

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the
technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

 Warning
 This document is not a CEN Workshop Agreement. It is distributed for review and comment. It is

subject to change without notice and may not be referred to as a CEN Workshop Agreement.
 Recipients should notify the committee of any relevant patent rights of which they are aware and to

provide supporting documentation.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2021 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

 Extensions for Financial Services (XFS) interface

specification
End-to-End (E2E) for XFS/XFS4IoT

Programmer's Reference v1.0
Release Candidate

CWA xxxxx-x:2021 (E)

2

 Table of Contents

Revision History ... 3

1 References .. 4

2 Introduction ... 5

2.1 XFS End-to-End (E2E) Overview .. 5
2.1.1 XFS E2E General description .. 5

3 General E2E sequence ... 6

4 E2E Tokens ... 8

4.1 Token Keys ... 9

4.2 Token Examples ... 10

5 E2E Encryption Key Management ... 12

6 Unique Messages and Replay Attacks ... 13

6.1 Example: A classic dispense operation .. 14

6.2 Example: Types of attacks that are blocked ... 15
6.2.1 Black Box Attack ... 15
6.2.2 Man in the Middle attack ... 17
6.2.3 Replay Attack ... 18

7 E2E Token Formats .. 19

7.1 Dispense Token Format .. 19

7.2 Present Status Token Format ... 19

7.3 Multiple Dispense/Present Operations .. 20

8 HMAC Key Block Examples ... 22

Appendix A. Diagram Source .. 23

CWA XXXXX-X:2021 (E)

3

Revision History

Revision History:

Initial release December, 2021 End-to-End (E2E) for XFS/XFS4IoT Specification.

CWA XXXXX-X:2021 (E)

4

1 References

1. ANS X9 TR-34 2019, Interoperable Method for Distribution of Symmetric Keys using Asymmetric Techniques:
Part 1 – Using Factoring-Based Public Key Cryptography Unilateral Key Transport
2. ANSI - X9.143, Retail Financial Services Interoperable Secure Key Block Specification

CWA XXXXX-X:2021 (E)

5

2 Introduction

2.1 XFS End-to-End (E2E) Overview

The XFS End-to-End (E2E) commands and events are defined to allow host to device authentication of vulnerable
commands that must be protected from malicious attack. ‘E2E’ is the abbreviation for ‘End-to-End’ and refers to
the bidirectional transmission of secure data between a device and a host.

It should be noted that XFS supports a Windows C based environment, whereas XFS4IoT is designed for multiple
Operating Systems and programming environments. However, the E2E data flow and token format description in
this document are the same for both architectures.

This document provides a general description of how E2E is used in XFS, for a description of exact syntax the
relevant XFS/XFS4IoT documentation should be used. Note that for the purposes of this document the term ‘XFS’
refers to both XFS 3.x and XFS4IoT based architectures.

2.1.1 XFS E2E General description

A key priority for XFS is to improve security of the entire environment where it is used. This means securing not
only the interface between the service and the device, or the interface between the client and the service, but
providing security all the way from one end of an operation to the other.

For example, during a cash dispense operation the transaction will first be authorized by an authorizing host which
represents the owner of the cash in the device. That host will communicate through various other systems to the
client application, the client application will communicate with the service and the service will finally communicate
with the device. Any part of that process is vulnerable to an attack which could lead to the wrong amount of cash
being dispensed. XFS E2E has been designed to block attacks at any point between the authorizing host and the
dispenser hardware.

Both data 'integrity' like this, and 'confidentiality' for things like card data, are important. E2E focuses on integrity
since confidentiality is covered by other mechanisms, such as TLS encryption of network messages.

CWA XXXXX-X:2021 (E)

6

3 General E2E sequence

E2E security involves communicating facts between two end points and validating that those facts have not been
changed or tampered with. Typically, this would be between a Hardware Security Module (HSM) in a data-center,
and a Hardware Security Element (HSE) built into a device such as a cash dispenser. The method of
communication between these two ends does not matter since any tampering with the data will be detected.

