CEN
CWA 16926-65

WORKSHOP

January 2023

AGREEMENT

ICS 35.200; 35.240.15; 35.240.40

English version

Extensions for Financial Services (XFS) interface
specification Release 3.50 - Part 65: PIN Keypad Device
Class Interface - Programmer's Reference - Migration from
Version 3.40 (CWA 16926:2020) to Version 3.50 (this
CWA)

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the
constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the
National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held
accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.
This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Tiirkiye and United Kingdom.

. — |

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2023 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-65:2023 E

CWA XXXXXX-6:2019 (E) CWA 16926-65:2023 (E)

Table of Contents

European FOreWOrd.......... ... iiiiciiricrrerrres s s s ren s s e s s e s s smn s s s m s s s nn s s snnsssnnnsanns 6
1. 014 e X 10 o3 oY o 10
1.1 Background to Release 3.50 ... s s s ss s s s s ss s s s s s s s s s s s s s s sssssss s s s s s s 10
1.2 XFS Service-Specific Programming.........ccccccciiiiiiccisimimnniinssscsssesssssssssssssessessssssssssssssssssssnssns 10

2. VI 4 (= o - L 11
21 Encrypting Touch Screen (ETS) ... mnn s amnnes 13

3. LR L2Y (=] (=] 0 Lo =X 16
4, 3 {0 303 oY 1 1 1.4 = 15 Lo £ 18
41 WFS _INF_PIN _STATUS ... iiiiiirrcceerrrr et ers e e e s s s sss e e e s s s e e e s same e e s ssn e e e s s snne e e e snneeesssnnenesssnnenan 18
4.2 WFS_INF_PIN_CAPABILITIES ... iiiiceirrrcceteresceeeessssee e e s s ssse s e s ssme e e s s ssme e e s s snme e e s s snmenesssnnenes 22
4.3 WFS_INF_PIN_KEY_DETAIL.......eiiiiiiiircccrrrsccseeess s e s sssssse s ss s ssse s s s snee s e s snne e ssssnmeeesssnmsnssssnnnnes 43
4.4 WFS_INF_PIN_FUNCKEY_DETAIL......ooitiiiiicieerirsceesrssssse s s s sssesesssssssssssnse s sssssmssssssnssnssssnnenas 45
4.5 WFS_INF_PIN_HSM_TDATAiiiciirrcctrr s s s s sss e s s s s e e e s ssn e e e s se e e e s s san e e e e nme e e s same e e s nnnnas 48
4.6 WFS_INF_PIN_KEY _DETAIL_EX ... ciriicitiiricieerrsssssesssssssesssssssesssssssesssssnsesssssssssssssnssnssssnnenes 49
4.7 WFS_INF_PIN_SECUREKEY _DETAIL........iiiiiiiriccctrrrccseer s sseesesssssesssssnsesssssnme s e s ssmssssssnmenas 52
4.8 WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAILcoititrrrccerrnrcceeess s cmeess s mee s s sme e s s smees 56
49 WFS_INF_PIN_QUERY_PCIPTS _DEVICE_IDcoiieieeeecceereecceenee s ceeees s cme e e s ssme e e s enmn s 57
4.10 WFS_INF_PIN_GET _LAYOUTceiiiiiieicceteersceeesssssseeessssseeessssseeesssssseesssnneesssssneessssnnsnssssnnens 58
4.11 WFS_INF_PIN_KEY _DETAIL_340........oiiiiiiciirreeeeteeesseeesssssseeesssssesesssnseessssnmsessssnnsnssssnnens 62
5. EXECULE COMMEANASieuiieiriiiinireiresieairesresisasresssnssassesssassesssnssessesssassesssnssansenssnns 64
5.1 NoOrmal PIN COMMANASccceeeeeeiiiiiiiiiieieeerirereerssssssssrerrsesnssssssssseessssnssssssseeeersssnssssssseeressnnnnnes 64
50,0 WFS_CMD _PIN CRYPT ... nee e 64
512 WFS_CMD PIN IMPORT KEYooiimiiieieeeeeeeeeeeeeeeeeeeee oo ee e see s se s see e 67
513 WFS_CMD PIN DERIVE KEYoooiimiioioiooeeeeeeeeeeeeeeeeeee oo ee e see s ee s see e 70
514 WFS_CMD PIN GET PIN ..o e see e 72
5.1.5 WFS_CMD PIN LOCAL DESoimioiioieoeeeeeeeeeeeeeeeee oo ee e eee s se s ssee oo 75
5.1.6 WFS_CMD PIN CREATE OFFSET ..o oo eeee e 77
5.1.7 WFS CMD_PIN LOCAL EUROCHEQUEc.coiiiiiiiiiieieet ettt 79
5.1.8 WFS_CMD PIN LOCAL VISA....oiiiiiiioioieeoeeeieeeeeeeeeeeeeeeee e see s ssee s 81
5.1.9 WFS_CMD PIN PRESENT IDCcocooiioiimiieoeeieeeeeeeeeeseeseeees e eee s 83
5.1.10 'WFS_CMD _PIN_GET PINBLOCKcooiimiioieeieeoeeeeeeeeeeeeeeeeeeeeeee e 85
5.1.11 WFS_CMD _PIN_GET DATAoooioioeooeeeoeeeeeeeeeeeeeeee e 87
5.1.12 WFS_CMD PIN INITIALIZATIONooiiiiiiiieieetienttenteete ettt sttt ettt s 90
5.1.13 WFS_CMD _PIN_LOCAL BANKSYSoomiiriioeeieeeeeeeeeeeeeeeeeseseeeee s se e 92
5.1.14 WFS_CMD PIN BANKSYS 1O ..o 93
5.1.15 WEFS _CMD _PIN RESET ..ottt ettt ettt et ettt et e bt e e sate s b sseesbeeenaneenne 94
5.1.16 WFS_CMD PIN HSM SET TDATAocioeoieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeesseeeseeeseeeseeseeesee s eseeeseeesean 95
5.1.17 'WFS_CMD PIN_SECURE MSG SEND.......cociimioiieieeeeeeeeeeeeseeeeeeseeeeeeseseeesessees oo 97
5.1.18 WFS_CMD PIN SECURE MSG RECEIVEcoocoivoieoieoeeeeeeseeeeeeeoeeeeeeeesesseeeseeeeessseseesessenn 99
5.1.19 WFS_CMD _PIN_GET JOURNALccoeimiiiiiieieeeeeeeeeee e eeee oo 101
5.1.20 WFS_CMD_PIN IMPORT KEY EX.....coociiiiiiiieiioieeieeoeoeeeseeeseeeseeseesees s ssees e seeseenes 102
5121 WFS_CMD_PIN _ENC TO ..o see e 105
5.1.22 WFS_CMD _PIN HSM INIT......cooiiiiiiieiieeeieeeeeeeeeeeeeeeeeee s ese e seee e 107
5.1.23 'WFS_CMD_PIN_SECUREKEY ENTRYcoceouiimiiuiirieeieeseeeseeeseseeseesesesseseesees e essesnenes 108

CWA 16926-65:2023 (E)

5.1.24 WFS_CMD_PIN_GENERATE KCVcoiiiiiiieiioieeoeeoeoeeeeeeseeeeeeeeeeee e 111
5.1.25 WFS_CMD _PIN_SET GUIDANCE LIGHTcooiivioiiiireeeeeeeeeeeeeeeeeseee e 112
5.1.26 WFS_CMD_PIN MAINTAIN PIN......cooooiiiiiimiiiieeieeeeeeeeoeseeeeseseeeseeseeee oo seees e seenes 114
5.1.27 WFS_CMD _PIN KEYPRESS BEEPcoooiiiiiiimiieoeeeeeoeeeeeeeseeeeeeeeeeeee oo ses e 115
5.1.28 WFS_CMD PIN SET PINBLOCK DATAcocoiitiietieteeeteeteeete ettt 116
5.1.29 WFS_CMD PIN SET LOGICAL HSMcccooiiiiiiiieiiieeeteeteeete ettt 117
5.1.30 WFS_CMD _PIN IMPORT KEYBLOCKccocoistiiitiitiietiiteeeteeree ettt ssese s 118
5.1.31 WFS_CMD_PIN POWER_SAVE CONTROLcccoostiietiriiietieteeeteeteeete et 119
5.1.32 WFS_CMD _PIN DEFINE LAYOUT......ccocoiitiietiiteieteeteeete ettt ettt 120
5.1.33 WFS_CMD _PIN START AUTHENTICATEcccecteiitiietieieecteeeeeeteeteeete et 121
5.1.34 WFS _CMD PIN AUTHENTICATE. ..ottt 123
5.1.35 WFS_CMD _PIN_GET PINBLOCK EXcoiiiiiiiiieiieieeoeeeeeeseeeeeseesees s seess s 126
5.1.36 'WFS_CMD_PIN_SYNCHRONIZE COMMANDccoimriimiieiroeeeeeeseseesseeeeseese e 128
5.1.37 WFS_CMD_PIN CRYPT 340oomiiooeeeeeeeeeeeeeeeeeeeeeeeeee e eeee e 129
5.1.38 WFS_CMD_PIN_GET PINBLOCK 340.........occoiiviimimrieeieesseeseeeseseeeeeseseseeseesses e snenes 133
5.1.39 WFS_CMD_PIN IMPORT KEY 340........coiiiiieioieeieeoeeeeeeeeseeeseseesees s seess e 135
5.2 Common commands for Remote Key Loading Schemes...........cccoooimiiiiiiiiiiicnnninccccceees 138
5.2.1 WFS_CMD _PIN START KEY EXCHANGE........cccoiiieiitiieticieeeeeteeeeeeeee e 138
5.3 Remote Key Loading Using SIgnatures ... camees 139
5.3.1 WFS_CMD_PIN IMPORT _RSA PUBLIC KEY ...coioiieiitiietiiteieteieeeee et 139
532 WFS_CMD_PIN_EXPORT RSA ISSUER _SIGNED ITEM......ccccoviviiiiriieeieieieeeereeeeve s 142
533 WFS_CMD _PIN IMPORT RSA SIGNED DES KEYcocooiiiuiiiiieiieieoseeseeeeeseeseseesessesenes 144
534 WFS_CMD PIN GENERATE RSA KEY PAIRcoccoociiiiimiieireeeeeeoeeseeeeeeeeseesesese e 147
53.5 WFS_CMD _PIN _EXPORT RSA EPP SIGNED ITEM.........ccccooiiiimeiiomeieoeeeseeseesresesresnnnes 149
5.4 Remote Key Loading with Certificatesccccvemriiiiiiccciseeire e amnees 151
54.1 WFS_CMD PIN LOAD CERTIFICATEooceiviomiooiieeeeoeeeseeeseeeeeseeseee s 151
542 WFS_CMD PIN GET CERTIFICATEcooiimiieooeieeeeeeeeeeeeeeeeeeeeee e 152
543 WFS_CMD_PIN REPLACE _CERTIFICATEc.coooiiiiieiiitinieieeteeeeeteee ettt 153
544 WFS_CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEYcccccooioioioioseoseeseeseesreseesnes 154
545 WFS_CMD_PIN LOAD CERTIFICATE EX ...cocoiiiiiiieiiitiieieeieeeteteeee et 156
54.6 WFS_CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY EXccccoiiioiiioiireirrereesnnns 158
E T T 1 | Y 162
5.5.1 WFS_CMD_PIN EMV_IMPORT PUBLIC KEY ..cooiiiiitiieticieictcieeee et 162
552 WFS_CMD _PIN DIGESToiimioioeiieoeeeeeeeseeeeeeeee e eeee e see s ese e 165
5.6 Entering and Changing @ PasSWOrdcocccccimmiimiiinccssssseneesnsssssssssssssssssssssssssssssssssssssnsnnes 166
5.6.1 WFS_CMD_PIN PASSWORD ENTRYcooiiiiimiimimreieeieeseeeseeeseeseeseeseseeseeeesees e esse s 166
Y=Y 1 €= 170

6.1 WFS _EXEE_PIN_KEYciiiiiiiccccscerir i s s s s ssses s e s s sssssssmse s e e s e s s s ssmnme s e e s sesssssnmnnnsenssnnssnnnnnnns 170
6.2 WFS_SRVE_PIN_INITIALIZEDeciiiiiiiiccsmmnrene s ssssssmsse s e s s s ssssssssss s s s ssssssssmsnsssnssnssssnnmnnns 171
6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS ... csseesne s s s s s s msses s s s s s s sssmnnns 172
6.4 WFS_SRVE_PIN_OPT_REQUIRED........coitiiiiiicemrrere s ssccssmsess e s sssssssssmes s e s s s s mne s s e nssnnsssnnmnnes 173
6.5 WFS_SRVE_PIN_CERTIFICATE_CHANGE..........crrree s csseer e s ssmne s e s s snmnnes 174
6.6 WFS_SRVE_PIN_HSM_TDATA_CHANGED........ccccccmiiiiicrmmerrerrssssssssssesesssssssssssssssssssssssssnnens 175
6.7 WFS_SRVE_PIN_HSM_CHANGEDcccciiiiiiiiicnmmreersisssssssmsessessssssssssssssssssssssssnsssssnssssssssnnnnns 176
6.8 WFS_EXEE_PIN_ENTERDATA ... ccrtrriirissssrr e s s s ssssssmssse e s esssssssnmss e e s ssssssssnssssenssansssnnnnnes 177
6.9 WFS_SRVE_PIN_DEVICEPOSITION......ciiiiiiiccmiriiissscccssnnen e s e s ssssssmss e s s s sss s smsssssesssssssnnmnnns 178
6.10 WFS_SRVE_PIN_POWER_SAVE_CHANGE ... ccsseerer e msee s e s snmnnes 179
6.11 WFS_EXEE_PIN_LAYOUT.....iiiiiiiciccriririssscssner e s s s sssssssmsses s s e s ssssssms s e e s sesssssnmnessenssansssnnnnnes 180
6.12 WFS_EXEE_PIN_DUKPT_KSN iiiiiiicccsmerens s ss s cssmsee s s s s s ssssssms s e s s s e s s s ssmnnsssessassssnnmnnes 181
6.13 WFS_SRVE_PIN_PASSWORD _CLEARED ...t crccseeree s e s mnee s e e s nmnees 182

CWA YO00(X16926-65:20192023 (E)

7. C-Header Fileccooiiiiiieiericciiinssesr s s 183
8. APPENAIX-A ... e e rnnnnnanan 206
8.1 Remote Key Loading Using Signaturesccccccemriiiiccismmrerninssssssssessssssssssssssesssssssssssssssnes 207
8.1.1 RSA Data Authentication and Digital SIZNAtUIEsccoceerierieriieiiiiieniereeeeee e 207
8.1.2 RSA Secure Key Exchange using Digital Signaturesccooceevieiierienienienieeeesee e 208
8.1.3 Initialization Phase — Signature Issuer and ATM PINccccoviiiiiiiiiiie it 210
8.1.4 Initialization Phase — Signature Issuer and HOStccooieiiieiieciieieciesecee e 211
8.1.5 Key Exchange — Host and ATM PINcccuiiiiiiiieiiee ettt ens 212
8.1.6 Key Exchange (with random number) — Host and ATM PINc..cccooiiiiiiiiiiinininneneeeceens 213
8.1.7 Enhanced RKL, Key Exchange (with random number) — Host and ATM PINcccocvvienirennnn. 216
8.1.8 Default Keys and Security Item loaded during manufacture.............cocceveveeieienienenincncnenceens 217
8.2 Remote Key Loading Using Certificatesccccvvmminnimmnnnisnessessnneeen 218
8.2.1 Certificate Exchange and AUthentiCationcueviuieeiiieiiiieeiiiesiieeieeeteeeieesreeereesveesaeeseveeessee s 218
8.2.2 Remote Key EXCRANGEcooviiiiiiiieie ettt st e et 220
8.2.3 IS 0] Tl O 1 o121 < O SUSPS 221
8.2.4 Primary and Secondary CertifiCatescuiiiiiiriiiiiierieeiieerieerteeste e sre et saeestaeessaeessseessaeeenas 222
8.2.5 TR34 BIND TO HOSE..ceueetitteitetieieetete ettt ettt sttt ettt et s beebeeseen s et e nseabesaeebeeneeneennans 223
8.2.6 TR34 K@Y TTANSPOIT...c..tieiuiieeiiieiieeeitieeiteeeieeeteeeteesseeesseesseessseesseessseessseessseessseessseessseensseessesssseens 224
8.2.7 TR34 REBIND TO NEW HOSE ..c..couiiiiiiiniiiiniiniieieeteesee ettt sttt 227
8.2.8 TR34 Force REBIND T0 NeW HOSEc.coiiiiiiiiiiiiiiiieeicciccteteeteseseee et 228
8.2.9 TR34 UNBIND From HOSE...c..cotiiiiiiiiiniiniceeceeesie ettt s 229
8.2.10 TR34 Force UNBIND From HOSt.........cocoiiiniiiiiiiiiieieieeecece ettt 230
8.3 German ZKA GeldKarte (Deutsche Kreditwirtschaft)...........cccconriminniinnniicncinniennn 231
8.3.1 How to use the SECURE_MSG COMMANGS.....cc.eeitiiiiiiiiiiiieniienieeie ettt 231
8.3.2 Protocol WFS_PIN PROTISOAS ...ttt st e s 232
833 Protocol WFS PIN PROTISOLZoooiiiiiiiiiieiet ettt ettt s 233
8.3.4 Protocol WFS PIN PROTISOPS ...ttt ettt s s 234
8.3.5 Protocol WFS _PIN PROTCHIPZEKAc.ooiiiieeeieee ettt sttt ettt 235
8.3.6 Protocol WFS_PIN_ PROTRAWDATA ...ttt ettt ettt 236
8.3.7 Protocol WES PIN PROTPBMccoiiiiiiiiiiiieninientetetet ettt st 237
8.3.8 Protocol WFS PIN PROTHSMLDIcociiiiiiiiininieiiniteteteeesie ettt 238
8.3.9 Protocol WFS PIN PROTGENAS ..ottt st 239
8.3.10 Protocol WFS PIN PROTCHIPINCHG.........ccceeotiiiiiiniiniinieitcitctetee ettt 243
8.3.11 Protocol WFS PIN PROTPINCMP......ccccociiiiiiiiiitineneeteeeeetetee sttt st 244
8.3.12 Protocol WFS PIN PROTISOPINCHGcccectetiiiiiniiniinieieeieteteste sttt 246
8.3.13 COMMANA SEQUETICEvveeeieeiiieiieeiteesiteesteeesieeestteesseeestreessseessseessseesseessseessseesssaessseessseensseessseensses 247
= S = 1 VST U o7 o o o 254
8.4.1 KEYS TOAAING. ... e eeiieeiie ettt ettt e et e e sabe ettt esae e taeessbeesaeessseesseenssaesseensseenseas 254
8.4.2 PIN BlOCK MANQ@EIMENLc..eiiiiiiieiieiieie ettt ettt sttt ettt ettt et e b ettt sbeenbeeeeeneeens 256
8.4.3 SHA-T DIZESt.uvviiiiieieieeeiieerte ettt ettt estteestteetaeestte e taeesseeestaeeseesnseeeseesssseessaesnsaeaseessseenseeensseenseesnns 257
8.5 French Cartes BanCaires..........cccccniuiiminsmmminsis s s s 258
8.5.1 Data Structure for WES CMD_PIN _ENC Occiiiiiiiiiiiiieieeeeeeee et 258
8.5.2 COMMANA SEQUETICEeeuvieniieiiieiieeiieeieesieeteeteeteseesetessee st esseesseasseeseesseesseenseensesnsesnnesseesseenseansennsenns 260
8.6 Secure Key ENtry ...t s s s s s s 262
8.6.1 KeyDOArd LAYOUL.......eetieiiiieiie ettt ettt e st e st e st et e esaeesee st eeseensesnsessnesseesseanseensenns 262
8.6.2 Command Usage - WFS_CMD PIN SECUREKEY DETAIL and
WEFS _CMD_PIN IMPORT KEY ...ttt ettt ettt et et st eae et e e sseseeabesaeeneeneeneenes 266
8.6.3 Command Usage - WFS_INF PIN_GET_LAYOUT and WFS_CMD_PIN IMPORT KEY 340267
8.7 WFS_PIN_USERESTRICTEDKEYENCKEY Key USAQe......cccscermrrrrmmrrinimrnrassmrsssssmessssssnees 268
8.7.1 ComMMANA USAZEeeiieiieiieie ettt ettt ettt ea e e bt e sb e e s bt e bt e bt eabesaeesbeesbeenaeebeeneeans 268
8.8 WFS_CMD_PIN_IMPORT_KEY_340 command Input/Output Parameters........ccccccceeeccunnees 273
8.8.1 Importing a 3DES 16-byte terminal master key using signature-based remote key loading (SRKL):
274
8.8.2 Importing a 16-byte DES key for PIN encryption with a key check value in the input 276
8.8.3 Importing a 16-byte DES key for MACing (MAC Algorithm 3)........ccceeceeviieniniiiiieeceeeeieee 278
8.8.4 Importing a 2048-bit Host RSA PUBIIC KCY.....eooviiiiiiiiieiietceee et 280

CWA 16926-65:2023 (E)

8.8.5 Importing a 24-byte DES symmetric data encryption key via X9.143 keyblock.........cccceveenienne 282

8.9 Entering passwords using the WFS_CMD_PIN_PASSWORD_ENTRY command. 283
8.9.1 Entering passwords individually to allow secure key parts to be loadedccccceoeriiiinenenn. 283
8.9.2 Entering and changing @ passWord...........oouiiioiieiiiiiiie et et 283

9. Appendix-B (Country Specific WFS_CMD_PIN_ENC_IO protocols)........... 285
L= I8 SR ST (=Y 041 o TUT o I 2 o o oo) 285
9.1.1 WFS_CMD_ENC 10 LUX LOAD APPKEY ...ociiiiiiieieieeese ettt 287
9.1.2 WFS_CMD_ENC 10 LUX GENERATE MAC ...c.coiiiiiiiiieee ettt 289
9.13 WFS_CMD_ENC 10 LUX CHECK MAC ...ttt 290
9.14 WFS_CMD_ENC 10 LUX BUILD PINBLOCKcccttteiiiiiiiniesieeieeeeiieie e 291
9.1.5 WFS_CMD_ENC 10 LUX DECRYPT TDES ..ottt 292
9.1.6 WES CMD _ENC 10 LUX ENCRYPT TDES ...ttt 293
9.1.7 Luxemburg-specific Header File...........cciiiiiiiiiiiieiiee ettt 294

L2 I 03 114 F= T o o] Lo Yo o 1 296
9.2.1 WEFS CMD _ENC IO CHN DIGESTcoiiiiiiiiiiniiteieteteteesie sttt 299
922 WES CMD _ENC 10 CHN _SET SM2 PARAMccciiiiiiieiieit ettt nse e e 300
9.2.3 WEFS CMD _ENC 10 CHN IMPORT SM2 PUBLIC KEYcccctiiiiiiiiieiieieee e 301
9.24 WFS _CMD_ENC IO CHN_SIGN...cuiiiiiiiieiiieeese ettt sttt ese et st ee et eneeeens 303
9.2.5 WFS_CMD _ENC IO CHN_VERIFY ..ottt sttt ettt 305
9.2.6 WFS_CMD_ENC 10 CHN_EXPORT_SM2 ISSUER SIGNED ITEM......cccocoioiiiininineienne 306
9.2.7 WFS_CMD_ENC 10 CHN_GENERATE SM2 KEY PAIRccocoiiiiiiiieeseseeeeeeene 308
9.2.8 WFS_CMD_ENC 10 CHN_EXPORT_SM2 EPP SIGNED ITEM......ccccooiiiminininieieceieens 310
9.2.9 WFS_CMD_ENC 10 CHN_IMPORT _SM2 SIGNED _SM4 KEYccccoevirinininieieieieienens 312
9.2.10 China-specific Header File.........ccoioiiiiiiiiiieiet ettt as 315

10. Appendix-C (Standardized IpszExtra fields)........cccccceeeiiiiiiiiimiieeccccinineeeees 320
10.1 WFS_INF_PIN_STATUSot ssr s sss s s sas s s as s s mn e s s e e s s mn e s s mmn e s s nnes 320
10.2 WFS_INF_PIN_CAPABILITIEScooo it srsr s sss s ssss s s ssns s sss s s sssmn e s ssssmn e s snsnnes 321
11. Appendix—D (X9.143 Key USE)......ccccrmirimmmmciiiiiiirrrssessssssssssssssssssssssssssssssnnnes 324
12. AppendiX-E (DUKPT) ... irrrrsessss s s s s sssssss s s s s s smms s s s s s s nnnns 327
12.1 Default Key NAME..........ciiiiiiccc e csssssrr s sms s e s s e s s s ssnme e e e e s s s s mnne e e e e se s e mmnnenenenan 327
13. Appendix-F Diagram SOUICEccccmmeemmnciiisiirrenssssssssssssssssssssssssssssssssssnnnes 328

CWA 16926-65:2023 (E)

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements — The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations — Part 2. It was approved by a Workshop of representatives of interested parties
on 2022-11-08, the constitution of which was supported by CEN following several public calls for participation, the
first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not necessarily include all
relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2022-11-18.

