseticnBesponse smlna="%ttp://www.w3.org/2 cfanaSeticnBesponse) cfanaSeticn</pre>	003/

1011

Figure 25: SGAM Analysis on the detailed level

1012 In summary, this section outlines a SGAM analysis from a use case concept to a detailed description on all layers. It shows how different use case descriptions provide information for the SGAM layers with different

1014 level of abstraction. The SGAM analysis pattern depicted in Figure 3 can be used as guideline to derive high

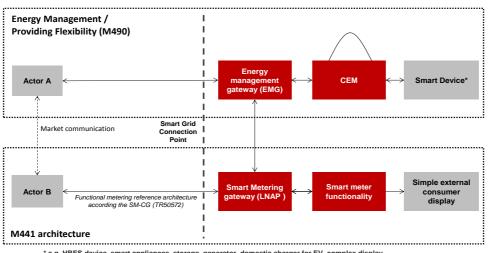
1015 quality descriptions of use cases providing information on all interoperability layers of the SGAM framework.

1016

1017 **9** Further example use cases to test the SGAM

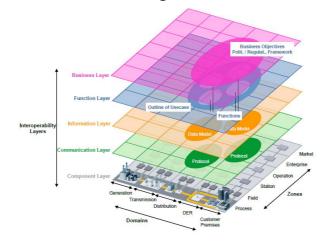
1018 9.1 Overview

1019 The following use case, which had been considered in the Sustainable Processes workgroup and was 1020 already in the use case repository, has been identified and is proposed as suitable for this purpose. It relates 1021 to the internal automation function of the *customer* role for optimizations according to the preferences of the 1022 customer, based on signals from outside and internal flexibilities.


In this example, a demand response approach uses variable tariffs to motivate the customer to shift
 consumption in a different time horizon (i.e. load shifting). On customer side the signals are automatically
 evaluated according to preset customer preferences like cost optimization or CO2 savings and appropriate
 functions of one or more connected devices are initiated.

1027 9.2 High level use case WGSP-2135 Inter-CEMS energy trading

- 1028 Co-ordination of distributed generation and loads at neighborhood level based upon peer-to-peer
 1029 communication between several Central Energy Management Systems, and brokerage within a multi-agent
 1030 system
- 1031 Within this high level use case, two primary use cases can be identified:
- The first primary use case (WGSP-2136) describes <u>how flexibility is offered to other neighborhood</u>
 <u>CEMSs</u>. An example of such a scenario would be peer-to-peer co-ordination of local energy trading
 involving extra PV energy (not used in-house) that can be stored or used by other homes in the
 neighborhood.
- 1036
 The second primary use case (WGSP-2137) describes how flexibility is requested from other neighborhood CEMSs. An example of such a scenario would be peer-to-peer co-ordination for



- 1038 voltage control i.e. how distributed generation resources can be utilized for voltage stability control 1039 purposes based on distributed intelligence.
- 1040 The use cases are described in more detail in appendix A.
- 1041 The following generic functional architecture for flexibility has been used as a basis in considering these use 1042 cases.

e.g. HBES device, smart appliances, storage, generator, domestic charger for EV, complex display

- 1044 Figure 26: SGAM Analysis "Generic functional description"
 - 1045 Note that the actors in the above architectural diagram are functional entities, which means that 1046 some of them may be part of the same physical device (e.g. CEM functionality may be part of a 1047 smart device, the smart meter might also encompass the smart metering gateway and CEM, etc.)
 - 1048 The interfaces between the entities shown in the diagram are the subject of current standardization activities overseen by the Smart Grid Co-ordination Group, with those involving the AMI delegated to 1049 1050 the Smart Meter Co-ordination Group.
- 1051 9.3 Consideration of use cases against the SGAM

1052

1043

1053

Figure 27: SGAM

1054 Domains and Zones

1055 Looking at the SGAM framework, we have seen that the activity envisaged in the selected use cases both 1056 involve peer-to-peer communications between CEMSs within a community.