The following diagram shows a typical system with the secure hardware end points in green. It shows two possible
architectures, one with the client application running locally on the ATM, and the other with application running in
the cloud:

CWA XXXXX-X:2021 (E)

7

The general sequence for an E2E security operation involves one system generating a token, and another system
validating that the token has not been changed. This sequence looks roughly the same in both directions; for
example, an Authorizing Host can create a 'Dispense Token' and the Dispenser will validate that token before
dispensing cash. In the opposite direction, the dispenser can create a 'Present Status' token to protect information
about the presented cash and the client can validate that the token is valid and has not been tampered with.

In both directions the sequence looks like this:

CWA XXXXX-X:2021 (E)

8

4 E2E Tokens

XFS implements E2E security using strong cryptography, such as HMAC values. Secret keys are shared between
endpoints, ideally by using TR34 and X9.143 (Ref 1). The use of public key RKL ensures that only the correct
endpoints have access to the E2E transactions.

Note that X9.143 is referenced for the loading of symmetric keys. This is because TR31 is a non-binding ‘technical
document’, whereas X9.143 is a published standard.

The data relevant to the E2E transactions is separated out from the normal clear text properties passed in the
messages and is included in different "token" properties in the messages. Each token property is defined in the
relevant interface documentation. For example, there is a "dispense token" for cash dispense actions and a "present
status" token to protect the information about the last presented cash operation. These are defined in the relevant
section of this document.

Tokens are encoded as a simple string which contains all of the information needed for that token, and also the
information needed to keep it secure such as the HMAC value. Keeping all the information together in this way
ensures that a single HMAC can protect all of the data, and there is no possibility that part of the data could be
changed.

Keeping the token as a simple string means that it is easy to handle for low-power hardware. For example, the token
may need to be checked by embedded firmware, even if the service is running on a front-end machine. To be fully
E2E it must be checked on the hardware, so the format is kept simple.

The general format of a token is a string with a set of key=value pairs all comma separated and UTF8 encoded. The
first pair will give the nonce. The last value will be a SHA256 HMAC, The UTF8 encoding is important so that the
HMAC is consistent.

There will be multiple other key=value pairs, separated by commas. NONCE is always the first key, and
HMAC256 is always the last key. All other keys can appear in any order. Key names are always upper case.

Tokens will not contain any extra whitespace.

To avoid possible parsing errors, binary data in tokens including the HMAC is encoded as simple hex values, rather
than the normal BASE64 encoding. This is because BASE64 uses the "=" character which could be confused for
the key=value separator. Hex encoded data will be all upper case.

For similar reasons, the characters "=" and "," must never be used in any value data, including custom values. If
custom key/value pairs are used, then care must be taken that the value never contains those two characters.

The key=value pairs define what the token is used for. For example, the CDM service class in 3.x or Cash
Dispenser interface in XFS4IoT uses "DISPENSE1" and "PRESENTSTATUS" keys in different Tokens. The
different key names ensure that tokens with different uses can not be reused by an attacker. "value" is the actual
value of the data being protected and will be different for each operation.

The set of standard key names and format for each value is defined in the relevant specification for each token type,
including which keys are required and which are optional.

It is also permitted to include custom key values in a token. For example, a hardware dependent error code might be
included. Unknown keys will be included in the HMAC calculation, but otherwise ignored. There must not be a
dependency on custom keys. Care should be taken to avoid name clashes between keys, maybe by using a vendor's
name in the key name. For example, if the Acme Corporation wants to include "ERRORCODE" as a custom key
name then they should call it something like "ACMEERRORCODE" and not "ERRORCODE".

The total token length will be limited to 1024 bytes to avoid the risk of buffer overflows. Any token longer than this
will be treated as invalid data. The limit is in bytes not characters since UTF8 characters may include multiple
bytes.

CWA XXXXX-X:2021 (E)

9

4.1 Token Keys

E2E security tokens are made up of key=value pairs. There are various key names that are common to all types of
tokens, plus key names which are only valid for specific token types. The following key names are valid for all
tokens.