The following organizations and individuals developed and approved this CEN Workshop Agreement:
e AURIGA SPA

e CIMA SPA

e DIEBOLD NIXDORF SYSTEMS GMBH

e FIS BANKING SOLUTIONS UK LTD (OTS)
e FUJITSU TECHNOLOGY SOLUTIONS

e GLORYLTD

e GRG BANKING EQUIPMENT HK CO LTD
e HITACHI CHANNEL SOLUTIONS CORP

e HYOSUNG TNS INC

e JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY
e KAL

e KEBA HANDOVER AUTOMATION GMBH
e NCRFSG

e NEXUS SOFTWARE

e OBERTHUR CASH PROTECTION

e OKI ELECTRIC INDUSTRY SHENZHEN

e SALZBURGER BANKEN SOFTWARE

e SECURE INNOVATION

e SIGMA SPA

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-

technical content of CWA 16926-6, but this does not guarantee, either explicitly or implicitly, its correctness. Users
of CWA 16926-6 should be aware that neither the Workshop participants, nor CEN can be held liable for damages

6

CWA 16926-65:2023 (E)

or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-6 do so on their own
responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1:
Part 2:
Part 3:
Part 4:
Part 5:
Part 6:
Part 7:
Part 8:
Part 9:

Part 10:

Part 11

Part 12:
Part 13:
Part 14:

Part 15

Part 16:
Part 17:

Part 18

Part 19:

Application Programming Interface (API) — Service Provider Interface (SPI) — Programmer’s Reference
Service Classes Definition — Programmer’s Reference

Printer and Scanning Device Class Interface — Programmer’s Reference
Identification Card Device Class Interface — Programmer’s Reference

Cash Dispenser Device Class Interface — Programmer’s Reference

PIN Keypad Device Class Interface — Programmer’s Reference

Check Reader/Scanner Device Class Interface — Programmer’s Reference
Depository Device Class Interface — Programmer’s Reference

Text Terminal Unit Device Class Interface — Programmer’s Reference

Sensors and Indicators Unit Device Class Interface — Programmer’s Reference
: Vendor Dependent Mode Device Class Interface — Programmer’s Reference
Camera Device Class Interface — Programmer’s Reference

Alarm Device Class Interface — Programmer’s Reference

Card Embossing Unit Device Class Interface — Programmer’s Reference

: Cash-In Module Device Class Interface — Programmer’s Reference

Card Dispenser Device Class Interface — Programmer’s Reference

Barcode Reader Device Class Interface — Programmer’s Reference

: Item Processing Module Device Class Interface — Programmer’s Reference

Biometrics Device Class Interface — Programmer’s Reference

Parts 20 — 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29:
Part 30:
Part 31:
Part 32:
Part 33:
Part 34:

Part 35

Part 36:
Part 37:
Part 38:
Part 39:
Part 40:

Part 41

Part 42:

Part 43
Part 44

XFS MIB Architecture and SNMP Extensions — Programmer’s Reference

XFS MIB Device Specific Definitions — Printer Device Class

XFS MIB Device Specific Definitions — Identification Card Device Class

XFS MIB Device Specific Definitions — Cash Dispenser Device Class

XFS MIB Device Specific Definitions — PIN Keypad Device Class

XFS MIB Device Specific Definitions — Check Reader/Scanner Device Class

: XFS MIB Device Specific Definitions — Depository Device Class

XFS MIB Device Specific Definitions — Text Terminal Unit Device Class

XFS MIB Device Specific Definitions — Sensors and Indicators Unit Device Class
XFS MIB Device Specific Definitions — Camera Device Class

XFS MIB Device Specific Definitions — Alarm Device Class

XFS MIB Device Specific Definitions — Card Embossing Unit Class

: XFS MIB Device Specific Definitions — Cash-In Module Device Class
Reserved for future use.

: XFS MIB Device Specific Definitions — Vendor Dependent Mode Device Class
: XFS MIB Application Management

CWA 16926-65:2023 (E)

Part 45 : XFS MIB Device Specific Definitions — Card Dispenser Device Class

Part 46 : XFS MIB Device Specific Definitions — Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions — Item Processing Module Device Class
Part 48: XFS MIB Device Specific Definitions — Biometrics Device Class

Parts 49 — 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.40 (CWA 16296:2020) to Version
3.50 (this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version
3.50 (this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version
3.50 (this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50
(this CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version
3.50 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version
3.50 (this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to
Version 3.50 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to
Version 3.50 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this
CWA) - Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA)
- Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version
3.50 (this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50
(this CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50
(this CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50
(this CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to
Version 3.50 (this CWA) - Programmer's Reference

Part 78: Biometric Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this
CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is available
online from: https://www.cencenelec.eu/areas-of-work/cen-sectors/digital-society-cen/cwa-download-area/.

The information in this document represents the Workshop’s current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

Revision History:

CWA 16926-65:2023 (E)

3.00

October 18, 2000

Initial Release.

3.10

November 29, 2007

For a description of changes from version 3.00 to version
3.10 see the PIN 3.10 Migration document.

3.20

March 2, 2011

For a description of changes from version 3.10 to version
3.20 see the PIN 3.20 Migration document.

3.30

March 19, 2015

For a description of changes from version 3.20 to version
3.30 see the PIN 3.30 Migration document.

3.40

December 06, 2019

For a description of changes from version 3.30 to version
3.40 see the PIN 3.40 Migration document.

3.50

November 18, 2022

For a description of changes from version 3.40 to version
3.50 see the PIN 3.50 Migration document.

CWA 16926-65:2023 (E)

1. Introduction

1.1 Background to Release 3.50

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN
Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to
create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.50 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification:

e Addition of E2E security
e PIN Password Entry

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or

WFS _ERR UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example
would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not
have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is
unable to fulfil the request, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS _ERR INVALID COMMAND error for Execute commands or WFS _ERR INVALID CATEGORY error
for Info commands is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how
to use the service.

10

CWA 16926-65:2023 (E)

2. PIN Keypad

This section describes the application program interface for personal identification number keypads (PIN pads) and
other encryption/decryption devices. This description includes definitions of the service-specific commands that
can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This section describes the general interface for the following functions:
e Administration of encryption devices
e Loading of encryption keys
e Encryption / decryption
e Entering Personal Identification Numbers (PINs)
e PIN verification
e PIN block generation (encrypted PIN)
e C(lear text data handling
e Function key handling
e PIN presentation to chipcard
e Read and write safety critical Terminal Data from/to HSM
e HSM and Chipcard Authentication
e EMYV 4.0 PIN blocks, EMV 4.0 public key loading, static and dynamic data verification

If the PIN pad device has local display capability, display handling should be handled using the Text Terminal Unit
(TTU) interface.

The adoption of this specification does not imply the adoption of a specific security standard.
Important Notes:

e This revision of this specification does not define all key management procedures; some key management
is still vendor-specific.

e Key space management is customer-specific, and is therefore handled by vendor-specific mechanisms.
e Only numeric PIN pads are handled in this specification.

This specification also supports the Hardware Security Module (HSM), which is necessary for the German ZKA
Electronic Purse transactions. Furthermore the HSM stores terminal specific data.

This data will be compared against the message data fields (Sent and Received ISO8583 messages) prior to HSM-
MAC generation/verification. HSM-MACs are generated/verified only if the message fields match the data stored.

Keys used for cryptographic HSM functions are stored separate from other keys. This must be considered when
importing keys.

This version of PIN pad complies to the current ZKA specification 3.0. It supports loading and unloading against
card account for both card types (Type 0 and Type 1) of the ZKA electronic purse. It also covers the necessary
functionality for ‘Loading against other legal tender’.

Key values are passed to the API as binary hexadecimal values, for example:
0123456789 ABCDEF = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF

When hex values are passed to the API within strings, the hex digits 0xA to 0xF can be represented by characters in
the ranges ‘a’ to ‘f” or ‘A’ to ‘F’.

The following commands and events were initially added to support the German ZKA standard, but may also be
used for other national standards:

e WFS_INF PIN HSM TDATA
e WFS _CMD PIN HSM SET TDATA
e WFS_CMD PIN SECURE MSG SEND

11

CWA 16926-65:2023 (E)

e WFS_CMD PIN SECURE_MSG RECEIVE
e WFS_CMD PIN GET JOURNAL

e WFS_SRVE PIN OPT REQUIRED

e WFS_CMD PIN HSM_INIT

e WFS_SRVE PIN HSM TDATA CHANGED

Certain levels of the PCI EPP security standards specify that if a key encryption key is deleted or replaced, then all
keys in the hierarchy under that key encryption key are also removed. Key encryption keys have the

WFS PIN USEKEYENCKEY type of access. Applications can check impact of key deletion using

WFS_INF PIN KEY DETAIL or WFS_INF PIN KEY DETAIL EX.

12

CWA 16926-65:2023 (E)

2.1 Encrypting Touch Screen (ETS)

An encrypting touch screen device is a touch screen securely attached to a cryptographic device. It can be used as
an alternative to an encrypting pin pad (EPP). It supports key management, encryption and decryption.

It is assumed that the ETS is a combined device. It overlays a display monitor which is used to display lead-through
for a transaction. It is assumed that the display monitor is part of the Windows desktop, and can be the Windows
primary monitor or any other monitor on the desktop. E.g. the following diagram shows 2 monitors extended across
the desktop, with monitor 1 being the primary monitor and the ETS being overlaid on monitor 2 whose origin is (-
1680.0).

Change the appearance of your displays

F

Display: 2. HG216 -

Resolution: [1680 » 1050 (recommended) v]

Multiple displays: [E}d:end these displays ']

[] Make this my main display Advanced settings

The touch screen can optionally be used as a “mouse” for application purposes, while XFS PIN operations are not
in progress or optionally when non-secure XFS PIN commands are in progress.

The CEN interface supports two types of ETS
e Those which activate touch areas defined by the application.
e Those which activate a random variation of touch areas defined by the application.

The Service Provider, when reporting its capabilities, reports the absolute position of the ETS in Windows desktop
coordinates. This allows the application to locate the ETS device in a multi-monitor system and relate it to a
monitor on the desktop.

At any point in time, a single touch area of the ETS can operate in one of 4 modes:-

e Mouse mode - a “touch” simulates a mouse click. This mode is optional. This may not be supported by
some ETS devices. Configuration of the click is vendor specific. e.g. WM_LBUTTONDOWN. This is
also the mode that, if supported, is active when none of the other modes are active.

e XFS Data mode - a “touch” maps to an XFS key and the value of the key is returned in an event (as in
clear numeric entry using WFS_ CMD PIN GET DATA).

e XFS PIN mode - a “touch” maps to an XFS key and the value of the key is returned in an event only if the
key pressed is not WFS _PIN FK 0 through WFS PIN FK 9 (as in PIN entry using
WFS CMD_PIN GET PIN).

e XFS Secure mode - a “touch” maps to an XFS key and the value of the key is returned in an event only if
the key pressed is not WFS_PIN _FK 0 through WFS PIN FK 9 and not WFS PIN FK A through
WFS PIN FK F (as in key entry using WFS CMD_ PIN SECUREKEY ENTRY).

The following concepts are introduced to define the relationship between the monitor and the ETS:-
e Touch Key — an area of the monitor which reacts to touch in XFS Data, PIN and Secure modes.

e Touch Frame — an area of the monitor onto which Touch Keys can be placed. There can be one or more
Touch Frames. There may be just one Touch Frame which covers the whole monitor. Areas within a
Touch Frame, not defined as a Touch Key, do not react to touch. Generally in XFS PIN and Secure modes,
there would be only one Touch Frame covering the whole monitor. An empty Touch Frame disables that
part of the monitor.

e Mouse area — an area outside of all Touch Frames in which touches behave like a mouse

13

CWA 16926-65:2023 (E)

e Thus XFS Data, PIN and Secure modes operate in a single Touch Frame or multiple Touch Frames.
Mouse mode operates outside a Touch Frame, and is optional.

Note that there is a perceived risk in separating the drawing functionality from the touch functionality, but this type
of risk is present in today’s keyboard based systems. e.g. An application can draw on a monitor to prompt the user
to enter a PIN and then enables the EPP for clear data entry. So the risk is no different than with an EPP — the
application has to be trusted.

Depending upon the type of device, the application must then either inform the Service Provider as to the active key
positions in the form of Touch Frames and Touch Keys using the WFS CMD PIN DEFINE LAYOUT command,
or obtain them from the Service Provider using the WFS INF PIN GET LAYOUT command. This collection is
now referred to as a “Touch Keyboard definition”.

The application then uses the normal PIN commands to enable the touch keyboard definition on the ETS device:
e PINentry WFS CMD PIN GET PIN
e C(Clear data entry WFES CMD PIN GET DATA
e Secure key entry WFS CMD PIN SECUREKEY ENTRY

These commands are referred to as “keyboard entry commands” throughout the remainder of this document.

PCI compliance means that WFS CMD PIN GET PIN and WFS CMD PIN SECUREKEY ENTRY can only
be used with a single Touch Frame that covers the entire monitor. i.e. Mouse mode cannot be mixed with either
XFS PIN or Secure mode. If a Touch Key (or areas) is defined for an XFS key value and that key value is not
subsequently specified as active ina WFS_ CMD_PIN GET PIN, WFS CMD_ PIN GET DATA or

WFS CMD PIN SECUREKEY ENTRY command, then the Touch Key is made inactive.

Layouts defined with the WFS CMD_ PIN DEFINE LAYOUT command are persistent.

Example 1 — this screen only uses XFS Data mode — the entire screen is a Touch Frame. Mouse mode is not used.

LIl
I D
Example 2 — this shows a monitor with two Touch Frames and 14 Touch Keys. The space within the Touch Frames
not defined by a Touch Key are inactive (do not respond to touch). All areas outside a Touch Frame operate in
Mouse mode. This example shows two Mouse mode “keys”. e.g. Windows “Button”, HTML “BUTTON” or a

custom control. Other touches in Mouse mode are normally dealt with by the application event engine. However,
this can be restricted — see example 3.

U0

1]

1]
O]

I — E' 'D

Example 3 — this screen uses Mouse and XFS Data modes — Mouse mode is used only in a restricted area. The
touch keyboard definition has 3 frames. Frame 1 has no Touch Keys. Frame 2 has 2 Touch Keys; Frame 3 has 12
Touch Keys.

U0

14

: H |||| :D
| HEH |D

CWA 16926-65:2023 (E)

15

CWA 16926-65:2023 (E)

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.4050

2. RSA Laboratories, PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993

3. SHA-1 Hash algorithm ANSI X9.30-2:1993, Public Key Cryptography for Financial Services Industry Part2

4. EMVCo, EMV2000 Integrated Circuit Card Specification for Payment Systems, Book 2 — Security and Key
Management, Version 4.0, December 2000

5. Europay International, EPI CA Module Technical — Interface specification Version 1.4

6. ZKA / Bank-Verlag, Koln, Schnittstellenspezifikation fiir die ec-Karte mit Chip, Online-Personalisierung von
Terminal-HSMs, Version 3.0, 2. 4. 1998

7. ZKA / Bank-Verlag, Koln, Schnittstellenspezifikation fiir die ZKA-Chipkarte, Online-Vor-Initialisierung und
Online-Anzeige einer Auerbetriebnahme von Terminal-HSMs, Version 1.0, 04.08.2000

8. 473x Programmers Reference Volume 1 - TP-820399-001A

9. 473x Programmers Reference Volume 2 - TP-820403-001A

10. 473x Programmers Reference Volume 3 - TP-820400-001A

11. 473x Programmers Reference Volume 4 - TP-820404-001A

12. 473x P-Model Programmers Reference - TP-820397-001A

13. 473x Log Reference Guide - TP-820398-001A

14. Diebold‘s Specification for support of Online Preinitialization and Personalization of Terminal HSMs (OPT)
and support for the PAC/MAC standards for the 473x Protocol, Diebold USA, Revision 1.10, revised on May 2002

15. Groupement des Cartes Bancaires “CB”, Description du format et du contenu des données cryprographiques
échangées entre GAB et GDG, Version 1.3 / Octobre 2002

16. ITU-T Recommendation X.690 — ASN.1 encoding rules (also published as ISO/IEC International Standard
8825-1), 1997

17. German ZKA specification, published by: Bank-Verlag Koeln, Post Box 300191, 50771 Cologne, Germany;
Tel: +49 221 5490-0; Fax: +49 221 5490-120

18. Banksys document “SCM DKH Manual Rel 2.x”

19. Diebold‘s and IBM*s Specification for support of Online Preinitialization and Personalization of Terminal
HSMs (OPT) and support for the PAC/MAC standards for the 473x Protocol, Diebold USA, Revision 1.8, revised
on Jan-03-2001

20. ANSI X3.92, American National Standard for Data Encryption Algorithm (DEA), American National
Standards Institute, 1983

21. ANSI X9.8-1995, Banking — Personal Identification Number Management and Security, Part 1 + 2, American
National Standards Institute

22.1SO 9564-1, Banking — Personal Identification Number management and security, Part 1, First Edition 1991-
12-15, International Organization for Standardization

23. ISO 9564-2, Banking — Personal Identification Number management and security, Part 2, First Edition 1991-
12-15, International Organization for Standardization

24. IBM, Common Cryptographic Architecture: Cryptographic Application Programming Interface, SC40-1675-1,
IBM Corp., Nov 1990

25. R:L: Rivest, A. Shamir, and L.M. Adleman, A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems, Communications of the ACM, v. 21, n.2, Feb 1978, pp. 120-126

26. Security for Computer Networks by Donald W. Davies & William L. Price, Second Edition, John Wiley &
Sons, 1989

27. Regelwerk fiir das deutsche ec-Geldautomaten-System, Stand: 22. Nov. 1999

28. Bank-Verlag, K6ln, Autorisierungszentrale GA/POS der privaten Banken, Spezifikation fiir GA-Betreiber,
Version 3.12, 31. Mai 2000

29. dvg Hannover, Schnittstellenbeschreibung fiir Autorisierungsanfragen bei nationalen GA-Verfiigungen unter
Verwendung der Spur 3, Version 2.5, Stand: 15.03.2000

30. dvg Hannover, Schnittstellenbeschreibung fiir Autorisierungsanfragen bei internationalen Verfiigungen unter
Verwendung der Spur 2, Version 2.6, Stand: 30.03.2000

31. ZKA / Bank-Verlag, Koln,.Schnittstellenspezifikation fiir die ec-Karte mit Chip, Geldkarte Ladeterminals,
Version 3.0, 2. 4. 1998

32. ISO/IEC 9797-1: 1999

33.1S0O 8731-2

34. ZKA / Bank-Verlag, Koln, Schnittstellenspezifikation fiir die ec-Karte mit Chip
PIN-Anderungsfunktion, Version 3.0, 12.05.1999

16

CWA 16926-65:2023 (E)

35. ANSANSI - X9-FR-3+2018,.143-2022, Retail Financial Services Interoperable Secure Key Exchange ey
Block Specification-for-Symmetrie- Aleorithms

36. Oliself2 Specifiche Tecniche, PIN Block Detail for WFS PIN FORMAP

37. PCI Security Standards Council PCI PTS approval list
https://www.pcisecuritystandards.org/approved companies providers/approved pin transaction security.php

38. ISO 16609:2004 Financial Services — Requirements for message authentication using symmetric techniques

39. Australian Standard 2805.4 Electronic Funds Transfer — Requirements for Interface Part 4 — Message
Authentication

40. ISO/IEC 10118-3:2004 Information technology — Security techniques — Hash-functions — Part 3: Dedicated
hash-functions

41. FIPS 180-2 Secure Hash Signature Standard

42. ANS X9 TR-34 20422019, Interoperable Method for Distribution of Symmetric Keys using Asymmetric
Techniques: Part 1 — Using Factoring-Based Public Key Cryptography Unilateral Key Transport

43. Password industry standard of the People's Republic of China GM/T 0002-2012, GM/T 0003.1-2012, GM/T
0003.2-2012, GM/T 0003.3-2012, GM/T 0003.4-2012, GM/T 0003.5-2012, GM/T 0004-2012.

44. Financial industry standard of the People’s Republic of China PBOC3.0 JR/T 0025.17-2013.

45. ANSANSI X9.24-1:2009, Retail Financial Services Symmetric Key Management Part 1: Using Symmetric
Techniques

46. ISO/IEC 18033-3:2010 Information technology -- Security techniques -- Encryption algorithms -- Part 3: Block
ciphers

47. FIPS PUB 197: Advanced Encryption Standard (AES)
48. ISO/IEC 9564-1:2017 Financial services — Personal Identification Number (PIN) management and security —
Part 1: Basic principles and requirements for PINs in card-based systems

49. NIST Special Publication 800-38 A: Recommendation for Block Cipher Modes of Operation

50. NIST Special Publication 800-38E: Recommendation for Block Cipher Modes of Operation: the XTS-AES
Mode for Confidentiality on Storage Devices

51. Deutsche Kreditwirtschaft AES specification published by: The German Banking Industry Committee (GBIC) :
Contact: info@die-dk.de

17

CWA 16926-65:2023 (E)

4. Info Commands

4.1 WFS_INF_PIN_STATUS

Description This command returns several kinds of status information.

Input Param None.

Output Param LPWFSPINSTATUS IpStatus;

typedef struct wfs pin status
{
WORD
WORD
LPSTR
DWORD
WORD
DWORD
WORD
USHORT
WORD
LPDWORD

fwDevice;

fwEncStat;

lpszExtra;

dwGuidLights [WFS_PIN GUIDLIGHTS SIZE];
fwAutoBeepMode;

dwCertificateState;

wDevicePosition;
usPowerSaveRecoveryTime;
wAntiFraudModule;

lpdwPasswordState;

} WESPINSTATUS, *LPWFSPINSTATUS;

fwDevice
Specifies the state of the PIN pad device as one of the following flags:
Value Meaning
WFS PIN DEVONLINE The device is online (i.e. powered on and
operable).

WEFS_PIN DEVOFFLINE
WFS PIN DEVPOWEROFF

WFS PIN DEVNODEVICE

WFS_PIN DEVHWERROR

WEFS PIN DEVUSERERROR
WEFS PIN DEVBUSY

WEFS_PIN DEVFRAUDATTEMPT

WEFS_PIN DEVPOTENTIALFRAUD

fwEncStat

The device is offline (e.g. the operator has
taken the device offline by turning a switch).
The device is powered off or physically not
connected.

There is no device intended to be there; e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

The device is inoperable due to a hardware
error.

The device is present but a person is
preventing proper device operation.

The device is busy and unable to process an
execute command at this time.

The device is present but is inoperable
because it has detected a fraud attempt.
The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

Specifies the state of the encryption module as one of the following flags:

Value

Meaning

WEFS_PIN ENCREADY

WFS_PIN ENCNOTREADY

WFS_PIN_ENCNOTINITIALIZED

18

The encryption module is initialized and
ready (at least one key is imported into the
encryption module).

The encryption module is not available or
not ready due to hardware error or
communication error.

The encryption module is not initialized (no
master key loaded).

CWA 16926-65:2023 (E)

WEFS PIN ENCBUSY The encryption module is busy (implies that
the device is busy).

WFS _PIN_ENCUNDEFINED The encryption module state is undefined.

WEFS PIN _ENCINITIALIZED The encryption module is initialized and

master key (where required) and any other
initial keys are loaded; ready to import other
keys.

IpszExtra

Specifies a list of vendor-specific, or any other extended, information. The information is returned
as a series of “key=value” strings so that it is easily extendable by Service Providers. Each string
will be null-terminated, the whole list terminated with an additional null character. An empty list
may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

A number of IpszExtra key value pairs have been standardized during previous releases of the PIN
specification. These values have now been added to the main status structure but the standardized
key value pairs in /pszExtra must still be supported by the Service Provider when the functionality
is supported. Section 10 defines the standardized IpszExtra key value pairs.

dwGuidLights [...]

Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_PIN GUIDLIGHTS MAX.

Specifies the state of the guidance light indicator as
WEFS PIN GUIDANCE NOT AVAILABLE, WFS PIN GUIDANCE OFF or a combination
of the following flags consisting of one type B, optionally one type C and optionally one type D.

Value Meaning Type
WEFS _PIN GUIDANCE NOT_AVAILABLE The status is not available. A
WEFS _PIN GUIDANCE_OFF The light is turned off. A
WEFS _PIN GUIDANCE SLOW_FLASH The light is blinking slowly. B
WFS_PIN GUIDANCE MEDIUM FLASH The light is blinking medium B
frequency.
WEFS PIN GUIDANCE QUICK FLASH The light is blinking quickly. B
WFS PIN GUIDANCE _CONTINUOUS The light is turned on continuous B
(steady).
WFS_PIN_GUIDANCE_RED The light is red. C
WEFS PIN GUIDANCE GREEN The light is green. C
WFS_PIN_GUIDANCE_YELLOW The light is yellow. C
WFS_PIN_GUIDANCE_BLUE The light is blue. C
WFS PIN GUIDANCE CYAN The light is cyan. C
WFS PIN GUIDANCE MAGENTA The light is magenta. C
WFS PIN GUIDANCE WHITE The light is white. C
WEFS _PIN _GUIDANCE _ENTRY The light is in the entry state. D
WEFS PIN_GUIDANCE EXIT The light is in the exit state. D

dwGuidLights [WFS_PIN GUIDANCE PINPAD]
Specifies the state of the guidance light indicator on the PIN pad unit.

JfwAutoBeepMode

Specifies whether automatic beep tone on key press is active or not. Active and in-active key
beeping is reported independently. fwAutoBeepMode can take a combination of the following
values, if the flag is not set auto beeping is not activated (or not supported) for that key type (i.e.
active or in-active keys):

Value Meaning

WFS PIN BEEP ON_ACTIVE An automatic tone will be generated for all
active keys.