1057 In the case of WGSP-2136, the community would be at the most local level, within a few dwellings or
1058 buildings within a neighborhood. That 'community' of CEMs would manage their own flexibility as far as
1059 possible independently of the distribution system, acting as a kind of local 'clearing house' for flexibility. The
1060 wider smart grid would only 'see' the net result of that local activity if there were any residual flexibility needs
1061 or offerings after the local community had managed their individual flexibility in the way they had agreed
1062 upon, e.g. by having made optimum use of their local generation resources.

Thus in SGAM terms the peer-to-peer activity for WGSP-2136 is essentially localized to the DER and Customer Premises domains and the Process zone, with communications feeding back to the supplier (for billing purposes. The relevant communications would be via the energy management gateway or smart meter gateway. Given that the supplier will be receiving data and perhaps also managing the allocation process, communications would most probably make use of the protocols already defined for demand and production (generation) flexibility systems and in particular aggregated prosumers management systems.

- 1069 In the case of WGSP-2137, the need for injection would be evident within the distribution domain and field 1070 zone, and as noted earlier, there would be some interaction between these zones and the peer-to-peer 1071 activity described. These communications would most probably make use of the protocols already defined 1072 for distributed power guality control systems.
- Appendix A of the current document illustrate the detailed mapping of each of the use cases using the format adopted in the First Set of Standards work for the component, communication, information and function layers. This mapping is essentially the same as that for aggregated prosumers management systems and distributed power quality control systems, with the addition of a peer-to-peer element.

1077 9.4 Implications of above analysis for the SGAM

The above analysis does not indicate that peer-to-peer communications as envisaged in the two use cases
considered necessitate modification of the SGAM. Peer-to-peer communications can follow whatever
protocols may be agreed upon locally.

However in the activity envisaged in WGSP-2136, residual flexibility arrangements (after local optimization)
would need to be managed with the supplier/utility. Such communications would thus most probably make
use of the protocols already defined for aggregated prosumers management systems. Indeed in overall
terms WGSP-2136 can be seen as a refinement of the existing flexibility use case, with the addition of the
peer-to-peer element.

1086 Similarly, in the case of WGSP-2137, communications with the distribution domain would most probably 1087 make use of the protocols already defined for distributed power quality control systems.

1088 9.5 Conclusions of the work to date

1089 At a general and strategic level, the above analysis shows the value of the SGAM and the approach to 1090 mapping of use cases against the SGAM. It demonstrates how new use cases can be considered and 1091 incorporated within the present SGAM framework, using the tools developed by the SG-CG. It also shows 1092 how potential standardization gaps resulting from a new use case can be identified. This should be of value 1093 to future smart grid-related work by Technical Committees.

- 1094 The analysis also shows that as use cases become more detailed, they increasingly reflect national and 1095 industry circumstances. However detailed use cases can be readily fitted into the SGAM methodology and 1096 framework. The value of the methodology is that it provides Member States, Technical Committees and 1097 others with a common approach and analytical language for such activity.
- 1098 The analysis of the new use cases demonstrates is that there is no lack of European standards for the two 1099 use cases considered. The main challenge presented by the possibility of peer-to-peer communications as 1100 envisaged relates to the market, industry, legal and regulatory framework for such activity. Member States 1101 and others wishing to develop the concept at national level are exploring what arrangements would be

- required, and it may be necessary to review this preliminary conclusion in the light of such national use cases.
- 1104 Finally the work demonstrates the need for ready access to the use case repository and to the templates and
- examples of use case descriptions, such as those shown in Appendix A below. This is necessary if those
- with potential new or more detailed use cases are to be able to check the relationship of such use cases to
- 1107 what has already been developed and to integrate them with previous work.

1108 The work also shows the desirability of ready access to the detailed mapping tools used in presentation of 1109 the SGAM, as illustrated in Appendix A of the current document.

Appendix A

Use case descriptions and mapping to SGAM

1113 A.1Introduction into the Appendix

1114 This appendix sets out the detailed mapping of two use cases as examples originally considered in the 1115 Sustainable Processes workgroup and appearing in the use case repository. They relate to the internal 1116 automation function of the customer role for optimizations according to the preferences of the customer, 1117 based on signals from outside and internal flexibilities.

TTT based of signals from outside and internal nexibilities.