• NONCE : The token nonce, expressed as a HEX encoded value which was initially exchanged between
the end points and is used to ensure that every token is different and to avoid replay attacks. The nonce
will always come at the start of the token (so that there is not too much constant leading data - this is
important for security).
The nonce value must meet the cryptographic requirements for a nonce. It must be non-repeating - that is,
the same nonce value must never be used twice. Code creating a nonce value should be carefully reviewed
to make sure this is true.

There are two simply ways of guaranteeing this:

o An incrementing integer can be used if it always increments between every token. This must be

true across restarts and power fails. The counter must not reset and repeat the same values. Note
that it doesn't matter that the value can be predicted. Also note that the length of an integer nonce
doesn't matter as long as it never repeats. This is different to a random nonce (below).

o A strong random number can be used if the random number never repeats. This can be easy if

there is a hardware random number generator available. If a pseudo-random number is used, then
the seed value needs to be carefully picked so that the seed never repeats (which would cause the
random number to repeat.) Needing to track unique seed values might mean it's easier to simply
use a persistent integer counter. Also, the chance of two random numbers matching needs to be
no more likely than the chance of two hash values matching, which means that if a random
number is used it must be 128 bits, to match the SHA256 length.

Note that X9.143 (Ref 1) is referenced for the loading of symmetric keys, rather than TR31 (Ref 1). This is
because TR31 is a non-binding ‘technical report’, whereas X9.143 is a published standard.

The value of the current nonce must be cached so that it can be checked against tokens, for example by the
firmware for incoming tokens. The nonce should not be persistent though - the current value will be lost
after a power cycle. After a power failure the nonce value will be cleared and any operations that include a
token will fail with the error code indicating that there is no token nonce. Note that this is possible if the
service is running on a different machine to the protected device - for example, if the service is running on
a PC connected via USB to a dispenser then the dispenser could lose power, but a client could still have a
valid connection to the service. In this case the client could use a token with an old nonce but will receive
an error code indicating that the nonce is invalid.

• TOKENFORMAT : The version number of the token format. Currently this will always be "1"

• TOKENLENGTH : The total number of bytes in the token, including the HMAC value, in decimal. This

value will be exactly four digits and include leading zeroes as required. Since this value has to include the
length of itself, making it fixed length makes it easier to calculate. Note that this is bytes and not
characters, since UTF8 characters may contain multiple bytes.

• HMACSHA256 : The HEX encoded HMAC of all the preceding data up to and including the last equals

after the HMACSHA256 key. The HMAC is always the last value - this makes it easy to calculate the
HMAC since it can be calculated over all other data, converted to hex, then appended to the string. The
HMAC will use SHA256 as the algorithm. The hex encoded data will be all upper case.

CWA XXXXX-X:2021 (E)

10

4.2 Token Examples
The general token format looks something like this:

NONCE=<noncevalue>,TOKENFORMAT=1,TOKENLENGTH=<Length>,<KEY>=<value>,HMACSHA25
6=<HMAC>

For example, a dispense token might be:

NONCE=254611E63B2531576314E86527338D61,TOKENFORMAT=1,TOKENLENGTH=0164,DISPENSE
1=50.00EUR,HMACSHA256=CB735612FD6141213C2827FB5A6A4F4846D7A7347B15434916FEA6AC16F3
D2F2

The value used to calculate the HMAC is

NONCE=254611E63B2531576314E86527338D61,TOKENFORMAT=1,TOKENLENGTH=0164,DISPENSE
1=50.00EUR,HMACSHA256=

A HMAC for this data, with SHA256 and a key of
112233445566778899AABBCCDDEEFF112233445566778899AABBCCDDEEFF, is:

CB735612FD6141213C2827FB5A6A4F4846D7A7347B15434916FEA6AC16F3D2F2

An example for including this in a XFS4IoT CashDispenser.Dispense command message would be as follows for
JSON:

{
 "header": {
 "type": "command",
 "name": " CashDispenser.Dispenser",
 "requestId": 456
 },
 "payload": {
 ...
 "dispenseToken":
"NONCE=254611E63B2531576314E86527338D61,TOKENFORMAT=1,TOKENLENGTH=0164,
DISPENSE1=50.00EUR,HMACSHA256=CB735612FD6141213C2827FB5A6A4F4846D7A7347B154
34916FEA6AC16F3D2F2"
 ...
 }
}

Similarly, the Present Status might include a PresentStatus token:

NONCE=1414,TOKENFORMAT=1,TOKENLENGTH=0268,DISPENSEID=CB735612FD6141213C2827FB
5A6A4F4846D7A7347B15434916FEA6AC16F3D2F2,
DISPENSED1=50.00EUR,PRESENTED1=YES,PRESENTEDAMOUNT1=50.00EUR,RETRACTED1=NO,
HMACSHA256=55D123E9EE64F0CC3D1CD4F953348B441E521BBACCD6998C6F51D645D71E6C83

For example, in XFS4IoT this would be included in the CashDispenser.GetPresentStatus completion message as:

{
 "header": {
 "requestId": 765,
 "type": "completion",
 "name": "CashDispenser.GetPresentStatus"
 },
 "payload": {
 ...

 "denomination": {
 "currencies": [

CWA XXXXX-X:2021 (E)

11

 {
 "currencyID": "EUR",
 "amount": 50
 }
],
 ...

 },
 "presentState": "presented",
 "token" : "NONCE=1414,TOKENFORMAT=1,TOKENLENGTH=0268,
DISPENSEID=CB735612FD6141213C2827FB5A6A4F4846D7A7347B15434916FEA6AC16F3D2F2,
DISPENSED1=50.00EUR,PRESENTED1=YES,
PRESENTEDAMOUNT1=50.00EUR,RETRACTED1=NO,HMACSHA256=55D123E9EE64F0CC3
D1CD4F953348B441E521BBACCD6998C6F51D645D71E6C83"
 }
}

Note: Token strings never have new lines or any white-space. New lines are included in examples only to make
them more readable.

In this example €50.00 was moved from the cassettes, possibly to a stacker, and €50.00 was then presented to the
customer. The notes were not retracted so it should be assumed that the customer could have taken the notes.

CWA XXXXX-X:2021 (E)

12

5 E2E Encryption Key Management

To ensure strong security, secret symmetric encryption keys are shared between different endpoints.

The keys used for E2E encryption have fixed names. They are XFSAuthenticateHost and XFSAuthenticateDevice,
where XFSAuthenticateHost is used by the host to create an HMAC, and XFSAuthenticateDevice is used by the
device to create an HMAC. Both keys must be shared between both endpoints so that HMAC values can be both
calculated and checked.

Ideally sharing the keys will be done using public key encryption, as defined in TR34. However, in some cases it
may be necessary to pre-load keys into hardware in some other secure way, for example in legacy hardware that can
not support TR34 (Ref 1). The security of the whole system is only as good as the security of these keys, so it is
vital that this is done in as secure a way as possible.

The key details are defined by the X9.143 specification which defines both key data and details such the intended
use. This includes the algorithm that the key can be used with. Since X9.143 defines the algorithm there is no need
for algorithms to be negotiated in any other way - the two end points will effectively agree the algorithm to use by
loading the relevant keys. The KeyblockHeader (including the optional blocks) for each of the keys should be
included. For examples of the KeyBlockHeader see section 8 of this document.

Encryption keys must be long enough to ensure security when used with a particular algorithm. For example, where
SHA256 is used for the HMAC value, the key must be a minimum of 128 bits and up to 256 bits long to match the
algorithm.

For simplicity, communication in each direction will be handled separately. So, for example, there will be a
separate key for tokens passed in each direction. Also, there will be a separate nonce in each direction.

For XFS4IoT, the details of the key management are covered by the shared Key Management interface. Any
service that implements E2E security will implement this interface as part of its interface. In XFS 3.x, key
management is handled using the key management interfaces in the PIN device class.