WEFS PIN BEEP _ON_INACTIVE An automatic tone will be generated for all

in-active keys.

dwCertificateState
Specifies the state of the public verification or encryption key in the PIN certificate modules as
one of the following flags:

19

CWA 16926-65:2023 (E)

20

Value Meaning

WEFS PIN CERT UNKNOWN The state of the certificate module is unknown
or the device does not have this capability.

WEFS PIN CERT PRIMARY All pre-loaded certificates have been loaded

and that primary verification certificates will be
accepted for the commands
WFS CMD_PIN LOAD CERTIFICATE or
WFS CMD_PIN REPLACE_CERTIFICATE.
WEFS _PIN CERT SECONDARY Primary verification certificates will not be
accepted and only secondary verification
certificates will be accepted. If primary
certificates have been compromised (which the
certificate authority or the host detects), then
secondary certificates should be used in any
transaction. This is done by calling the
WFS CMD PIN LOAD CERTIFICATE
command or the
WFS CMD_PIN REPLACE CERTIFICATE.

WFS PIN CERT NOTREADY The certificate module is not ready. (The
device is powered off or physically not
present).

wDevicePosition

Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WES _PIN DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_PIN DEVONLINE or

WFS PIN DEVOFFLINE). This value is one of the following values:

Value Meaning

WEFS _PIN DEVICEINPOSITION The device is in its normal operating
position, or is fixed in place and cannot be
moved.

WEFS _PIN DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WEFS PIN DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS PIN DEVICEPOSNOTSUPP The physical device does not have the

capability of detecting the position.

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning

WEFS PIN_ AFMNOTSUPP No anti-fraud module is available.

WEFS PIN_AFMOK Anti-fraud module is in a good state and no
foreign device is detected.

WFS PIN_AFMINOP Anti-fraud module is inoperable.

WFS PIN AFMDEVICEDETECTED Anti-fraud module detected the presence of a
foreign device.

WFS PIN. AFMUNKNOWN The state of the anti-fraud module cannot be
determined.

IpdwPasswordState

Pointer to a zero-terminated list of DWORDs specifying the status of the passwords that are
supported by the device. The index of each password corresponds to the index of the
IppPasswords parameter defined in the capabilities. If password status reporting is not supported,
then this parameter will be NULL. The possible values for each index are:

Error Codes

Comments

CWA 16926-65:2023 (E)

Value Meaning

WES PIN PWSTATUS LOADED The password is loaded.

WES PIN PWSTATUS UNLOADED The password is unloaded.
WES _PIN_ PWSTATUS_EXPIRED The password has expired.
WES PIN PWSTATUS_UNKNOWN The password status cannot be

determined.
Only the generic error codes defined in [Ref. 1] can be generated by this command.

Applications which require or expect specific information to be present in the /pszExtra parameter
may not be device or vendor-independent.

In the case where communications with the device have been lost, the fiwDevice field will report
WFS PIN DEVPOWEROFF when the device has been removed or WFS PIN. DEVHWERROR
if the communications are unexpectedly lost. All other fields should contain a value based on the
following rules and priority:

1. Report the value as unknown.
2. Report the value as a general h/w error.

3. Report the value as the last known value.

21

CWA 16926-65:2023 (E)

4.2 WFS_INF_PIN_CAPABILITIES

Description This command is used to retrieve the capabilities of the PIN pad.
Input Param None.

Output Param LPWFSPINCAPS IpCaps;

typedef struct wfs pin caps
{

WORD wClass;
WORD fwType;
BOOL bCompound;
USHORT usKeyNum;
WORD fwAlgorithms;
WORD fwPinFormats;
WORD fwDerivationAlgorithms;
WORD fwPresentationAlgorithms;
WORD fwDisplay;
BOOL bIDConnect;
WORD fwIDKey;
WORD fwValidationAlgorithms;
WORD fwKeyCheckModes;
LPSTR lpszExtra;
DWORD dwGuidLights [WFS PIN GUIDLIGHTS SIZE];
BOOL bPINCanPersistAfterUse;
WORD fwAutoBeep;
LPSTR lpsHSMVendor;
BOOL bHSMJournaling;
DWORD dwRSAAuthenticationScheme;
DWORD dwRSASignatureAlgorithm;
DWORD dwRSACryptAlgorithm;
DWORD dwRSAKeyCheckMode;
DWORD dwSignatureScheme;
LPWORD lpwEMVImportSchemes;
WORD fwEMVHashAlgorithm;
BOOL bKeyImportThroughParts;
WORD fwENCIOProtocols;
BOOL bTypeCombined;
BOOL bSetPinblockDataRequired;
WORD fwKeyBlockImportFormats;
BOOL bPowerSaveControl;
BOOL bAntiFraudModule;
WORD wDESKeyLength;
WORD wCertificateTypes;
LPWESPINSIGNERCAP *lppLoadCertOptions;
DWORD dwCRKLLoadOptions;
LPWESPINETSCAPS 1pETSCaps;
LPDWORD lpdwSynchronizableCommands;
LPWESPINRESTKEYENCKEY *1lppRestrictedKeyEncKeySupport;
DWORD dwSymmetricKeyManagementMethods;
LPWFSPINATTRIBUTES *1ppCryptAttributes;
LPWESPINATTRIBUTES *1ppPINBlockAttributes;
LPWESPINATTRIBUTES *lppKeyAttributes;
LPWESPINATTRIBUTES *lppDecryptAttributes;
LPWESPINATTRIBUTES *lppVerifyAttributes;
LPWESPINPASSWORD *lppPasswords;
} WEFSPINCAPS, *LPWEFSPINCAPS;
wClass
Specifies the logical service class as WFS_SERVICE CLASS PIN.
JwIype

Specifies the type of the PIN pad security module as a combination of the following flags. PIN
entry is only possible when at least WFS PIN_ TYPEEPP and WFS_PIN TYPEEDM, or

WFS PIN TYPEETS and WFS PIN TYPEEDM are set. In order to use the ZKA-Electronic
purse, WFS PIN TYPEEDM, WFS PIN TYPEHSM and one data entry device

(WFS_PIN TYPEEPP or WFS_PIN TYPEETS) flags must be set.

22

Value

CWA 16926-65:2023 (E)

Meaning

WFS_PIN_TYPEEPP

WFS_PIN_TYPEEDM
WFS_PIN_TYPEHSM

WFS_PIN_TYPEETS

Electronic PIN pad (keyboard data entry
device).

Encryption/decryption module.

Hardware security module (electronic PIN
pad and encryption module within the same
physical unit).

Encrypting Touch Screen (touch screen data
entry device).

bCompound
Specifies whether the logical device is part of a compound physical device.
usKeyNum
Number of the keys which can be stored in the encryption/decryption module.
fwAlgorithms
Supported encryption modes; a combination of the following flags:
Value Meaning
WEFS PIN CRYPTDESECB Electronic Code Book.
WEFS PIN CRYPTDESCBC Cipher Block Chaining.
WEFS PIN CRYPTDESCFB Cipher Feed Back.
WEFS PIN CRYPTRSA RSA Encryption.
WEFS PIN CRYPTECMA ECMA Encryption.

WFS_PIN CRYPTDESMAC
WEFS _PIN CRYPTTRIDESECB
WEFS PIN CRYPTTRIDESCBC
WEFS PIN CRYPTTRIDESCFB
WEFS _PIN CRYPTTRIDESMAC
WEFS_PIN_ CRYPTMAAMAC

WEFS PIN CRYPTTRIDESMAC2805

WEFS PIN CRYPTSM4

WEFS_PIN CRYPTSM4MAC

fwPinFormats

MAC calculation using CBC.

Triple DES with Electronic Code Book.
Triple DES with Cipher Block Chaining.
Triple DES with Cipher Feed Back.

Last Block Triple DES MAC as defined in
ISO/TEC 9797-1:1999 [Ref. 32], using: block
length n=64, Padding Method 1 (when
bPadding=0), MAC Algorithm 3, MAC
length m where 32<=m<=64.

MAC calculation using the Message
authenticator algorithm as defined in ISO
8731-2 [Ref. 33].

Triple DES MAC calculation as defined in
ISO 16609:2004 [Ref. 38] and Australian
Standard 2805.4 [Ref. 39].

SM4 block cipher algorithm as defined in
Password industry standard of the People's
Republic of China GM/T 0002-2012 [Ref.
43].

MAC calculation using the Message
authenticator algorithm as defined in as
defined in Password industry standard of the
People's Republic of China GM/T 0002-
2012 [Ref. 43] and in PBOC3.0 JR/T
0025.17-2013 [Ref. 44].

Supported PIN formats; a combination of the following flags:

Value

Meaning

WEFS_PIN FORM3624

WFS_PIN_FORMANSI

PIN left justified, filled with padding
characters, PIN length 4-16 digits. The
padding character is a hexadecimal digit in
the range 0x00 to OxOF.

PIN is preceded by 0x00 and the length of
the PIN (0x04 to 0x0C), filled with padding
character OxOF to the right, PIN length 4-12
digits, XORed with PAN (Primary Account
Number, minimum 12 digits without check
number).

23

CWA 16926-65:2023 (E)

WFS_PIN_FORMISO0

WEFS _PIN FORMISO1

WEFS_PIN_FORMECI2

WEFS_PIN_FORMECI3

WEFS_PIN_FORMVISA

WEFS_PIN FORMDIEBOLD

WEFS_PIN FORMDIEBOLDCO

WFS_PIN_FORMVISA3

WFS PIN FORMBANKSYS

WFS_PIN FORMEMV

WFS_PIN_FORMISO3

WFS_PIN_FORMAP

WEFS_PIN FORMISO4

fwDerivationAlgorithms

PIN is preceded by 0x00 and the length of
the PIN (0x04 to 0x0C), filled with padding
character OxOF to the right, PIN length 4-12
digits, XORed with PAN (Primary Account
Number without check number, no minimum
length specified, missing digits are filled
with 0x00).

PIN is preceded by 0x01 and the length of
the PIN (0x04 to 0x0C), padding characters
are taken from a transaction field (10 digits).
(similar to WFS_PIN__FORM3624), PIN
only 4 digits.

PIN is preceded by the length (digit), PIN
length 4-6 digits, the padding character can
range from 0x0 through OxF.

PIN is preceded by the length (digit), PIN
length 4-6 digits. If the PIN length is less
than six digits the PIN is filled with 0x0 to
the length of six, the padding character can
range from 0x0 through 0x9 (This format is
also referred to as VISA2).

PIN is padded with the padding character
and may be not encrypted, single encrypted
or double encrypted.

PIN with the length of 4 to 12 digits, each
one with a value of 0x0 to 0x9, is preceded
by the one-digit coordination number with a
value from 0x0 to OxF, padded with the
padding character with a value from 0x0 to
0xF and may be not encrypted, single
encrypted or double encrypted.

PIN with the length of 4 to 12 digits, each
one with a value of 0x0 to 0x9, is followed
by a delimiter with the value of 0xF and then
padded by the padding character with a value
between 0x0 to OxF.

PIN is encrypted and formatted according to
the Banksys PIN block specifications.

The PIN block is constructed as follows: PIN
is preceded by 0x02 and the length of the
PIN (0x04 to 0x0C), filled with padding
character OxOF to the right, formatted up to
248 bytes of other data as defined within the
EMV 4.0 specifications and finally
encrypted with an RSA key.

PIN is preceded by 0x03 and the length of
the PIN (0x04 to 0x0C), padding characters
sequentially or randomly chosen, XORed
with digits from PAN.

PIN is formatted according to the Italian
Bancomat specifications- (see [Ref. 36]). It is
known as the Authentication Parameter PIN
block and is created with a 5 digit PIN, an 18
digit PAN, and the 8 digit CCS from the
track data.

PIN is formatted according to ISO 9564-1:
(see [Ref. 22]. [Ref. 48]): 2017 Format-4
(uses AES Encryption).

Supported derivation algorithms; a combination of the following flags:

24

CWA 16926-65:2023 (E)

Value Meaning

WEFS PIN CHIP ZKA Algorithm for the derivation of a chip card
individual key as described by the German
ZKA.

fwPresentationAlgorithms
Supported presentation algorithms; a combination of the following flags:

Value Meaning

WEFS PIN PRESENT CLEAR Algorithm for the presentation of a clear text
PIN to a chipcard. Each digit of the clear text
PIN is inserted as one nibble (=halfbyte) into
IpbChipData. See
WFS _CMD_PIN PRESENT IDC for a
detailed description.

fwDisplay
Specifies the type of the display used in the PIN pad module as one of the following flags:
Value Meaning
WEFS_PIN DISPNONE No display unit.
WFS PIN DISPLEDTHROUGH Lights next to text guide user.
WEFS_PIN DISPDISPLAY A real display is available (this doesn’t apply

for self-service).

bIDConnect

Specifies whether the PIN pad is directly physically connected to the ID card unit. If the value is
TRUE, the PIN will be transported securely during the command

WEFS CMD_PIN PRESENT IDC.

JwIDKey

Specifies if key owner identification (in commands referenced as Ipx/dent), which authorizes
access to the encryption module, is required. A zero value is returned if the encryption module
does not support this capability. Otherwise it will be a combination of the following flags:

Value Meaning

WFS PIN IDKEYINITIALIZATION ID key is returned by the
WFS CMD_PIN INITIALIZATION
command.

WFS PIN IDKEYIMPORT ID key is required as input for the

WFS_CMD_PIN_IMPORT KEY and
WFS_CMD_PIN_DERIVE_KEY command.

fwValidationAlgorithms
Specifies the algorithms for PIN validation supported by the service; combination of the following
flags:

Value Meaning

WEFS PIN DES DES algorithm.

WFS_PIN EUROCHEQUE EUROCHEQUE algorithm.

WFS PIN VISA VISA algorithm.

WEFS_PIN _DES OFFSET DES offset generation algorithm.

WFS PIN BANKSYS Banksys algorithm.
JwKeyCheckModes

Specifies the key check modes that are supported to check the correctness of an imported key
value. The encryption algorithm used (i.e. DES, 3DES, AES. SM4) is determined by the type of
key being checked. If the key size is larger than the algorithm block size, then only the first block
will be used. It can be a combination of the following flags:

Value Meaning
WEFS PIN KCVSELF The key check value (KCV) is created by an
encryption of the key with itself. Forthe

25

CWA 16926-65:2023 (E)

26

WEFS PIN KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key.

IpszExtra

Points to a list of vendor-specific, or any other extended, information. The information is returned
as a series of “key=value” strings so that it is easily extendable by Service Providers. Each string
is null-terminated, the whole list terminated with an additional null character. An empty list may
be indicated by either a NULL pointer or a pointer to two consecutive null characters.

A number of IpszExtra key value pairs have been standardized during previous releases of the PIN
specification. These values have now been added to the main capabilities structure but the
standardized key value pairs in /pszExtra must still be supported by the Service Provider when the
functionality is supported. Section 1810 defines the standardized /pszExtra key value pairs.

dwGuidLights [...]

Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_PIN GUIDLIGHTS MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the
capability to show directional movement representing “entry” and “exit”. The “entry” state gives
the impression of leading a user to place a card into the device. The “exit” state gives the
impression of ejection from a device to a user and would be used for retrieving a card from the
device.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B), colors (type C) and directions (type D) that the guidance light
indicator is capable of handling. If the guidance light indicator does not support direction then no
value of type D is returned. A value of WFS_PIN_ _GUIDANCE NOT AVAILABLE indicates
that the device has no guidance light indicator or the device controls the light directly with no
application control possible.

Value Meaning Type

WEFS _PIN GUIDANCE NOT_AVAILABLE There is no guidance light control A
available at this position.

WEFS PIN GUIDANCE_OFF The light can be off. B
WFS PIN GUIDANCE SLOW_FLASH The light can blink slowly. B
WFS PIN GUIDANCE MEDIUM FLASH The light can blink medium B
frequency.
WEFS _PIN GUIDANCE QUICK FLASH The light can blink quickly. B
WEFS_PIN_GUIDANCE CONTINUOUS The light can be continuous B
(steady).
WFS PIN GUIDANCE RED The light can be red. C
WFS PIN GUIDANCE GREEN The light can be green. C
WEFS _PIN GUIDANCE_YELLOW The light can be yellow. C
WEFS PIN GUIDANCE BLUE The light can be blue. C
WEFS PIN GUIDANCE CYAN The light can be cyan. C
WFS PIN GUIDANCE MAGENTA The light can be magenta. C
WFS PIN GUIDANCE WHITE The light can be white. C
WFS PIN GUIDANCE ENTRY The light can be in the entry state. D
WFS PIN GUIDANCE EXIT The light can be in the exit state. D
dwGuidLights [WFS_PIN GUIDANCE PINPAD]
Specifies whether the guidance light indicator on the PIN pad unit is available.
bPINCanPersistAfterUse
Specifies whether the device can retain the PIN after a PIN processing command, e.g.
WFS CMD PIN GET PINBLOCK, WFS CMD PIN LOCAL DES,
WFS CMD PIN PRESENT IDC, etc.:
Value Meaning
TRUE Applications may request, through the

WEFS_CMD_PIN MAINTAIN_PIN
command, that the PIN continues to be held
within the device after use by a PIN
processing command.

CWA 16926-65:2023 (E)

FALSE The PIN will always be cleared by the
device after processing. The
WEFS_CMD_PIN MAINTAIN_PIN is not
supported.
JwAutoBeep

Specifies whether the PIN device will emit a key beep tone on key presses (of active keys or in-
active keys), and if so, which mode it supports. Specified as a combination of the following flags:

Value Meaning

WEFS _PIN BEEP ACTIVE AVAILABLE Automatic beep tone on active key key-press
is supported. If this flag is not set then
automatic beeping for active keys is not
supported.

Automatic beeping for active keys can be
controlled (i.e. turned on and off) by the
application. If this flag is not set then
automatic beeping for active keys cannot be
controlled by an application.

Automatic beep tone on in-active key key-
press is supported. If this flag is not set then
automatic beeping for in-active keys is not
supported.

Automatic beeping for in-active keys can be
controlled (i.e. turned on and off) by the
application. If this flag is not set then
automatic beeping for in-active keys cannot
be controlled by an application.

WFS PIN BEEP ACTIVE SELECTABLE

WFS_PIN_BEEP_INACTIVE_AVAILABLE

WEFS PIN BEEP INACTIVE SELECTABLE

IpsHSMVendor
Identifies the HSM Vendor. IpsHSMVendor is NULL when the HSM Vendor is unknown or the
HSM is not supported.

The following is a list of known vendors’ strings that [JpsHSMVendor can contain for the support
of German HSMs:

“KRONE”
“ASCOM”
“IBM”
“NCR”

bHSMJournaling

Specifies whether the HSM supports journaling by the WFS CMD_ PIN GET JOURNAL
command. The value of this parameter is either TRUE or FALSE. TRUE means the HSM
supports journaling by WFS_ CMD GET JOURNAL.

dwRSAAuthenticationScheme
Specifies which type(s) of Remote Key Loading/Authentication is supported as a combination of
the following flags:

Value

Meaning

WFS_PIN_RSA_AUTH_2PARTY_SIG
WFS_PIN_RSA_AUTH_3PARTY_ CERT

Two-party Signature based authentication.
Three-party Certificate based authentication.

WFS PIN RSA AUTH 3PARTY CERT TR34
Three-party Certificate based authentication
described by X9 TR34-2012 [Ref. 42].

dwRSASignatureAlgorithm
Specifies which type(s) of RSA Signature Algorithm(s) is supported as a combination of the
following flags:

Value

Meaning

WFS_PIN_SIGN_RSASSA PKCSI V1 5
WFS_PIN_SIGN_RSASSA_PSS

SSA PKCS V1 _5 Signatures supported.
SSA_PSS Signatures supported.

27

CWA 16926-65:2023 (E)

28

dwRSACryptAlgorithm
Specifies which type(s) of RSA Encipherment Algorithm(s) is supported as a combination of the
following flags:

Value Meaning

WEFS PIN CRYPT RSAES PKCS1 V1 5 AES PKCS V1 5 algorithm supported.

WEFS PIN CRYPT RSAES OAEP AES OAEP algorithm supported.
dwRSAKeyCheckMode

Specifies which algorithm/method used to generate the public key check value/thumb print as a
combination of the following flags:

Value Meaning
WFS PIN RSA KCV _SHAI1 SHA-1 is supported as defined in [Ref. 3-].
WFS PIN RSA KCV_SHA256 SHA-256 is supported as defined in ISO/IEC
10118-3:2004 [Ref. 40] and FIPS 180-2
[Ref. 41].
dwSignatureScheme

Specifies which capabilities are supported by the Signature scheme as a combination of the
following flags:

Value Meaning

WFS PIN SIG GEN RSA KEY PAIR Specifies if the Service Provider supports the
RSA Signature Scheme
WEFS_CMD_PIN _GENERATE RSA KEY
_PAIR and
WFS CMD_PIN EXPORT RSA EPP SIG
NED commands.

WFS PIN SIG RANDOM NUMBER Specifies if the Service Provider returns a
random number from the
WFS_CMD _PIN_START KEY_ EXCHAN
GE command within the RSA Signature
Scheme.

WFS PIN SIG EXPORT EPP_ID Specifies if the Service Provider supports
exporting the EPP Security Item within the
RSA Signature Scheme.

WEFS PIN SIG ENHANCED RKL Specifies that the Service Provider supports
the Enhanced Signature Remote Key
Scheme. This scheme allows the customer to
manage their own public keys independently
of the Signature Issuer. When this mode is
supported then the key loaded signed with
the Signature Issuer key is the host root
public key PKroor, rather than PKnosr. See
Section 8.1 for a full description.

IpwEMVImportSchemes

Identifies the supported EMV Import Scheme(s) as a zero terminated array of modes.
IpwEMVImportSchemes is set to NULL if the Import Scheme(s) are unknown or not supported.
Otherwise IpwEMVImportSchemes lists all Import Scheme(s) supported by the PIN Service
Provider from the following possible values:

Value Meaning

WFS PIN EMV _IMPORT PLAIN CA A plain text CA public key is imported with
no verification.

WFS PIN EMV_IMPORT CHKSUM CA A plain text CA public key is imported using
the EMV 2000 verification algorithm. See
[Ref. 4].

WEFS _PIN EMV_IMPORT EPI CA A CA public key is imported using the self-
sign scheme defined in the Europay
International, EPI CA Module Technical -
Interface specification Version 1.4, [Ref. 5].

WFS PIN EMV_IMPORT ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, [Ref. 4].

CWA 16926-65:2023 (E)

WFS PIN EMV_IMPORT ICC An ICC public key is imported as defined in
EMYV 2000 Book II, [Ref. 4].
WFS PIN EMV_IMPORT ICC PIN An ICC PIN public key is imported as

defined in EMV 2000 Book II, [Ref. 4].

WFS PIN EMV IMPORT PKCSV1 5 CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

JwEMVHashAlgorithm
Specifies which hash algorithm is supported for the calculation of the HASH as a combination of
the following flags:

Value Meaning

WEFS PIN HASH SHA1 DIGEST The SHA 1 digest algorithm is supported by
the WFS_CMD PIN DIGEST command.

WEFS PIN HASH SHA256 DIGEST The SHA 256 digest algorithm, as defined in

ISO/IEC 10118-3:2004 [Ref. 40] and FIPS
180-2 [Ref. 41], is supported by the
WFS CMD PIN DIGEST command.

bKeyImportThroughParts
Specifies whether the device is capable of importing keys in multiple parts. TRUE means the
device supports the key import in multiple parts.

JWENCIOProtocols
Specifies the ENC 10 protocols supported to communicate with the encryption module as a
combination of the following flags:

Value Meaning

WFS PIN ENC PROT CH For Swiss specific protocols. The document
specification for Swiss specific protocols is
"CMD_ENC IO - CH Protocol.doc". This
document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management
Hertistrasse 27
CH-8304 Wallisellen

WFS PIN ENC PROT GIECB Protocol for “Groupement des Cartes
Bancaires” (France).
WFS PIN ENC PROT LUX Protocol for Luxemburg commands. The

reference for this specific protocol is the
Authorization Center in Luxemburg
(CETREL.)
Cryptography Management
Postal address:
CETREL Société Coopérative
Centre de Transferts Electroniques
L-2956 Luxembourg

WEFS PIN ENC PROT CHN Protocol for China commands. The reference
for this specific protocol are the Financial
industry standard of the People’s Republic of
China PBOC3.0 JR/T 0025 [Ref. 44] and the
Password industry standard of the People's
Republic of China GM/T 0003, GM/T 004
[Ref. 43].

bTypeCombined
Specifies whether the keypad used in the secure PIN pad module is integrated within a generic
Win32 keyboard.

29

CWA 16926-65:2023 (E)

TRUE means the secure PIN keypad is integrated within a generic Win32 keyboard and standard
Win32 key events will be generated for any key when there is no ‘active’ GET_DATA or
GET_PIN command. Note that XFS continues to support defined PIN keys only, and is not
extended to support new alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both
PIN and generic keyboards.

e When an application wishes to receive XFS-based key information then it can use the
WFS CMD_PIN GET DATA and WFS CMD PIN GET PIN commands.

e No Win32 keystrokes are generated for any key (active or not) in a combined device
when WFS CMD PIN GET DATA or WFS CMD_ PIN GET PIN are ‘active’.

e Whenno WFS CMD_PIN GET DATA or WFS_ CMD_PIN GET PIN command is
‘active’ then any key press will result in a Win32 key event. These events can be ignored
by the application, if required.

Note that this does not compromise secure PIN entry — there will be no Win32 keyboard events
during PIN collection.

