CEN-CENELEC-ETSI Smart Grid Coordination Group

Date: 11/2014

Secretariat: CCMC

SG-CG/M490/F_ Overview of SG-CG Methodologies

Version 3.0

1 Foreword

Based on the content of the M/490 EU Mandate in its phase 1 (2011-2012), the general scope of work on
 standardization of the Smart Grid might be considered as follows:

4 CEN, CENELEC, and ETSI are requested to develop a framework to enable European Standardization
 5 Organizations to perform continuous standard enhancement and development in the field of Smart
 6 Grids, while maintaining transverse consistency and promote continuous innovation.

In the light of the discussions held between the EC Reference Group (EG1) and the Smart Grid Coordination
 Group (SG-CG), the need to iterate the EC Mandate M/490 was considered and agreed on both sides.

9 As a main objective of the mandate phase 2, the SG-CG wishes to implement the developed methodology,
10 which set up the foundations for managing the continuous engineering and deployment of standards to
11 ensure a real end-to-end interoperability for all generic use cases, including explicitly security.

- A further refinement of the methodology will be used for the set of consistent standards [SG-CG/G] (under item 3.1 and 3.2 of M/490).
- 14 The work is based on [SG-CG/C] and [SG-CG/E].
- 15 A set of documents is addressing this objective:
- The main report (this document) as a summary of different tools, elements and methodologies developed by the different working groups of the Smart Grid Coordination Group [SG-CG/F],
- and additional separate reports detailing specific issues addressed by the working group "Methodology and
 New Applications":
- The conceptual model and its relation to market models for Smart Grids [SG-CG/J]
- SGAM User Manual Applying, testing & refining the Smart Grid Architecture Model (SGAM)
 [SG-CG/K]
- Overview of the main concepts of flexibility management [SG-CG/L]
- 24

27	Table of ContentsPa	ige
28	Foreword 2	
29	1. Executive Summary	5
30	2. Methodology, new applications and Smart Grid standardization	6
31	2.1. Objectives	6
32	2.2. Structure and intended usage of this report	
33	2.3. How to read this report	7
34	3. References	8
35	4. Terms and definitions	9
36	5. Symbols and abbreviations	12
37	6. Concepts, elements and tools for the Smart Grid methodology	14
38	6.1. Introduction	
39	6.2. Roles and actors in smart grids and smart markets	
40	6.2.1. Roles for market models	
41	6.2.2. Actors	
42	6.2.3. Modelling of roles, actors and related concepts	
43	6.2.4. Generic actor list	
44 45	6.3. Smart Grid conceptual model	
45 46	6.3.1.Conceptual domains 6.4. Smart Grid use cases	
40	6.4.1.Introduction: Use cases and standardization	
48	6.4.2. Use case template	
49	6.4.3. Classification of use cases	
50	6.4.4. Organization of use cases	
51	6.4.5.Use cases repository	
52	6.5. Smart Grid Architecture Model (SGAM)	22
53	6.6. Set of standards for the smart grid system	
54	6.7. Standards gaps, prioritization, work program	
55	6.8. Cyber security & privacy	
56	6.9. Interoperability	
57 58	6.9.1.Introduction 6.9.2.System design and use case creation	
50 59	6.9.3. Use of standards, specifications and profiles	
60	6.9.4. Compliance, conformance and interoperability testing	
61	6.9.5. Linkages to use cases and SGAM	
62	6.9.6.Summary of IOP methodology	
63	6.9.7. Developing interoperability profiling	
64	6.9.8. Managing profiles	33
65	6.9.9. Implementation of profiles in real projects	33
66	7. Processes and management for the Smart Grid standardization methodology	34
67	7.1. Overall process – How the elements and tools are interlinked	
68	7.1.1.Introduction	
69	7.1.2. Preconditions	35
70	7.1.3. From requirements to use cases	
71	7.1.4. From use cases to the SGAM use case analysis	
72	7.1.5. From use cases and SGAM analysis to standards gaps	
73 74	7.1.6. From standards gaps to standards	
74 75	7.1.7. From use cases and standards to interoperability profiles (BAP)	
15	7.1.8. From interoperability profiles (BAP) to "testing profiles" (BAIOP)	42

76	7.2.	Introduction into the process of standard development in standardization	
77		organizations	42

7879 List of figures80

00		
81	Figure 1: Elements of the Smart Grids Methodology and their usage	7
82	Figure 2: Meta-model of the concepts related to actors and roles	
83	Figure 3: Information flow between roles, actors and use cases	
84	Figure 4: European Conceptual Model for the Smart Grid	
85	Figure 5: Use case structure (based on SM-CG)	
86	Figure 6: SGAM – Smart Grid Architecture Model	
87	Figure 7: SGAM Analysis Pattern	24
88	Figure 8: Systems break-down over the SGAM plane	
89	Figure 9: V-Model including BAP and BAIOP	
90	Figure 10: Workflow of project specific profiling	
91	Figure 11: Smart Grids generic pre- and post-standardization process	
92	Figure 12: Basic process for SGAM Use Case Analysis	
93	Figure 13: Use Case Analysis with SGAM – example for an analysis process	
94	Figure 14: Process from use case to interoperability on SGAM function layer	
95	5	
96	List of tables	

96 List of tables

97	Table 1 - Advantages of use case descriptions	. 19
	Table 2 – IEC standardization process	
	Table 3 – Comparison of IEC and CENELEC processes	
100	Table 4 – Comparison of IEC and ETSI processes	

101 102

102

104 History of document

105

V1.0	18/12/2013	For publication and review by the BTs and TCs.
V2.0	29/08/2014	Final for distribution to the SG-CG, commenting phase
V3.0	31/10/2014	Final version after commenting period in SG-CG and integrating of the received comments

106

107 Main changes in this version

108 **1. Executive Summary**

109 This document is prepared by the Smart Grid Coordination Group (SG-CG) "Methodology and New 110 Applications" Working Group (SG-CG/Method) and addresses the M/490 mandate's phase 2 deliverable 111 regarding Smart Grid methodology and processes (in this report mainly used for standardization) and its 112 applications to the development of new Smart Grid applications.

113 In the phase 2 of M/490, SG-CG/Method has taken over work of phase 1 with the intent to complement and 114 harmonize it when necessary. Examples of such work elements are the SGAM or architecture models, or the 115 use case methodology. The report summarizes tools and methods from all working groups (WG) of the 116 Smart Grid Coordination Group (SG-CG).

The overall objective is to provide a methodology that is both complete and coherent. It must be flexible with respect to new applications and the emergence of new or different market models. All the methodology elements developed in SG-CG must be aligned and unambiguous. The report is short and focused on the "how to use"; when details are needed, they can be found in the separate reports [SG-CG/J-L] or in references to the results of M/490 phase 1.

The methodology relies on two pillars. Firstly, concepts and models (and to some extent tools to support them) are the building blocks for the analysis. Secondly, to conduct the work toward completion, processes insert these concepts and models in a specific workflow. These two aspects of the methodology are clearly differentiated and presented sequentially.

The role of the methodology is to support and assist other standardization groups and to provide them with easily applicable methods and architectures and ensure an easy understanding of the approach. The methodology provides tools for the identification and structuring of requirements for new Smart Grid standards and provides a framework for their development and presentation. It considers aspects ranging from markets down to information and communication technology (ICT) and electro-technical components. Though standardization technical committees are the main intended audience of the methodology, other actors like researchers, engineers or legislators can also use it.

- 133 The main concepts and models introduced (or refined) in this report are:
- A model of roles and actors including a 'market' view that is needed to ensure that the methodology can support the expected evolution of market structures in Europe.
- A Smart Grid Conceptual Model that is based on the (market) roles and actors model. It is an evolution of the one developed during M/490 phase 1.
- A Smart Grid Use Case model that can support standards development in the definition and design phases. Some support tools complement it.
- The Smart Grid Architecture Model (SGAM) as the reference model in a technology neutral manner which allows one to analyze and visualize different smart grid use cases.
- Methods and tools for Smart Grid Information Security (SGIS), interoperability and system
 breakdown
- Once the main concepts are presented, the methodology describes how they are combined into an integrated and generic pre-standardization process involving new requirements, use cases, use of SGAM, up to the definition of new standards and profiles, and a short overview on conformance.
- [SG-CG/J] provides further details for the developments of market models based on meta models and the harmonized role model. As one result the European conceptual model is introduced. A short overview is provided in Chapter 6.

- [SG-CG/K] describes the usage of SGAM in combination with use cases and possible ways for analysis. Furthermore the report provides several examples of use cases with SGAM to demonstrate the usage and to check the completeness of the proposed methodology. The basic concepts are outlined in chapter 6 of this report.
- [SG-CG/L] analyzes the flexibility management and the traffic light concepts. It identifies and defines the relation between the developments of market models and standards.
- 156 Recommendation towards standardization development organizations (SDO):

The aim of this work is to describe new methodologies partly based on known system engineering tools, which can be used for standardization work in the area of new, innovative, and complex system of systems applications. Supported by all working groups of the SG-CG the methods, concepts, tools and processes presented here may also be interesting for real-world projects, but in these reports they are taken from quoted sources and further developed for the use in the standardization process, in order to support interoperability and the management of complex standardization tasks between the different technical committees and stakeholder groups involved.

- 164 The aim is to develop a common community view by means of accepted and harmonized use cases and 165 broadly agreed models like the SGAM or the role based conceptual model. The management of 166 standardization tasks is supported by tools like the gap prioritization, the SG-CG work program with 167 dashboards, the V-model, profile development and the organization of accompanying information security. 168 Suggestions of possible implementations in standardization are provided by process descriptions.
- SDO's are able to decide where the methodologies suggested and presented can be introduced, adopted and further detailed for their own purpose. These methodologies will certainly be relevant not only for the
- area of Smart Grid other 'system of system' areas should benefit as well.
- 172

173 **2.** Methodology, new applications and Smart Grid standardization

In the first phase of M/490, a large number of elements related to a methodology for Smart Grid
standardization have been developed. Examples of such elements are the SGAM or architecture models (by
the Reference Architecture WG in [SG-CG/C]), the Use Case Methodology (by the Sustainable Process WG
in [SG-CG/E]) or the SGIS Toolbox (by the SGIS WG in [SG-CG/E]). The interaction between these different
elements was described in the "Framework for Smart Grids Standardization" (in [SG-CG/A]).

In the second phase of M/490, the "Methodology and New Applications" Working Group has taken over this work with the intent to complement and harmonize it when necessary. The result of the work is a new report (i.e. this document and its additional reports) with a new perspective and largely new content. This report makes reference to the phase 1 documents mentioned above (see references in chapter 3) and, in a few cases, reuses some of their material.

184 2.1. Objectives

185 The overall objective is to provide a methodology that is both complete and coherent.

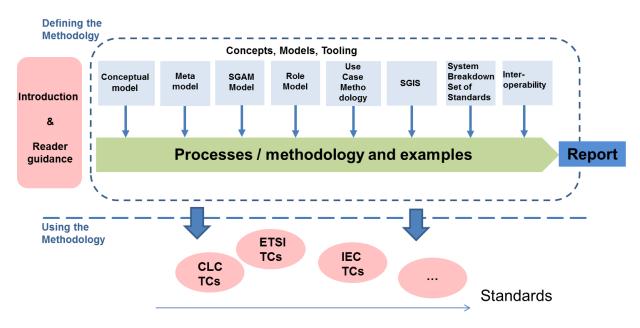
186 Applicability

187 On the one hand, the methodology must be applicable to Smart Grid standardization globally. In particular, it 188 must be flexible with respect to new applications and the emergence of new or different market models. On

the other hand, all the methodology elements developed in SG-CG must be aligned and unambiguous.

- 190 Usability
- 191 The second objective is usability. The first application of the methodology has been with the new applications
- investigated in the working group, thus offering a reality check supported by several examples.

193 Simplicity


The last objective is simplicity. The report is short and focused on the "how to use". When details are needed, they can be found in the separate reports [SG-CG/J-L] or in references to the results of M/490

196 phase 1.

197 2.2. Structure and intended usage of this report

In the definition of the methodology, two kinds of elements are developed. Concepts and models (and to some extent tools to support them) are the building blocks for the analysis. To conduct the work toward completion, processes insert these concepts and models in a specific workflow. These two aspects of the methodology are clearly differentiated and presented in a sequential manner as shown in Figure 1.

The role of the methodology is to support and assist standardization groups and to provide them with easily applicable methods and architectures and ensure an easy understanding of the approach. Though the main intended audience of the methodology is standardization technical committees, it can also be used by other actors like research projects testing new concepts or engineers developing Smart Grids products, or even the legislator in order to check the legislative framework.

207 208

Figure 1: Elements of the Smart Grids Methodology and their usage

209

210 2.3. How to read this report

- 211 The rest of this document is structured as follows.
- Chapters 3, 4 and 5 provide background information (references, etc.). Similar sections may also be presentin the additional reports when they are specific.

Chapter 6 provides concepts, elements and tools for the Smart Grid methodology like the European view of
 the Smart Grid Conceptual Model, an overview of the general elements of a Reference Architecture, or the
 use case methodology. It introduces the viewpoints chosen as a target of the SG-CG/Methodology Working
 Group.