CWA XXXXX-X:2021 (E)

13

6 Unique Messages and Replay Attacks

To avoid 'replay attacks', where an attacker reuses an old message to replace a new one, it is important that all
individual tokens are unique, and the same data is not used multiple times. For example, it is common to have a
dispense token for "10EUR" so that value (and its HMAC) will be the same for many transactions and could be
reused by an attacker. To avoid this a "Nonce" value is included in each token. The nonce will be different for each
transaction. This guarantees uniqueness.

There will be a different nonce for tokens passed in each direction. That is, there will be a command nonce and
response nonce. Each nonce must be generated and checked at the same end of the communication, so the
command nonce must be generated and checked by the device. The response nonce must be generated and checked
by the client. (Ideally in the host HSM.)

To fully avoid replay attacks the nonce must be agreed between the endpoints before it is used. An extra command
on the interface is called by the client to fetch a new command nonce. This nonce is then remembered by both end
points and included in each command token. Similarly, a response nonce must be generated by the client/host,
passed to the service, and included in all response tokens.

CWA XXXXX-X:2021 (E)

14

6.1 Example: A classic dispense operation

The following example shows how E2E security is used to protect a cash dispense operation during a classic ATM
transaction.

Once a dispense has been performed it is important to accurately report the result. If an attacker can change the
reported result, then they might fake an error to make it look like cash was not presented to the customer and
tricking the banks into reversing the transaction - this is known as transaction reversal fraud.

To protect against this, the WFS_INF_CDM_PRESENT_STATUS (XFS 3.x) or CashDispenser.GetPresentStatus
(XFS4IoT) commands return a token that can not be tampered with. Note that this token goes in the opposite
direction, from the device to the host. This means that the nonce is now coming from the host rather than from the
device. The nonce can be included in the command to get the present status without needing to call an extra
command.

CWA XXXXX-X:2021 (E)

15

6.2 Example: Types of attacks that are blocked

Various types of attacks are blocked by E2E security. Some examples are given here.

6.2.1 Black Box Attack
A fake client attempts to issue a dispense command without authorization. This is commonly known as a "black
box" attack:

CWA XXXXX-X:2021 (E)

16

CWA XXXXX-X:2021 (E)

17

6.2.2 Man in the Middle attack
An attacker with control over communications tries to change details, for example to increase the amount of cash
being dispensed. This is known as a "Man in the Middle" attack:

CWA XXXXX-X:2021 (E)

18

6.2.3 Replay Attack
An attacker with control over communication stores a token and attempts to use it a second time. This is known as a
"replay attack":

CWA XXXXX-X:2021 (E)

19

7 E2E Token Formats

This section defines the E2E Token formats used in XFS. This section defines the keys use for token formats used
in XFS. Keys in this section are in addition to the NONCE, TOKENFORMAT, TOKENLENGTH and other
common keywords described in section 4.

7.1 Dispense Token Format

The following describes the fields required to validate the dispense and guarantee that the details have not been
tampered with. This token will follow the standard token format, defined in this documentation, and will contain the
following keys:

DISPENSE<n>=<AMOUNT><CURRENCY>”

The format for these keys is as follows:

Key Description
DISPENSE<n> This is a logical key starting with 1 and incrementing by 1.
AMOUNT The amount as a number string, including the fractional part will be defined by the ISO

currency. The maximum value to be dispensed. The decimal character will be ".".

CURRENCY This field will be defined using the ISO currency code. The currency code will be upper case.

As an example, "123.45EUR" will be €123 and 45 cents. The DISPENSE key may appear multiple times with a
number suffix. For example, DISPENSE1, DISPENSE2, DISPENSE3. The number will start at 1 and increment.
Each key can only be given once. Each key must have a value in a different currency. For example:

DISPENSE1=100.00EUR,DISPENSE2=200.00USD

The actual amount dispensed will be given by the denomination. The value in the token MUST be greater or equal
to the amount in the denomination parameter. If the Token has a lower value or the Token is invalid for any reason,
then the command will fail with an invalid data error code.