On terminals and kiosks with separate PIN and Win32 keyboards, the Win32 keyboard behaves
purely as a PC keyboard and the PIN device behaves only as an XFS device.

bSetPinblockDataRequired

Specifies whether the command WFS CMD_PIN SET PINBLOCK DATA must be called
before the PIN is entered via WFS_ CMD_PIN GET PIN and retrieved via

WFS CMD_PIN_GET_PINBLOCK.

fwKeyBlockImportFormats
Supported key block formats; a combination of the following flags:

Value Meaning

WFS_PIN_ANSTR31KEYBLOCK Supports ANS-TFR-31AKeyblock
formatX9.143 version ID A of the key
impertblock.

WFS PIN_ANSTR31KEYBLOCKB Supports ANS-TFR-31BKeybloek
formatX9.143 version ID B of the key
impertblock.

WFS PIN ANSTR31KEYBLOCKC Supports ANS-TR-31C Keybloek
formatX9.143 version ID C of the key
wmpertblock.

WES_PIN_ANSTR31KEYBLOCKD Supports X9.143 version ID D of the key
block.

bPowerSaveControl

Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

bAntiFraudModule

Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

wDESKeyLength

Specifies which length(s) of DES keys are supported as a combination of the following flags:

Value Meaning

WEFS _PIN KEYSINGLE 8 byte (single-length) DES keys are
supported.

WFS _PIN KEYDOUBLE 16 byte (double-length) DES keys are
supported.

WEFS _PIN KEYTRIPLE 24 byte (triple-length) DES keys are
supported.

wCertificateTypes

Specifies supported certificate types as a combination of the following flags:

30

CWA 16926-65:2023 (E)

Value Meaning
WEFS PIN PUBLICENCKEY Supports the EPP public encryption
certificate.
WEFS_PIN PUBLICVERIFICATIONKEY Supports the EPP public verification
certificate.
WEFS PIN PUBLICHOSTKEY Supports the Host public certificate.
IppLoadCertOptions

A NULL-terminated array of pointers to WFSPINSIGNERCAP structures specifying the options
supported by the WFS CMD PIN LOAD CERTIFICATE EX command.

typedef struct wfs pin signer cap
{
DWORD dwSigner;
DWORD dwOption;
} WESPINSIGNERCAP, *LPWEFSPINSIGNERCAP;

There is one structure for each signer that is supported by the Service Provider. In each structure,
there will be a dwSigner parameter with one bit set to indicate which signer the structure is
referencing, and there will be a dwOption parameter with one or more bits set to indicate all of the
options that the Service Provider supports with the signer specified by dwSigner.

dwSigner
Specifies the signers supported by the WFS CMD PIN LOAD CERTIFICATE EX
command as one of the following flags:

Value Meaning

WFS PIN SIGNER _CERTHOST The current Host RSA Private Key is
used to sign the token.

WEFS PIN SIGNER SIGHOST The current Host RSA Private Key is
used to sign the token, signature format is
used.

WEFS PIN SIGNER CA The Certificate Authority RSA Private
Key is used to sign the token.

WEFS _PIN SIGNER HL A Higher-Level Authority RSA Private
Key is used to sign the token.

WEFS _PIN_SIGNER TR34 This value can only be specified in

combination with the

WES _PIN_SIGNER CERTHOST,

WES _PIN SIGNER_CA or

WES PIN _SIGNER_HL flags. It
indicates that the values combined with it
are compliant with X9 TR34-2012 [Ref.
42].

dwOption
Specifies the load options supported by the WFS_ CMD_PIN LOAD_ CERTIFICATE EX
command as a combination of the following flags:

Value Meaning

WFS PIN LOAD NEWHOST Load a new Host certificate, where one
has not already been loaded.

WEFS PIN LOAD REPLACEHOST Replace (or rebind) the EPP to a new

Host certificate, where the new Host
certificate is signed by dwSigner.

dwCRKLLoadOptions
Supported options to load the Key Transport Key using the Certificate Remote Key Loading
protocol; a combination of the following flags:

Value Meaning
WEFS_PIN CRKLLOAD NORANDOM Import a Key Transport Key without
generating and using a random number.

31

CWA 16926-65:2023 (E)

32

WEFS PIN CRKLLOAD NORANDOM CRL Import a Key Transport Key with a
Certificate Revocation List appended to the
input message. A random number is not
generated nor used.

WFS PIN CRKLLOAD RANDOM Import a Key Transport Key by generating
and using a random number.

WEFS PIN CRKLLOAD RANDOM CRL Import a Key Transport Key with a
Certificate Revocation List appended to the
input parameter. A random number is
generated and used.

IpETSCaps
Specifies the capabilities of the ETS device. This value is NULL if the fwType does not contain
WFS _PIN TYPEETS.

typedef struct wfs pin ets location cap

{

LONG 1XPos;

LONG lYPos;

USHORT usXSize;

USHORT usYSize;

WORD wMaximumTouchFrames;
WORD wMaximumTouchKeys;
WORD wFloatFlags;

} WESPINETSCAPS, *LPWESPINETSCAPS;

[Xpos

Specifies the position of the left edge of the ETS in Windows virtual screen coordinates. This
value may be negative because the of the monitor position on the virtual desktop — see section
2.1.

[YPos

Specifies the position of the top edge of the ETS in Windows virtual screen coordinates. This
value may be negative because the of the monitor position on the virtual desktop — see section
2.1.

usXSize
Specifies the width of the ETS in Windows virtual screen coordinates.

usYSize
Specifies the height of the ETS in Windows virtual screen coordinates.

wMaximumTouchFrames
Specifies the maximum number of Touch Frames that the device can support in a touch
keyboard definition.

wMaximumTouchKeys
Specifies the maximum number of Touch Keys that the device can support within any Touch
Frame.

wFloatFlags
Specifies if the device can float the touch keyboards. WFS_PIN _FLOAT NONE if the PIN

device cannot randomly shift the layout or else a combination of the following flags:

Value Meaning

WEFS PIN FLOATX Specifies that the PIN device will randomly
shift the layout in a horizontal direction.

WEFS PIN FLOATY Specifies that the PIN device will randomly

shift the layout in a vertical direction.

IpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

IppRestrictedKeyEncKeySupport

A NULL-terminated array of pointers to WFSPINRESTKEYENCKEY structures specifying the
loading methods that support the WFS PIN USERESTRICTEDKEYENCKEY usage flag and
the allowable usage flag combinations for each of those loading methods..

CWA 16926-65:2023 (E)

typedef struct wfs pin rest keyenckey

{
DWORD dwLoadingMethod;
DWORD dwUses;

} WESPINRESTKEYENCKEY, *LPWESPINRESTKEYENCKEY;

There is one structure for each loading method that is supported by the Service Provider.
Loading methods that are not supported are not included in the NULL-terminated array of
pointers. If none of the loading methods are supported, then IppRestrictedKeyEncKeySupport
is NULL. In each structure, there will be a dwLoadingMethod parameter with one bit set to
indicate which loading method the structure is referencing, and a dwUses parameter with one
or more bits set to indicate all of the usage flags that can be combined with the

WEFS PIN USERESTRICTEDKEYENCKEY flag that the Service Provider supports with the
loading method specified by dwLoadingMethod.

dwLoadingMethod
Specifies the loading methods supported as one of the following flags:
Value Meaning

WFS_PIN_RSA_AUTH_2PARTY_SIG
WFS_PIN_RSA_AUTH_3PARTY_ CERT
WFS_PIN_RSA_AUTH_3PARTY_ CERT_TR34
WFS_PIN_RESTRICTED SECUREKEYENTRY

dwUses

Two-party Signature based.
Three-party Certificate based.
Three-party Certificate based.
Restricted secure key entry.

Specifies one or more usage flags that can be used in combination with the

WFS_PIN_USERESTRICTEDKEYENCKEY usage flag.

Value Meaning

WEFS_PIN USECRYPT Key is used for encryption and
decryption.

WEFS _PIN USEFUNCTION Key is used for PIN block creation.

WEFS_PIN USEMACING Key is used for MACing.

WFS PIN USEPINLOCAL
WFS PIN USESVENCKEY

WEFS PIN USEPINREMOTE
dwSymmetricKeyManagementMethods

Key is used only for local PIN check.
Key is used as CBC Start Value
encryption key.

Key is used only for PIN block creation.

Specifies the symmetric key management modes as combination of the following flags:

Value

Meaning

WFS_PIN_KM_FIXED KEY

WFS_PIN_KM_MASTER_KEY

WFS_PIN_KM_TDES_DUKPT

IppCryptAttributes

This method of key management uses fixed
keys for transaction processing.

This method uses a hierarchy of Key
Encrypting Keys and Transaction Keys. The
highest level of Key Encrypting Key is
known as a Master Key. Transaction Keys
are distributed and replaced encrypted under
a Key Encrypting Key.

This method uses TDES Derived Unique
Key Per Transaction (see reference[Ref.
45)]).

This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the

WFS CMD PIN CRYPT 340 command.

typedef struct wfs pin attributes
{

BYTE bKeyUsage[2];
BYTE bAlgorithm;
BYTE bModeOfUse;
DWORD dwCryptoMethod;
} WESPINATTRIBUTES, *LPWFSPINATTRIBUTES;

33

CWA 16926-65:2023 (E)

34

There is one structure for each attribute combination that is supported by the Service Provider.
In each structure, each of the four parameters will have only one value set.

bKeyUsage
Specifies the key usages supported by the WFS CMD_PIN CRYPT 340 command as one of
the following values:

Value Meaning

‘DO’ Symmetric data encryption.

‘DI’ Asymmetric data encryption.

‘MO’ ISO 16609 MAC Algorithm 1 (using
TDEA).

‘M1’ ISO 9797-1 MAC Algorithm 1.

‘M2’ ISO 9797-1 MAC Algorithm 2.

‘M3’ ISO 9797-1 MAC Algorithm 3.

‘M4’ ISO 9797-1 MAC Algorithm 4.

‘M5’ ISO 9797-1:1999 MAC Algorithm 5.

‘M6’ ISO 9797-1:2011 MAC Algorithm
5/CMAC.

‘M7’ HMAC.

‘M8’ ISO 9797-1:2011 MAC Algorithm 6.

‘S0’ Asymmetric key pair for digital
signature.

‘Sr Asymmetric key pair, CA.

‘82’ Asymmetric key pair, nonX9.24 key.

bAlgorithm

Specifies the encryption algorithms supported by the WFS_CMD_PIN _CRYPT 340
command as one of the following values:

Value Meaning

‘A’ AES.

‘D’ DEA.

‘R’ RSA.

‘T Triple DEA (also referred to as TDEA).
bModeOfUse

Specifies the encryption modes supported by the WFS CMD_PIN CRYPT 340 command as
one of the following values:

Value Meaning

‘D’ Decrypt.

‘E’ Encrypt.

‘G’ Generate.

‘S’ Signature.

vV’ Verify.
dwCryptoMethod

Specifies the cryptographic methods supported by the WFS_CMD_ PIN CRYPT 340
command.

For symmetric encryption methods (bKeyUsage is ‘D0’), this can be one of the following
values:

Value Meaning

WFS _PIN CRYPTOECB The ECB encryption method.
WEFS _PIN CRYPTOCBC The CBC encryption method.
WEFS PIN CRYPTOCFB The CFB encryption method.
WEFS _PIN CRYPTOOFB The OFB encryption method.

WFS PIN CRYPTOCTR The CTR method defined in NIST

SP800-38A- (see [Ref. 49]).
WFS PIN CRYPTOXTS The XTS method defined in NIST

SP800-38E- (sece [Ref. 50]).

For asymmetric encryption methods (bKeyUsage is ‘D1°), this can be one of the following
values:

CWA 16926-65:2023 (E)

Value Meaning
WFS_PIN CRYPT RSAES PKCS1 VI 5 Use the RSAES PKCS1-v1.5 algorithm.
WEFS PIN CRYPT RSAES OAEP Use the RSAES OAEP algorithm.

For asymmetric signature verification methods (bKeyUsage is ‘SO’, ‘S1°, or ‘S2’), this can be
one of the following values:

Value Meaning

WFS_PIN SIGN_RSASSA PKCS1 V1 5 Use the RSASSA-PKCS1-v1.5
algorithm.

WEFS PIN SIGN RSASSA PSS Use the RSASSA-PSS algorithm.

One or more of the following flags must be specified in combination with one of the signature
verification methods.

Value Meaning
WEFS PIN SIGNHASH SHAI The SHA 1 digest algorithm.
WFS PIN SIGNHASH SHA256 The SHA 256 digest algorithm, as

defined in ISO/IEC 10118-3:2004 [Ref.
40] and FIPS 180-2 [Ref. 41]

If bKeyUsage is specified as any of the MAC usages (i.e. ‘M 1), then this should be set to 0.

IppPINBlockAttributes

This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the

WFS CMD_PIN GET PINBLOCK 340 command.

typedef struct wfs pin attributes
{

BYTE bKeyUsage[2];
BYTE bAlgorithm;
BYTE bModeOfUse;
DWORD dwCryptoMethod;

} WESPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each

bKeyUsage
Specifies the key usages supported by the WFS CMD_PIN GET PINBLOCK 340
command as one of the following values:

Value Meaning
‘PO’ PIN Encryption.
bAlgorithm

Specifies the encryption algorithms supported by the
WFS _CMD PIN GET PINBLOCK 340 command as one of the following values:

Value Meaning

‘A’ AES.

‘D’ DEA.

‘R’ RSA.

‘T’ Triple DEA (also referred to as TDEA).
bModeOfUse

Specifies the encryption modes supported by the WFS CMD PIN GET PINBLOCK 340
command as one of the following values:

Value Meaning
‘E’ Encrypt.
dwCryptoMethod

This parameter specifies the cryptographic method that will be used with the encryption
algorithm specified by bAlgorithm.

If bAlgorithm is “‘A’, ‘D’, or ‘T, then dwCryptoMethod can be one of the following values:

35

CWA 16926-65:2023 (E)

36

Value Meaning

WEFS _PIN CRYPTOECB The ECB encryption method.
WEFS _PIN CRYPTOCBC The CBC encryption method.
WEFS PIN CRYPTOCFB The CFB encryption method.
WFS _PIN CRYPTOOFB The OFB encryption method.
WEFS PIN CRYPTOCTR The CTR method defined in NIST

SP800-38A- (see [Ref. 49]).
WFS PIN CRYPTOXTS The XTS method defined in NIST

SP800-38E- (see [Ref. 50]).
If bAlgorithm is ‘R’, then dwCryptoMethod can be one of the following values:

Value Meaning

WFS _PIN CRYPT RSAES PKCS1 VI 5 Use the RSAES PKCS1-v1.5 algorithm.

WFS PIN CRYPT RSAES OAEP Use the RSAES OAEP algorithm.
IppKeyAttributes

This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the WFS CMD_ PIN IMPORT
KEY 340 command for the key to be loaded.

typedef struct wfs pin attributes
{

BYTE bKeyUsage[2];
BYTE bAlgorithm;
BYTE bModeOfUse;
DWORD dwCryptoMethod;

} WESPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each.

bKeyUsage
Specifies the key usages supported by the WFS CMD_PIN IMPORT KEY 340 command
as one of the following values:

Value Meaning

‘B0’ BB Base Derivation Key- (BDK).

‘BI’ Initial DUKPT Key.

‘B2’ Base Key Variant Key- (deprecated).

‘Cco’ EVI-Card Verification Key- (CVK).

‘DO’ Symmetric Key for Data Encryption.

‘DI’ Asymmetric Key for Data Encryption.

‘D2’ Data Encryption Key for Decimalization
Table.

‘D3’ Data Encryption Key for Sensitive Data.

‘E0’ EMV/ehipChip Issuer Master Key:
Application Cryptograms.

‘El’ EMV/ehkipChip Issuer Master Key:
Secure Messaging for Confidentiality.

‘E2’ EMV/ehkipChip Issuer Master Key:
Secure Messaging for Integrity.

‘E3’ EMV/ehkipChip Issuer Master Key: Data
Authentication Code.

‘E4’ EMV/ehipChip Issuer Master Key:
Dynamic.

‘ES’ EMV/ehipChip Issuer Master Key: Card
Personalization.

‘E6’ EMV/ehipChip Issuer Master Key:
Other.

‘E7’ EMV/Chip Asymmetric Key Pair for
EMV/Smart Card based PIN/PIN Block
Encryption.

‘FO° EMV/Chip Card Key: Application

Cryptograms.

CWA 16926-65:2023 (E)

‘F1’ EMV/Chip Card Key: Secure Messaging
for Confidentiality.

‘F2’ EMV/Chip Card Key: Secure Messaging
for Integrity.

‘F3° EMV/Chip Card Key: Data
Authentication Code.

‘F4° EMV/Chip Card Key: Dynamic
Numbers.

‘F5° EMV/Chip Card Key: Card
Personalization.

‘F6’ EMV/Chip Card Key: Other.

‘10° Initialization Vector (IV).

‘KO’ Key Encryption Key or w=appineKey
Wrapping Key.

‘K1’ FR-31+Key Block Protection Key, ANSI
X9.143/TR-31.

‘K2’ FR-34-Asymmetric Key Pair (KRD),
ANSI X9.139/TR-34.

‘K3’ Asymmetric keyKey Pair for keyKey
Wrapping /Key agreement/key—wrapping.

‘MO’ MAC Key, ISO 16609 MAC Algorithm
1 (using TDEA).

‘M1’ MAC Key, ISO 9797-1 MAC Algorithm
1.

‘M2’ MAC Key, ISO 9797-1 MAC Algorithm
2.

‘M3’ MAC Key, ISO 9797-1 MAC Algorithm
3.

‘M4° MAC Key, ISO 9797-1 MAC Algorithm
4,

‘M5° MAC Key, ISO 9797-1:1999 MAC
Algorithm 5.

‘M6’ MAC Key, ISO 9797-1:2011 MAC
Algorithm 5/CMAC.

‘M7’ HMAC Key.

‘M8’ MAC Key, ISO9797-1:2011 MAC
Algorithm 6.

‘PO’ PIN Encryption Key.

‘P1” PIN Generation Key (reserved for ANSI
X9.132-202x).

‘P2’ PIN Generation Key. other algorithm.

‘S0° Asymmetric key-pairKey Pair for digital
stgnatureDigital Signature.

S Asymmetric key-pairKey Pair, CA
keyKey.

‘52’ Asymmetric keypairrenX9Key Pair,
non-ANSI X9.24 keyKey.

VO’ PIN wverification, KPRV Verification Key,
PVK, other algorithm.

‘V1I° PIN werificatienVerification, IBM 3624.

‘V2’ PIN werificationVerification, VISA PVV.

V3’ PIN wverifieation; Verification, ANSI X9-
132 algorithm 1.

‘V4° PIN wverifieation; Verification, ANSI X9-
132 algorithm 2.

‘V5° PIN Verification Key, ANSI X9.132
algorithm 3.

‘0B’ Restricted Key Encryption Key that can
only be used to load DUKPT keys.

‘0Cc Restricted Key Encryption Key that can

only be used to load CVKs.

37

CWA 16926-65:2023 (E)

38

cOD’

GOE’

‘0[3

‘OK’

‘OM’

‘OP’

‘Osa

‘OV’

‘IB’
ch’

chs

clE’

clI’

cle

‘IM’

clP’

‘IS’

‘IV,

Other numeric values

bAlgorithm

Restricted Key Encryption Key that can
only be used to load data encryption
keys.

Restricted Key Encryption Key that can
only be used to load EMV keys.
Restricted Key Encryption Key that can
only be used to load Initialization
Vectors.

Restricted Key Encryption Key that can
only be used to load keys that can load
other keys.

Restricted Key Encryption Key that can
only be used to load MAC keys.
Restricted Key Encryption Key that can
only be used to load PIN encryption
keys.

Restricted Key Encryption Key that can
only be used to load asymmetric key
pairs.

Restricted Key Encryption Key that can
only be used to load PIN verification
keys.

Restricted Keyblock Protection Key that
can only be used to load DUKPT keys.
Restricted Key Keyblock Protection Key
that can only be used to load CVKs.
Restricted Keyblock Protection Key that
can only be used to load data encryption
keys.

Restricted Keyblock Protection Key that
can only be used to load EMV keys.
Restricted Keyblock Protection Key that
can only be used to load Initialization
Vectors.

Restricted Keyblock Protection Key that
can only be used to load keys that can
load other keys.

Restricted Keyblock Protection Key that
can only be used to load MAC keys.
Restricted Keyblock Protection Key that
can only be used to load PIN encryption
keys.

Restricted Keyblock Protection Key that
can only be used to load asymmetric key
pairs.

Restricted Keyblock Protection Key that
can only be used to load PIN verification
keys.

Reserved for proprietary use.

Specifies the encryption algorithms supported by the WFS_CMD_PIN _IMPORT _KEY 340

command as one of the following values:

Value Meaning

‘A’ AES.

‘D DEA-

‘D’ DEA DEA (Note that this is included for
backwards compatibility).

‘E’ Elliptic Curve.

‘H HMAC (specify the underlying hash
algorithm in optional field).

‘R’ RSA.

CWA 16926-65:2023 (E)

S’ DSA (Note that this is included for future
reference).
‘T Triple DEA (also-referred-to-as TDEA).
Numeric values Reserved for proprietary use.
bModeOfUse

Specifies the encryption modes supported by the WFS CMD_PIN IMPORT KEY 340
command as one of the following values:

Value Meaning

‘B’ Both Encrypt-and-Deerypt//Wrap and
Decrypt/Unwrap.

‘ Both Generate and Verify.

‘D’ Decrypt-/+/Unwrap Only.

‘E’ Encrypt-+/Wrap Only.

‘G’ Generate Only.

‘S’ Signature Only.

‘T Both Sign and Decrypt.

‘v’ Verify Only.

X’ Key used to derive other key(s).

Y’ Key used to create key
vartants-variant(s).

Numeric values Reserved for proprietary use.

dwCryptoMethod

Specifies the cryptographlc methods supported by the WFS CMD PIN IMPORT KEY 340

command- se as one of the following values:
Value Meaning
0 The key is being imported or activated.

It is not being used yet to perform a
cryptographic method.
WES PIN_CRYPTOCONSTRUCT The key is being constructed.

IppDecryptAttributes

This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the WFS_ CMD_PIN IMPORT _
KEY_340 command for the key used to decrypt or unwrap the key being imported.

typedef struct wfs pin attributes
{

BYTE bKeyUsage[2];
BYTE bAlgorithm;
BYTE bModeOfUse;
DWORD dwCryptoMethod;

} WESPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each.

bKeyUsage
This parameter is not used and must be set to “00”. The Service Provider can determine this
value from the decryption key that is already imported into the PIN device.

bAlgorithm
Specifies the encryption algorithms supported by the WFS CMD_ PIN IMPORT KEY 340
command as one of the following flags:

Value Meaning

‘A’ AES.

‘D’ DEA.

‘R’ RSA.

‘T Triple DEA (also referred to as TDEA).
Numeric values Reserved for proprietary use.

39

CWA 16926-65:2023 (E)

40

bModeOfUse
This parameter is not used and must be set to ‘0’. The Service Provider can determine this
value from the decryption key that is already imported into the PIN device.

dwCryptoMethod
This parameter specifies the cryptographic method that will be used with the encryption
algorithm specified by bAlgorithm.

If bAlgorithm is “A’, ‘D’, or ‘T, then dwCryptoMethod can be one of the following values:

Value Meaning

WEFS _PIN CRYPTOECB The ECB encryption method
WEFS_PIN CRYPTOCBC The CBC encryption method

WEFS _PIN CRYPTOCFB The CFB encryption method

WFS _PIN CRYPTOOFB The OFB encryption method

WFS PIN CRYPTOCTR The CTR method defined in NIST

SP800-38A- (see [Ref. 49]).
WEFS _PIN CRYPTOXTS The XTS method defined in NIST

SP800-38E- (see [Ref. 50]).
If bAlgorithm is ‘R’, then dwCryptoMethod can be one of the following values:

Value Meaning
WFS_PIN_CRYPT RSAES PKCS1 V1 5 Use the RSAES PKCS1-v1.5 algorithm.
WEFS_PIN_CRYPT _RSAES OAEP Use the RSAES OAEP algorithm.

If bKeytisagethe usage of the decryption key is ‘K1°, then dwCryptoMethod is 0. TR~
31X9.143 defines the cryptographic methods used for each key block version.

IppVerifyAttributes

This is either NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the WFS_ CMD_PIN IMPORT _
KEY 340 command for the key used for verification before importing the key.

typedef struct wfs pin attributes
{

BYTE bKeyUsage[2];
BYTE bAlgorithm;
BYTE bModeOfUse;
DWORD dwCryptoMethod;

} WESPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each.

bKeyUsage
Specifies the key usages supported by the WFS CMD_ PIN IMPORT_KEY 340 command
as one of the following values:

Value Meaning

‘MO’ ISO 16609 MAC Algorithm 1 (using
TDEA).

‘M1’ ISO 9797-1 MAC Algorithm 1.

‘M2’ ISO 9797-1 MAC Algorithm 2.

‘M3’ ISO 9797-1 MAC Algorithm 3.

‘M4’ ISO 9797-1 MAC Algorithm 4.

‘M5’ ISO 9797-1:1999 MAC Algorithm 5.

‘M6’ ISO 9797-1:2011 MAC Algorithm
5/CMAC.

‘M7 HMAC.

‘M8’ 1SO9797-1:2011 MAC Algorithm 6.

‘S0’ Asymmetric key pair for digital
signature.

‘Sr Asymmetric key pair, CA key.

‘S2° Asymmetric key pair, nonX9.24 key.

Numeric values Reserved for proprietary use.