Chapter 7 first presents the overall process, how the various elements can be linked and how it is possible to use them across the standardization value chain (from requirements to use cases to SGAM to standards (gaps) to interoperability profiles). Then it discusses how to introduce the suggested methodologies and tools in Smart Grid standardization organizations

222 **3. References**

223 224	Smart Grids	Coordina	ation Group Phase 1 Documents
225 226 227 228 229 230 231	[SG-CG/A] [SG-CG/B] [SG-CG/C] [SG-CG/D] [SG-CG/E] [Gap Prioritizati	ion]	SG-CG/M490/A_Framework for Smart Grid Standardization SG-CG/M490/B_Smart Grid First set of standards SG-CG/M490/C_Smart Grid Reference Architecture SG-CG/M490/D_Smart Grid Information Security SG-CG/M490/E_Smart Grid Use Case Management Process CEN-CENELEC-ETSI Smart Grid Coordination Group, 'Standardization Gaps Prioritization for the Smart Grid' v.2.1, (SGCG_Sec0028_DC), Brussels, 2011
232 233 234	[Work Program]]	CEN-CENELEC-ETSI Smart Grid Coordination Group, ' Program of standardization work for the Smart Grid' (SGCG_Sec0032_DC (version 1.6)), Brussels, 2012 []
235 236	Smart Grids	Coordina	ation Group Phase 2 Documents
230 237 238 239 240 241 242 243	[SG-CG/F] [SG-CG/G] [SG-CG/H] [SG-CG/J] [SG-CG/K] [SG-CG/L]	SG-CG/N SG-CG/N SG-CG/N SG-CG/N	A490/F_ Overview of SG-CG Methodologies (this document) A490/G_ Smart Grid Set of standards A490/H_ Smart Grid Information Security A490/I_ Smart Grid Interoperability A490/J_ Conceptual model - market models A490/K_ SGAM usage and examples A490/L_ Flexibility Management
244 245	References n	nade in t	his document
246 247 248 249	[ENTSO-E]		'Modular Development Plan of the Pan-European Transmission System 2050' of the e-HIGHWAY2050 Project Consortium: http://www.e-highway2050.eu/e-highway2050/e-highway2050-modular- development-plan-of-the-pan-european-transmission-system-2050/
250 251	[GWAC:2008]		GridWise Interoperability Context-Setting Framework (March 2008), GridWise Architecture Council, online: <u>www.gridwiseac.org</u> .
252 253 254	[HEM-RM:2011]	The Harmonized Electricity Market Role Model (December 2011), ENTSO-E, online: <u>https://www.entsoe.eu/fileadmin/user_upload/edi/library/role/role-model-v2011-01.pdf</u> .
255	[IEC 61850]		Communication networks and systems for power utility automation, 2010.
256 257	[IEC 61850-7]		Communication networks and systems for power utility automation - Part 7: Basic communication structure
258 259	[IEC 61850-8]		Communication networks and systems for power utility automation - Part 8: Specific communication service mapping (SCSM)
260	[IEC 62264:200)3]	IEC 62262, Enterprise-control system integration
261	[IEC 62351]		Power systems management and associated information exchange
262 263	[IEC 62357:201	1]	IEC 62357-1, TR Ed.1: Reference architecture for power system information exchange, 2011.
264	[IEC 62559]		IntelliGrid Methodology for Developing Requirements for Energy Systems
265 266	[IEC 62559-2]		"Use case methodology – Part 2: Definition of the templates for use cases, actor list and requirements list", CDV, 2013
267 268	[IEC PAS 6255	9:2008]	IEC PAS 62559:2008-01, IntelliGrid Methodology for Developing Requirements for Energy Systems, 2008

269 270	[ISO/IEC 19505-2:2012]	Information technology - Object Management Group Unified Modeling Language (OMG UML) - Part 2: Superstructure
271 272	[ISO/IEC 27001]	Information technology - Security techniques - Information security management systems - Requirements
273 274	[ISO/IEC 27002]	Information technology - Security techniques - Code of practice for information security controls
275	[ISO/IEC 42010:2011]	ISO/IEC 42010: Systems Engineering – Architecture description, 2011
276 277 278	[ISO/IEC TR 27019]	Information technology - Security techniques - Information security management guidelines based on ISO/IEC 27002 for process control systems specific to the energy utility industry
279 280 281	[Jonkers 2010]	TOGAF 9 and ArchiMate 1.0 White paper, The Open Group 2010, see also <u>http://pubs.opengroup.org/architecture/togaf9-doc/arch/</u> and <u>http://pubs.opengroup.org/architecture/archimate2-doc/</u>
282 283	[Mapping Tool]	SMART GRID STANDARDS MAPPING TOOL, http://smartgridstandardsmap.com/, 2013
284 285	[NIST IR-7628]	Guidelines for Smart Grid Cyber Security, <u>www.nist.gov/smartgrid/upload/nistir-7628_total.pdf</u> , 2010
286 287 288 289	[NIST:2009]	NIST Framework and Roadmap for Smart Grid Interoperability, Interoperability Standards Release 1.0 (2009), Office of the National Coordinator for Smart Grid Interoperability, National Institute of Standards and Technology, U.S. Department of Commerce. Online:
290 291	[NERC CIP]	North American Electric Reliability Corporation, Critical Infrastructure Protection www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
292 293	[Trefke 2012]	"Grundlagen der Referenzarchitekturentwicklung", Jörn Trefke, in "IT- Architekturentwicklung im Smart Grid", 1 ed., Berlin Heidelberg: Springer, 2012."

294 4. Terms and definitions

295 Terms related to the description of actors and meta-model¹

296 Actor

- 297 An Actor represents a party that participates in a business transaction. Within a given business transaction
- an actor performs tasks in a specific role or a set of roles.
- 299 EXAMPLE: Employee, Customer, Electrical vehicle, Demand-response system.

300 Party

- 301 Parties are legal entities, i.e. either natural persons (a person) or judicial persons (organizations). Parties can
- 302 bundle different roles according to their business model.
- 303 EXAMPLE: real organisations like Dong Energy, Alliander, APX Group.
- 304 205 **P**

305 Responsibility

- 306 Responsibilities define external behavior to be performed by parties.
- 307 EXAMPLE: Nominate Energy, Operate a grid, Determine the market energy price after applying technical constraints.

308 309 **Role**

- 310 A Role represents the intended external behavior (i.e. responsibility) of a party. Parties cannot share a role.
- 311 Parties carry out their activities by assuming roles, e.g. system operator, trader. Roles describe external
- business interactions with other parties in relation to the goal of a given business transaction.
- 313 EXAMPLE: Balance Responsible Party, Grid Operator, Market Operator.

¹ Refer also to clause 6.2

315 Terms related to the description of architectural concepts

316 Architecture

314

Fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution [ISO/IEC 42010].

319

320 Architecture Framework

321 Conventions, principles and practices for the description of architectures established within a specific domain
 322 of application and/or community of stakeholders [ISO/IEC 42010].
 323

324 Conceptual Model

A Smart Grid is a complex system of systems for which a common understanding of its major building blocks and how they interrelate must be broadly shared. SG-CG has developed a *conceptual architectural reference model* to facilitate this shared view: the European conceptual model of Smart Grid clusters, (European harmonized) roles and system actors, in line with the European electricity market and electricity system as whole. This model provides a means to analyze use cases, identify interfaces for which interoperability standards are needed, and to facilitate development of a cyber-security strategy (adopted from [NIST 2009]).

331 Smart Grid Architecture Model

The Smart Grid Architecture Model (SGAM) is a reference model to analyse and visualise smart grid use
 cases in respect to interoperability, domains and zones.

335 Domain

In the rest of the document (and its additional reports), this term may refer to two different concepts. In order
 to avoid ambiguity, the full names 'Conceptual Domain' or 'SGAM Domain' (as defined below) will be used
 systematically.

340 Conceptual Domain

A conceptual domain highlights the key areas of the conceptual model from the point of view of
 responsibility. It groups (market) roles and their associated responsibilities present in the European electricity
 markets and the electricity system as a whole.

345 SGAM Domain

One dimension of the *Smart Grid Plane* that covers the complete electrical energy conversion chain,
 partitioned into 5 domains: Bulk Generation, Transmission, Distribution, DER (Distributed Energy Resources)
 and Customers' Premises.

350 Interoperability

Interoperability refers to the ability of two or more networks, systems, devices, applications, components to
 interwork, to exchange and use information to perform required functions.
 [SG-CG/I]

353 [354

367

355 Reference Architecture

A Reference Architecture describes the *structure* of a system with its element types and their structures, as
 well as their *interaction* types, among each other and with their environment. A Reference Architecture

- defines restrictions for an instantiation (concrete architecture). Through abstraction from individual details, a
- Reference Architecture is universally valid within a specific domain. Further architectures with the same functional requirements can be constructed based on the reference architecture. Along with *reference*
- 361 architectures comes a *recommendation*, based on experiences from existing developments as well as from a
- 362 wide acceptance and recognition by its users or per definition (following [Trefke 2012]).

363 SGAM Interoperability Layer

In order to allow a clear presentation and simple handling of the architecture model, the interoperability
 categories described in the GridWise Architecture model are aggregated in SGAM into five abstract
 interoperability layers: Business, Function, Information, Communication and Component.

368 SGAM Smart Grid Plane

The Smart Grid Plane is defined from the application to the Smart Grid Conceptual Model of the principle of separating the Electrical Process viewpoint (partitioning into the physical domains of the electrical energy conversion chain) and the Information Management viewpoint (partitioning into the hierarchical zones (or levels) for the management of the electrical process [IEC 62357:2011, IEC 62264:2003].

373 374 SGAM Domain

375 See above.

376

377 SGAM Zone

378 One dimension of the *Smart Grid Plane* represents the hierarchical levels of power system management, 379 partitioned into 6 zones: Process, Field, Station, Operation, Enterprise and Market [IEC 62357:2011].

380 381 **Systems**

A typical industry arrangement of components and systems, based on a single architecture, serving a specific set of use cases

384 [SG-CG/B]

385

386 Terms related to the description of use cases concepts 387

388 **Coordinating TC**

A technical committee within a standardization organization taking over the responsibility for agreed use cases while involving other interested and concerned technical committees.

NOTE For example the responsibility might include further detailing, analysis, maintenance and harmonization of the use case.
 393

394 Generic Use Case

A use case that is broadly accepted for standardization, usually collecting and harmonizing different real use
 cases without being based on a project or technological specific solution.

398 High Level Use Case

A use case that describes a general requirement, idea or concept independently from a specific technical
 realization like an architectural solution.

402 Individual Use Case

403 A use case that is specifically for a project or within a company / organization.

405 Involved TC

404

407

406 A technical committee within a standardization organization with an interest in a generic use case.

408 Primary Use Case

409 A use case that describes in detail the functionality of (a part of) a business process.

NOTE Primary use cases can be related to a primary goal or function, which can be mapped to one architectural solution.
 411 solution.

413 Repository

414 A place where information like use cases can be stored (see Use Case Repository).

415 416 **Scenario**

- 417 A possible sequence of interactions.
- NOTE Scenario is used in the use case template defining one of several possible routes in the detailed description of sequences.
 420

421 Secondary Use Case

- 422 An elementary use case that may be used by several other primary use cases.
- 423 EXAMPLE Authentication, Authorization, Accounting 424

425 Specialized Use Case

- 426 A use case that is using specific technological solutions / implementations.
- 427 EXAMPLE Use case with a specific interface protocol

428 429 **Use Case**

436

437

438

439

440

441

449

455

430 Specification of a set of actions performed by a system, which yields an observable result that is, typically, of 431 value for one or more actors or other stakeholders of the system

- 432 [ISO/IEC 19505-2:2012, 16.3.6 Information technology Object Management Group Unified Modeling
 433 Language (OMG UML) Part 2: Superstructure]
 434
- 435 NOTE 1 There are two types of Use Cases:
 - Business Use Cases describe how Roles of a given system interact to execute a business process. These processes are derived from services, i.e. business transactions, which have previously been identified.
 - System Use Cases describe how Actors of a given system interact to perform a Smart Grid Function required to enable / facilitate the business processes described in Business Use Cases. Their purpose is to detail the execution of those processes from an Information System perspective.
- 442 NOTE 2 Since a Smart Grid Function can be used to enable / facilitate more than one business process, a System Use
 443 Case can be linked to more than one Business Use Case.
 444
- 445 [IEC TS 62913-2 CD] 446

447 Use Case Cluster

A group of use cases with a similar background or belonging to one system or one conceptual description.

450 Use Case Repository

- A database for edition, maintenance and administration of use cases that are based on a given use cases template.
- 453NOTEThe UCR is designed as collaborative platform for standardization committees, inter alia equipped with
export functionalities as UML model or text template.