7.2 Present Status Token Format

The following describes the fields required to validate the present status and guarantee that the details have not been
tampered with. This token will follow the standard token format, defined in this documentation, and will contain the
following keys. Note that all these keywords are mandatory, in order to give the maximum amount of information.
The format for these keys is as follows:

Key Description
DISPENSEID HEX encoded HMACSHA256 value from the token for the last dispense

operation. This is included so that the present status can be linked to a
previously authorized dispense. If this doesn't match the expected value then
the receiver of the token may assume that the transaction is suspect, and that
the cash may have been accessible to the customer. If there was no dispense
token this key will not be included - This may also mark the dispense as
suspect.

DISPENSED<n> The total value of a single currency that was removed from cassettes and
possible stacked inside the machine ready to present. This does not include any
notes moved to the reject cassette. This will be a number string that may
contain a fractional part. The decimal character will be ".". The value,
including the fractional part, will be defined by the ISO currency. The number
will be followed by the ISO currency code. The currency code will be upper

CWA XXXXX-X:2021 (E)

20

case. For example, "123.45EUR" will be €123 and 45 cents.

PRESENTED<n> May be "YES" or "NO" (upper case.) This will be YES if the notes could at
any time have been accessible outside the machine and may have been
tampered with. If the notes were never accessible outside the machine and can
not have been tampered with then this value will be NO.

PRESENTEDAMOUNT<n> The total value of a single currency that was presented outside of the machine.
The format is the same as for DISPENSED1.

RETRACTED<n> May be "YES" or "NO". If notes were accessible outside of the machine and
were then retracted back into the device, then this value will be YES. If notes
were never presented, or all notes that were presented were not retracted, then
this will be NO.

RETRACTEDAMOUNT<n> If notes are counted during a retract this will be the amount retracted. If the
notes aren't counted, or the value of the notes retracted is not reliably known
for any reason, this will be "?".
For example:

"RETRACTEDAMOUNT1=123.45EUR" €123 and 45 cents was retracted and
counted.

"RETRACTEDAMOUNT1=?" Notes may have been retracted, but the value
of the notes can't be guaranteed.

The following is an example of how these keys and values may look in the formatted token:

"NONCE=1414,TOKENFORMAT=1,TOKENLENGTH=0268,DISPENSEID=CB735612FD6141213C2827FB5
A6A4F4846D7A7347B15434916FEA6AC16F3D2F2,
DISPENSED1=50.00EUR,PRESENTED1=YES,PRESENTEDAMOUNT1=50.00EUR,RETRACTED1=NO,
HMACSHA256=55D123E9EE64F0CC3D1CD4F953348B441E521BBACCD6998C6F51D645D71E6C83"

Each numbered key may appear multiple times with a different number suffix. For example, DISPENSED1,
DISPENSED2, DISPENSED3. The number will start at 1 and increment by 1. Each key can only be given once.
Each key must have a value in a different currency. For example,
DISPENSED1=100.00EUR,DISPENSED2=200.00USD

Note: In most cases, once currency has been presented and is accessible to a customer then the value of that
currency shouldn't be relied on since the customer might take notes, replace notes with counterfeit etc. The value of
any notes retracted back into the machine isn't reliable so RETRACTEDAMOUNT1 will be "?".

However, some devices may be able to test notes that are retracted are valid. This is possible with cash accepting
hardware. The RETRACTEDAMOUNT value will only give an actual value if the notes have been checked by the
hardware.

Note: Values in the PresentStatus token are the actual values. This is different to the token in the Dispense
command where currency "up to" the token value may be dispensed. This doesn't apply to the PresentStatus token.

7.3 Multiple Dispense/Present Operations
Note that in the case where there is a physical limit on the number of notes that can be presented to the customer in
one operation, multiple Dispense/Present commands are required. This means that multiple Dispense/Present
commands with the same token must be permitted under E2E security. The requirements for this use case are as
follows:

1. The nonce, and therefore the token, can only be implicitly cleared by the service when the total authorized

value has been dispensed and presented.
2. If less than the total authorized amount is required to be dispensed and presented, then the nonce must be

explicitly cleared by the application when the sequence of dispense/present commands have completed.
3. The Present Status token can only be returned once all of the Dispense/Present commands have completed.