1118 The use cases are included here to illustrate how the methodology in this report can be applied to novel use 1119 cases, considering the analysis of each use case, their detailed mapping to the SGAM at the component, 1120 communication and information layers.

1121 A.2 Primary use case WGSP-2136

1122 A2.1 Description

1123 To illustrate the first primary use case WGSP-2136, the agent of the "PV house" may offer its energy (as a 1124 proposal) while the broker agents of the other homes evaluate the proposal knowing their own upcoming 1125 loading schedule, the habits of the house, the storage capacity, its own generation capacity and other 1126 relevant information. Accepting the energy offer would lead to a load increase and effectively a temporary 1127 switch of energy provider in the homes that accepted the energy offer. Hence, the energy produced by the 1128 PV would be locally absorbed. Various schemes of energy allocation within the neighborhood can be thought of, leading to different required billing approaches. This dynamic matching may result in nothing being 1129 1130 perceived at the distribution substation, no load increment, no injection increment.

1131

1110 1111

1112

1132 WGSP-2136: Inter-CEM flexibility offerings

Scenario Name	Primary Actor	Triggering Event	Pre-Condition	Post-Condition
Inter-CEM flexibility offering	CEM-1	CEM_1 is (made) aware of one or more potential flexible loads / production	CEM_1 is configured to create flexibility offerings CEM_1 is configured for inter- CEM communication The potential flexible load does not fall into a constraint set by the end-user	CEM_xyz is aware that flexibility has been assigned

1133 <u>Typical steps</u>

Step No.	Event	Name of Process/	Description of Process/ Activity	Information Producer	Information Receiver	Information
		Activity		(Actor)	(Actor)	Exchanged
1	CEM_1 is (made) aware of one	Send flexibility	CEM_1 creates flexibility offering and sends this to	CEM_1	CEM_2-n	Flexibility Offer

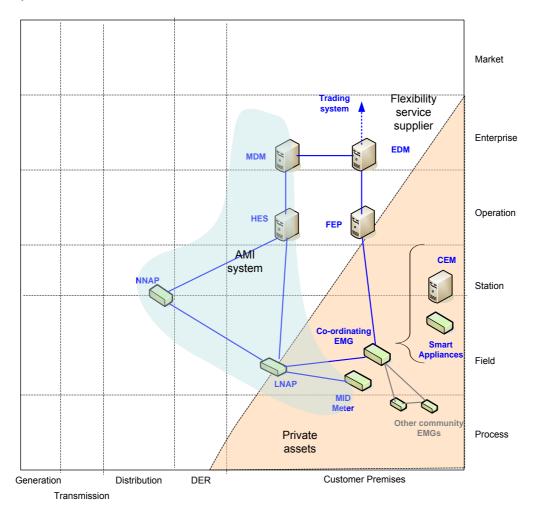
	or more potential flexible loads / production	offer	connected neighborhood CEM's			
2	Neighbor- hood CEM's receive the flexibility offer	Reply to flexibility offer	Neighborhood CEM's reply, indicating the conditions under which they are willing to accept the flexibility offer	CEM_2-n	CEM_1	Flexibility Offer Reply
3	CEM_1 receives reply from interested neighbor- hood CEM's	Assign flexibility	CEM_1 determines the "winners", the final amount of power for each and sends an assignment to the "winning" neighborhood CEM's	CEM_1	CEM_xyz	Flexibility Offer Assignment

1135 A2.2 Implications: WGSP-2136

1136 Considering the selected use case WGSP-2136 more deeply, it is evident that this peer-to-peer clearing 1137 activity is only worthwhile in practice if suitable commercial and regulatory arrangements are in place. It has 1138 to be cheaper for the community to act together in this way than if the dwellings concerned engaged 1139 individually in offering their own flexibility to the grid at whatever price their supplier/utility was offering. Thus 1140 the dwelling with its own generation would have to get a better price by making it available to the local 1141 community than the price that would be obtained if the power were exported to the wider grid; similarly the 1142 customers in that community needing electricity would have to get it at a better price than the retail price 1143 available from their supplier.