456 Use Case Template

457 A form that allows the structured description of a use case in predefined fields.

458 5. Symbols and abbreviations

459	AMI	Advanced Metering Infrastructure
460	ACSI	Abstract communication service interface
461	BAP	Basic Application Profiles
462	BAIOP	Basic Application Interoperability Profiles
463	CC	Coordinating Committee
464	CD	Committee Draft for Comments
465	CDV	Committee Draft for Voting
466	CEN	Comité Européen de Normalisation
467	CENELEC	Comité Européen de Normalisation Electrotechnique
468	CIM	Common Information Model
469	CIS	Customer Information Services
470	CTC	Coordinating Technical Committee
471	DER	Distributed Energy Resources
472	DMS	Distributed Management System
473	DPIA	Data Protection Impact Assessment
474	DSO	Distribution System Operator
475	DUT	Device Under Test
476	eBIX	(European forum for) energy Business Information Exchange
477	EC	European Commission
478	EFET	European Federation of Energy Traders
479	EMS	Energy Management Systems
480	EN	European Standard
481	ENAP	EN Approval Procedure
482	ENISA	European Union Agency for Network and Information Security

483 484	ENTSO-E ENQ	European Network of Transmission System Operators for Electricity
485 486	ESCO ETSI	Energy Service Company European Telecommunications Standard Institute
487	EU	European Union
488	FDIS	Final Draft International Standard
489	GUC	Generic Use Cases
490 491	GWAC HEM-RM	GridWise Architecture Council Harmonized Electricity Market Role Model
492	HL-UC	High Level Use Case
493	ICT	Information & Communication Technology
494	IEC	International Electrotechnical Commission
495	IETF	Internet Engineering Task Force
496	IOP	Interoperability Profiles
497 498	IS ISO	International Standard
490	ITU	International Organization for Standardization International Telecommunication Union
500	MG	Microgrid
501	MICS	Model Implementation Conformance Statement
502	MMS	Manufacturing Messaging Specification
503	MMXU	Measurement logical node
504	NIST	National Institute of Standards and Technology
505	NP	New Work Item Proposal (Altern. NWIP New Work Item Proposal)
506 507	PAIOP	Project Application Interoperability Profiles
507 508	PAP PICS	Project Application Profiles Protocol Implementation Conformance Statement
509	PIXIT	Protocol Implementation eXtra Information for Testing
510	PWI	Preliminary Work Item
511	RDF	Resource Description Framework
512	SCADA	Supervisory Control and Data Acquisition
513	SDO	Standards Developing Organization
514	SGAC	SGIP Smart Grid Architecture Committee
515 516	SGAM SG-CG	Smart Grid Architecture Model Smart Grids Coordination Group
517	SG-CG/Meth	
518	SGIP	Smart Grid Interoperability Panel
519	SGIS	Smart Grid Information Security
520	SGTF EG2	Smart Grid Task Force Expert Group 2
521	SM-CG	Smart Metering Coordination Group
522	ST	Support Team
523 524	TAP TB	Two-step Approval Procedure Technical Body
525	TC	Technical Committee
526	TF	Task Force
527	TOGAF	The Open Group Architecture Framework
528	TR	Technical Report
529	TSO	Transmission System Operator
530	UCR	Use Case Repository (Altern. UCMR Use Case Management Repository)
531	UML	Unified Modeling Language
532 533	WD WG	Working Draft Working Groups
533	WGI	Working Group Interoperability
535	WGSS	Working Group Set of Standards
536	XML	Extensible Markup Language
537		

539 6. Concepts, elements and tools for the Smart Grid methodology²

540 6.1. Introduction

541 This section provides a high-level view of the concepts, elements and tools for Smart Grid methodology and 542 processes. It is meant to be short, concise and descriptive. This chapter also includes summaries of 543 concepts developed in other working groups of the SG-CG. More details can be found in the additional 544 reports [SG-CG/J-L] (refer to chapter 3 References).

The goal of the Smart Grid methodology is to support international standards development for Smart Grid technologies, products, components, and systems and their interfaces, to support and boost the large-scale deployment of Smart Grids and smart markets in Europe. The methodology provides tools for the identification and structuring of requirements for new Smart Grid standards and provides a framework for their development. It considers aspects ranging from markets down to ICT and electro-technical components. Another added value of these tools is a better overview: e.g. the set of standards document [SG-CG/B] [SG-CG/G] is a selection guide for users of standards.

552 6.2. Roles and actors in smart grids and smart markets

The applicability of Smart Grid standards in both the current as well as the future European power system must be ensured for large-scale deployment. Therefore it is critical that the design of Smart Grid standards is 'compatible' with the evolving market structures in the European Union. In order to guarantee that, the concepts of (market) roles and actors are introduced; these form the basic components, which are used in the European conceptual model, the SGAM model and use cases. The concept of (market) roles and actors allow for the development market structure agnostic standards, as they can be defined in terms of responsibilities that are independent from a certain market structure.

560 6.2.1. Roles for market models

In Europe, the market models define which activities are regulated and which activities are allowed in the
commercial market. In that context, the activities of smart grid parties (e.g. the various DSOs, TSOs,
suppliers, Energy Service Companies (ESCOs), traders, customers, etc.) are defined by their roles and
responsibilities. This role-allocation to parties may be subject to regulation.

The energy transition will require an update of existing market models, which differ today, even in different EU member states. For example a DSO in the UK does not have the responsibility for electricity usage administration (this responsibility is assigned to the retailer), while DSOs in other EU member states do. The challenge is to develop standards that are applicable in different European market models and also support the development of more generic European market models. Success will come with the development of standards that support roles.

571 ENTSO-E, eBIX and EFET have created a harmonized and clear definition of the market roles in the various
 572 electricity markets of the EU member states. These roles are modeled in the Harmonized Electricity Market
 573 Role Model [HEM-RM 2011].

574 6.2.2. Actors

575 The development of system requirements is a key ingredient for the development of Smart Grid and smart 576 market standards. Identifying the actors of and their interactions within Smart Grids and smart markets are

577 an important step therein from the market level to the technology level (see also 6.4 on use cases).

² This report is mainly contributed to the use of concepts elements and tools in standardization but they might be used also for other purposes like engineering or also in other technological areas than smart grid (e.g. Smart Home, Smart City, etc.)

A generic actor list, derived from generic use cases provided by the SG-CG, includes the role-actor
 relationships. This supports the analysis of the business context when defining requirements of Smart Grid
 systems from use cases, as the first step towards standards. Moreover, it ensures the required applicability

581 of standards based on these requirements in all market models in the current European electricity market.

582 6.2.3. Modelling of roles, actors and related concepts

583 The meta-model in the figure below clarifies the relationship between roles, actors, responsibilities and 584 parties. It only describes the elements required for the meta-model; a more detailed version, with the 585 alignment rationale to SGAM, TOGAF and the Harmonized Electricity Market Role Model can be found in 586 [SG-CG/J] on meta models.

587

Responsibility	◄ is described by	R	ole	is as	sumed by ►		Pa	rty
Responsibility	defines ►	Noie			 assumes 		14	i ty
	is perfor	med by ▼						contains v
						1		
			◄ per	forms	Actor	repre	sents ►	
			tas	sks in				

588 589

590

Figure 2: Meta-model of the concepts related to actors and roles

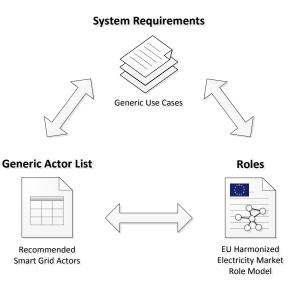
591 Figure 2 shows elements of the model and their relationships. The relationships can be read in both 592 directions, using the reading direction of the labels, e.g. an Actor performs tasks in a Role. 593

594 The elements of the diagram are defined as:

595	The elements of the diagram	
596 597 598 599 600	Party	Parties are legal entities, i.e. either natural persons (a person) or judicial persons (organizations). Parties can bundle different roles according to their business model. EXAMPLES: real organisations like Dong Energy, Alliander, APX Group.
601 602 603 604	Responsibility	Responsibilities define external behavior to be performed by parties. Examples: Nominate Energy, Operate a grid, Determine the market energy price after applying technical constraints.
605 606 607 608 609 610	Role	A Role represents the intended external behavior (i.e. responsibility) of a <i>party</i> . <i>Parties</i> cannot share a <i>role</i> . Parties carry out their activities by assuming <i>roles</i> , e.g. system operator, trader. <i>Roles</i> describe external business interactions with other <i>parties</i> in relation to the goal of a given business transaction. EXAMPLES: Balance Responsible Party, Grid Operator, Market Operator.
611 612 613 614 615 616 617 618 619	Actor	An Actor represents a <i>party</i> that participates in a (business) transaction. Within a given business transaction an <i>actor</i> performs tasks in a specific <i>role</i> or a set of <i>roles</i> . EXAMPLES: Employee, Customer, Electrical vehicle, Demand-response system. The term <i>Actor</i> can be used in other contexts within smart grids methodology, particularly discussions around technology. If it helps, in the context of the discussion, the type of actor can be qualified, such as <i>business actor</i> in the role model and <i>system actor</i> when referring to technological systems.

620 6.2.4. Generic actor list

Since standards and interoperability are achieved through multiple iterations in the standardization process,
 it is envisaged to start with a generic set of actors within the Smart Grid Coordination Group. Based on
 these, technical committees (e.g. of the IEC/TC 8 WG 6) will further refine these actors in the development of



624 actual standards. When these standards are implemented, parties will even further refine them to take into 625 account concerns specific to their implementation.

In this chain of refinement, it is critical that the link between actors and roles is kept intact in order to guarantee robustness to the various market structures. In the context of standardization, for the widest applicability, it should be a goal that, for every actor defined in the generic list, there is only one role to which it relates. This is to ensure that the definition of actors in standards do not force the combination of roles in implementation. However, in specific implementations, actors *may* (e.g. for efficiency) in fact relate to several roles.

632 When defining use cases as start of the process, it is key that they are built on agreed actor definitions and 633 are reused among different uses cases as much as possible. This creates a commonly used actor list and 634 reduces doubling of actors and misunderstanding regarding the behavior of the actors (Figure 3).

- This generic actor list (with only the most abstract actors) is given in [SG-CG/E] including its relationship to roles.
- 637

638

639

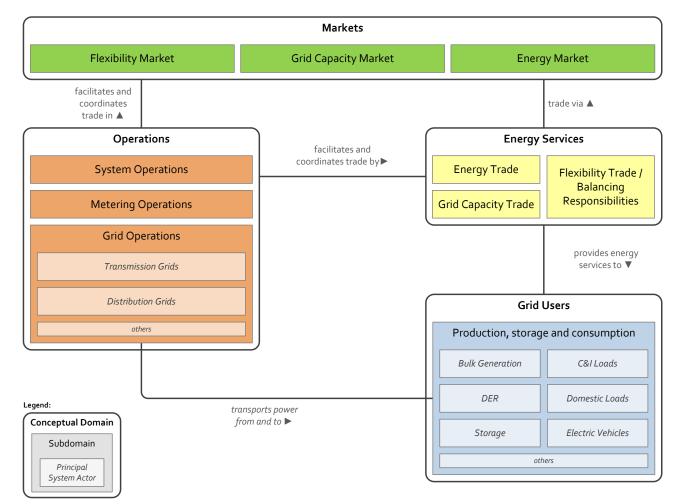
Figure 3: Information flow between roles, actors and use cases

640 6.3. Smart Grid conceptual model

During the coming years the power system will undergo fundamental changes. In order to define standards
that support this transition in a consistent way, applicable in all European markets, a generic European
conceptual model is required. This European conceptual model is to be regarded as the starting point for all
modeling activities, and for all other models, frameworks, and architectures, which are used to arrive at
standards required for Smart Grids and smart markets.

The conceptual model aims to highlight the key areas of attention – conceptual domains and subdomains –
from the point of view of responsibility (refer to Figure 4). The model consists of four main conceptual
domains: *Operations, Grid Users, Markets, and Energy Services*. Each of these conceptual domains
contains one or more subdomains which group market roles from the European electricity market. To support
its recognition, the *Operations* and *Grid Users* conceptual domains also show some well-known system
actors that are present in those domains.

Its main underpinning is the analysis of roles and responsibilities from [HEM-RM 2011]. While this model is based on the electricity market structures of the EU member states, their roles and responsibilities are cleanly defined and provide a solid basis; new parties may enter certain markets, responsibilities may be redistributed, but the fundamental roles and their respective responsibilities are expected to remain constant.



656 *Operations* and *Grid Users* are conceptual domains that are directly involved in the physical processes of the 657 power system: electricity generation, transport/distribution and electricity usage. Also, these domains include 658 (embedded) ICT enabled system actors. The *Markets* and *Energy Services* conceptual domains are defined

by roles and actors and their activities in trade of electricity products and services (markets), and the

participation in the processes of trade and system operations representing grid users (energy services).

661

662 663

Figure 4: European Conceptual Model for the Smart Grid

In the creation of this conceptual model, input is used from the EU-flexibility concept, [SG-CG/E], NIST,
 SGIP, SGAC, the Harmonized Electricity Market Role Model (HRM-RM) and European market model
 developments (e.g. EG3). For more details on how this information is used and which starting principles are
 the basis for this model, please refer to [SG-CG/J] on the conceptual model.

Furthermore, [SG-CG/J] describes a more detailed mapping of all roles from the Harmonized Electricity
 Market Role Model and the domains in this conceptual model and a description of each of these roles. Refer
 also to [SG-CG/J] and [SG-CG/L] on how to define actors in the context of this conceptual model.

671 6.3.1. Conceptual domains

The sections below provide descriptions for the domains in the conceptual model introduced above.