CWA 16926-65:2023 (E)

A key check value does not have a usage, so the bKeyUsage should be ‘00’ when specifying a key
check value.

bAlgorithm
Specifies the encryption algorithms supported by the WFS_CMD_PIN IMPORT KEY 340
command as one of the following values:

Value Meaning

‘A’ AES

‘D’ DEA

‘R’ RSA

‘T Triple DEA (also referred to as TDEA)

Numeric values Reserved for proprietary use
bModeOfUse

Specifies the encryption modes supported by the WFS CMD PIN IMPORT KEY 340
command as one of the following values:

Value Meaning

‘v Verify Only

Numeric values Reserved for proprietary use
dwCryptoMethod

This parameter specifies the cryptographic method that will be used with the encryption
algorithm specified by bAlgorithm.

If bAlgorithm is “*A’, ‘D’, or ‘T’ and bKeyUsage is a MAC usage (i.e. ‘M1°), then
dwCryptoMethod must be 0.

If bAlgorithm is “A’, ‘D’, or ‘T’ and bKeyUsage is *00°, then dwCryptoMethod can be one of
the following values:

Value Meaning

WFS PIN_KCVNONE There is no key check value verification
required.

WEFS _PIN _KCVSELF The key check value (KCV) is created by
an encryption of the key with itself.

WEFS _PIN_KCVZERO The key check value (KCV) is created by

encrypting a zero value with the key.

If bAlgorithm is ‘R’ and bKeyUsage is ‘00°, then dwCryptoMethod can be one of the

following values:

Value Meaning

WES _PIN_RSA KCV_NONE There is no key check value verification.

WES _PIN_RSA KCV_SHAI The key check value contains a SHA-1
digest of the public key.

WES PIN_RSA KCV_SHA256 The key check value contains a SHA-256

digest of the public key.

If bAlgorithm is ‘R’ and bKeyUsage is not ‘00°, then dwCryptoMethod can be one of the
following values:

Value Meaning

WFS PIN SIGN NA No signature algorithm specified. No
signature verification will take place and
the content of [pxVerificationData must

be NULL.

WFS PIN €RYPTSIGN RSASSA PKCS1 V1 5 Use the RSASSA-PKCSI1-
v1.5 algorithm.

WEFS PIN €RYPESIGN RSASSA PSS Use the RSASSA-PSS algorithm.

One or more of the following flags must be specified in combination with one of the signature
verification methods.

Value Meaning

WEFS PIN SIGNHASH SHAI The SHA 1 digest algorithm.

LY

CWA 16926-65:2023 (E)

Error Codes

Comments

42

WFS_PIN SIGNHASH _SHA256 The SHA 256 digest algorithm, as
defined in ISO/IEC 10118-3:2004 [Ref.
40] and FIPS 180-2 [Ref. 41].

IppPasswords
A NULL-terminated array of pointers to WESPINPASSWORD structures specifying the

passwords that are supported by the device and which can be entered and changed by the
WES CMD_PIN PASSWORD_ENTRY command. There is one structure for each password that
is supported by the Service Provider.

typedef struct wfs pin password
1

DWORD fwPasswordAttributes;
USHORT usMinLen;
USHORT usMaxLen;

} WESPINPASSWORD, *LPWEFSPINPASSWORD;

fwPasswordAttributes
Specifies the sensitive function the password is used to access and optionally indicates
whether the password can be changed, as a combination of the following flags:

Value Meaning

WES PIN PWATTRIB_CHANGE The password can be changed.

WES PIN PWATTRIB_CONFIRM The password change must be confirmed.
WES _PIN_ PWATTRIB_SKE The password grants access to the secure

entry of a key component. The key
component index is identified by number
of instances of the flag up to and
including this password index.

usMinLen

Reports the minimum number of characters specified by the application which must be entered
for the password. A value of zero indicates no minimum password length verification. Note:
PCI requirements are that the minimum length should be 7 characters.

usMaxLen
Specifies the maximum number of characters which can be entered for the password. A value
of zero indicates no maximum password length verification.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Applications which require or expect specific information to be present in the [pszExtra parameter
may not be device or vendor-independent.

CWA 16926-65:2023 (E)

4.3 WFS_INF_PIN_KEY_DETAIL

Description

Input Param

Output Param

This command returns detailed information about the keys in the encryption module. This
command will also return information on symmetric keys loaded during manufacture that can be
used by applications. If a public or private key name is specified this command will return

WFS ERR PIN KEYNOTFOUND. If the application wants all keys returned, then all keys
except the public and private keys are returned.

Details relating to the keys loaded using OPT (via the ZKA WFS PIN PROTISOPS protocol) are
retrieved using the ZKA WFS PIN PROTHSMLDI protocol. These keys are not reported by this
command. Applications should use WFS_INF PIN KEY DETAIL 340.

LPSTR IpsKeyName;

IpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

LPWFSPINKEYDETAIL *IppKeyDetail;

Pointer to a NULL-terminated array of pointers to WFSPINKEYDETAIL structures.

typedef struct wfs pin key detail
{

LPSTR lpsKeyName;
WORD fwUse;
BOOL bLoaded;
LPWESXDATA lpxKeyBlockHeader;
} WESPINKEYDETAIL, *LPWFSPINKEYDETAIL;
IpsKeyName
Specifies the name of the key.
fwUse
Specifies the type of access for which the key is used as a combination of the following flags:
Value Meaning
WEFS PIN USECRYPT Key can be used for encryption/decryption.
WEFS _PIN USEFUNCTION Key can be used for PIN functions.
WEFS_PIN USEMACING Key can be used for MACing.
WFS_PIN _USEKEYENCKEY Key is used as key encryption key.
WFS _PIN_USENODUPLICATE Key can be imported only once.
WFS PIN USESVENCKEY Key is used as CBC Start Value encryption
key.
WEFS _PIN USECONSTRUCT Key is under construction through the import

of multiple parts. This value can be returned
in combination with any of the other key
usage flags (other than
WEFS_PIN USESECURECONSTRUCT).
WEFS _PIN USESECURECONSTRUCT Key is under construction through the import
of multiple parts from a secure encryption
key entry buffer. This value can be returned
in combination with any of the other key
usage flags (other than
WFS PIN_USECONSTRUCT).
WFS PIN USEANSTR31MASTER Key is an ANSANSI X9-FR-3+.143 key
block master key (see referenee[Ref. 35)]).
WEFS_PIN USERESTRICTEDKEYENCKEY Key is used as
WEFS_PIN USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN _USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

43

CWA 16926-65:2023 (E)

Error Codes

Comments

44

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator).

IpxKeyBlockHeader

Contains the key block header of keys imported within an ANS-TR-3+LANSI X9.143 key block.
This data is encoded in the same format that it was imported in, and contains all mandatory and
optional header fields. [pxKeyBlockHeader is NULL if the key was not imported within a key
block or has not been loaded yet. The fwUse field provides an accurate summary of the key use,
but the use defined within the key block header is more precise. See-the FR-31KeyUse
AppendixSee the X9.143 Key Use Appendix for additional detail.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key name is not found.
None.

4.4 WFS_INF_PIN_FUNCKEY_DETAIL

CWA 16926-65:2023 (E)

Description

Input Param

Output Param

This command returns information about the names of the Function Keys supported by the device.
Location information is also returned for the supported FDKs (Function Descriptor Keys). This

includes screen overlay FDKs.

This command should be issued before the first call to WFS_CMD_PIN_GET PIN or

WFS CMD_ PIN GET DATA to determine which Function Keys (FKs) and Function Descriptor
Keys (FDKs) are available and where the FDKs are located. Then, in these two commands, they
can then be specified as Active and Terminate keys and options on the customer screen can be

aligned with the active FDKs.

Note: As this command can only return FDK positions, its use on ETS devices (see
WEFSPINCAPS fwType) is limited. Therefore, for maximum compatibility, it is recommended that
the WFS_INF _PIN GET LAYOUT command be used in preference to this command.

LPULONG IpulFDKMask;
IpulFDKMask

Mask for the FDKs for which additional information is requested.
If 0x00000000, only information about function keys is returned.
If OXFFFFFFFF, information about all the supported FDKs is returned.

LPWFSPINFUNCKEYDETAIL IpFuncKeyDetail;

typedef struct wfs pin func key detail
{

ULONG ulFuncMask;
USHORT usNumberFDKs;
LPWFSPINFDK *1ppFDKs;

} WESPINFUNCKEYDETAIL, *LPWEFSPINFUNCKEYDETAIL;

ulFuncMask

Specifies the function keys available for this physical device as a combination of the following
flags. The defines WFS_PIN FK 0 through WFS PIN FK 9 correspond to numeric digits:

WFS_PIN_FK_0
WFS_PIN FK_1
WFS_PIN_FK 2
WFS_PIN_FK 3
WFS_PIN_FK_4
WFS_PIN_FK_5
WFS_PIN_FK_6
WFS_PIN_FK_7
WFS_PIN_FK_8
WFS_PIN_FK_9
WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE
WFS_PIN_FK_HELP
WFS_PIN_FK_DECPOINT
WFS_PIN_FK_00
WFS_PIN_FK_000
WFS_PIN_FK_RESI
WFS_PIN_FK_RES2
WFS_PIN_FK_RES3
WFS_PIN_FK_RES4
WFS_PIN_FK_RES5
WFS_PIN_FK_RES6
WFS_PIN_FK_RES7
WFS_PIN_FK_RESS

(numeric digit 0)
(numeric digit 1)
(numeric digit 2)
(numeric digit 3)
(numeric digit 4)
(numeric digit 5)
(numeric digit 6)
(numeric digit 7)
(numeric digit 8)
(numeric digit 9)

(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)

The remaining 6 bit masks may be used as vendor dependent keys.

WFS_PIN_FK_OEMI
WFS_PIN_FK_OEM2
WFS_PIN_FK_OEM3

45

CWA 16926-65:2023 (E)

46

WFS_PIN_FK_OEM4
WFS_PIN_FK_OEMS5
WFS_PIN_FK_OEM6

usNumberFDKs
This value indicates the number of FDK structures returned. Only supported FDKs are returned.

IppFDKs

Pointer to an array of pointers to WFSPINFDK structures. It is the responsibility of the
application to identify the mapping between the FDK code and the physical location of the FDK.
IppFDKs is NULL if no FDKs are requested or supported.

typedef struct wfs pin fdk
{

ULONG ulFDK;
USHORT usXPosition;
USHORT usYPosition;

} WFSPINFDK, *LPWESPINFDK;

ulFDK
Specifies the code returned by this FDK, defined as one of the following values:
WFS_PIN_FK FDKO1
WFS_PIN_FK FDKO02
WFS_PIN_FK FDKO03
WEFS _PIN _FK FDKO04
WEFS_PIN_FK FDKO5
WEFS PIN_FK FDKO06
WEFS _PIN_FK FDKO07
WEFS _PIN_FK FDKOS8
WEFS PIN_FK FDKO09
WFS_PIN_FK FDKI10
WFS_PIN_FK FDKI11
WFS_PIN_FK FDKI12
WFS_PIN_FK FDKI13
WFS_PIN_FK FDK14
WFS_PIN_FK FDKI15
WEFS _PIN _FK FDKI16
WEFS _PIN FK FDK17
WEFS _PIN FK FDKI18
WEFS PIN FK FDKI19
WEFS PIN _FK FDK20
WEFS PIN FK FDK21
WEFS PIN FK FDK22
WEFS _PIN FK FDK23
WEFS _PIN FK FDK24
WFS _PIN FK FDK25
WEFS _PIN_FK FDK26
WFS PIN FK FDK27
WFS _PIN FK FDK28
WFS_PIN FK FDK29
WFS_PIN_FK FDK30
WFS_PIN FK FDK31
WFS_PIN_FK FDK32

usXPosition

For FDKs, specifies the screen position the FDK relates to. This position is relative to the Left
Handleft hand side of the screen expressed as a percentage of the width of the screen.

For FDKs along the side of the screen this will be 0 (left side) or 100 (right side, user’s view).

usYPosition

For FDKs, specifies the screen position the FDK relates to. This position is relative to the top
of the screen expressed as a percentage of the height of the screen.

For FDKs above or below the screen this will be 0 (above) or 100 (below).

CWA 16926-65:2023 (E)

Centre position
of FDK

15% of height of screen.

I_] usYPostion = 15

FDK outside the
screen.
usXPosition = 0

Diagram: Shows how usXPosition and usYPosition are set.
Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

47

CWA 16926-65:2023 (E)

4.5 WFS_INF_PIN_HSM_TDATA

Description

Input Param

Output Param

Error Codes

Comments

48

This function returns the current HSM terminal data. The data is returned as a series of
“tag/length/value” items.

None.
LPWFSXDATA IpxTData;

IpxTData
Contains the parameter settings as a series of “tag/length/value” items with no separators. See
command WFS CMD PIN HSM SET TDATA for the tags supported.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

None.

CWA 16926-65:2023 (E)

4.6 WFS_INF_PIN_KEY_DETAIL_EX

Description

Input Param

Output Param

This command returns extended detailed information about the keys in the encryption module,
including DES, DUKPT, private and public keys. This command will also return information on
all keys loaded during manufacture that can be used by applications.

Details relating to the keys loaded using OPT (via the ZKA WFS PIN PROTISOPS protocol) are
retrieved using the ZKA WFS PIN PROTHSMLDI protocol. These keys are not reported by this
command. Applications should use WFS_INF PIN KEY DETAIL 340.

LPSTR IpsKeyName;

IpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

LPWFSPINKEYDETAILEX *lppKeyDetailEx;

Pointer to a null-terminated array of pointers to WFSPINKEYDETAILEX structures.

typedef struct wfs pin key detail ex
{

LPSTR lpsKeyName;
DWORD dwUse;
BYTE bGeneration;
BYTE bVersion;
BYTE bActivatingDate[4];
BYTE bExpiryDate[4];
BOOL bLoaded;
LPWEFSXDATA lpxKeyBlockHeader;
} WFSPINKEYDETAILEX, *LPWFSPINKEYDETAILEX;
IpsKeyName
Specifies the name of the key.
dwUse
Specifies the type of access for which the key is used as a combination of the following flags:
Value Meaning

WFS_PIN_USECRYPT
WFS_PIN_USEFUNCTION
WFS_PIN_USEMACING
WFS_PIN_USEKEYENCKEY
WFS_PIN_USENODUPLICATE
WFS_PIN_USESVENCKEY
WFS_PIN_USEPINLOCAL
WFS_PIN_USERSAPUBLIC
WFS_PIN_USERSAPRIVATE

WEFS_PIN_USERSAPRIVATESIGN

WEFS_PIN USECHIPINFO
WEFS_PIN USECHIPPIN

WFS_PIN_USECHIPPS
WFS_PIN_USECHIPMAC

WFS_PIN_USECHIPLT

WFS_PIN_USECHIPMACLZ

Key can be used for encryption/decryption.
Key can be used for PIN functions.

Key can be used for MACing.

Key is used as key encryption key.

Key can be imported only once.

Key is used as CBC Start Value encryption
key.

Key is used only for local PIN check.

Key is used as a public key for RSA
encryption including EMV PIN block
creation.

Key is used as a private key for RSA
decryption.

Key is used as a private key for RSA
Signature generation. Only data generated
within the device can be signed.

Key is used as KGKiro key (only ZKA
standard).

Key is used as KGKpiv key (only ZKA
standard).

Key is used as Kps key (only ZKA standard).
Key is used as Kmac key (only ZKA
standard).

Key is used as KGKir key (only ZKA
standard).

Key is used as Kpacmac key (only ZKA
standard).

49

CWA 16926-65:2023 (E)

50

WEFS PIN USECHIPMACAZ Key is used as Kmaster key (only ZKA
standard).

WEFS _PIN USERSAPUBLICVERIFY Key is used as a public key for RSA
signature verification and/or data decryption.

WFS PIN USECONSTRUCT Key is under construction through the import

of multiple parts. This value can be returned

in combination with any one of the other key

usage flags (other than

WFS PIN USESECURECONSTRUCT).
WEFS_PIN USESECURECONSTRUCT Key is under construction through the import

of multiple parts from a secure encryption

key entry buffer. This value can be returned

in combination with any of the other key

usage flags (other than

WFS PIN USECONSTRUCT).

WFS_PIN USEANSTR31MASTER Key is an ANSANSI X9-FR-3+.143 key
block master key (see referenee[Ref. 35)]).
WFS PIN USEPINREMOTE Key is used only for PIN block creation.

WFS PIN USERESTRICTEDKEYENCKEY Key is used as
WFS PIN USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_ USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

WFS PIN USEKEYDERKEY Key is a key derivation key (see
reference[Ref. 45).]). This value must be
combined with the use that later
subsequently derived keys have e.g. if the
key is an Initial PIN Encrypt Key (IPEK),
this value must be combined with
WFS_PIN USEREMOTEUSEPINREMOT
E and optionally
WFS_PIN USEEUNFONUSEFUNCTION.
If the optional Data and Mac keys are
supported, this value must be combined with
WFS PIN USECRYPT and
WFS PIN USEMACING.

bGeneration

Specifies the generation of the key as BCD value. Different generations might correspond to
different environments (e.g. test or production environment). The content is vendor specific. This
value will be OxFF if no such information is available for the key.

bVersion
Specifies the version of the key (the year in which the key is valid, e.g. 01 for 2001) as BCD
value. This value will be OxFF if no such information is available for the key.

bActivatingDate
Specifies the date when the key is activated as BCD value in the format YYYYMMDD. This
value will be OxFFFFFFFF if no such information is available for the key.

bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. This value
will be OxFFFFFFFF if no such information is available for the key.

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator).

Error Codes

Comments

CWA 16926-65:2023 (E)

IpxKeyBlockHeader

Contains the key block header of keys imported within an ANS-TR-3+LANSI X9.143 key block.
This data is encoded in the same format that it was imported in, and contains all mandatory and
optional header fields. [pxKeyBlockHeader is NULL if the key was not imported within a key
block or has not been loaded yet. The dwUse field provides an accurate summary of the key use,
but the use defined within the key block header is more precise. See-the TR-31KeyUse
AppendixSee the X9.143 Key Use Appendix for additional detail.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key name is not found.

When the encryption module contains a public/private key-pair, only the private part of the key
will be reported. Every private key in the encryption module will always have a corresponding
public key with the same name. The public key can be exported with
WFS_CMD_PIN EXPORT EPP_SIGNED ITEM.

51

CWA 16926-65:2023 (E)

4.7 WFS_INF_PIN_SECUREKEY_ DETAIL

Description

Input Param

Output Param

52

This command reports the secure key entry method used by the device. This allows an application
to enable the relevant keys and inform the user how to enter the hex digits 'A' to 'F', e.g. by
displaying an image indicating which key pad locations correspond to the 16 hex digits and/or
shift key. It reports the following information:

e The secure key entry mode (uses a shift key to access the hex digit 'A' to 'F' or each hex
digit has a specific key assigned to it).

e The function keys and FDKs available during secure key entry.
e The FDKs that are configured as function keys (Enter, Cancel, Clear and Backspace).
e The physical keyboard layout.

The keys that are active during the secure key entry command are vendor specific but must be
sufficient to enter a secure encryption key. On some systems a unique key is assigned to each
encryption key digit. On some systems encryption key digits are entered by pressing a shift key
and then a numeric digit, e.g. to enter 'A' the shift key (WFS_PIN_FK_ SHIFT) is pressed
followed by the zero key (WFS_PIN FK 0). On these systems WFS_PIN FK SHIFT is not
returned to the application ina WFS_EXEE PIN KEY event. The exact behavior of the shift key
is vendor dependent, some devices will require the shift to be used before every key and some
may require the shift key to enter and exit shift mode.

There are many different styles of PIN pads in operation. Most have a regular shape with all keys
having the same size and are laid out in a regular matrix. However, some devices have a layout
with keys of different sizes and different numbers of keys on some rows and columns. This
command returns information that allows an application to provide user instructions and an image
of the keyboard layout to assist with key entry.

Note: As this command is geared to use with devices with Physical Keys e.g. key position and
size are measured using the range 1 — 1000 and fwKeyEntryMode expresses layout in terms of
regular and irregular, it’s use on ETS devices (see WFSPINCAPS fwType) is limited. Therefore,
for maximum compatibility, it is recommended that the WFS INF PIN GET LAYOUT
command be used in preference to this command.

None.
LPWFSPINSECUREKEYDETAIL IpSecureKeyDetail;
typedef struct wfs pin secure key detail
{
WORD fwKeyEntryMode;
LPWESPINFUNCKEYDETATIL lpFuncKeyDetail;
ULONG ulClearFDK;
ULONG ulCancelFDK;
ULONG ulBackspaceFDK;
ULONG ulEnterFDK;
WORD wColumns;
WORD wRows;
LPWFSPINHEXKEYS *1ppHexKeys;
} WESPINSECUREKEYDETAIL, *LPWFSPINSECUREKEYDETAIL;
fwKeyEntryMode

Specifies the method to be used to enter the encryption key digits (including 'A' to 'F') during
secure key entry. The value can be one of the following.

Value Meaning

WEFS _PIN SECUREKEY NOTSUPP Secure key entry is not supported, all other
parameters are undefined.

CWA 16926-65:2023 (E)

WEFS PIN SECUREKEY REG SHIFT Secure key hex digits 'A' - 'F' are accessed
through the shift key. Digits 'A' - 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A' to 'F' are defined within
the IppHexKeys parameter. The keyboard
has a regular shaped key layout where all
rows have the same number of keys and all
columns have the same number of keys, e.g.
5x4. The [ppHexKeys parameter must
contain one entry for each key on the PIN
pad (i.e. the product of wRows by
wColumns).

WEFS PIN SECUREKEY IRREG SHIFT Secure key hex digits 'A' - 'F' are accessed
through the shift key. Digits 'A' - 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A' to 'F' are defined within
the [ppHexKeys parameter. The keyboard
has an irregular shaped key layout, e.g. there
are more or less keys on one row or column
than on the others. The /ppHexKeys
parameter must contain one entry for each
key on the PIN pad.

WEFS_PIN SECUREKEY REG UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit. The
keyboard has a regular shaped key layout
where all rows have the same number of
keys and all columns have the same number
of keys, e.g. 5x4. The [ppHexKeys parameter
must contain one entry for each key on the
PIN pad (i.e. the product of wRows by
wColumns).

WFS PIN SECUREKEY IRREG UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit. The
keyboard has an irregular shaped key layout,
e.g. there are more or less keys on one row
or column than on the others. The
IppHexKeys must contain one entry for each
key on the PIN pad.

IpFuncKeyDetail

Contains information about the Function Keys and FDKs supported by the device while in secure
key entry mode. This structure is the same as the output structure of the
WEFS_INF _PIN FUNCKEY_ DETAIL command with information always returned for every
FDK valid during secure key entry. It describes the function keys that represent the hex digits and
shift key, but also reports any other keys that can be enabled while in secure key entry mode.

The double zero, triple zero and decimal point function keys are not valid during secure key entry
so are never reported.

On a PIN pad where the physical Enter, Clear, Cancel and Backspace keys are used for hex digits
(e.g. WFS_PIN_SECUREKEY REG_UNIQUE mode), the logical function keys

WFS PIN FK ENTER, WFS PIN FK CLEAR, WFS PIN FK CANCEL and

WEFS _PIN_FK BACKSPACE will not be reported by this command (unless there is another
physical key offering this functionality).

In addition to the existing definition for WFS_INF PIN _FUNCKEY_ DETAIL, the following
definitions replace function keys WFS_PIN_FK RESI to WFS_PIN_FK RES7:

WFS_PIN_FK_A (hex digit A)
WFS_PIN_FK_B (hex digit B)
WFS_PIN_FK_C (hex digit C)
WFS_PIN_FK_D (hex digit D)
WFS_PIN FK_E (hex digit E)

53

CWA 16926-65:2023 (E)

54

WFS_PIN FK F (hex digit F)
WEFS PIN FK SHIFT (Shift key used during hex entry)
ulClearFDK

The FDK code mask reporting any FDKs associated with Clear. If this field is zero then Clear
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Clear.

ulCancelFDK

The FDK code mask reporting any FDKs associated with Cancel. If this field is zero then Cancel
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Cancel.

ulBackspaceFDK

The FDK code mask reporting any FDKs associated with Backspace. If this field is zero then
Backspace through an FDK is not supported, otherwise the bit mask reports which FDKs are
associated with Backspace.

ulEnterFFDK

The FDK code mask reporting any FDKs associated with Enter. If this field is zero then Enter
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Enter.

wColumns

Specifies the maximum number of columns on the PIN pad (the columns are defined by the x co-
ordinate values within the /ppHexKeys structure below). When the fwKeyEntryMode parameter
represents an irregular shaped keyboard the wRows and wColumns parameters define the ratio of
the width to height, i.e. square if the parameters are the same or rectangular if wColumns is larger
than wRows, etc.

wRows

Specifies the maximum number of rows on the PIN pad (the rows are defined by the y co-ordinate
values within the [ppHexKeys structure below). When the fwKeyEntryMode parameter represents
an irregular shaped keyboard the wRows and wColumns parameters define the ratio of the width to
height, i.e. square if the parameters are the same or rectangular if wColumns is larger than wRows,
etc.