1144 A number of approaches are possible to achieve this, and all would probably require changes to the industry 1145 model operating in the member state concerned. However, one way is that the community could in effect act 1146 as a group customer, aggregating energy requirements / pooling generation resources, and entering into a 1147 supply (possibly wholesale?) contract with their chosen supplier for the balance of the community's needs. 1148 The community coordinator would keep a list of community energy resources up-to-date and indicate 1149 available resources and communicating community energy offers/needs to each energy management 1150 gateway (EMG). Customers would continue to be metered individually, but a community system of (dynamic) 1151 allocation would exist in parallel, with direct transactions set-up between different EMGs (e.g. via the 1152 internet). This need not involve the community coordinator. However the coordinator would take information 1153 from the various CEMSs on the outcome of the transactions and divide costs and benefits according to 1154 whatever methodology they might mutually agree.

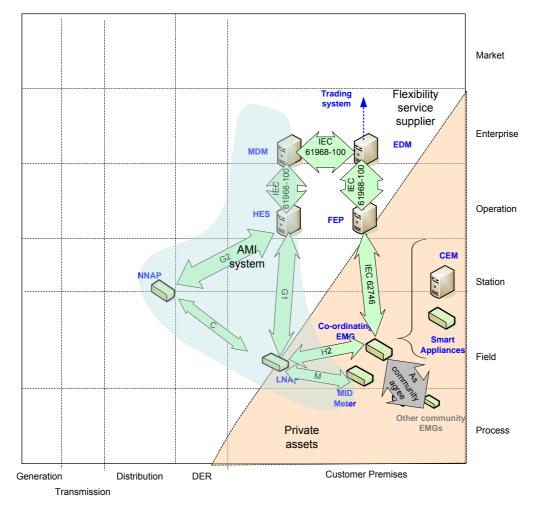
For the latter to work, the community agreement would need to be registered with the supplier. Registration would entitle community members to receive a higher price (or other benefit) for locally produced and consumed energy than the normal export price, since the export price would normally take account of the distribution costs associated with injection of energy into the grid. Similarly members consuming locally produced power would receive a discount on the distribution element of the normal retail tariff to reflect their local consumption. NOTE this is simpler to achieve if all members of the community are customers of the same supplier.


Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

- 1162 A community coordinator (specific to the community or an Energy Service Provider acting on behalf of the
- 1163 community) could receive an aggregated bill on behalf of all members based on these special community 1164 prices and then allocate costs/income accordingly. Or the supplier, acting as the agent of the community and 1165 following the community's allocation rules in the registered agreement, could carry out the task.
- 1166 NOTE A direct peer-to-peer agreement between two individual parties seems unlikely to be able to be implemented without someone playing a coordinating role, serving as a community repository or acting as an aggregator on behalf of the community, and for this reason, the community coordinator is seen as a separate actor, even if the role is undertaken by one of the users in the community.
- 1170 In terms of information flows, there would be a need to manage the aggregation and allocation process. This
- 1171 would require communications between individual community members (or more precisely the energy
- 1172 management gateways of the premises concerned) and the community coordinator, and potentially peer-to-
- 1173 peer communications between CEMSs via their energy management gateways also.
- 1174 Since this use case is primarily concerned with achieving the optimal commercial outcome for the
- community, the coordinator would also communicate with the community's supplier, with the coordinator
- acting as either a community aggregator or a quasi-customer and dealing with the supplier for any surplus
- energy made available to the wider grid. Since the coordinator is in effect acting as a customer,
- 1178 communications with the supplier can be seen in the same way as when an individual customer is providing 1179 flexibility.
- 1180

1181 A.2.3 Detailed mapping of WGSP-2136 to SGAM

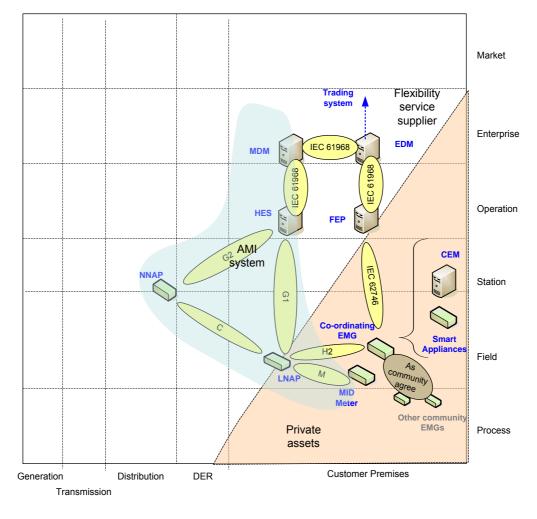
1182 The following diagrams illustrate possible mapping of WGSP-2136 at the component, communication and information layers¹⁴.