673 6.3.1.1. Operations

The Operations conceptual domain is defined by roles and actors related to the stable and safe operations of

675 the power system. The domain ensures the usage of the grid is within its operational constraints and

- facilitates the activities in the market. Actors in this domain may use services from the market to fulfill these
 responsibilities. *Grid Operations*, *System Operations* and *Metering Operations* are identified as sub-domains
 in the *Operations* conceptual domain. System actors in this domain include grid assets such as transformers,
 switchgear, distribution management systems (DMS), energy management systems (EMS), as well as
- 680 microgrid management systems, metering systems, control center systems, etc. *in transmission and* 681 *distribution grids*.
- 682 Roles in the *Operations* conceptual domain are:

Subdomain	Harmonized role
System Operations	System Operator, Control Area Operator, Control Block Operator, Coordination Center Operator, Imbalance Settlement Responsible, Reconciliation Responsible
Metering Operations	Meter Administrator, Meter Operator, Metering Point Administrator, Metered Data Aggregator, Metered Data Collector, Metered Data Responsible
Grid Operations	Grid Operator, Grid Access Provider

684 6.3.1.2. Grid users

The *Grid Users* conceptual domain is defined by roles and actors involved in the generation, usage and possibly storage of electricity; from bulk generation and commercial and industrial loads down to distributed energy resources, domestic loads, etc. The roles and actors in this domain use the grid to transmit, distribute and receive power from generation to the loads. Apart from roles related to the generation, load and storage assets, the *Grid Users* conceptual domain includes system actors such as (customer) energy management and process control systems. Grid users also provide flexibility, as they become an active participant of the energy system.

692 Roles in the *Grid Users* conceptual domain are:

Subdomain	Harmonized role
Production, storage and consumption	Party Connected to the Grid, Consumer, Producer

693

694 6.3.1.3. Energy services

695 The *Energy Services* conceptual domain is defined by roles and actors involved in providing energy services 696 to the *Grid Users* conceptual domain. These services include balancing & trading of electricity generated, 697 used or stored by the *Grid Users* domain, and ensuring that the activities in the Grid Users domain are 698 coordinated in e.g. the system balancing mechanisms and customer information services (CIS) systems.

Through the *Energy Services* conceptual domain, the *Grid Users* conceptual domain is connected to activities such as trade and system balancing. From the *Grid Users* domain, flexibility in power supply and demand is provided. This flexibility is used for system balancing (through e.g. ancillary services, demand response, etc.) and trading on the market. Additionally, roles related to trade in grid capacity are included.

The roles and actors from the *Energy Services* conceptual domain facilitate participation in the electricity system, by representing the *Grid Users* conceptual domain in operations (e.g. balance responsibility) and markets (trading).

706 Roles in the *Energy Services* conceptual domain are:

707

Harmonized role	
ergy Trade Balance Supplier, Block Energy Trader, Reconciliation Accountable	
Capacity Trader, Interconnection Trade Responsible	
le / Balance Responsible Party, Consumption Responsible Party, Production	
Responsible Party, Trade Responsible Party, Scheduling Coordinator, Resource Provider	

708

709 6.3.1.4. Markets

The *Markets* conceptual domain is defined by the roles and actors that support the trade in electricity (e.g. on day ahead power exchanges) and other electricity products (e.g. grid capacity, ancillary services). It is reflecting the market operations that are possible along the energy conversion chain, e.g. energy trading, mass market, retail market. Sub-domains which are identified in this domain are: *Energy Market* (e.g. commodity market), *Grid Capacity Market* (e.g. Transmission capacity market), and *Flexibility Market* (e.g. Imbalance market). Activities in the *Markets* domain are coordinated by the *Operations* domain to ensure the stable and safe operation of the power system. An example of system actors in this domain is trading

717 platforms.

718 Roles in the *Markets* conceptual domain are:

Subdomain	Harmonized role	
Flexibility Market	Reserve Allocator, Merit Order List Responsible	
Grid Capacity Market Capacity Coordinator, Transmission Capacity Allocator, Nomination Validato		
Energy Market Market Information Aggregator, Market Operator		

719

720 6.4. Smart Grid use cases

721 6.4.1. Introduction: Use cases and standardization

The idea of use case descriptions was developed originally for software engineering projects. In the following
 Table 1 some advantages are summarized highlighting the purpose of use cases in standardization:

724

Table 1 - Advantages of use case descriptions

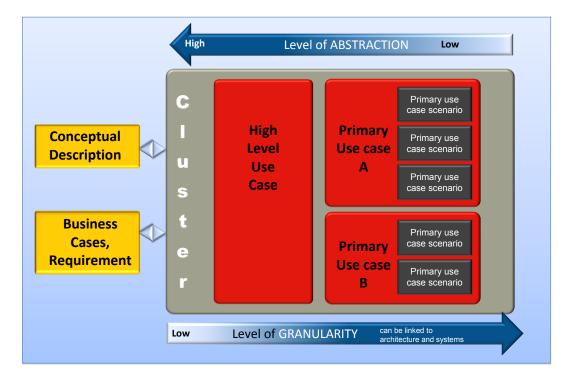
Use cases gather requirements	Use cases gather requirements, information about functionalities, processes and respective actors in a structured form.
Support standards development	It is the intention that use case descriptions support development of standards in the design and definition phase, e.g. in areas like interoperability, terminology, safety, risk assessment, security and others.
Enable a common understanding between different stakeholder groups and its coordination Guidance for users of standards	A discussion of these use cases with its requirements and descriptions should enable a common understanding between different sectors, committees or organizations. Therefore use case descriptions are mainly used for new, complex systems of cross-cutting nature. In this respect they can be seen as a link between new requirements (also from external sources representing e.g. market needs) and standardization. As use cases can be seen as a bracket for a number of standards and standardization activities, they support the management of standardization activities and provide guidance for users of standards.
Management of	Depending on the level of granularity of the description the use cases support the

standards development in complex systems	assignment and management of standards and committees which are related to the respective use case as well as the development of a standardization work program.
Test use cases / Training	Beneath these basic functions validated use cases can be used for testing or training purposes. Therefore use cases will not only have preparatory and administrative functions for standardization organizations and the development of standards. In combination with other tools and models (refer to chapter 7 and the report of the WG Interoperability) they are needed to prove interoperability.
Use Cases - basis for further engineering	Use Cases described in the given template are the basis for further engineering in the technical committees or even for individual projects.
Not only for Smart Grid	The use case methodology is not only used for Smart Grids, as it is general enough to be transferred to other areas in standardization as well.

732

755

726 6.4.2. Use case template


- The template as defined in [IEC 62559-2] is a structured format for use case description that helps to describe, compare and administer use cases.
- 729 The template mainly contains the following information:
- Administrative information (e.g. version management)
- Description of the function(s)
 - E.g. general narrative description, pictures, detailed description within the scenarios and activities
- The system under discussion (subject) and its design scope
- Actors linked to the function and activities (here activity means: one step of the detailed step-by-step description)
- Extended information for classification of use cases or information to link use cases to other
 developments (e.g. link use cases to standards or to the SGAM) and to provide information like the
 maturity of the use case and references like laws, regulation, or grid codes in relation to the use case
 (depending on the detail of the use case).
- The template in its detailed version is designed for an in-depth analysis of processes, information that is exchanged as well as requirements that are linked to this information exchange.
- Nevertheless, the author of the use case defines the granularity of his description according to his needs and the task of the respective use case description. In general an iterative approach is recommended: starting with a short description and an easy template (but using fields of the defined template according to [IEC 62559-2]), discussing and extending the description, detailing the use case, if needed, and linking it to other use cases.
- The template itself is linked to other databases that contain lists of related information that can be used
 across different use cases, like lists for actor, information exchanged, terms and definitions, references,
 requirements.
- Use cases and the related information have to be managed in order to maintain an overview. A rough
 hierarchy is suggested in order to manage different systems and their sub systems (system of system, refer
 to the report "First set of standards" [SG-CG/B]):
- Area (e.g. Smart Grids, smart home),
- Domain / zones according to the SGAM, and
 - Systems or groups (e.g. actors related to Smart Metering/AMI, virtual power plants).

756 6.4.3. Classification of use cases

757 Because use case descriptions support various tasks, the granularity, type and content of the use case 758 description varies broadly. A use case in general describes functions of a system and related information 759 exchange, mainly in a technology-neutral way (depending on the level of detail). It identifies participating 760 actors that for instance can be other systems or human actors which are linked to this use case.

- The various use case types can be classified highlighting different views and tasks of the respective use cases, e.g.:
- Level of detail (see Figure 5 below): for brainstorming / collection (cluster, high level use cases, conceptual description), engineering or testing;
- Nature of the use case: Business (business use case) or technical (system use case)³;
 - Users of the use case: Project (Individual use cases), technology group (specialized use cases), standardization (generic use cases)

• Geographical relation: national, regional or international use cases

769

766

767

770

771

Figure 5: Use case structure⁴ (based on SM-CG)

A more detailed overview describing different use cases is provided in [SG-CG/K].

773 6.4.4. Organization of use cases

- Within an area like Smart Grid, a broad variety of different use cases will be established that might be highly
 interlinked. Some kind of coordination and categorization is required.
- Beneath the general grouping into area and the links to domains and zones, clusters of use cases can beestablished to sort use cases. These clusters can be described in conceptual description.

³ or even political / legislative use cases might be possible.

⁴ Please, note that this is a simplification according to practical experience. In detail use case can be arrange in a network structure.

- Examples for clusters of use cases from the Smart Grid Coordination Group reports ([SG-CG/B to E]) are:
- Grid related generic uses cases
- Generic use cases related to electric vehicle charging
- Generic use cases related to the flexibility concept

782 6.4.5. Use cases repository

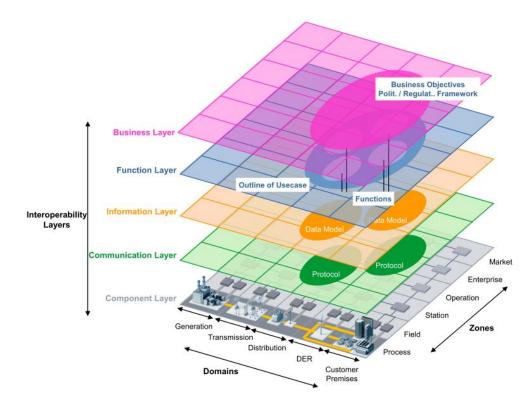
Although it is possible to describe use cases in a word processing format, establishing a use case repository will provide a lot of advantages for standardization organizations when the methodology is introduced in a broader scale (refer to [SG-CG/K]).

As example, IEC introduces also a use case repository for the international standardization community.

787 6.5. Smart Grid Architecture Model (SGAM)

The Smart Grid Architecture Model (SGAM) is a reference model to analyse and visualise Smart Grid use cases in a technology neutral manner. Furthermore, it supports comparison between different approaches to Smart Grid solutions so that differences and commonalities between various paradigms, roadmaps, and viewpoints can be identified. It provides a systematic approach to cope with the complexity of Smart Grids allowing representation of the current state of implementations in the electrical grid as well as the evolution to future Smart Grid scenarios by supporting the principles of universality, localization, consistency, flexibility and interoperability.

SGAM builds on proven approaches from power systems as well as interdisciplinary fields like systems


regineering and combines them in a simple but comprehensive model⁵.

797 Power system management distinguishes between electrical process and information management. These 798 viewpoints can be partitioned into the physical domains of the electrical energy conversion chain and the 799 hierarchical zones for the management of the electrical process (refer to [IEC 62357:2011, IEC 800 62264:2003]). This is the foundation of the Smart Grid Plane that spans in one dimension the complete 801 electrical energy conversion chain, partitioned into 5 domains: (bulk) Generation, Transmission, Distribution, 802 DER and Customer Premises. And, in the other dimension the hierarchical levels of power system 803 management, partitioned into 6 zones: Process, Field, Station, Operation, Enterprise and Market. 804 Interoperability, as a key enabler, for smart grids is inherently addressed in SGAM by the 5 superimposed 805 layers: Component, Communication, Information, Function and Business. The complete three-dimensional

806 representation of SGAM is depicted in Figure 6.

⁵ In particular, the work on SGAM is based on significant existing material such as the NIST Conceptual Model [NIST 2009], the GridWise Architecture Council Stack interoperability categories [GWAC 2008], the IntelliGrid Methodology [IEC PAS 62559:2008] and architecture standards like TOGAF and Archimate [Jonkers 2010] or http://pubs.opengroup.org/architecture/togaf9-doc/arch/ and http://pubs.opengroup.org/ and http://pubs.opengroup.org/ and <a href="http://p

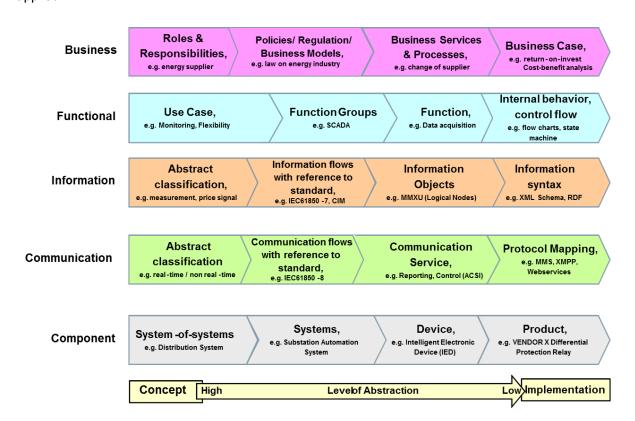
808

824

Figure 6: SGAM – Smart Grid Architecture Model

The SGAM Interoperability Layers allow modeling of different views from business as well as technicalnature.