IppHexKeys
A NULL-terminated array of pointers to WESPINHEXKEYS structures describing the physical
keys on the PIN pad, it does not include FDKs.

typedef struct wfs pin hex keys
{

USHORT usXPos;
USHORT usYPos;
USHORT usXSize;
USHORT usY¥Size;
ULONG ulFK;
ULONG ulShiftFK;

} WESPINHEXKEYS, *LPWEFSPINHEXKEYS;

This array defines the keys associated with the hex digits. Each structure entry describes the
position, size and function key associated with a key. This data must be returned by the
Service Provider. This array represents the PIN pad keys ordered left to right and top to
bottom.

usXPos

Specifies the position of the top left corner of the FK relative to the left hand side of the
keyboard expressed as a value between 0 and 999, where 0 is the left edge and 999 is the right
edge.

usYPos
Specifies the position of the top left corner of the FK relative to the top of the keyboard
expressed as a value between 0 and 999, where 0 is the top edge and 999 is the bottom edge.

usXSize
Specifies the FK width expressed as a value between 1 and 1000, where 1 is the smallest
possible size and 1000 is the full width of the keyboard.

Error Codes

Comments

CWA 16926-65:2023 (E)

usYSize
Specifies the FK height expressed as a value between land 1000, where 1 is the smallest
possible size and 1000 is the full height of the keyboard.

ulFK
Specifies the FK code associated with the physical key in non shifted mode,
WFS PIN FK UNUSED if the key is not used.

ulShiftFK

Specifies the FK code associated with the physical key in shifted mode,

WFS PIN FK UNUSED if the key is not used in shifted mode. This field will always be
WFS PIN FK UNUSED when the fwKeyEntryMode parameter indicates that keyboard does
not use a shift mode.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Examples keyboard layouts are provided in section 8.6 to explain the use of the [ppHexKeys
parameter. In addition section 8.6 also provides an example of a command flow required to enter
encryption keys securely.

55

CWA 16926-65:2023 (E)

4.8 WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL

Description

Input Param

Output Param

Error Codes

Comments

56

This command reports the ZKA logical HSMs available within the EPP. It also reports which
logical HSM is currently active.

None.

LPWFSPINHSMDETAIL IpHSMDetail;

typedef struct wfs pin hsm detail
{

WORD wActiveLogicalHSM;
LPWESPINHSMINFO *1lppHSMInfo;
} WESPINHSMDETAIL, *LPWEFSPINHSMDETAIL;
wActiveLogical HSM

Specifies the serial number of the logical HSM that is currently active. This value is the HSM
serial number (tag CB in the HSM TDATA) encoded as a normal binary value (i.e. it is not a
BCD). If no logical HSMs are present or logical HSMs are not supported then this value is zero.

IppHSMInfo
Pointer to a NULL terminated array of pointers to WFSPINHSMINFO structures (one for each
logical HSM). A NULL pointer is returned if no logical HSMs are supported/present.

typedef struct wfs pin hsm info
{

WORD wHSMSerialNumber;
LPSTR 1psZKAID;
} WESPINHSMINFO, *LPWESPINHSMINFO;
wHSMSerial Number

Specifies the Serial Number of the Logical HSM (tag CB in the HSM TDATA). This value is
encoded as a normal binary value (i.e. it is not a BCD).

IpsZKAID
A null-terminated string containing the ZKA ID of the logical HSM (defined by tag CC in the
HSM TDATA). The characters in the string are EBCDIC characters.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

None.

CWA 16926-65:2023 (E)

4.9 WFS_INF_PIN_QUERY_PCIPTS_DEVICE_ID

Description

Input Param

Output Param

Error Codes

Comments

This command is used to report information in order to verify the PCI Security Standards Council
PIN transaction security (PTS) certification held by the PIN device. The command provides
detailed information in order to verify the certification level of the device. Support of this
command by the Service Provider does not imply in anyway the certification level achieved by
the device.

None.

LPWFSPINPCIPTSDEVICEID IpPCIPTSDeviceld;

typedef struct wfs pin pcipts deviceid
{

LPSTR lpszManufacturerIdentifier;
LPSTR lpszModelIdentifier;

LPSTR lpszHardwareIdentifier;
LPSTR lpszFirmwareIdentifier;
LPSTR lpszApplicationIdentifier;

} WESPINPCIPTSDEVICEID, *LPWFSPINPCIPTSDEVICEID;

IpszManufacturerldentifier

Returns an ASCII string containing the manufacturer identifier of the PIN device. This value is
NULL if the manufacturer identifier is not available. This field is distinct from the HSM key pair
that may be reported in the [pszExtra field by the WFS_INF PIN CAPABILITIES command.

IpszModelldentifier
Returns an ASCII string containing the model identifier of the PIN device. This value is NULL if
the model identifier is not available.

IpszHardwareldentifier
Returns an ASCII string containing the hardware identifier of the PIN device. This value is NULL
if the hardware identifier is not available.

IpszFirmwareldentifier
Returns an ASCII string containing the firmware identifier of the PIN device. This value is NULL
if the firmware identifier is not available.

IpszApplicationldentifier
Returns an ASCII string containing the application identifier of the PIN device. This value is
NULL if the application identifier is not available.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

The string contained in IpszManufacturerldentifier, IpszModelldentifier, IpszHardwareldentifier,
IpszFirmwareldentifier, and IpszApplicationldentifier are expected to match those submitted to
the PCI Security Standards Council in order for the certification level to be determined. The PCI
PTS certification levels for PIN devices are available on the PCI Security Standards Council
website (see Referenee[Ref. 37)]).

57

CWA 16926-65:2023 (E)

4.10 WFS_INF_PIN_GET_LAYOUT

Description

Input Param

Output Param

58

This command allows an application to retrieve layout information for any PIN device. Either one
layout or all defined layouts can be retrieved with a single request of this command.

There can be a layout for each of the different types of keyboard entry modes, if the vendor and
the hardware support these different methods. The types of keyboard entry modes are (1) Data
Entry mode which corresponds to the WFS CMD_PIN GET DATA command, (2) PIN Entry
mode which corresponds to the WFS CMD PIN GET PIN command, and (3) Secure Key Entry
mode which corresponds to the WFS CMD PIN SECUREKEY ENTRY command. The layouts
can be preloaded into the device, if the device supports this, or a single layout can be loaded into
the device immediately prior to the keyboard command being requested.

LPWFSPINGETLAYOUT IpGetLayout;

typedef struct wfs pin get layout
{

DWORD dwEntryMode;
} WESPINGETLAYOUT, *LPWEFSPINGETLAYOUT;
dwEntryMode

Specifies entry mode to be returned. It can be one of the following flags, or zero to return all
supported entry modes:

Value Meaning

WFS PIN LAYOUT DATA Specifies that the layout be applied to the
WEFS _CMD_PIN GET DATA entry
method.

WFS PIN LAYOUT PIN Specifies that the layout be applied to the
WFS CMD PIN GET PIN entry method.

WEFS PIN LAYOUT SECURE Specifies that the layout be applied to the

WFS CMD_ PIN_SECUREKEY_ ENTRY
entry method.

WES PIN_LAYOUT_ _PASSWORD Specifies that the layout be applied to the
WFS_CMD_PIN_PASSWORD_ENTRY

entry method.

LPWFSPINLAYOUT *IppLayout;

Pointer to a NULL-terminated array of pointers to WFSPINLAYOUT structures.

typedef struct wfs pin layout
{

DWORD dwEntryMode;
USHORT usNumberOfFrames;
LPWESPINFRAME *lppFrames;
} WESPINLAYOUT, *LPWEFSPINLAYOUT;
dwEntryMode
Specifies entry mode to which the layout applies. It can be one of the following flags.
Value Meaning
WEFS _PIN LAYOUT DATA Specifies that the layout be applied to the
WFS CMD PIN GET DATA entry
method.
WFS PIN LAYOUT PIN Specifies that the layout be applied to the
WFS CMD PIN GET PIN entry method.
WEFS PIN LAYOUT SECURE Specifies that the layout be applied to the
WFS CMD_PIN SECUREKEY ENTRY
entry method.
WES PIN_LAYOUT_ _PASSWORD Specifies that the layout be applied to the

WFS_CMD_PIN_PASSWORD_ENTRY
entry method.

usNumberOfFrames
This value indicates the number of WFSPINFRAME structures are included in the [ppFrames
parameter.

CWA 16926-65:2023 (E)

IppFrames

Pointer to an array of pointers to WFSPINFRAME structures. There can be one or more
WEFSPINFRAME structures included. A Physical Frame can only contain Physical Keys. It can
contain Physical Keys positioned on the edge of the screen (for example, FDKs) or Physical Keys
not positioned on the edge of the screen (for example EPP) but cannot contain both. A Touch
Frame (see section 2.1) can only contain Touch Keys. To determine the frame type,
usFrameXSize and usFrameYSize should be checked. Refer to the table in the Comments for the
different types of frames, and see the diagram in the Comments for an example.

typedef struct wfs pin frame

{

USHORT usFrameXPos;
USHORT usFrameYPos;
USHORT usFrameXSize;
USHORT usFrameYSize;
WORD wFloatAction;
LPWFSPINFK *1ppFKs;

} WEFSPINFRAME, *LPWESPINFRAME;

usFrameXPos
If the frame contains Touch Keys, specifies the left edge of the frame as an offset from the left
edge of the screen in pixels and will be less than the width of the screen.

If the frame contains Physical Keys on the boundary of the screen, specifies the left coordinate
of the frame as an offset from the left edge of the screen in pixels and will be 0 or the width of
the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
usFrameYPos

If the frame contains Touch Keys, specifies the top edge of the frame as an offset from the top
edge of the screen in pixels and will be less than the height of the screen.

If the frame contains Physical Keys on the boundary of the screen, specifies the top edge of
the frame as an offset from the top edge of the screen in pixels and will be 0 or the height of
the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
usFrameXSize

If the frame contains Touch Keys, specifies the width of the frame in pixels and will be greater
than 0 and less than the width of the screen minus usFrameXPos.

If the frame contains Physical Keys on the boundary of the screen, specifies the width of the
frame in pixels and will be 0 or the width of the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
usFrameYSize

If the frame contains Touch Keys, specifies the height of the frame in pixels and will be
greater than 0 and less than the height of the screen minus usFrameYPos.

If the frame contains Physical Keys on the boundary of the screen, specifies the height of the
frame in pixels and will be 0 or the height of the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.

wFloatAction
Specifies the type of float action as WFS_PIN_FLOAT NONE if the PIN device will not
randomly shift the layout or else a combination of the following flags:

Value Meaning

WFS PIN FLOATX Specifies that the PIN device will
randomly shift the layout in a horizontal
direction. Applicable to ETS devices
only.

WEFS PIN FLOATY Specifies that the PIN device will
randomly shift the layout in a vertical
direction. Applicable to ETS devices
only.

For any non-ETS device, this value should be set to WFS_PIN_FLOAT NONE.

59

CWA 16926-65:2023 (E)

Error Codes

IppFKs
Pointer to a NULL-terminated array of pointers to WFSPINFK structures defining details of
the keys in the keyboard. See below.

typedef struct wfs pin fk
{

USHORT usXPos;
USHORT usYPos;
USHORT usXSize;
USHORT usYSize;
WORD wKeyType;
ULONG ulFK;
ULONG ulShiftFK;
} WFSPINFK, *LPWFSPINFK;
usXPos

Specifies the position of the left edge of the key relative to the left side of the frame. See
the table in Comments for possible values.

usYPos
Specifies the position of the top edge of the key relative to the top edge of the frame. See
the table in Comments for possible values.

usXSize
Specifies the key width. See the table in Comments for possible values.

usYSize
Specifies the key height. See the table in Comments for possible values.

wKeyType
Defines the type of XFS key definition value is represented by u/FK and ulShiftFK.
Value Meaning
WFS PIN FK Function Keys are being used.
WFS PIN FDK Function Descriptor Keys are being
used.
ulFK

Specifies the FK code associated with the key in non-shifted mode,
WFS PIN FK UNUSED if the key is not used.

ulShiftFK
Specifies the FK code associated with the key in shifted mode, WFS _PIN FK UNUSED
if the key is not used in shifted mode.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR PIN MODENOTSUPPORTED The specified entry mode is not supported.
Events None.
Comments The following table defines the possible size and position values that apply to each frame type.
Frame Type
WFSPINFRAME WFSPINKEY
2 o3| 5| g
2002 5 %5 2 3 g 3
) R) A 1%} & &
S| 5| 8| §| % g % 3
= L; % g] s 3 N
g g g S
Physical Keys on EPP 0 0 0 0 1 to 1000' 1 to 1000? 0 t0 999° 0 to 999*
Touch Keys on ETS >0 >0 >=0 | >=0 0 to 0 to 0 to 0 to
(usFrameXSize | (usFrameYSize usFrameXSize usFrameYsize
- usXPos) - usYPos)
Physical Keys on Left 0 >0 0 0 0 0to 0 0to
Boundary of Screen (usFrameYSize usFrameYsize
- usYPos)

60

CWA 16926-65:2023 (E)

Physical Keys on 0 >0 >0 0 0 0 to usFrameXSize 0 to
Right Boundary of (usFrameYSize usFrameYsize
Screen - usYPos)
Physical Keys on Top >0 0 0 0 0 to 0 0 to 0
Boundary of Screen (usFrameXSize usFrameXSize
- usXPos)
Physical Keys on >0 0 0 >0 0 to 0 0 to usFrameYSize
Bottom Boundary of (usFrameXSize usFrameXSize
Screen - usXPos)

1: 1 is the smallest possible size and 1000 is the full width of the frame
2: 1 is the smallest possible size and 1000 is the full height of the frame
3: 0 is the left edge and 999 is the right edge of the frame

4: 0 is the top edge and 999 is the bottom edge of the frame

The following diagram shows an example configuration consisting of an EPP and Physical FDKs
to the left and right of the screen. 3 frames contain the Physical Keys.

IppFrames[1] (Left FDI\\r>
usFrameXPos = 0
usFrameYPos = 0
usFrameXSize = 0

usFrameYSize = 768

0.0

UL

usYPos = 400
usXSize
usYSize

< IppFrames[1]->IppFKs[0]

usXPos = 0

usFrameXPos
usFrameYPos

usFrameYSize

JUUL

IppFrames[0] (EPP)——=>1

usFrameXPos
usFrameYPos
usF XSize

usFrameXSize

0
0
0
0

0,0

o . =

1024, 768

IppFrames[0]->IppFKs[3]
usXPos = 730

i — =y
COCICI C | s
| -

999, 999

usFrameXSize

<<~ |ppFrames[2] (Right FDKs)

1024

0

0
768

61

CWA 16926-65:2023 (E)

4.11 WFS_INF_PIN_KEY_DETAIL_340

Description

Input Param

Output Param

62

This command returns extended detailed information about the keys in the encryption module,
including DES, DUKPT, AES, RSA private and public keys. This command will also return
information on all keys loaded during manufacture that can be used by applications.

Details relating to the keys loaded using OPT (via the ZKA WFS PIN PROTISOPS protocol) are
retrieved using the ZKA WFS_PIN_PROTHSMLDI protocol. These keys are not reported by this
command.

LPSTR IpsKeyName;

IpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

LPWFSPINKEYDETAIL340 *lppKeyDetail340;

Pointer to a null-terminated array of pointers to WFSPINKEYDETAIL340 structures.

typedef struct wfs pin key detail 340
{

LPSTR lpsKeyName;

DWORD dwUse;

BYTE bGeneration;

BYTE bVersion;

BYTE bActivatingDate[4];
BYTE bExpiryDate([4];
DWORD fwLoaded;
LPWEFSPINKEYBLOCKINFO lpKeyBlockInfo;

} WESPINKEYDETAIL340, *LPWFSPINKEYDETAIL340;

IpsKeyName
Specifies the name of the key.

dwUse
This field is reserved.

bGeneration

Specifies the generation of the key as BCD value. Different generations might correspond to
different environments (e.g. test or production environment). The content is vendor specific. This
value will be OXFF if no such information is available for the key.

bVersion
Specifies the version of the key (the year in which the key is valid, e.g. 01 for 2001) as BCD
value. This value will be OXFF if no such information is available for the key.

bActivatingDate

Specifies the date when the key is activated as BCD value in the format YYYYMMDD. This
value will be expressed as 0xFF, OxFF, OxFF, OxFF if no such information is available for the
key.

bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. This value
will be OxFFFFFFFF if no such information is available for the key.

fwLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator),
as a combination of the following flags:

Value Meaning

WFS PIN LOADED NO The key is not loaded or not ready to be used
in cryptographic operations.

WFS PIN LOADED YES The key is loaded and ready to be used in
cryptographic operations.

WFS PIN LOADED UNKNOWN The state of the key is unknown.

CWA 16926-65:2023 (E)

WFS PIN LOADED CONSTRUCT The key is under construction, meaning that
at least one key part has been loaded but the
key is not activated and ready to be used in
other cryptographic operations. This flag can
only be returned in combination with
WFS_PIN_LOADED NO.

IpKeyBlockInfo
Pointer to a WFSPINKEYBLOCKINFO structure.

typedef struct wfs pin key block info
{

BYTE bKeyUsage[2];

BYTE bAlgorithm;

BYTE bModeOfUse;

BYTE bKeyVersionNumber[2];
BYTE bExportability;
LPWESXDATA lpxOptionalBlockHeader;
ULONG ulKeyLength;

} WESPINKEYBLOCKINFO, *LPWFSPINKEYBLOCKINFO;

bKeyUsage
Specifies the intended function of the key. See [ReferenceRef. 35-ANSXO-TR 31 2018] for
all possible values.

bAlgorithm
Specifies the algorithm for which the key may be used. See [ReferenceRef. 35-ANSXOTR-
31-201835] for all possible values.

bModeOfUse
Specifies the operation that the key may perform. See [ReferenceRef. 35-ANS X9 TR-3+
204835] for all possible values.

bKeyVersionNumber

Specifies a two-digit ASCII character version number, which is optionally used to indicate that
contents of the key block are a component, or to prevent re-injection of old keys. See
[ReferenceRef. 35-ANSX9-TR-31-201835] for all possible values.

bExportability
Specifies whether the key may be transferred outside of the cryptographic domain in which the
key is found. See [RefereneeRef. 35-ANSXO-TFR-31-20618] for all possible values.

IpxOptionalBlockHeader
Contains any optional header blocks, as defined in [ReferenceRef. 35-ANSXO-TR-31
264-835]. This value will be NULL if there are no optional block headers.

ulKeyLength
Specifies the length, in bits, of the key. 0 if the key length is unknown.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key name is not found.
Comments None.

63

CWA 16926-65:2023 (E)

5. Execute Commands

5.1 Normal PIN Commands

The following commands are those commands that are used in a normal transaction with the encryptor.

5.1.1 WFS_CMD_PIN_CRYPT

Description

Input Param

64

The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the WFS INF PIN CAPABILITIES command.

This command can also be used for random number generation.

Furthermore it can be used for Message Authentication Code generation (i.e. MACing). The input
data is padded to the necessary length mandated by the encryption algorithm using the bPadding
parameter. Applications can generate a MAC using an alternative padding method by pre-
formatting the data passed and combining this with the standard padding method.

The Start Value (or Initialization Vector) should be able to be passed encrypted like the specified
encryption/decryption key. It would therefore need to be decrypted with a loaded key so the name
of this key must also be passed. However, both these parameters are optional.

In order to access maximum functionality, it is recommended that applications should use the
WFS CMD PIN CRYPT 340 command if the encryption mode being used is not random.

LPWFSPINCRYPT IpCrypt;

typedef struct wfs pin crypt
{

WORD wMode;

LPSTR lpsKey;
LPWESXDATA lpxKeyEncKey;
WORD wAlgorithm;

LPSTR lpsStartvalueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;

BYTE bCompression;
LPWFSXDATA lpxCryptData;

} WESPINCRYPT, *LPWESPINCRYPT;

wMode
If MACing then this parameter will be ignored, otherwise this parameter specifies the mode,
values are one of the following:

Value Meaning

WFS_PIN MODEENCRYPT Encrypt with key.

WFS_PIN MODEDECRYPT Decrypt with key.

WFS_PIN. MODERANDOM An 8 byte random value shall be returned (in
this case all the other input parameters are
ignored).

This parameter does not apply to MACing.

IpsKey
Specifies the name of the stored key. This value is ignored, if wMode equals
WFS PIN. MODERANDOM.

IpxKeyEncKey

If NULL, IpsKey is used directly for encryption/decryption. Otherwise, /psKey is used to decrypt
(in ECB mode) the encrypted key passed in [pxKeyEncKey and the result is used for
encryption/decryption. Users of this specification must adhere to local regulations when using
Triple DES. This value is ignored, if wMode equals WFS_PIN. MODERANDOM.

wAlgorithm

Specifies the encryption algorithm. Possible values are those described in
WFS INF PIN CAPABILITIES. This value is ignored, if wMode equals
WFS PIN. MODERANDOM.

Output Param

Error Codes

Events

Comments

CWA 16926-65:2023 (E)

IpsStartValueKey

Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the Initialization
Vector. If this parameter is NULL, [pxStartValue is used as the Initialization Vector. This value is
ignored, if wMode equals WFS_PIN. MODERANDOM.

IpxStartValue

DES and Triple DES initialization vector for CBC / CFB encryption and MACing. If this
parameter is NULL the default value for CBC / CFB / MAC is 16 hex digits 0x0. This value is
ignored, if wMode equals WFS PIN. MODERANDOM.

bPadding
Specifies the padding character. The padding character is a full byte, e.g. OxFF. This value is
ignored, if wMode equals WFS_PIN_ MODERANDOM. The valid range is 0x00 to OxFF.

bCompression

Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character (e.g. 0x20 in ASCII or 0x40 in EBCDIC). This value is
ignored, if wMode equals WFS_PIN_ MODERANDOM.

IpxCryptData
Pointer to the data to be encrypted, decrypted, or MACed. This value is ignored, if wMode equals
WFS PIN. MODERANDOM.

LPWFSXDATA IpxCryptData;

IpxCryptData
Pointer to the encrypted or decrypted data, MAC value or 8 byte random value.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value

Meaning

WFS_ERR_PIN_KEYNOTFOUND
WFS_ERR_PIN_ MODENOTSUPPORTED
WFS_ERR_PIN_ACCESSDENIED

WFS ERR PIN KEYNOVALUE

WFS_ERR_PIN_USEVIOLATION

WFS_ERR PIN INVALIDKEYLENGTH

WFS_ERR PIN NOCHIPTRANSACTIVE

WFS _ERR PIN ALGORITHMNOTSUPP

The specified key was not found.

The specified mode is not supported.

The encryption module is either not
initialized or not ready for any vendor
specific reason.

The specified key name was found but the
corresponding key value has not been
loaded.

The specified use is not supported by this
key.

The length of lpxKeyEncKey or
IpxStartValue is not supported or the length
of an encryption key is not compatible with
the encryption operation required.

A chipcard key is used as encryption key and
there is no chip transaction active.

The specified algorithm is not supported by
this key.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

WFS EXEE PIN DUKPT KSN An IpsKey with

WFS_PIN _USEKEYDERKEY usage has
been used to encrypt or MAC the data.

The key used for encryption/decryption must be a double-length or triple-length key when used
for Triple DES encryption/decryption. If a double-length or triple-length key is used when a DES
encryption algorithm is specified, or a single-length key is used when Triple DES is specified, the
WFS _ERR PIN INVALIDKEYLENGTH error is returned. Users of this specification must
adhere to local regulations when using Triple DES.

65

CWA 16926-65:2023 (E)

The data type LPWFSXDATA is used to pass hexadecimal data and is defined as follows:

typedef struct wfs hex data
{

USHORT usLength;

LPBYTE lpbData;

} WESXDATA, *LPWFSXDATA;
usLength
Length of the byte stream pointed to by [pbData.
IpbData

Pointer to the binary data stream.

66

CWA 16926-65:2023 (E)

5.1.2 WFS_CMD_PIN_IMPORT_KEY

Description

Input Param

The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
“key encryption key”. A key can be loaded in multiple unencrypted parts by combining the
WFS_PIN_USECONSTRUCT or WFS_PIN USESECURECONSTRUCT value with the final
usage flags within the fwUse field.

If the WFS _PIN USECONSTRUCT flag is used then the application must provide the key data
through the IpxValue parameter, If WFS PIN USESECURECONSTRUCT is used then the
encryption key part in the secure key buffer previously populated with the

WFS CMD_PIN SECUREKEY ENTRY command is used and /pxValue is ignored. Key parts
loaded with the WFS_PIN_ USESECURECONSTRUCT flag can only be stored once as the
encryption key in the secure key buffer is no longer available after this command has been
executed. The WFS PIN USECONSTRUCT and WFS PIN USESECURECONSTRUCT
construction flags cannot be used in combination.

LPWFSPINIMPORT IpImport;

typedef struct wfs pin import
{

LPSTR lpsKey;
LPSTR lpsEncKey;
LPWESXDATA lpxIdent;
LPWESXDATA lpxValue;
WORD fwUse;

} WESPINIMPORT, *LPWEFSPINIMPORT;

IpsKey
Specifies the name of key being loaded.

IpsEncKey

IpsEncKey specifies a key name or a format name which was used to encrypt (in ECB mode) the
key passed in IpxValue. If IpsEncKey is NULL the key is loaded directly into the encryption
module. /psEncKey must be NULL if fwUse contains WFS_PIN USECONSTRUCT or
WFS_PIN_USESECURECONSTRUCT.

IpxIdent

Specifies the key owner identification. It is a handle to the encryption module and is returned to
the application in the WFS_CMD_PIN INITIALIZATION command. See fw/DKey in

WFS _INF PIN CAPABILITIES for whether this value is required. If not required IpxIdent
should be NULL. The use of this parameter is vendor dependent.