1184

1185

Figure A-1 : Mapping of WGSP-2136 to the SGAM Component Layer

¹⁴ Please that the following mappings are based on [SG-CG/G], abbreviations and symbols are explained in this report.



1187

1188 1189

Figure A- 2: Mapping of WGSP-2136 to the SGAM Communication Layer

1192

Figure A- 3: Mapping of WGSP-2136 to the SGAM Information Layer

1194 A.3 Primary use case WGSP-2137

1195 A.3.1 Description

1196 To illustrate the second primary use case WGSP-2137, consider a radial distribution network with distributed 1197 generation resources (producers). The producers can be used to support voltage by injection of power at the 1198 connection node. Each producer is monitored and controlled by a broker agent, which can detect the voltage violation. Each agent can behave as a broker to engage the other agents (and in practice their generators) in 1199 1200 the voltage regulation. Note that each agent is capable of broker behavior, so this structure is not rigid. Each 1201 producer can contribute depending on its current operating conditions and "electrical position" in the network. 1202 Via his CEMS, the broker agent requests flexibility and, based on the current information and offers received 1203 from the other agents, decides a dispatch strategy.

- In this use case, the broker agent is considered to be a part of the CEM and includes local monitoring and
 control capabilities as well as algorithms for brokerage including accounting. Since this use case describes
 communication between multiple CEMS, each CEM is assigned a number / an IP address.
- 1207

1208 WGSP-2137: Inter-CEM flexibility request

Scenario	Primary	Triggering	Pre-Condition	Post-
Name	Actor	Event		Condition
Inter-CEM flexibility request	CEM_1	CEM_1 is (made) aware of a flexibility need	CEM_1 is configured to request flexibility CEM_1 is configured for inter-CEM communication The potential flexible load does not fall into a constraint set by the end-user	CEM_xyz is aware that flexibility has been assigned

1209 Typical steps

Step No.	Event	Name of Process/ Activity		Service	Information Producer (Actor)	Information Receiver (Actor)	Information Exchanged
1	CEM_1 is (made) aware of a flexibility need	Send flexibility request	CEM_1 creates a flexibility request and sends this to connected neighborhood CEM's		CEM_1	CEM_2-n	Flexibility Request
2	Neighbor- hood CEM's receive the flexibility request	Reply to flexibility request	Neighborhood CEM's reply, indicating the conditions under which they are willing to provide		CEM_2-n	CEM_1	Flexibility Request Reply

			flexibility			
3	CEM_1 receives reply from offering neighbor- hood CEM's	Assign flexibility	CEM_1 determines the "winners", the final amount of power for each and sends an assignment to the "winning" neighborhood CEM's	CEM_1	CEM_xyz	Flexibility Request Assignment

1211 Information exchanged

Name of Information Exchanged	Description of Information Exchanged
Flexibility Offer	
Flexibility Offer Reply	Contains information on how much flexibility is the CEM willing to buy, what is the local impact and which is the sensitivity index value)
Flexibility Offer Assignment	
Flexibility Request	
Flexibility Request Reply	Contains information on how much flexibility is the CEM willing to offer, what is the local impact and which is the sensitivity index value)
Flexibility Request Assignment	

1212

1213 A.3.2 Implications: WGSP-2137

In WGSP-2137, there is in effect a 'community' of producers who are prepared to inject power as required by the local distribution company. This community may be virtual, rather than geographically delineated as in WGSP-2136, but in common with WGSP-2136, the list of individual premises involved in the process would probably be registered in some way, in this instance with the distribution company. While the need for power injection could be communicated to the producers in the community by the distribution company, this use case envisages an automatic process based on monitoring of the system by individual producers and peerto-peer communications between them to determine optimal dispatching on a collective basis.