- On the <u>business layer</u> SGAM can be used to map regulatory and economic (market) structures and policies, business-related models, business portfolios (products & services) of market parties involved. Also business processes can be represented in this layer. In this way it supports business executives in decision making related to (new) business models and specific business projects (business case) as well as regulators in defining new market models.
- 816 The technical views are modeled in SGAM on the four lower layers, in particular:
- The <u>function</u> layer describes functions and services including their relationships following business needs. Functions are represented independent of their physical implementation (represented by elements in the component layer).
- The <u>information</u> layer describes the information that is being used and exchanged between functions. It contains information objects and the underlying canonical data models.
- The emphasis of the <u>communication</u> layer is to describe mechanisms and protocols for the interoperable exchange of information between functions.
- 825 Finally, the component layer describes all physical elements that realize a function, logical elements thereof, 826 as well as their relations. Physical elements can, for instance, include power system equipment (typically 827 located at process and field level), protection and tele-control devices, network infrastructure (wired / 828 wireless communication connections, routers, switches), or any kind of computers. Also logical parts, the 829 aforementioned elements, like components or software applications, can be depicted on the component 830 layer. Functions identified for a specific implementation of a use case can be mapped/related to components 831 complementing the relationships between all layers. Smart Grid use cases can be visualized and detailed 832 with SGAM according to their physical distribution and mapped to the layers of the model to test if the use 833 case is supported by existing standards or to identify gaps in standardization. A use case analysis with 834 SGAM is based on the use case description outlined in Section 6.4. The fields in the use case template 835 provide different information for the analysis, e.g. the field Domain(s)/Zone(s) specifies directly how the use



case maps onto a Smart Grid plane. Furthermore, the actor list in the use case description provides –
 depending on the type of the actor – information on the involved roles to model the business layer in SGAM
 or information on involved systems and devices to model the component layer.

839 Use case descriptions vary in the level of abstraction as well as in design scope as described in detail in

840 [SG-CG/K]. Thus, the analysis with SGAM also varies. Figure 7 provides an overview for each

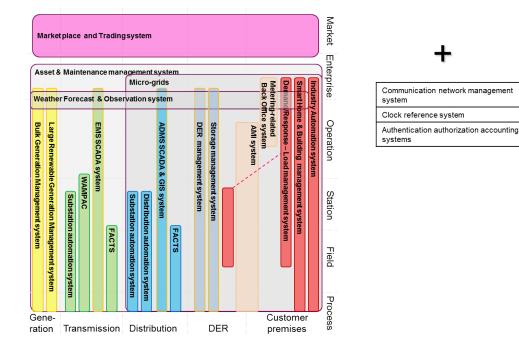
841 interoperability layer in SGAM on an exemplary level of abstraction on which an SGAM analysis can be 842 applied.

843 844

Figure 7: SGAM Analysis Pattern

845 The SGAM Analysis Patterns are intended to provide guidance on how to model with SGAM on a chosen 846 level of abstraction starting from a concept level up to a detailed level required for implementation. 847 Additionally, they should also support in writing use case descriptions on providing sufficient information 848 needed for a SGAM analysis on the chosen level of detail. For each layer Figure 7 depicts some steps of 849 successive model refinements to define interoperability requirements. Detailed information with examples is 850 provided in [SG-CG/K]. Here are also examples provided showing the usage of the SGAM in other areas: 851 e.g. the classification of systems (refer also to ISG-CG/GI) or usage areas of communication networks.

852 **6.6. Set of standards for the smart grid system**


853 One of the main results of the work of the Smart Grid Coordination Group is the selection guide "Set of 854 standards" ([SG-CG/B] [SG-CG/G] developed by working group Set of Standards).

- 855 The set of standards consists of:
- System related standards and
- 857 Cross cutting standards858
- 8598601. For the analysis and guidance the smart grid system have been broken down in several subsystems (Figure 8).
- 2. Sub systems are described by relevant use cases for the respective system.

- Then for each of these subsystems, a (typical) reference architecture (components and interfaces) has been defined in the SGAM as described before.
- 864
 4. Based on the standards identified in the SGAM a list of standards for each system and its interfaces can be evaluated.
- Additionally cross-cutting standards are listed (e.g. with reference to SGIS or to communication specific issues).

The report provides an overview for all experts in the field of Smart Grid standardization and a support for users in the selection of relevant standards for their purposes.

871

Figure 8: Systems breakdown over the SGAM plane

872

873 For more detailed please refer to the relevant documents:

- [SG-CG/B] SG-CG/M490/B_ Smart Grid First set of standards
- [SG-CG/G] SG-CG/M490/G_ Smart Grid Set of standards
- [SG-CG/K] SG-CG/M490/K_SGAM usage and examples
- 877 [Mapping Tool]

878 **6.7.** Standards gaps, prioritization, work program

- The following tools provide management support in a broad field of technology in order to focusstandardization resources and provide overview and coordination of various activities.
- Based on a structured analysis (refer to chapter 7) or on input from stakeholders a standardization gap list can be gathered.
- In the next step the gap list can be prioritized by a voting of the stakeholders represented in the SG-CG on two criteria: "Smart Grid deployment impact" and "Standardization gaps filling-up chance". Gaps are selected when one criteria is higher than the defined threshold. The prioritization focuses the work of the SG-CG on main topics. Nevertheless, as yet unselected gaps might be subject to a work programme of other technical bodies.
- 888 3. The work programme which is based on the gap list and the prioritization serves different needs

- 889 a. List, description, status and timetable of selected gaps
- b. A dashboard for each selected gap as a management tool providing information like:
- i. The gap to be filled.
- 892 ii. The standardization bodies involved in filling the gap.
- 893 iii. Each gap has a gap leader who follows up the closing of the gap and manages between the different involved groups.
- 895iv.The standards considered in this work package, with their expected impacts, and associated896status.
- 897 v. The plan of actions associated with the work package, including title, initial forecast completion date and updated forecast completion date, in order to monitor the follow-up of the gap filling.
- 899 For more detailed please refer to the relevant documents:
- Current version: SG-CG Report Programme of standardisation work for the Smart Grid v2.01 [Work program]. Note: the work programme is updated on regular basis.
- 902
 SG-CG Report Standardisation Gaps Prioritisation for the Smart Grid, latest version 2014-12-16 [Gap Prioritization]

904 6.8. Cyber security & privacy

An important aspect of the work of the Smart Grid Co-ordination Group is to provide Smart Grid information
 security (SGIS) guidance and standards to Smart Grid stakeholders to support Smart Grid deployment in
 Europe. Available security standards are increasingly applied to address functional, organizational or
 procedural requirements. Selecting the right security standards to achieve a dedicated security level on a
 technical and organizational or procedural level is crucial for the reliability of a European Smart Grid.

910 Mapping to SGAM

911 Security has been considered by reference to the Smart Grid Architecture Model (SGAM), the SGIS security

912 levels and selected use cases. The Smart Grid is a system of systems connected and interacting with each

other. Their security requirements will vary depending on the SGAM Domain/Zone in which the systems are

914 located. By mapping selected security standards to the SGAM, their applicability in the different Smart Grid 915 zones and domains on different layers can be identified, thus helping system designers and integrators in

916 selecting the proper security standards to protect the Smart Grid system appropriately.

917 SGIS - Security Levels

SGIS security levels were defined in the 1st phase of Mandate M/490 with the aim of creating a bridge
 between electrical grid operations and information security. Considering European electrical grid stability and
 the power loss caused by possible ICT systems failures, a number of scenarios were identified, representing

921 the scale of possible disruptions to the European grid.

From this viewpoint of pan-European electrical grid stability, each SGAM domain/zone cell and the kind of
 equipment used there to manage power were then considered, and an assessment made of the maximum
 potential power loss involved. Guidance values could then be defined, to assist identification of the most
 critical areas, where security matters most from a pan-European grid stability perspective.

926 This is the basis of the SGIS security levels proposed and illustrates a general approach, which can be 927 applied by stakeholders as desired.

928 Security standards

In the first phase of the mandate M/490, SGIS focused on the following standards: ISO/IEC 27001, ISO/IEC
 27002, IEC 62351, NERC CIP (US Standard), NIST IR-7628 (US Guidelines). Subsequently IEC 62351 has

been considered further, together with the energy automation domain specific standard ISO/IEC TR 27019,

932 extending ISO/IEC 27002. The second working period of the SGIS investigated further selected security

933 standards applicable in Smart Grid that also relate to adjacent domains like industrial automation.

Additionally, implementation related standards from ISO, IEC and IETF were taken into account. The security
 standards focused in the second working period are distinguished into requirements standards and solution
 standards.

These standards have been considered according to their nature, applicability and scope, and mapped to SGAM domains and zones, so as to assist the identification of suitable security standards for a particular use case, and potentially to suggest the need to enhance standards where necessary. Detailed consideration is given to selected security requirements standards, their current status and gaps. Moreover, new standards have been identified for further investigation, which are not covered by the work so far.

942 <u>European Set of Recommendations</u>

943 The European set of recommendations objective is to support Smart Grid stakeholders in designing and 944 building a European Smart Grid infrastructure secure by design.

945 In April 2014, ENISA and European Commission Smart Grid Task Force Expert Group 2 (EG2) ad hoc

group, released a "Proposal for a list of security measures for Smart Grids" report. For consistency of work at

947 European level the choice has been made to work with the measures proposed in this report to define the

948 European set of recommendations. Two additional domains have been found which were beneficial to be

added during the analysis work: Situational Awareness and Liability.

950 Recommendations are presented and linked to SGIS-Security Levels, SGAM domains, zones and layers,

and standards through a dashboard. Using this dashboard for the SGIS Security Level that has been

952 identified for a given use case, recommended cyber security domains can be prioritized and an action plan

953 proposed. As security measures, domains and security standards are mapped using SGAM, a
 954 correspondence can be established between them. Thus for a given domain of measures, available

- 955 standards to support measures implementation can be identified.
- 956 The European Set of Recommendations should be reviewed yearly. This is a continuous process, as both 957 cyber security measures and forms of attack are constantly evolving.
- 958 Privacy

Data Privacy and Data protection, particular in the context of smart metering, is crucial for a sustainable business. The forthcoming EU General Data Protection Regulation has been analyzed to understand the potential impact on organizational and functional requirements and its relationship with the current sectorspecific regime in four member states examined.

963 The Smart Grid Task Force Expert Group 2 (SGTF EG2) has developed a Data Protection Impact 964 Assessment (DPIA) template. The main elements of the DPIA template specifically relevant to privacy for the 965 individual have been considered and recommendations developed on how to improve the data protection 966 aspect of the personal information in the SGIS Framework. It is suggested that data protection impact 967 assessment is considered separately in the pre-assessment of the SGIS Framework, since an identical 968 approach to security cannot be applied for data privacy. Additionally, an analysis on emerging Privacy 969 Enhanced Technologies to support privacy by design is presented.

970 Close liaison and co-operation has been maintained with the parallel work of the Smart Meter Co-ordination971 Group.

972 <u>SGIS Framework⁶</u>

973 During the SGIS Toolbox update discussions an improved approach has been defined which is more 974 focused on the necessity to perform risk analysis than to have a general framework for risk analysis. The

⁶ formerly SGIS Toolbox

975 new approach changes the SGIS Toolbox into a methodology that could be used to create "Awareness" for976 management and/or decisions makers.

977 It appeared that the "SGIS Toolbox" name was creating expectations regarding a ready to use tool that 978 would have identified security levels and ad hoc security measures, whereas a process was, and (with the

979 new approach) still has, to be followed. Therefore, the decision was made to rename it "SGIS Framework".

980 <u>Conclusion</u>

981 The standards needed to establish the base of Smart Grid Information Security are available, but it needs 982 continuous effort to incorporate existing and new technologies, architectures, use cases, policies, best 983 practice or other forms of security diligence.

- 984 For further information on this work, the reader is referred to the detailed report of the SGIS workgroup.
- 985 6.9. Interoperability

986 6.9.1. Introduction

987 A Smart Grid as a system cannot be engineered from the ground up. Instead, Smart Grid development is 988 most likely to follow transformation processes. This means that business models as well as roles on one 989 hand, and technical components and architectural structures on the other, are to be transformed from the 990 current "legacy" state into a "Smart Grid". Due to the scale of the system and its economic importance, 991 failures in operation and especially architectural and functional planning of the system, potentially introduce 992 high costs. In order to enable a well-structured migration process, the requirements for a Smart Grid and the 993 current system have to be decomposed using an appropriate model. Although the majority of Smart Grid 994 equipment is based on (inter)national or regional standards, this has not yet resulted in an interoperable 995 Smart Grid infrastructure. This is partly due to misunderstanding of what interoperability means, what can be 996 expected from it and what should be done to realize it. The key to reaching Smart Grid system 997 interoperability is through detailed specifications, use of standards and testing.