IpxValue
Specifies the value of key to be loaded.
fwUse
Specifies the type of access for which the key can be used as a combination of the following flags:
Value Meaning
WFS _PIN USECRYPT Key can be used for encryption/decryption.
WEFS_PIN_ USEFUNCTION Key can be used for PIN functions (PIN
block creation and local PIN check).
WEFS_PIN USEMACING Key can be used for MACing.
WEFS PIN USEKEYENCKEY Key is used as key encryption key.
WEFS PIN USENODUPLICATE Key can be imported only once.
WEFS PIN USESVENCKEY Key is used as CBC Start Value encryption
key.
WEFS_PIN USECONSTRUCT Key is under construction through the import

of multiple parts. This value is used in
combination with the actual usage flags for
the key.

67

CWA 16926-65:2023 (E)

Output Param

Error Codes

Events

Comments

68

WEFS _PIN USESECURECONSTRUCT Key is under construction through the import
of multiple parts. This value is used in
combination with the actual usage flags for
the key. IpxValue is ignored as the
encryption key part is taken from the secure
key buffer.

WEFS PIN USEANSTR31IMASTER Key can be used for importing keys
packaged within an ANS-TR-3+ANSI
X9.143 key block. This key usage can only
be combined with
WFS_PIN USECONSTRUCT and
WFS_PIN USESECURECONSTRUCT.

WEFS_PIN USERESTRICTEDKEYENCKEY Key is used as
WFS_PIN USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN _USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

If fwUse equals zero the specified key is deleted. In that case all parameters but [psKey are
ignored.

LPWFSXDATA IpxKVC;

IpxKVC
Contains the key verification code data that can be used for verification of the loaded key, NULL
if device does not have that capability.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN KEYNOTFOUND The specified key encryption key was not
found or attempting to delete a non-existent
key.

WFS_ERR PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN INVALIDID The ID passed was not valid.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR PIN KEYNOVALUE The specified key encryption key is not
loaded.

WFS_ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN INVALIDKEYLENGTH The length of IpxValue is not supported or
the encryption key in the secure key buffer is
invalid (or has not been entered) or the
length of an encryption key is not compatible
with the encryption operation required.

WFS_ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

When keys are loaded in multiple parts, all parts of the key loaded must set the relevant
construction value in the fwUse field along with any usages needed for the final key use. The

CWA 16926-65:2023 (E)

usage flags must be consistent for all parts of the key. Activation of the key entered in multiple
parts is indicated through an additional final call to this command, where the construction flag is
removed from fwUse but those other usage’s defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A

WFS_ERR PIN_ ACCESSDENIED error will be returned if the key cannot be activated, e.g. if
only one key part has been entered.

The optional KCV is only returned during the final activation step. Applications wishing to verify
the KCV for each key part (and passing keys as a parameter to this command) will need to load
each key part into a temporary location inside the encryptor. If the application determines the
KCV of the key part is valid, then the application calls the WFS_CMD PIN IMPORT KEY
again to load the key part into the device. The application should delete the temporary key part as
soon as the KCV for that key part has been verified. It is not possible to verify a key part being
loaded from a secure key buffer with this command. This is achieved through the

WEFS CMD_PIN SECUREKEY ENTRY command.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a fiwUse value that indicates it is under construction, it
cannot be used for cryptographic functions.

69

CWA 16926-65:2023 (E)

5.1.3 WFS_CMD_PIN_DERIVE_KEY

Description

Input Param

Output Param

Error Codes

70

A key is derived from input data using a key generating key and an initialization vector. The input
data can be expanded with a fill-character to the necessary length (mandated by the encryption
algorithm being used). The derived key is imported into the encryption module and can then be
used for further operations.

LPWFSPINDERIVE IpDerive;

typedef struct wfs pin derive
{

WORD wDerivationAlgorithm;
LPSTR lpsKey;

LPSTR lpsKeyGenKey;

LPSTR lpsStartvalueKey;
LPWFSXDATA lpxStartValue;

BYTE bPadding;

LPWESXDATA lpxInputData;
LPWESXDATA lpxIdent;

} WEFSPINDERIVE, *LPWESPINDERIVE;

wDerivationAlgorithm
Specifies the algorithm that is used for derivation. Possible values are:
(see command WFS INF PIN CAPABILITIES)

IpsKey
Specifies the name where the derived key will be stored.

IpsKeyGenKey
Specifies the name of the key generating key that is used for the derivation.

IpsStartValueKey
Specifies the name of the stored key used to decrypt the IpxStartValue to obtain the Initialization
Vector. If this parameter is NULL, IpxStartValue is used as the Initialization Vector.

IpxStartValue
DES initialization vector for the encryption step within the derivation.

bPadding
Specifies the padding character for the encryption step within the derivation. The valid range is
0x00 to OxFF.

IpxInputData
Pointer to the data to be used for key derivation.

IpxIdent

Specifies the key owner identification. It is a handle to the encryption module and is returned to
the application in the WFS_CMD_PIN INITIALIZATION command. See fw/DKey in
WEFS_INF_PIN CAPABILITIES for whether this value is required. If not required IpxIdent
should be NULL. The use of this parameter is vendor dependent.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS _ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized (or not ready for some vendor
specific reason).

WFS _ERR PIN INVALIDID The ID passed was not valid.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

CWA 16926-65:2023 (E)

WFS_ERR PIN INVALIDKEYLENGTH The length of IpxStartValue is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

WFS ERR PIN ALGORITHMNOTSUPP The specified algorithm is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
Comments None.

7

CWA 16926-65:2023 (E)

5.1.4 WFS_CMD_PIN_GET _PIN

Description

Input Param

72

This function stores the PIN entry via the PIN pad. From the point this function is invoked, PIN
digit entries are not passed to the application. For each PIN digit, or any other active key entered,
an execute notification event WFS_EXEE PIN KEY is sent in order to allow an application to
perform the appropriate display action (i.e. when the PIN pad has no integrated display). The
application is not informed of the value entered. The execute notification only informs that a key
has been depressed.

The WFS_EXEE PIN ENTERDATA event will be generated when the PIN pad is ready for the
user to start entering data.

Some PIN pad devices do not inform the application as each PIN digit is entered, but locally
process the PIN entry based upon minimum PIN length and maximum PIN length input
parameters.

When the maximum number of PIN digits is entered and the flag bAutoEnd is true, or a
terminating key is pressed after the minimum number of PIN digits is entered, the command
completes. If the <Cancel> key is a terminator key and is pressed, then the command will
complete successfully even if the minimum number of PIN digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has
been reached) or <Cancel> (can terminate before minimum length is reached). The configuration
of this functionality is vendor specific.

If usMaxLen is zero, the Service Provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateF'DKs. In the event that u/TerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

If active the WFS_PIN_FK CANCEL and WFS_PIN FK CLEAR keys will cause the PIN
buffer to be cleared. The WFS_PIN FK BACKSPACE key will cause the last key in the PIN
buffer to be removed.

Terminating keys have to be active keys to operate.

If this command is cancelled by a WFSCancelAsyncRequest or a WFSCancelBlockingCall the
PIN buffer is not cleared.

If usMaxLen has been met and bAutoEnd is set to False, then all numeric keys will automatically
be disabled. If the CLEAR or BACKSPACE key is pressed to reduce the number of entered keys,
the numeric keys will be re-enabled.

If the ENTER key (or FDK representing the ENTER key — note that the association of an FDK to
ENTER functionality is vendor specific) is pressed prior to usMinLen being met, then the ENTER
key or FDK is ignored. In some cases the PIN pad device cannot ignore the ENTER key then the
command will complete normally. To handle these types of devices the application should use the
output parameter usDigits field to check that sufficient digits have been entered. The application
should then get the user to re-enter their PIN with the correct number of digits.

If the application makes a call to WFS CMD_PIN GET PINBLOCK or a local verification
command without the minimum PIN digits having been entered, either the command will fail or
the PIN verification will fail.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

LPWFSPINGETPIN IpGetPin;

typedef struct wfs pin getpin
{

USHORT usMinLen;

USHORT usMaxLen;

BOOL bAutoEnd;

CHAR cEcho;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;

} WESPINGETPIN, *LPWESPINGETPIN;

Output Param

CWA 16926-65:2023 (E)

usMinLen
Specifies the minimum number of digits which must be entered for the PIN. A value of zero
indicates no minimum PIN length verification.

usMaxLen
Specifies the maximum number of digits which can be entered for the PIN. A value of zero
indicates no maximum PIN length verification.

bAutoEnd

If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. bAutoEnd is ignored when usMaxLen is set to zero.

cEcho
Specifies the replace character to be echoed on a local display for the PIN digit.

ulActiveFDKs
Specifies a mask of those FDKs which are active during the execution of the command (see
WES INF PIN FUNCKEY DETAIL).

ulActiveKeys
Specifies a mask of those (other) Function Keys which are active during the execution of the
command (see WFS_INF PIN FUNCKEY DETAIL).

ulTerminateFDKs
Specifies a mask of those FDKs which must terminate the execution of the command (see
WEFS INF _PIN FUNCKEY DETAIL).

ulTerminateKeys
Specifies a mask of those (other) Function Keys which must terminate the execution of the
command (see WFS_INF_PIN FUNCKEY DETAIL).

LPWFSPINENTRY IpEntry;

typedef struct wfs pin entry
{
USHORT usDigits;
WORD wCompletion;
} WESPINENTRY, *LPWESPINENTRY;

usDigits
Specifies the number of PIN digits entered.

wCompletion

Specifies the reason for completion of the entry. Unless otherwise specified the following values
must not be used in the execute event WFS_EXEE PIN KEY or in the array of keys in the
completion of WFS CMD PIN €MB-GET DATA. Possible values are:

Value Meaning

WEFS PIN COMPAUTO The command terminated automatically,
because maximum length was reached.

WFS_PIN COMPENTER The ENTER Function Key was pressed as
terminating key.

WFS PIN COMPCANCEL The CANCEL Function Key was pressed as
terminating key.

WES_PIN COMPCONTINUE A function key was pressed and input may

continue unless the command completes
(this value is only used in the execute event
WFS _EXEE PIN KEY and in the array of
keys in the completion of

WEFS CMD_PIN-€MB GET DATA).

WFS _PIN COMPCLEAR The CLEAR Function Key was pressed as
terminating key and the previous input is
cleared.

WFS PIN COMPBACKSPACE The last input digit was cleared and the key
was pressed as terminating key.

WEFS_PIN COMPFDK Indicates input is terminated only if the FDK

pressed was set to be a terminating FDK.

73

CWA 16926-65:2023 (E)

WFS _PIN COMPHELP The HELP Function Key was pressed as
terminating key.
WFS _PIN_ COMPFK A Function Key (FK) other than ENTER,

CLEAR, CANCEL, BACKSPACE, HELP
was pressed as terminating key.

WEFS_PIN COMPCONTFDK An FDK was pressed and input may
continue unless the command completes
(this value is only used in the execute event
WFS EXEE PIN KEY and in the array of
keys in the completion of
WEFS CMD_PIN-€MB GET DATA).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR PIN KEYINVALID At least one of the specified function keys or
FDKs is invalid.

WFS _ERR PIN KEYNOTSUPPORTED At least one of the specified function keys or
FDKSs is not supported by the Service
Provider.

WFS ERR PIN NOACTIVEKEYS There are no active function keys specified,
or there is no defined layout definition.

WFS ERR PIN NOTERMINATEKEYS There are no terminate keys specified and
usMaxLen is not set to zero and bAutoEnd is
FALSE.

WFS _ERR PIN MINIMUMLENGTH The minimum PIN length field is invalid or

greater than the maximum PIN length field
when the maximum PIN length is not zero.

WFS _ERR PIN TOOMANYFRAMES The device requires that only one frame is
used for this command.

WFS_ERR PIN PARTIALFRAME The single Touch Frame does not cover the
entire monitor.

WFS ERR PIN ENTRYTIMEOUT The timeout for entering data has been

reached. This is a timeout which may be due
to hardware limitations or legislative
requirements (for example PCI).

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WFS_EXEE PIN KEY A key has been pressed at the PIN pad.
WFS EXEE PIN ENTERDATA The PIN pad is ready for the user to start
entering data.
WFS_EXEE PIN LAYOUT The layout has changed position. For ETS

devices only.

Comments None.

74

CWA 16926-65:2023 (E)

5.1.5 WFS_CMD_PIN_LOCAL_DES

Description

Input Param

Output Param

Error Codes

The PIN, which was entered with the WFS PIN GET_PIN command, is combined with the
requisite data specified by the DES validation algorithm and locally verified for correctness. The
result of the verification is returned to the application. This command will clear the PIN unless the
application has requested that the PIN be maintained through the

WFS CMD_ PIN MAINTAIN PIN command.

LPWFSPINLOCALDES IpLocalDES;

typedef struct wfs pin local des
{

LPSTR lpsValidationData;
LPSTR lpsOffset;

BYTE bPadding;

USHORT usMaxPIN;

USHORT usValDigits;

BOOL bNoLeadingZero;
LPSTR lpsKey;

LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WESPINLOCALDES, *LPWEFSPINLOCALDES;

IpsValidationData
Customer specific data (normally obtained from card track data) used to validate the correctness
of the PIN. The validation data should be an ASCII string.

IpsOffset
ASCII string defining the offset data for the PIN block as an ASCII string; if NULL then no offset

is used. The character must be in the ranges ‘0’ to ‘9, ‘a’ to ‘f” and ‘A’ to ‘F’.

bPadding

Specifies the padding character for the validation data. If the validation data is less than 16
characters long then it will be padded with this character. If bPadding is in the range 0x00 to
0xOF, padding is applied after the validation data has been compressed. If the bPadding character
is in the range ‘0’ to ‘9°, ‘a’ to ‘f*, or ‘A’ to ‘F’, padding is applied before the validation data is
compressed.

usMaxPIN
Maximum number of PIN digits to be used for validation. This parameter corresponds to
PINMINL in the IBM 3624 specification- (see [Ref. 24]).

usValDigits
Number of Validation digits from the validation data to be used for validation. This is the length
of the IpsValidationData string.

bNoLeadingZero

If set to TRUE and the first digit of result of the modulo 10 addition is a 0x0, it is replaced with
0x1 before performing the verification against the entered PIN. If set to FALSE, a leading zero is
allowed in entered PINs.

IpsKey
Name of the key to be used for validation. The key referenced by IpsKey must have the
WEFS PIN USEFUNCTION or WFS PIN USEPINLOCAL attribute.

IpxKeyEncKey
If NULL, IpsKey is used directly for PIN validation. Otherwise, /psKey is used to decrypt the
encrypted key passed in /pxKeyEncKey and the result is used for PIN validation.

IpsDecTable

ASCII decimalization table (16 character string containing characters ‘0’ to ‘9°). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

LPBOOL IpbResult;

IpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

75

CWA 16926-65:2023 (E)

Events

Comments

76

generated by this command:

Value

Meaning

WFS_ERR_PIN_KEYNOTFOUND
WFS_ERR_PIN_ACCESSDENIED

WFS_ERR_PIN_KEYNOVALUE
WFS_ERR_PIN_USEVIOLATION
WFS_ERR_PIN_NOPIN

WFS_ERR PIN INVALIDKEYLENGTH

The specified key was not found.

The encryption module is either not
initialized or not ready for any vendor
specific reason.

The specified key is not loaded.

The specified use is not supported by this
key.

PIN has not been entered or has been
cleared.

The length of lpxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption

key.

The PINMAXL value as defined in the IBM 3624 specification (see [Ref. 24]) is the length of the
PIN entered during the WFS CMD_ PIN GET PIN command.

CWA 16926-65:2023 (E)

5.1.6 WFS_CMD_PIN_CREATE_OFFSET

Description

Input Param

Output Param

Error Codes

This function is used to generate a PIN Offset that is typically written to a card and later used to
verify the PIN with the WFS CMD PIN LOCAL DES command. The PIN offset is computed
by combining validation data with the keypad entered PIN. This command will clear the PIN
unless the application has requested that the PIN be maintained through the

WFS CMD_ PIN MAINTAIN PIN command.

LPWFSPINCREATEOFFSET IpPINOffset;

typedef struct wfs pin create offset

{

LPSTR lpsValidationData;
BYTE bPadding;
USHORT usMaxPIN;
USHORT usValDigits;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WEFSPINCREATEOFFSET, *LPWFSPINCREATEOFFSET;
IpsValidationData
Validation data. The validation data should be an ASCII string.
bPadding

Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0x0OF,
padding is applied after the validation data has been compressed. If the bPadding character is in
the range ‘0’ to ‘9°, ‘a’ to ‘f°, or ‘A’ to ‘F’, padding is applied before the validation data is
compressed.

usMaxPIN
Maximum number of PIN digits to be used for PIN Offset creation. This parameter corresponds to
PINMINL in the IBM 3624 specification- (see [Ref. 24]).

usValDigits
Number of Validation Data digits to be used for PIN Offset creation. This is the length of the
IpsValidationData string.

IpsKey
Name of the validation key. The key referenced by IpsKey must have the
WEFS PIN USEFUNCTION or WFS PIN USEPINLOCAL attribute.

IpxKeyEncKey
If NULL, IpsKey is used directly in PIN Offset creation. Otherwise, /psKey is used to decrypt the
encrypted key passed in [pxKeyFEncKey and the result is used in PIN Offset creation.

IpsDecTable

ASCII decimalization table (16 character string containing characters ‘0’ to ‘9°). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

LPSTR lpsOffset;

IpsOffset
Computed PIN Offset.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS _ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS ERR PIN NOPIN PIN has not been entered or has been
cleared.

77

CWA 16926-65:2023 (E)

Events

Comments

78

WFS _ERR PIN NOTALLOWED PIN entered by the user is not allowed.

WFS_ERR PIN INVALIDKEYLENGTH The length of [pxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

The list of ‘forbidden’ PINs (values that cannot be chosen as a PIN, e.g. 1111) is configured in the
device in a vendor dependent way during the configuration of the system. The PINMAXL value
as defined in the IBM 3624 specification (see [Ref. 24]) is the length of the PIN entered during
the WFS_CMD PIN GET_PIN command.

CWA 16926-65:2023 (E)

5.1.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE

Description

Input Param

Output Param

Error Codes

The PIN, which was entered with the WFS PIN GET_PIN command, is combined with the
requisite data specified by the Eurocheque validation algorithm and locally verified for
correctness. The result of the verification is returned to the application. This command will clear
the PIN unless the application has requested that the PIN be maintained through the

WFS CMD_ PIN MAINTAIN PIN command.

LPWFSPINLOCALEUROCHEQUE IpLocalEurocheque;

typedef struct wfs pin local eurocheque

{

LPSTR lpsEurochequeData;
LPSTR 1psPVV;
WORD wFirstEncDigits;
WORD wFirstEncOffset;
WORD wPVVDigits;
WORD WwPVVOffset;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, *LPWFSPINLOCALEUROCHEQUE;

IpsEurochequeData

Track-3 Eurocheque data.

IpsPVV

PIN Validation Value from track data.

wkirstEncDigits

Number of digits to extract after first encryption.

wFirstEncOffset

Offset of digits to extract after first encryption.

wPVVDigits

Number of digits to extract for PVV.

wPVVOffset

Offset of digits to extract for PVV.

IpsKey
Name of the validation key. The key referenced by IpsKey must have the
WEFS PIN USEFUNCTION or WFS PIN USEPINLOCAL attribute.

IpxKeyEncKey
If NULL, IpsKey is used directly for PIN validation. Otherwise, /psKey is used to decrypt the
encrypted key passed in [pxKeyFEncKey and the result is used for PIN validation.

IpsDecTable

ASCII decimalization table (16 character string containing characters ‘0’ to ‘9°). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

LPBOOL IpbResult;

IpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS _ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.
WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

79

CWA 16926-65:2023 (E)

WFS _ERR PIN NOPIN PIN has not been entered or has been
cleared.

WFS_ERR PIN INVALIDKEYLENGTH The length of [pxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
Comments None.

80

CWA 16926-65:2023 (E)

5.1.8 WFS_CMD_PIN_LOCAL_VISA

Description

Input Param

Output Param

Error Codes

Events

The PIN, which was entered with the WFS PIN GET_PIN command, is combined with the
requisite data specified by the VISA validation algorithm and locally verified for correctness. The
result of the verification is returned to the application. This command will clear the PIN unless the
application has requested that the PIN be maintained through the

WFS CMD_ PIN MAINTAIN PIN command.

LPWFSPINLOCALVISA IpLocalVISA;

typedef struct wfs pin local visa

{

LPSTR 1lpsPAN;

LPSTR 1psPVV;

WORD wPVVDigits;
LPSTR lpsKey;
LPWESXDATA lpxKeyEncKey;

} WESPINLOCALVISA, *LPWEFSPINLOCALVISA;

IpsPAN

Primary Account Number from track data, as an ASCII string. [psPAN should contain the eleven
rightmost digits of the PAN (excluding the check digit), followed by the PVKI indicator in the
12 byte.

IpsPVV
PIN Validation Value from track data, as an ASCII string with characters in the range ‘0’ to ‘9’.
This string should contain 4 digits.

wPVVDigits
Number of digits of PVV.

IpsKey
Name of the validation key. The key referenced by /psKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_ USEPINLOCAL attribute.

IpxKeyEncKey
If NULL, IpsKey is used directly for PIN validation. Otherwise, /psKey is used to decrypt the
encrypted key passed in [pxKeyEncKey and the result is used for PIN validation.

LPBOOL IpbResult;

IpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS_ERR PIN_ ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN NOPIN PIN has not been entered or has been
cleared.

WFS_ERR PIN INVALIDKEYLENGTH The length of [pxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

81

CWA 16926-65:2023 (E)

Comments None.

82

CWA 16926-65:2023 (E)

5.1.9 WFS_CMD_PIN_PRESENT_IDC

Description

Input Param

Output Param

Error Codes

The PIN, which was entered with the WFS PIN GET_PIN command, is combined with the
requisite data specified by the IDC presentation algorithm and presented to the smartcard
contained in the ID card unit. The result of the presentation is returned to the application. This
command will clear the PIN unless the application has requested that the PIN be maintained
through the WFS CMD_ PIN MAINTAIN PIN command.

LPWFSPINPRESENTIDC IpPresentIDC;

typedef struct wfs pin presentidc
{

WORD wPresentAlgorithm;
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
LPVOID lpAlgorithmData;

} WESPINPRESENTIDC, *LPWEFSPINPRESENTIDC;

wPresentAlgorithm
Specifies the algorithm that is used for presentation. Possible values are: (see command
WFS_INF_PIN_ CAPABILITIES).

wChipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are: (see
command WFS INF IDC CAPABILITIES in the Identification Card Device Class Interface).

ulChipDataLength
Specifies the length of the byte stream pointed to by IlpbChipData.

IpbChipData
Points to the data to be sent to the chip.

IpAlgorithmData
Pointer to a structure that contains the data required for the specified presentation algorithm.
For the WFS_PIN PRESENT CLEAR algorithm, this structure is defined as:

typedef struct wfs pin presentclear

{

ULONG ulPINPointer;

USHORT usPINOffset;

} WFSPINPRESENTCLEAR, *LPWFSPINPRESENTCLEAR;
ulPINPointer

The byte offset where to start inserting the PIN into lpbChipData. The leftmost byte is
numbered zero. See below for an example.

usPINOffset
The bit offset within the byte specified by u/PINPointer where to start inserting the PIN. The
leftmost bit numbered zero. See below for an example.

LPWFSPINPRESENTRESULT IpPresentResult;

typedef struct wfs pin present result

{

WORD wChipProtocol;
ULONG ulChipDatalLength;
LPBYTE lpbChipData;

} WESPINPRESENTRESULT, *LPWEFSPINPRESENTRESULT;

wChipProtocol
Identifies the protocol that was used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure.

ulChipDataLength
Specifies the length of the byte stream pointed to by IlpbChipData.

IpbChipData
Points to the data responded from the chip.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

83

CWA 16926-65:2023 (E)

Events

Comments

84

generated by this command:

Value

Meaning

WFS_ERR_PIN_ACCESSDENIED

WFS_ERR_PIN_NOPIN
WFS_ERR_PIN_ PROTOCOLNOTSUPP

WFS_ERR PIN INVALIDDATA

The ID card unit is not ready for PIN
presentation or for any vendor specific
reason. The ID card Service Provider, if any,
may have generated a service event that
further describes the reason for that error
code.

PIN has not been entered or has been
cleared.

The specified protocol is not supported by
the Service Provider.

An error occurred while communicating with
the chip.

Only the generic events defined in [Ref. 1] can be generated by this command.

Example for the use of the algorithm WFS_PIN PRESENT CLEAR:

The structure of a VERIFY command for a French BO chip is:

Bytes 0 to 4 Bytes 5 to 8
CLA |INS | Al | A2 Lc | PIN block
0xBC | 0x20 | 0x00 | 0x00 | 0x04 |0xXX O0xXX 0xXX 0xXX

Where the 4 byte PIN block consists of 2 bits that are always zero, 16 bits for the 4 PIN digits
(each digit being coded in 4 bits) and 14 bits that are always one:

Byte 5 Byte 6 Byte 7 Byte 8
ololplplplplplplplplplplplplplplplpltt]t]efe]t]t]e]1]t]1]1]1]1
Digit 1 | Digit 2 | Digit3 | Digit4

In order to insert the PIN into such a command, the application calls

WFS_CDM _PIN PRESENT IDC with:

ulChipDataLength 9
IpbChipData 0xBC2000000400003FFF
ulPINPointer 5
usPINOffset 2
For a sample PIN “1234” the PIN block is:
Byte 5 Byte 6 Byte 7 Byte 8
ololololo[1]o]o[1]ofolo[t]t]o]1]ofol1]t]t]a]a]t]t]1]e]1]1]1]1]1
Digit 1 | Digit 2 | Digit3 | Digit 4
Resulting in a chip card command of:
Bytes 0 to 4 Bytes 5 to 8
CLA |INS | Al | A2 Lc | PIN block
0xBC | 0x20 | 0x00 | 0x00 | 0x04 |0x04 0x8D Ox3F OxFF

CWA 16926-65:2023 (E)

5.1.10 WFS_CMD_PIN_GET_PINBLOCK

Description

Input Param

This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the formats
specified in the WFS_INF _PIN_ CAPABILITIES command. This command will clear the PIN
unless the application has requested that the PIN be maintained through the

WFS CMD_ PIN MAINTAIN PIN command.