Since the purpose is to stabilize voltage within the wider distribution grid, no special community tariff arrangements would be required. Individual producers would be recompensed via the usual export tariffs for their part in the collective resolution of the need for injection. In common with WGSP-2136, peer-to-peer communication would be required, together with the existence of a community coordinator who would manage the community response in accordance with locally determined rules.

Smart Grid Coordination Group Document for the M/490 Mandate Smart Grids Methodology & New Applications - SG-CG/M490/K

In terms of information flows at the local level, there would be a similar need for communications between individual community members (or rather the energy management gateways of the premises concerned) and the community coordinator, and potentially peer-to-peer communications between energy management gateways also. However since the use case is primarily concerned with achieving the optimal response by the community to a distribution problem, the coordinator would in this instance communicate with the distribution system operator. Again the coordinator is in effect acting as a customer, and communications from the distribution company can be seen as an emergency response use case.

1233

1235 A.3.3 Detailed mapping of WGSP-2137 to SGAM

1236 The following diagrams illustrate possible mapping of WGSP-2137 at the component, communication and information layers.

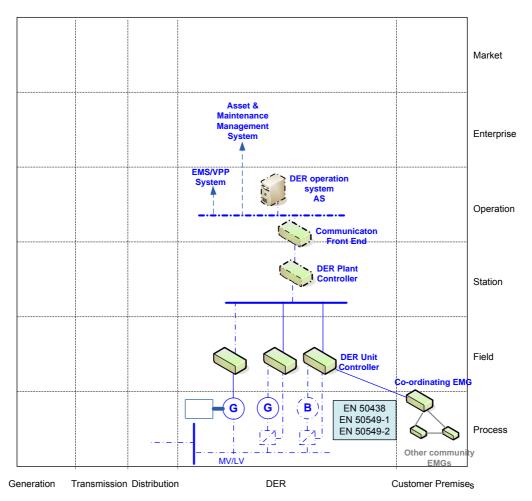
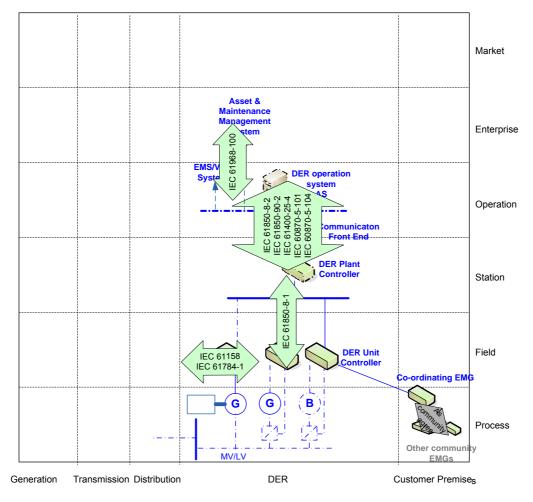



Figure A-4 : Mapping of WGSP-2137 to the SGAM Component Layer

1240 1241

Figure A- 5: Mapping of WGSP-2137 to the SGAM Communication Layer

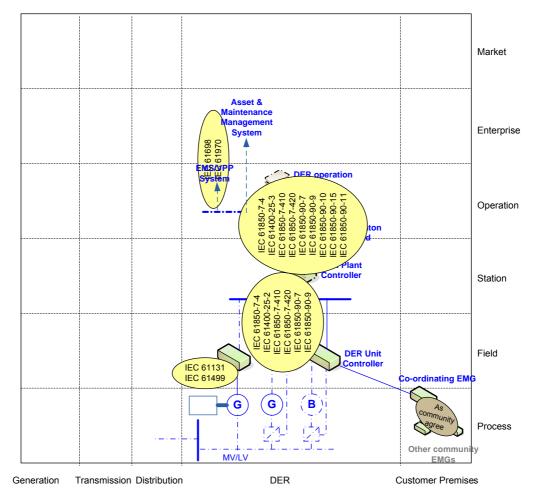


Figure A- 6: Mapping of WGSP-2137 to the SGAM Information Layer

1243

1244

1245