Therefore, as more and more ICT components are being connected to the physical electrical infrastructure,
 interoperability is a key requirement for a robust, reliable and secure Smart Grid infrastructure. The way to
 achieve Smart Grid system interoperability is through system specification, use of standards, and testing
 under applications of profiles.

Developing an understanding of and paving the way for progress in this area has been the focus of the
 Working Group Interoperability (WGI). The WGI report [SG-CG/I], which is summarized in this section,
 provides methodologies related to these aspects, in order to reach the desired level of interoperability for
 Smart Grid projects. It seeks to achieve this by focusing on three different aspects and therefore tasks:

- System design and use case creation
- Use of standards, specifications and profiles
- Compliance, conformance and interoperability testing

1009 6.9.2. System design and use case creation

With respect to system design, the IT Software/System Development Life Cycle provides a widely used methodology for system development, which ensures delivery of high quality software or systems effectively and efficiently. Use cases provide a basis for the specification of functional requirements, non-functional requirements, test cases and test profiles. Therefore, as a starting point, the system interoperability must be considered and well specified in the use cases, in order to develop an interoperable Smart Grid system by design. It is for this reason that the V-model (Figure 9) was selected to describe the different kind of specifications and related tests to perform in order to reach and demonstrate interoperability.

1017 Therefore, a generic "system interoperability method" or methodology has been developed in order to 1018 support the process of achieving system interoperability. In this methodology system design, use cases,

1019 testing, etc. were introduced.

1020 **6.9.3.** Use of standards, specifications and profiles

1021 The definition of an application profile can be an important step to achieving interoperability as it can reduce 1022 the number of options and complexity of the full standard. Interoperability in the Smart Grid domain is further 1023 facilitated by usage of the SGAM model for Smart Grid systems. A glossary defines precisely what is meant 1024 by interoperability and other related terms to avoid misunderstanding (annex of [SG-CG/I]). It contains the 1025 most suitable definitions available for interoperability purposes such as conformity, compatibility and 1026 interchangeability. WGI strongly recommends that these definitions should be implemented and harmonized 1027 in future international standardization.

1028 Working Group Interoperability (WGI) also established a methodology for profiling alongside an inventory of 1029 profiles that are already available, based on the output from the WG Set of Standards.

1030 6.9.4. Compliance, conformance and interoperability testing

1031 To validate whether a system is interoperable within the Smart Grid, three types of tests will be required to 1032 be performed, namely:

• Compliance tests

1034

1035

1038

1039

1040 1041

- The compliance test has the purpose to demonstrate that the applicable standard(s) are correctly implemented in the Device Under Test (DUT).
- 1036 1037 • Conformance tests

The conformance test is to ensure the implementation is in accordance with all specified requirements or standards.

Interoperability tests

1042After the conformance test, interoperability tests should be performed to verify that communicating1043entities within a system are interoperable, i.e. they are able to exchange information in a1044semantically and syntactically correct way. During interoperability testing, entities are tested against1045peer entities known to be correct.

Additionally, a framework for all standards, the Interoperability (IOP) tool, has been developed as a
 foundation for the profiling and testing process. It is helpful for identifying conformance testing and standard
 gaps, to select the required standards, and to derive and understand interoperability testing requirements.

1049 6.9.5. Linkages to use cases and SGAM

1050 It is important to recognize that how and where the methodologies described in this document are applied, 1051 depends on the business needs. Therefore, in essence, [SG-CG/I] only describes the methodology how to 1052 improve interoperability.

However, it is important to pinpoint the key relationship between the methods developed for the prestandardization phase (refer to chapter 7) and test of interoperability in the post-standardization phase, particularly in the area of use case development and usage. In essence the degree and precision to which the use case methodology and SGAM are executed, has a direct bearing on the quality, accuracy and usefulness of the output of the interoperability methodology. Put simply, in order for the IOP methodology to be fully utilized, a clearly articulated use case, following the IEC 62559 template, is required, coupled with the graphical representation on the SGAM as illustrated by [SG-CG/G].

1060 6.9.6. Summary of IOP methodology

1061 The IOP methodology can generally apply to all layers with interfaces between Smart Grid objects that are 1062 required to fulfil a defined (set of) use case(s). This means that it first needs to be defined on which layers 1063 IOP is required for these use case(s), and also in detail for each function [SG-CG/I, section 6].

1064 The intention of the IOP methodology is the functional IOP using standards on the following layers (see also [SG-CG/B)]:

- 1066 Information layer
- Communication layer
- Component layer

1069 Please refer to [SG-CG/I] for a more detailed overview and explanation of these steps. However, the 1070 recommendation on the profile definition process is:

- 1071 a. Functional analysis
- 10721.Select a set of use cases, as the use cases and the related sequence diagrams could be1073considered sufficiently to define functional requirements. If no use cases are available at this1074stage, it needs to be created first.
- 10752. Define on which layers IOP is required to fulfil the functional requirements of the set of use
cases:
- 1077 Business layer
- 1078 Function layer
- Information layer
- Communication layer
- 1081 Component layer
- 1082 b. Standards and specification selection
- 1083 1. Define required physical interfaces and communication channels between objects.
- 10842.Select (set of) standards for each interface within each required layer with the IOP tool and also1085identify any gaps in conformance/compliance testing (or possibly IOP testing) in this set of1086standards. If necessary, specifications may be taken into account additionally.
- 1087 b. Profiling
- 1088 based on standards and specifications as identified above the profile is based on business/functional 1089 requirements.
- 10901.Build IOP profiles for each (set of) standards and specifications with possible feedback into
standardization development.
- 1092 2. Apply profiles in system design and testing phases.
- 1093 3. Manage profiles

As discussed in [SG-CG/I], by definition an IOP profile is a document that describes how standards or
 specifications are deployed to support the requirements of a particular set of use cases. It is therefore crucial
 to select the required standards or specifications as a prerequisite action for profile definition.

These relevant standards for different applications within each layer can be selected with the IOP tool (refer
to 6.9.7.1). The application of the IOP tool furthermore requires the conventions used to draw the
component, communication and information layer of a system mapping according to [SG-CG/B] [SG-CG/G],
or another adequate mapping description. This results in multiple sets of standards for each use case cluster
where all required standards within one set need to be interoperable and may require a specific IOP profile.

- 1102 The selection of standards also needs to represent the requirements of the system design phase of the V-1103 Model (Figure 9), where appropriate standards for
- Requirement analysis

- System design
- Architecture design
- Module design

can be assessed with support of the IOP tool and the given filters. Backwards, the selected standards also
 need to be taken into consideration for the corresponding testing phases of the V-Model for compliance,
 conformance, IOP and acceptance tests.

1111 Nevertheless, how the selected standards are linked with profiles is part of the work item "IOP profiling" (refer 1112 to section 6.9.7).

1113 6.9.7. Developing interoperability profiling

1114 In general, profiling within a standard and between standards and specification helps to both improve 1115 interoperability and meet expectations of different projects where these will be implemented (refer to [SG-1116 CG/I]). To reach the goal of interoperability, a common understanding and interpretation of the related 1117 standard and the identical use of functional elements and data representation for a given domain specific 1118 application function has to be achieved by defining profiles.

1119 **6.9.7.1. IOP profiles**

1120 An IOP profile is a document that describes how standards or specifications are deployed to support the

requirements of a particular application, function, community, or context. A profile defines a subset of an entity (e.g. standard, model, rules). It may contain a selection of data models and services as well as

protocol mapping. Furthermore a profile may define instances (e.g. specific device types) and procedures

(e.g. programmable logic, message sequences) (refer to glossary of [SG-CG/I]).

1125 The objective of profiles is to reduce complexity, clarify vague or ambiguous specifications and so aims to 1126 improve interoperability. These generally apply for both sides of the V-Model (Figure 9) in terms of Basic

improve interoperability. These generally apply for both sides of the V-Model (Figure 9) in terms of Basic
 Application Profiles (BAP) for the design phase and as extended versions (Basic Application Interoperability
 Profiles (BAIOP)) in the testing phase.

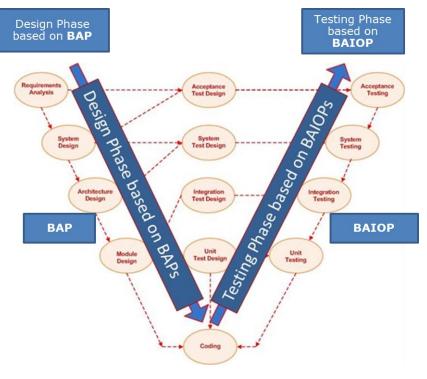
1129 6.9.7.2. Basic Application Profiles (BAP)

1130 A Basic Application Profile (BAP) basically applies to the design phase of the V-Model and is based on 1131 system/subsystem specific basic application function descriptions / use cases.

A BAP is an agreed-upon selection and interpretation of relevant parts of the applicable standards and specifications, and is intended to be used as building blocks for interoperable user/project specifications.

- 1134 The key ideas of BAPs are:
- BAPs are elements in a modular framework for specific application systems/subsystems.
- Combinations of different BAPs are used in real projects as building blocks.
- Project specific refinement additional to the BAP might be necessary to meet specific requirements for implementation in projects. These additional requirements should be frequently fed back into a user group / standardization committee and may lead to a new or revised BAP based on user experiences and group decisions.

BAPs are valid for specific application systems/subsystems (e.g. Substation automation, DER management, hydro power). They are intended to represent a user agreed common denominator of a recommended implementation or a proven best practice implementation of an application function in a specific Smart grid system/subsystem, but is not aimed to cover all possible implementation options.


1145 BAPs must not have options, and all selected criteria are mandatory to achieve interoperability. If variants of 1146 BAPs for an application function are needed, different BAPs for the same application function have to be

- 1147 defined. BAPs are built on the basis of international standards and will have an influence in the further
- 1148 development of standards as shown in Figure 11.
- 1149 BAPs may include:
- Description of the related application function (SGAM Function layer),
- Relevant data models (SGAM Information Layer),
- Communication services (SGAM Communication Layer),
- Component related requirements (SGAM Component Layer),
- Interaction diagrams, if the application function is divided into sub-functions which may be distributed in different physical devices.
- BAPs do not include more than "black box" functional behavior specification, algorithms and functional codeand detailed instance definitions.

1158 6.9.7.3. Basic Application Interoperability Profile (BAIOP)

- 1159 To reach interoperability a BAP has to be extended for interoperability testing. The extended BAP is referred 1160 to as Basic Application Interoperability Profile (BAIOP).
- 1161 For interoperability testing a BAP has to be extended by
- Device configuration,
- Test configuration with communication infrastructure (topology),
- BAP related test cases,
- specific capability descriptions (e.g. PICS, PIXIT, MICS in case of IEC 61850),
- Engineering framework for data modeling (instances) and communication infrastructure (topology, communication service mapping).

1169

Figure 9: V-Model including BAP and BAIOP

- 1170 The definition and common use of BAPs and BAIOPs should lead to a win-win situation for all stakeholders 1171 involved in a smart Grid project in general, e.g.:
- The benefit for customers (e.g. utilities) and user groups is the chance to harmonize the various company specific application function variants to a common denominator / best practice implementation for each basic application function. This reduces the risk of interoperability problems caused by products/systems as these may be selected from standardized BAP frameworks and tested according to BAIOPs.
- The benefit for vendors that will use standardized BAP's in their products is the reduction of project specific or utility specific implementation variants of application functions, and therefore reduced product complexity, development costs and parameterization efforts. BAIOPs can be used for internal tests before the product will be placed on the market.
- The benefit for Certification Bodies / Test Labs is the ability to perform interoperability tests based on BAIOPs and create a new business case out of the need for interoperability.
- The benefit for system integrators is that they can specifically select products conforming to BAPs
 and tested according to BAIOPs. This significantly reduces the efforts for integration of subsystems or devices.

1186 6.9.8. Managing profiles

- 1187 It is important that profiling management will be in place in order to ensure that profiles are applied and understood in the same way by all affected stakeholders, and to avoid that diverging profiles for the same purpose will be developed and applied in parallel.
- 1190 Therefore WGI recommends that user groups shall take ownership of creating and managing profiles. This 1191 also means that lessons learned are fed back by users of the profiles to the corresponding user groups who 1192 are able to improve their profiles according to predefined cycles.