CWA XXXXX-X:2021 (E)

21

4. If the command to get the Present Status is called with a response nonce before all of the requested notes have
been presented, then it will return a sequence error. The command to get the Present Status can still be called
without a nonce to get information on the last present without a token.

5. Once the sequence of dispense/present calls have completed, the nonce can be cleared either implicitly by the
service (because the total authorized value has been dispensed) or explicitly by calling the command to clear
the nonce (where the value to dispense and present is less than the authorized value). It is then valid to get the
Present Status with a response nonce to get the total amount presented.

6. At the end of a sequence of multiple dispense/present operations with the same token, the command to get the
Present Status will only report the details of the last present operation, but the token will cover the whole
sequence related to the dispense token. This means the token and the Present Status data may be different.

CWA XXXXX-X:2021 (E)

22

8 HMAC Key Block Examples

This section describes some HMAC Key Block Examples.

An X9.143 Key block for HMAC Key is used for Host Based Authentication.
An X9.143 key block consists of a header, confidential data and an authentication value.

This Example is a 128bit key for HMAC using hash algorithm SHA256.

1. Header field (Version, length, usage, algorithm, mode, key version, exportability, no. of optional blocks,
context*, reserved, 1st optional block ID (HMAC), optional block length, optional block data, , 2nd
optional block ID (padding), optional block length, optional block data)

a. TDEA wrapped key for Verification (XFS key name = XFSAuthenticateHost)

B 0160 M7 H V 00 N 02 2 0 HM 06 21 PB 0A 000000
b. TDEA wrapped key for Generation (XFS key name = XFSAuthenticateDevice)

B 0160 M7 H G 00 N 02 2 0 HM 06 21 PB 0A 000000
c. AES wrapped key for Verification (XFS key name = XFSAuthenticateHost)

D 0160 M7 H V 00 N 02 2 0 HM 06 21 PB 0A 000000
d. AES wrapped key for Generation (XFS key name = XFSAuthenticateDevice)

D 0160 M7 H G 00 N 02 2 0 HM 06 21 PB 0A 000000

2. Confidential data (example of 128bit HMAC, allowable lengths are 128-256)

0080 (length of key, 2 bytes)
Key (128bit HMAC, 16 bytes)
Key obfuscation pad (128 bits, 16 bytes) required only if key is < 256 bits
Cipher pad (14 bytes)

Total key data field = 48 bytes, 96 chars.
Data field is enciphered by the KPEK to create the confidential data

3. Authentication Value

MAC (32 bytes)
Authentication value is computed over the header and confidential data

*note context is defined in X9.143, TR31 has this as a reserved byte. Value of 0 is compliant with both TR31 and
X9.143 and has a meaning of ‘no specific context’. Value of 2 means key is to be transported.

CWA XXXXX-X:2021 (E)

23

Appendix A. Diagram Source

Attached http://plantuml.com source for sequence diagrams. These can be loaded into various editors (e.g. VSCode,
Atom) with an appropriate PlantUML extension or plugin installed, or online (e.g. www.planttext.com):.

UML Source.zip

http://plantuml.com/
http://www.planttext.com/

	Revision History
	1 References
	2 Introduction
	2.1 XFS End-to-End (E2E) Overview
	2.1.1 XFS E2E General description

	3 General E2E sequence
	4 E2E Tokens
	4.1 Token Keys
	4.2 Token Examples

	5 E2E Encryption Key Management
	6 Unique Messages and Replay Attacks
	6.1 Example: A classic dispense operation
	6.2 Example: Types of attacks that are blocked
	6.2.1 Black Box Attack
	6.2.2 Man in the Middle attack
	6.2.3 Replay Attack

	7 E2E Token Formats
	7.1 Dispense Token Format
	7.2 Present Status Token Format
	7.3 Multiple Dispense/Present Operations

	8 HMAC Key Block Examples
	Appendix A. Diagram Source