1193 6.9.9. Implementation of profiles in real projects

- As BAPs and BAIOPs are elements in a modular framework for specific application systems/subsystems and can be used in combination as building blocks in real projects, the user involved in the project (e.g. a company or system integrator) is responsible to develop and maintain Project Application Profiles (PAP) and Project Application Interoperability Profiles (PAIOP) based on these building blocks, but specific refinement still might be necessary to meet the project requirements. To reduce the project implementation efforts, it is desired that PAPs and PAIOPs consist of BAPs and BAIOPs to the highest possible extent, so that as little refinement as necessary needs to be performed by the user.
- 1201 This process is basically illustrated in Figure 10:

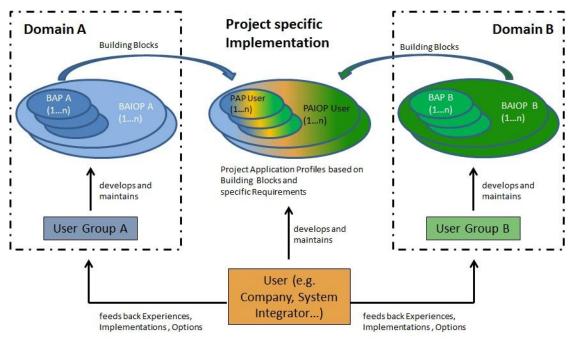


Figure 10: Workflow of project specific profiling

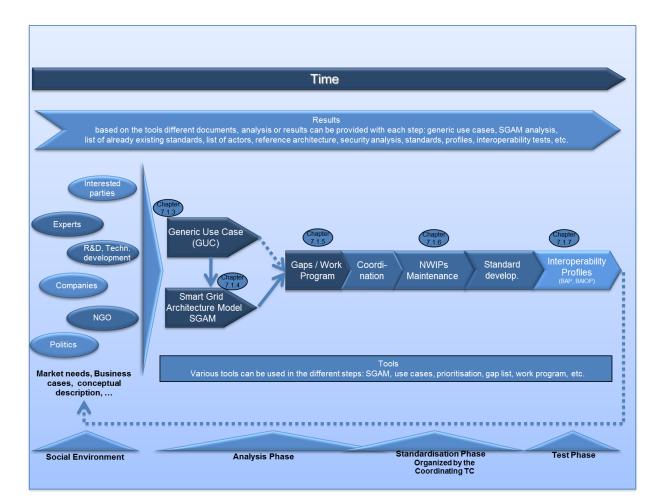
1204

1205 **7.** Processes and management for the Smart Grid standardization methodology

1206 7.1. Overall process – How the elements and tools are interlinked

1207 7.1.1. Introduction

1208 This chapter intends to show how the different tools and elements of the concepts introduced in chapter 6 1209 can be combined to an integrated and generic pre-standardization process recommended for the use inside 1210 standardization organizations. The description of the ideal type of process, which is based on preconditions,


1211 covers the whole design process of standards starting with new requirements (e.g. from business or

regulation), use cases, SGAM, work program, new standards and profiles, and ends with a short overview of processes to prove conformance and test interoperability.

•

1214

1216

1221

Figure 11: Smart Grids generic pre- and post-standardization process

Depending on the task the stakeholders may vary the recommended process according to their needs /
 application. As said for the use case template this methodology might be transferred and adopted to other
 systems as well, because the general principles are not specific to Smart Grids.

- 1220 The process starts with new ideas, requirements, processes, systems, or business cases from
 - internal sources like the experts from technical or strategic committees of the organization itself or
- external stakeholders like R&D, political request (e.g. new laws, regulation, mandates)
- 1223 which express a need for standardization and require an early and coordinated activity as reaction.

1224 This new demand has to be analyzed making use of the tools and elements introduced in chapter 6. The 1225 steps in Figure 11 are explained below – each step in one section (and in the figure a reference is made to 1226 the section number or to external source).

1227 7.1.2. Preconditions

- 1228 Before starting the description of the process some preconditions are required:
- A use case methodology is introduced throughout the standardization organization.

- 1230 Use cases are described and maintained in a central use case repository (database) with a given use case template⁷. 1231 1232 The system and its processes are recognized and accepted by the relevant stakeholders. . 1233 A coordinating committee (CC) is established for coordination and quality check. • 1234 A support team (ST) helps the standardization experts in the committees to write use cases, to find actors and to use the tools / repository. The ST might be identical to the CC^{8} . 1235 1236 The CC establishes 1237 Basic definitions, which are introduced for the system of interest such as a Smart Grid system: 1238 basic set of actor/roles definitions, zones, domains, terms. 1239 A rough clustering of possible use cases, e.g. considering the conceptual model to identify affected/involved roles and responsibilities. 1240 1241 1242 7.1.3. From requirements to use cases 1243 Input: new requirements, needs (e.g. from market) 1244 Output: validated generic use cases, actors 1245 Process owner: Coordinating Committee in a standardization organization for a specific area like 1246 Smart Grid 1247 Or 1248 Technical or strategic committee in cooperation with CC 1249 Person / Organization / Committee who suggests the new requirements, technical Process contribution 1250 or strategic committees within the standardization organizations 1251 Tools: Use case template, actor list, use case repository, conceptual model 1252 Within the coordinating committee established for Smart Grid use cases or within a technical body (e.g. TC, 1253 WG, TF) or suggested from external sources (market needs), the new demand is described as a use case. It 1254 is recommended for the first analysis to use a short version of the use case template. 1255 From the beginning some essential principles shall be followed:
- New use cases shall be suggested as generically as possible and shall not be project specific.
- The proposer of the new use case should check if the use case is already available or similarly available. In this case he is requested to contribute to the existing generic use case (GUC) instead of providing a new use case.
- By providing a new use case the author considers:
 - The criteria for GUC (e.g. not project specific, ...)
- 1262 o Using the use case repository,
 1263 o Accepting the exploitation right

- Accepting the exploitation rights agreement needed for standardization,
- 1264 Explains links to existing GUC
- 1265 o Using existing definitions like roles, actors, domain, or zones as much as possible.
 1266 Re-use of existing actors should be stimulated as much as possible, and around the definition of new actors a clear (centralized) governance should be established (coordinating committee).
- If use cases are duplicated, they should be described explicitly as alternatives to the already existing ones and should be related to them.
- 1270NOTEThis might be needed for instance, if a generic use case on international level will be modified at
European or national level in order to match it to European or national specific circumstances like regulation.

⁷ The description here is independent from the SDO. But it should be noted that the upcoming IEC 62559-2 is defining a template which will be the basis for an IEC use case repository currently under design and programming. It is recommended to use the existing template and repository in order to harmonize the work on use cases.

⁸ E.g. for Smart Grid the IEC/TC 8 WG 6 "Generic Smart Grid Requirements" fulfills tasks which qualify the working group as CC and ST (tbd).

- Granularity and depth of description of use cases should be managed flexible. The author /
 committee in charge decides about the appropriate form in the relevant phase (e.g. start with a short template, detailing in iterative steps after first discussions and confirmation of the relevance of the use case).
- 1276 Recommended process for the development of use cases
- If new requirements are expressed from outside of the standardization organization for a first analysis, high level use cases / user stories are described and analyzed in order to develop generic use cases in the coordinating committee (CC).
- A new use case might be discussed on working group / TC / CC level. Within a short time frame the new use case shall be suggested to the CC in order to allow other committees to provide further input and in order to achieve the aim of coordination by means of the use case descriptions.
- After a rough review and quality check by CC checking the completeness and the mentioned basic
 principles the new GUC will be opened for discussion and further suggestions by the standardization
 community using the use case repository as a collaborative platform.
- 1286 4. The CC leads the discussion and the development of the use case or designates a TC with this task.
- 1287
 5. Other TC's or even organizations considered to be relevant should be informed about the new use case, so that they can provide further input, comments, or changes.
- 1289 6. After a defined time period the discussion will be finished and the use case is considered as broadly accepted.
- 1291 7. The CC checks the result of the discussion phase and might hand over the use case to the next step.
- A voting might officially document that the use case is considered as validated.
 NOTE: similar to standards a review / maintenance procedure shall define the process of revision of validated use cases.
 NOTE: established processes for database standards should be considered for the definition of processes
 - NOTE: established processes for database standards should be considered for the definition of processes within standardization organizations, e.g. for the voting process.
- 12989.The CC might hand over this use case or a cluster of use cases for further elaboration to a1299Coordinating TC (CTC) specialized in the relevant issues. CC and CTC to suggest next steps like1300analysis, more detailed use cases, standards development etc.
- 1301 10. The validated use case will be made available for the public (e.g. IEC mapping tool).
- 1302 The same principles shall apply for the suggestion of new actors.

- 1303 As use cases can be described on different levels of granularity an iterative process is recommended:
- Start with a high level use case (HL-UC) or conceptual description without going into details
- After the general ideas are accepted more detailed use cases can be established.
- The CC works mainly on high level use cases and conceptual descriptions having the whole system in view.
- The development of more detailed use cases are handed over to Coordinating TC's (CTC) which have the closest relation to the relevant use case
 EXAMPLE: electricity metering use cases -> IEC or CENELEC / TC 13
- 1311 7.1.4. From use cases to the SGAM use case analysis

1312	Input:	Use cases
1313	Output:	Analysis / SGAM reference architecture, list of standards / set of standards (refer
1314		to [SG-CG/B] [SG-CG/G])
1315	Process owner:	Coordinating Committee in a standardization organization for a specific area like
1316		Smart Grid
1317		Or
1318		Technical or strategic committee in cooperation with CC
1319	Process contribution	Person / Organization / Committee who suggests the new requirements, technical
1320		or strategic committees within the standardization organizations
1321	Tools:	Use case repository, SGAM, Conceptual Model

As mentioned before there are various reasons, demands and needs to work with use cases in
standardization. This means that the authors or the readers of use cases might have very different
viewpoints on a use case or a set of use cases. The structured template for the use case provides already
different fields in order to take different viewpoints when analyzing use cases. The following types of analysis
are already discussed:

- Capturing requirements for new functions; analyzing, if these requirements can be fulfilled with the existing set of standards, or if there is a need for new standards or modification of existing ones
 Harmonizing functions, actors, roles across different stakeholder groups, sectors or technical bodies (e.g. terminology)
 Functional analysis to derive to new requirements: e.g. risk & threat analysis for IT-security or for functional safety purposes. The analysis might lead
 - functional safety purposes. The analysis might lead o to changes in the use cases or

1333

1334

1335

1336

1339

1340

1344

1345

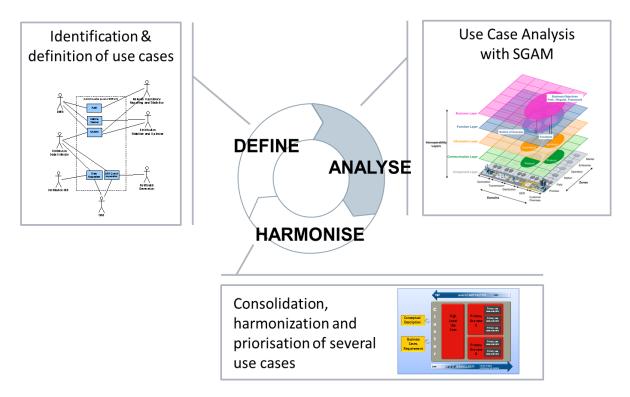
1350

1351

1352

1353

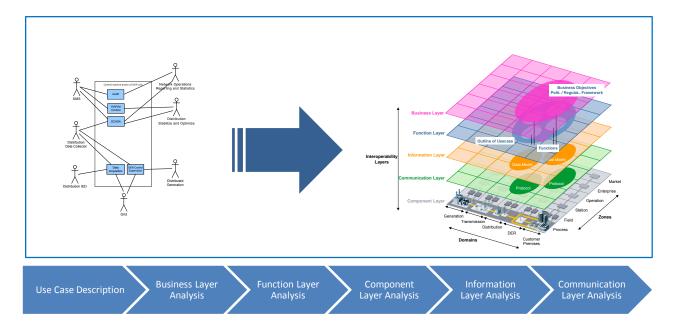
1354


- to recommendation in combination with new or existing standards (e.g. recommendation of a specific security / safety level or need for standards for new safety features according to the new functionalities laid down in the use case)
- Information collection: together with the use cases further information can be gathered (refer e.g. to field "References", e.g. standards, legal requirements, contracts, etc.)
 - General classifications of a use case: depth of description, business or technical nature of the use case and the prioritization of use cases
- Classification of use cases: which use cases belong to a specific role (e.g. using the Conceptual Model and/or HEM-RM), domain, actor, interface, business process, quality of the use case description etc.
 - Test use cases: which requirements or scenarios / sequences (incl. normal, alternatives, fault scenarios) can be used for test purposes
- Guidance for readers who want to know which standards are necessary for their use case (in combination with the analysis in combination with SGAM below, refer also the set of standards [SG-CG/G], or the IEC mapping tool [Mapping Tool])
- More detailed engineering, e.g.:
 - Information payload from Actor A to Actor B (interface)
 - Information for further programming, transfer to UML (scenarios / sequences, trigger events, information flow etc.)
 - Detailed requirements: e.g. quality of service, data management, information security, privacy and more (refer to the column "Requirements" in the step-by-step description of the use case
- Linking use case to a reference architecture like the Conceptual Model (for roles and responsibilities), SGAM and to standards (see also the following description)
- 1357 It is expected that in future with further works in the field of use cases and reference architectures, more1358 analysis demands will be requested.

In the following a basic process to analyse use cases to SGAM is described. A detailed example can be
 found in [SG-CG/K]. The mapping process can be applied to the following tasks, which are considered
 relevant for the present mandate M/490:

- Mapping of use cases in order to validate the support of standards on each SGAM layer
- Identifying gaps in respect to standards on each SGAM layer
- Identifying similar use cases by mapping the use case to SGAM domains and zones
- Harmonizing use cases/actors/interfaces between SGAM domains and zones
- Mapping of existing architectures into a general view
- 1367 Developing Smart Grid architectures

Depending on the objectives the following process can be done iteratively. An overview of the basic processis depicted in Figure 12.


Figure 12: Basic process for SGAM Use Case Analysis

1372 The example in [SG-CG/K] starts with a high-level use case, which is mapped to SGAM domains and zones 1373 to define use cases. Then these use cases are described and analysed with SGAM in detail.

To come from a use case description to an SGAM analysis different approaches are possible. The order in
which SGAM layers are modelled depends on the use case under analysis and its viewpoint. Figure 13
describes a sequence proven-in-practice for the use case analysis with SGAM.

- 1377 1. Use case description
- Based on the use case description a business-oriented use case should provide a clear view on the involved roles as well as their responsibilities and goals.
- 13803. The analysis is complemented with the technical view on the lower layers of SGAM starting with modelling the function layer following the objectives of the use case.
- 1382
 1383
 1383
 1384
 4. Then, the component layer is developed to depict where functions are realised on hardware. The component layer is derived from the use case information on system/device actors. These actors are located to the appropriate domain and zone.
- 13855. Based on the function and component layer information flows are identified and information objects can be defined on the information layer.
- Finally, the communication layer describes protocols and mechanisms for the interoperableexchange of information.
- 1389

1391

....

Figure 13: Use Case Analysis with SGAM – example for an analysis process

1392 7.1.5. From use cases and SGAM analysis to standards gaps

1393		
1394	Input:	Use case(s) and SGAM analysis
1395	Output:	Gap list
1396	Process owner:	Coordinating Committee in a standardization organization for a specific area like
1397		Smart Grid
1398		Or
1399		Technical or strategic committee in cooperation with CC
1400	Process contribution	Person / Organization / Committee who suggests the new requirements, technical
1401		or strategic committees within the standardization organizations
1402	Tools:	Prioritization, work program, dashboards

1403 Based on the analysis, the required functionalities, actors / roles as well as related standards and a 1404 reference architecture is available. For standardization purposes it can be checked, if the use case(s) can be 1405 performed with the referenced standards or if the standards need a modification / update or if new standards 1406 (new work item proposals) are needed. If a gap is detected, the analysis done in the previous step already 1407 provides a lot of detailed information to close the gap (like information exchange needs, payload or non-1408 functional requirements related to the specific task). In reality the analysis will be more detailed if a gap is 1409 already expected, and less detailed if the use case / reference architecture is well known and state-of-the-art 1410 in standardization.

1411 If there is no gap identified, the analysis nevertheless supports the users of standards and can be seen as a 1412 selection guide which standard can be used for which task.

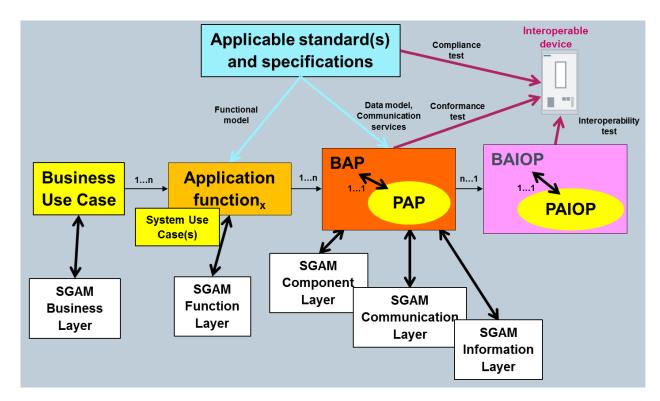
1413 **7.1.6.** From standards gaps to standards

1414	Input:	Gap list
1415	Output:	Prioritized work program, dashboards for each gap, standardization projects,
1416		standards
1417	Process owner:	Coordinating Committee in a standardization organization for a specific area like
1418		Smart Grid (e.g. SG-CG)
1419		And
1420		Technical committee
1421	Process contribution	Technical or strategic committees within the standardization organizations
1422	Tools:	Prioritization methodology, dashboard and work program templates

As already mentioned in chapter 6.6 identified gaps are summarized and prioritized. The method as
described in [Gap Prioritization] might be used. The prioritized list of gaps represents the work program.

In a further step for each gap, which is part of the work program, the next action item(s) are defined – here
the template for a dashboard might be used [Work program]. The work program can also be seen as a
management of identified and selected / prioritized gaps.

Based on the gap list or the prioritized gap list, and in close cooperation with the relevant technical bodies,
new standards (e.g. Preliminary Work Item (PWI) or New Work Item Proposal (NP), see 7.2) or necessary
modifications of existing standards will be developed.


1431 The following steps necessary to finalize the work on standards until publication are dependent on the 1432 mature practice of the relevant standardization organization as described in 7.2. If it is part of the work 1433 program of a coordinating committee (here the SG-CG/WG SS), the work progress will be monitored. This 1434 might be needed only for more complex gaps where various technical bodies are involved. Otherwise this is 1435 a task of the respective technical body.

1436 7.1.7. From use cases and standards to interoperability profiles (BAP)

1437 1438 1439 1440 1441 1442 1443		s owner: s contribution	Use cases, existing standards, specifications, profiles Interoperability profile related to use case (BAP) User group, standardization committee, or individual actor using the profiles User groups, standardization committees, system integrators, individual company (e.g. utility), vendors, certification bodies, test labs, regulator IOP tool, use case template, IEC use case repository, standards databases, selection guide according to [SG-CG/G], V-model, profile management
1444 1445	•		ed on which layers IOP is required to fulfil the functional requirements of a use ayer, communication layer, component layer.
1446	•	Related existing st	andards, specifications and profiles are selected:
1447		o Define required	physical interfaces and communication channels between objects.
1448 1449 1450		identify any g	standards for each interface within each required layer with the IOP tool and also aps in conformance/compliance testing (or possibly IOP testing) in sets of cessary, specifications may be taken into account additionally.
1451 1452	•	Define profile defir / use case function	nitions based on standards and specifications as identified above and on business all requirements.
1453 1454			les for each (set of) standards and specifications (BAP) (with possible feedback ation development)
1455		• Apply profiles in	n system design (BAP) and testing phases (BAIOP, next phase).
1456		• Further definition	ons might be necessary for project specific implementations (PAP).
1157		1.4 illustrates the pr	see from a use sees to interenershility testing by using DADs and DAIODs

1457 Figure 14 illustrates the process from a use case to interoperability testing by using BAPs and BAIOPs.

Figure 14: Process from use case to interoperability on SGAM layers

1460 **7.1.8.** From interoperability profiles (BAP) to "testing profiles" (BAIOP)

1461	Input:	BAP, specific extensions for testing purposes
1462	Output:	BAIOP
1463	Process owner:	user group, standardization committee, or individual actor using the profiles
1464	Process contribution	User groups, standardization committees, system integrators, individual company
1465		(e.g. utility), vendors, certification bodies, test labs, regulator
1466	Tools:	IOP tool, V-model ⁹ , profile management

- 1467 Extend the BAP profiles with further information as described in chapter 6.9.
- 1468 Further definitions might be necessary for project specific implementations (PAIOP).

1469 7.2. Introduction into the process of standard development in standardization1470 organizations

- Standardization organizations established rules and processes, on how to develop standards in order to
 guarantee basic requirements for standardization like transparency, consensus, non-discriminatory
 participation etc. Each standardization organization defines its products (e.g. International Standards (IS),
 Technical Specification (TS), Publicly Available Specification (PAS), or Technical Reports (TR)) and the
 relevant processes.
- 1476 As example the IEC process for an International Standard (IS) is described¹⁰ (see Table 2):
- 1477

⁹ The V-Model in Figure 9 represents a system or software development process.

¹⁰ <u>http://www.iec.ch/standardsdev/how/processes/development/approval.htm</u>

1479

Table 2 – IEC standardization process

Preliminary Stage	Preliminary Work Item (PWI)	Future work is announced.
Proposal stage	New Work Item Proposal (NP) (Vote)	Suggestion for a new standard or
		specification
Preparatory Stage	Working Draft (WD)	A working draft is usually supplied with
		the NP. Later the last version of the
		working draft of the respective project
		team is distributed as CD.
Committee Stage	Committee draft for comments (CD)	National committees are asked for
	(comments collection)	comments.
Enquiry Stage	Committee draft for vote (CDV) (Vote)	The draft can be commented and there is
		a vote to enter to the next step.
Approval Stage	Final draft International Standard	Final vote without commenting. A positive
	(FDIS)	vote is necessary for publication.
Publication Stage	International Standard (IS)	Publication of the official International
J J		Standard (IS)

1480 Comparison of IEC and CENELEC processes (see Table 3):

1481

Table 3 – Comparison of IEC and CENELEC processes

Stage	IEC	Respective CENELEC
Preliminary Stage	Preliminary Work Item (PWI)	Preliminary Work Item (PWI)
Proposal stage	New Work Item Proposal (NP) (Vote)	New Work Item Proposal (NWIP)
Preparatory Stage	Working Draft (WD)	
Committee Stage	Committee draft for comments (CD) (comments collection)	Draft
Enquiry Stage	Committee draft for vote (CDV) (Vote)	Draft prEN (CDV/ENQ)
Approval Stage	Final draft International Standard (FDIS)	Final Draft prEN (FDIS/VOTE)
Publication Stage	International Standard (IS)	European Standard (EN)

1482 Comparison of IEC and ETSI processes (see Table 4):

1483

Table 4 – Comparison of IEC and ETSI processes

Stage	IEC	ETSI
Preliminary Stage	Preliminary Work Item (PWI)	
Proposal stage	New Work Item Proposal (NP) (Vote)	New Work Item Proposal (TB Vote)
Preparatory Stage	Working Draft (WD)	Draft for WG Approval
Committee Stage	Committee draft for comments (CD) (comments collection)	Draft for TB Approval (TB vote) Approval and publication for Technical Specification, Group Specifications and Technical Reports
Enquiry Stage	Committee draft for vote (CDV) (Vote)	
Approval Stage	Final draft International Standard (FDIS)	Final draft for EN Approval Procedure (ENAP) of Two-step Approval Procedure (TAP)
Publication Stage	International Standard (IS)	European Standard (EN)

1485 The intention of the process is a broad worldwide consensus and non-discriminatory participation. Therefore 1486 several information, commenting and voting steps are introduced.

1487 IEC and CENELEC are closely interlinked according to the Dresden Agreement¹¹ which describes the
 1488 common planning of new work items and parallel voting between IEC and CENELEC. Similar agreements
 1489 are established for ISO / CEN or ETSI / ITU.

- For other types of documents faster processes are established. Specialized standards are published asdatabase with modified rules compared to the above-explained processes.
- This means that for the phase in Figure 11 called "Standardization Phase" today processes are available and
 mature. For the interoperability phase currently processes are established inside or outside of the
 standardization organizations. Suggested improvements need to be evaluated by the SDOs.

1495The main part of the proposed new process is considering the pre- and post-standardization phase, in Figure149611 called "Analysis Phase" or "Testing", as an addition to and supporting the established standardization1497processes. Starting with a structured collection of new requirements and tools for their analysis this process1498shall enable the Standards Developing Organization (SDO) to react quickly and competently as soon as new1499complex and more interlinked systems are evolving.

- 1500 <u>Recommendations</u>
- 1501 The following recommendations are describing a possible introduction of the suggested new processes and 1502 tools within an SDO:
- Evaluation of the suggested process
- Test with an example system and modification according to best practice experience¹²
- 1505 Establishing of

1512

1513

- 1506 o a use case repository¹³ with a generic actor list
- a Coordinating Committee (CC) dealing with new requirements, transferring them into generic use cases, analyzing them and providing a coordinated work program for new work item
 proposals¹⁴
- 1510 o common understanding of the need for a coordination and cooperation of different sectors and technical committees dealing with systems of cross cutting nature
 - Training on the new tools and processes / support using these tools by a Supporting Team (ST) / providing necessary templates and tools
- 1514 o Coordinating TC (CTC) in addition to the CC use cases or clusters of use cases might be
 1515 handed over to technical committees that are most interested and specialized in this area. The
 1516 CTC coordinates further detailing of these use cases, reference architectures and analysis up to
 1517 the standards work program in cooperation with interested other TC's.
- The process needs to be transparent. A common collaborative platform like the use case repository or the mapping tool¹⁵ will be helpful. This collaborative platform shall provide the possibility of commenting and discussion and in some cases also voting (e.g. on use cases).

¹¹ More information to the Dresden Agreement http://www.iec.ch/about/globalreach/partners/regional/iec_cenelec_agreement.htm

¹² E.g. the work on Smart Grid provides already first experience

¹³ The SG-CG developed a prototype in the first phase of the mandate. IEC is building up a repository.

¹⁴ E.g. IEC/TC 8 WG 6 "Generic Smart Grid Requirements"

¹⁵ see <u>http://smartgridstandardsmap.com</u> (Best with Chrome as browser)

- The process shall enable various level of granularity: easy and quick start and exchange without detailed knowledge up to a more detailed and deep analysis which can be used for the standards, test use cases or engineering.
- New products like use cases, work program, reference architecture needs to be defined: Status of new documents, processes in detail (e.g. suggestion, commenting, voting), relation to the existing processes and products¹⁶.

¹⁶ E.g. new IEC 62559 parts 1 to 3 under preparation