LPWFSPINBLOCK IpPinBlock;

typedef struct wfs pin block
{

LPSTR lpsCustomerData;
LPSTR lpsXORData;

BYTE bPadding;

WORD wFormat;

LPSTR lpsKey;

LPSTR lpsKeyEncKey;

} WEFSPINBLOCK, *LPWESPINBLOCK;

IpsCustomerData

The customer data should be an ASCII string. Used for ANSI, ISO-0, ISO-1, ISO-3 and ISO-4
algorithm (see [Ref. 3], [Ref. 20], [Ref. 21]) to build the formatted PIN. For ANSI ISO-0, ISO-3
and ISO-4 the PAN (Primary Account Number, without the check number) is supplied, for ISO-1
a ten digit transaction field is required. If not used a NULL is required.

Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed
as unpacked string, for example: 0123456789 ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check
digit), and the CCS (8 digits).

IpsXORData

If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation. This parameter is a string of
hexadecimal data that must be converted by the application, e.g. 0x0123456789 ABCDEF must be
converted to 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45
0x46 and terminated with 0x00. In other words the application would set [psXORData to
“0123456789ABCDEF\0”. The hex digits 0xA to OxF can be represented by characters in the
ranges ‘a’ to ‘f” or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed.

If the formatted PIN is not encrypted twice (i.e. if [psKeyEncKey is NULL) this parameter is
ignored.

bPadding
Specifies the padding character. The valid range is 0x00 to 0xOF. Only the least significant nibble
is used. This field is ignored for PIN block formats with fixed, sequential or random padding.

wFormat
Specifies the format of the PIN block. Possible values are:
(see command WFS_INF PIN CAPABILITIES)

IpsKey

Specifies the key used to encrypt the formatted PIN for the first time, NULL if no encryption is
required. If this specifies a double-length or triple-length key, triple DES encryption will be
performed. The key referenced by IpsKey must have the WFS_PIN_ USEFUNCTION or

WFS PIN USEPINREMOTE attribute. If this specifies an RSA key, RSA encryption will be
performed.

IpsKeyEncKey

Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required. The key referenced by /psKeyEncKey must have the

WFS PIN USEFUNCTION or WFS PIN USEPINREMOTE attribute. If this specifies a
double-length or triple-length key, triple DES encryption will be performed.

85

CWA 16926-65:2023 (E)

Output Param LPWFSXDATA IpxPinBlock;

Error Codes

Events

Comments

86

IpxPinBlock
Pointer to the encrypted PIN block.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS _ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN NOPIN The PIN has not been entered was not long
enough or has been cleared.

WFS_ERR PIN FORMATNOTSUPP The specified format is not supported.

WFS_ERR PIN INVALIDKEYLENGTH The length of IpsKeyEncKey or IpsKey is not
supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

WEFS_ERR PIN DUKPTOVERFLOW The DUKPT KSN encryption counter has
overflowed to zero. A new IPEK must be
loaded.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

WFS_EXEE PIN DUKPT_KSN An IpsKey with

WFS _PIN USEKEYDERKEY usage has
been used to encrypt the PIN block.

None.

CWA 16926-65:2023 (E)

5.1.11 WFS_CMD_PIN_GET_DATA

Description

Input Param

This function is used to return keystrokes entered by the user. It will automatically set the PIN pad
to echo characters on the display if there is a display. For each keystroke an execute notification
event WFS_EXEE PIN KEY is sent in order to allow an application to perform the appropriate
display action (i.e. when the PIN pad has no integrated display).

The WFS_EXEE PIN ENTERDATA event will be generated when the PIN pad is ready for the
user to start entering data.

When the maximum number of dlglts is entered and the flag bAutoEnd is true, or a terminate key
is pressed-after > s-entered, the command completes. If the
<Cancel> keyisa termlnator key and is pressed the command will complete successfully-even-if

Terminating FDKs can have the functronallty of <Enter> ﬁ%ﬁﬂﬁ%ﬂ%—f—ﬂﬂm%ﬂ%—l%ﬂgﬂﬁ—hﬂ%
beenreached)-or <Cancel={es ae =>. The

configuration of this functionality is vendor specific.

If usMaxLen is zero, the Service Provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateFDKs. In the event that u/TerminateKeys or
ulTerminateF DKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

If usMaxLen has been met and b4AutoEnd is set to False, then all keys or FDKs that add data to the
contents of the WFSPINDATA output parameter will automatically be disabled. If the CLEAR or
BACKSPACE key is pressed to reduce the number of entered keys below usMaxLen, the same
keys will be re-enabled.

Where applications want direct control of the data entry and the key interpretation, usMaxLen can
be set to zero allowing the application to provide tracking and counting of key presses until a
terminate key or terminate FDK is pressed or WFSCancel has been issued.

The following keys may affect the contents of the WFSPINDATA output parameter but are not
returned in it:

WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE

The WFS _PIN FK CANCEL and WFS_PIN FK CLEAR keys will cause the output buffer to
be cleared. The WFS_PIN_FK BACKSPACE key will cause the last key in the buffer to be
removed.

Terminating keys have to be active keys to operate.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

LPWFSPINGETDATA IpPinGetData;

typedef struct wfs pin getdata
{

USHORT usMaxLen;

BOOL bAutoEnd;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;

} WESPINGETDATA, *LPWEFSPINGETDATA;

usMaxLen
Specifies the maximum number of digits which can be returned to the application in the output
parameter.

bAutoEnd

If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. bAutoEnd is ignored when usMaxLen is set to zero.

87

CWA 16926-65:2023 (E)

Output Param

Error Codes

Events

Comments

88

ulActiveFDKs
Specifies a mask of those FDKs which are active during the execution of the command (see
WFS_INF_PIN FUNCKEY DETAIL).

ulActiveKeys
Specifies a mask of those (other) Function Keys which are active during the execution of the
command (see WFS_INF PIN FUNCKEY DETAIL).

ulTerminateFDKs
Specifies a mask of those FDKs which must terminate the execution of the command (see
WEFS INF PIN FUNCKEY DETAIL).

ulTerminateKeys
Specifies a mask of those (other) Function Keys which must terminate the execution of the
command (see WFS_INF _PIN FUNCKEY DETAIL).

LPWFSPINDATA IpPinData;

typedef struct wfs pin data
{

USHORT usKeys;
LPWESPINKEY *1pPinKeys;
WORD wCompletion;

} WESPINDATA, *LPWESPINDATA;

usKeys
Number of keys entered by the user (i.e. number of following WFSPINKEY structures).

IpPinKeys

Pointer to an array of pointers to WFSPINKEY structures that contain the keys entered by the
user (for a description of the WFSPINKEY structure see the definition of the
WFS_EXEE_PIN_KEY event).

wCompletion
Specifies the reason for completion of the entry. Possible values are:
(see command WFS CMD_PIN GET PIN)

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR PIN KEYINVALID At least one of the specified function keys or
FDKs is invalid.

WFS _ERR PIN KEYNOTSUPPORTED At least one of the specified function keys or
FDKSs is not supported by the Service
Provider.

WFS ERR PIN NOACTIVEKEYS There are no active keys specified, or there is

no defined layout definition.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS_EXEE PIN KEY A key has been pressed at the PIN pad.

WFS _EXEE PIN ENTERDATA The PIN pad is ready for the user to start
entering data.

WFS_EXEE PIN LAYOUT The layout has changed position. For ETS

devices only.

If the triple zero key is pressed one WFS _EXEE PIN KEY event is sent that contains the
WEFS PIN FK 000 code and three WFS_PIN FK 0 elements are added to the output buffer.

If the triple zero key is pressed when 3 keys are already inserted and usMaxLen equals 4 the key is
not accepted and no event is sent to the application.

If the backspace key is pressed after the triple zero key only one zero is deleted out of the output
buffer.

If the double zero key is pressed one WFS_EXEE PIN KEY event is sent that contains the
WFS PIN FK 00 code and two WFS_PIN FK 0 elements are added to the output buffer.

CWA 16926-65:2023 (E)

If the double zero key is pressed when 3 keys are already inserted and usMaxLen equals 4 the key
is not accepted and no event is sent to the application.

If the backspace key is pressed after the double zero key only one zero is deleted out of the output
buffer.

89

CWA 16926-65:2023 (E)

5.1.12 WFS_CMD_PIN_INITIALIZATION

Description

Input Param

Output Param

Error Codes

90

The encryption module must be initialized before any encryption function can be used. Every call
to WFS_CMD_PIN INITIALIZATION destroys all application keys that have been loaded or
imported; it does not affect those keys loaded during manufacturing.

Usually this command is called by an operator task and not by the application program. Public
keys imported under the RSA Signature based remote key loading scheme when public key
deletion authentication is required will not be affected. However, if this command is requested in
authenticated mode, public keys that require authentication for deletion will be deleted. This
includes public keys imported under either the RSA Signature based remote key loading scheme
or the TR34 RSA Certificate based remote key loading scheme.

Initialization also involves loading “initial” application keys and local vendor dependent keys.
These can be supplied, for example, by an operator through a keyboard, a local configuration file,
remote RSA key management or possibly by means of some secure hardware that can be attached
to the device. The application “initial” keys would normally get updated by the application during
a WFS_CMD_PIN IMPORT _KEY command as soon as possible. Local vendor dependent static
keys (e.g. storage, firmware and offset keys) would normally be transparent to the application and
by definition cannot be dynamically changed.

Where initial keys are not available immediately when this command is issued (i.e. when operator
intervention is required), the Service Provider returns WFS_ERR _PIN ACCESSDENIED and the
application must await the WFS_SRVE PIN INITIALIZED event.

During initialization an optional encrypted ID key can be stored in the HW module. The ID key
and the corresponding encryption key can be passed as parameters; if not, they are generated
automatically by the encryption module. The encrypted ID is returned to the application and
serves as authorization for the key import function. The WFS_INF _PIN CAPABILITIES
command indicates whether or not the device will support this feature.

This function also resets the HSM terminal data, except session key index and trace number.

This function resets all certificate data and authentication public/private keys back to their initial
states at the time of production (except for those public keys imported under the RSA Signature
based remote key loading scheme when public key deletion authentication is required). Key-pairs
created with WFS_ CMD_PIN GENERATE RSA KEY PAIR are deleted. Any keys installed
during production, which have been permanently replaced, will not be reset. Any Verification
certificates that may have been loaded must be reloaded. The Certificate state will remain the
same, but the WFS_CMD_PIN_LOAD_CERTIFICATE or

WFS CMD_PIN REPLACE CERTIFICATE commands must be called again.

When multiple ZKA HSMs are present, this command deletes all keys loaded within all ZKA
logical HSMs.

LPWEFSPININIT Iplnit;

typedef struct wfs pin init
{
LPWEFSXDATA lpxIdent;
LPWESXDATA lpxKey;
} WESPININIT, *LPWFSPININIT;

IpxIdent
Pointer to the value of the ID key. NULL if not required.

IpxKey
Pointer to the value of the encryption key. NULL if not required.

LPWFSXDATA IpxIdentification;

IpxIdentification

Pointer to the value of the ID key encrypted by the encryption key. This value can be used as
authorization for the WFS CMD_ PIN IMPORT KEY command, but can be NULL if no
authorization required.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

CWA 16926-65:2023 (E)

Value Meaning
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized (or not ready for some vendor
specific reason).

WFS ERR PIN INVALIDID The ID passed was not valid.
Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS _SRVE PIN INITIALIZED The encryption module is now initialized.
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
Comments None.

91

CWA 16926-65:2023 (E)

5.1.13 WFS_CMD_PIN_LOCAL_BANKSYS

Description

Input Param

Output Param

Error Codes

Events

Comments

92

The PIN block previously built by the WFS CMD_PIN_GET PINBLOCK command is sent to
the BANKSYS security control module using the WFS_ CMD_PIN BANKSYS IO command.
The BANKSYS security control module will return an ATMVAC code, which is then used in this
command to locally validate the PIN. The key referenced by /psKey within the most recent
successful WFS CMD_ PIN GET_ PINBLOCK command is reused by the

WFS _CMD_PIN LOCAL BANKSYS command for the local validation.

LPWFSPINLOCALBANKSYS IpLocalBanksys;

typedef struct wfs pin local banksys
{

LPWFSXDATA 1pxATMVAC;

} WFSPINLOCALBANKSYS, *LPWFSPINLOCALBANKSYS;
IpxATMVAC
The ATMVAC code calculated by the BANKSYS Security Control Module.
LPBOOL IpbResult;
IpbResult

Pointer to a boolean value which specifies whether the PIN is correct or not.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS ERR PIN NOPIN PIN has not been entered or has been cleared
without building the Banksys PIN block.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxATMVAC is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

5.1.14 WFS_

CWA 16926-65:2023 (E)

CMD_PIN_BANKSYS_IO

Description

Input Param

Output Param

Error Codes

Events

Comments

This command sends a single command to the Banksys Security Control Module.

LPWFSPINBANKSYSIO IpBanksysloln;

typedef struct wfs pin banksys io
{
ULONG ullLength;
LPBYTE lpbData;
} WESPINBANKSYSIO, *LPWESPINBANKSYSIO;

ulLength
Specifies the length of the following field lpbData.

IpbData
Points to the data sent to the BANKSYS Security Control Module.

LPWFSPINBANKSYSIO IpBanksysloOut;

typedef struct wfs pin banksys io
{
ULONG ullLength;
LPBYTE lpbData;
} WESPINBANKSYSIO, *LPWEFSPINBANKSYSIO;

ulLength
Specifies the length of the following field lpbData.

IpbData
Points to the data responded by the BANKSYS Security Control Module.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS _ERR PIN INVALIDDATA An error occurred while communicating with
the device.

Only the generic events defined in [Ref. 1] can be generated by this command.

The Banksys command and response message data are defined in [Ref. 18].

93

CWA 16926-65:2023 (E)

5.1.15WFS_CMD_PIN_RESET

Description

Input Param
Output Param
Error Codes
Events

Comments

94

Sends a service reset to the Service Provider. This command may trigger a self-test, for example,
initializing memory, checking device state, etc. For the details of any self-test performed, vendor
specific documentation may have to be consulted.

None.

None.

Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

This command is used by an application control program to cause a device to reset itself to a
known good condition. It does not delete any keys.

CWA 16926-65:2023 (E)

5.1.16 WFS_CMD_PIN_HSM_SET_TDATA

Description

Input Param

This function allows the application to set the HSM terminal data (except keys, trace number and
session key index). The data must be provided as a series of “tag/length/value” items.

Terminal data that are set but are not supported by the hardware will be ignored.
LPWFSXDATA IpxTData;

IpxTData
Specifies which parameter(s) is(are) to be set. [pxTData is a series of “tag/length/value” items
where each item consists of:

e One byte tag (see the list of tags below).
e One byte specifying the length of the following data as an unsigned binary number.
e N bytes data (see the list below for formatting) with no separators.

The following tags are supported:

Tag Format Length Meaning Read/ EPP/

(hexl) (bytes) Write HSM

C2 BCD 4 Terminal ID R/W EPP
ISO BMP 41

C3 BCD 4 Bank code R/W EPP
ISO BMP 42 (rightmost 4 bytes)

C4 BCD 9 Account data for terminal account R/W EPP
ISO BMP 60 (load against other card)

C5 BCD 9 Account data for fee account R/W EPP

ISO BMP 60 ("Laden vom
Kartenkonto")

C6 EBCDIC 40 Terminal location R/W EPP
ISO BMP 43

C7 ASCII 3 Terminal currency R/W EPP

C8 BCD 7 Online date and time R/W HSM
(YYYYMMDDHHMMSS)
ISO BMP 61

C9 BCD 4 Minimum load fee in units of 1/100 of R/W EPP

terminal currency, checked against
leftmost 4 Bytes of ISO BMP42

CA BCD 4 Maximum load fee in units of 1/100 of R/W EPP
terminal currency, checked against
leftmost 4 Bytes of ISO BMP42

CB BIN 3 logical HSM binary coded serial R HSM
number (starts with 1; 0 means that
there are no logical HSMs)

CC EBCDIC 16 ZKA 1D (s filled during the pre- R HSM
initialization of the HSM)
CD BIN 1 HSM status R HSM

1 = irreversibly out of order
2 = out of order, K_UR is not loaded
3 = not pre-initialized, K UR is loaded
4 = pre-initialized, K_INIT is loaded
5 = initialized/personalized, K PERS is
loaded
CE EBCDIC variable, HSM-ID (6 byte Manufacturer- ID + R EPP
min. 16 min. 10 Byte serial number), as needed
for ISO BMP57 of a pre-initialization

In the table above, the fifth column indicates if the variable is read only or both read and write.
The sixth column indicates if the variable is unique per logical HSM or common across all logical
HSMs within an EPP.

Output Param None.

95

CWA 16926-65:2023 (E)

Error Codes

Events

Comments

96

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN HSMSTATEINVALID The HSM is not in a correct state to handle
this command.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN HSM TDATA CHANGED The terminal data has changed.

None.

CWA 16926-65:2023 (E)

5.1.17 WFS_CMD_PIN_SECURE_MSG_SEND

Description

Input Param

Output Param

Error Codes

This command handles all messages that should be sent through a secure messaging to an
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module adds the security relevant fields to the message and returns the modified message in the
output structure. All messages must be presented to the encryptor via this command even if they
do not contain security fields in order to keep track of the transaction status in the internal state
machine.

LPWFSPINSECMSG IpSecMsgln;

typedef struct wfs pin secure message

{

WFS_PIN_PROTISOLZ
WFS_PIN_PROTISOPS

WFS_PIN_PROTCHIPZKA
WFS_PIN_PROTRAWDATA
WFS_PIN_PROTPBM
WFS_PIN_PROTHSMLDI

WORD wProtocol;
ULONG ullLength;
LPBYTE 1lpbMsg;
} WESPINSECMSG, *LPWFSPINSECMSG;
wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:
Value Meaning
WEFS _PIN PROTISOAS ISO 8583 protocol for the authorization
system.

ISO 8583 protocol for the German
"Ladezentrale".

ISO 8583 protocol for the personalization
system.

ZKA chip protocol.

Raw data protocol.

PBM protocol (see [Ref. 8] - [Ref. 13])
HSM LDI protocol.

Generic PAC/MAC for non-ISO8583
message formats.

ZKA chip protocol for changing the PIN on
a GeldKarte.

Protocol for comparing PIN numbers entered
in the PIN pad during a PIN Change
transaction.

ISO8583 authorization system protocol for
changing the PIN on a GeldKarte.

WEFS_PIN PROTGENAS
WFS_PIN_PROTCHIPINCHG

WFS_PIN_PROTPINCMP

WFS_PIN_PROTISOPINCHG

ulLength
Specifies the length in bytes of the message in /[pbMsg. This parameter is ignored for the
WFS PIN PROTHSMLDI protocol.

IpbMsg
Specifies the message that should be send. This parameter is ignored for the
WEFS_PIN PROTHSMLDI protocol.

LPWFSPINSECMSG IpSecMsgOut;

IpSecMsgOut
peinterPointer to a WFSPINSECMSG structure that contains the modified message that can now
be send to an authorization system, German "Ladezentrale", personalization system or the chip.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

The HSM is not in a correct state to handle
this message.

The specified protocol is invalid.

The format of the message is invalid.

WFS_ERR PIN HSMSTATEINVALID

WFS_ERR_PIN_PROTINVALID
WFS_ERR_PIN_FORMATINVALID

97

CWA 16926-65:2023 (E)

Events

Comments

98

WFS ERR PIN CONTENTINVALID The contents of one of the security relevant
fields are invalid.

WFS _ERR PIN KEYNOTFOUND No key was found for PAC/MAC
generation.

WFS_ERR PIN NOPIN No PIN or insufficient PIN-digits have been
entered.

Only the generic events defined in [Ref. 1] can be generated by this command.

None.

5.1.18 WFS_CMD_PIN_SECURE_MSG_RECEIVE

CWA 16926-65:2023 (E)

Description

Input Param

Output Param

Error Codes

Events

This command handles all messages that are received through a secure messaging from an
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module checks the security relevant fields. All messages must be presented to the encryptor via
this command even if they do not contain security relevant fields in order to keep track of the

transaction status in the internal state machine.

LPWFSPINSECMSG IpSecMsgln;

typedef struct wfs pin secure message

{

WORD wProtocol;
ULONG ullLength;
LPBYTE lpbMsg;

} WFSPINSECMSG, *LPWFSPINSECMSG;

wProtocol

Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WEFS_PIN PROTISOAS ISO 8583 protocol for the authorization
system.

WFS_PIN_PROTISOLZ
WFS_PIN_PROTISOPS
WFS_PIN_PROTCHIPZKA
WFS_PIN_PROTRAWDATA
WFS_PIN_PROTPBM
WFS_PIN_PROTGENAS
WFS_PIN_PROTCHIPINCHG

WEFS_PIN _PROTPINCMP

WEFS_PIN_PROTISOPINCHG

ulLength

ISO 8583 protocol for the German
"Ladezentrale".

ISO 8583 protocol for the personalization
system.

ZKA chip protocol.

Raw data protocol.

PBM protocol (see [Ref. 8] — [Ref. 13]).
Generic PAC/MAC for non-ISO8583
message formats.

ZKA chip protocol for changing the PIN on
a GeldKarte.

Protocol for comparing PIN numbers entered
in the PIN pad during a PIN Change
transaction.

ISO8583 authorization system protocol for
changing the PIN on a GeldKarte.

Specifies the length in bytes of the message in lpbMsg.

IpbMsg

Specifies the message that was received. This value can be NULL if during a specified time
period no response was received from the communication partner (necessary to set the internal

state machine to the correct state).

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value

Meaning

WFS_ERR_PIN_ACCESSDENIED

WFS_ERR PIN_HSMSTATEINVALID

WFS ERR PIN MACINVALID

WEFS_ERR PIN PROTINVALID

WFS _ERR PIN FORMATINVALID
WFS _ERR PIN CONTENTINVALID

WFS_ERR PIN KEYNOTFOUND

The encryption module is either not
initialized or not ready for any vendor
specific reason.

The HSM is not in a correct state to handle
this message.

The MAC of the message is not correct.
The specified protocol is invalid.

The format of the message is invalid.

The contents of one of the security relevant
fields are invalid.

No key was found for MAC verification.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

99

CWA 16926-65:2023 (E)

command:

Value Meaning

WFS SRVE PIN HSM_TDATA CHANGED The terminal data has changed.

Comments None.

100

5.1.19 WFS_

CWA 16926-65:2023 (E)

CMD_PIN_GET_JOURNAL

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to get journal data from the encryption module. It retrieves
cryptographically secured information about the result of the last transaction that was done with
the indicated protocol. When the Service Provider supports journaling (see Capabilities) then it is
impossible to do any WFS_ CMD PIN SECURE MSG SEND/RECEIVE with this protocol,
unless the journal data is retrieved. It is possible - especially after restarting a system - to get the
same journal data again.

LPWORD IpwProtocol;

IpwProtocol

Specifies the protocol the journal data belong to. Specified as one of the following flags:
Value Meaning
WEFS_PIN PROTISOAS Get authorization system journal data.
WFS_PIN PROTISOLZ Get German "Ladezentrale" journal data.
WEFS _PIN PROTISOPS Get personalization system journal data.
WFS PIN PROTPBM Get PBM protocol data.

LPWFSXDATA IpxJournalData;

IpxJournalData
Pointer to the journal data.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS_ERR PIN HSMSTATEINVALID The HSM is not in a correct state to return
journal data.
WFS ERR PIN PROTINVALID The specified protocol is invalid.

Only the generic events defined in [Ref. 1] can be generated by this command.

None.

101

CWA 16926-65:2023 (E)

5.1.20 WFS_CMD_PIN_IMPORT_KEY_EX

Description The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
"key encryption key". The dwUse parameter is needed to separate the keys in several parts of the
encryption module to avoid the manipulation of a key. A key can be loaded in multiple
unencrypted parts by combining the WFS PIN _USECONSTRUCT or
WEFS PIN USESECURECONSTRUCT value with the final usage flag within the dwUse field.

If the WFS _PIN USECONSTRUCT flag is used then the application must provide the key data
through the IpxValue parameter, If WFS PIN USESECURECONSTRUCT is used then the
encryption key part in the secure key buffer previously populated with the

WFS _CMD PIN SECUREKEY ENTRY command is used and /pxValue is ignored. Key parts
loaded with the WFS_PIN_ USESECURECONSTRUCT flag can only be stored once as the
encryption key in the secure key buffer is no longer available after this command has been
executed. The WFS PIN USECONSTRUCT and WFS_PIN USESECURECONSTRUCT
construction flags cannot be used in combination.

Input Param LPWFSPINIMPORTKEYEX IpImportKeyEx;

typedef struct wfs pin import key ex
{

LPSTR lpsKey;

LPSTR lpsEncKey;
LPWESXDATA lpxValue;
LPWESXDATA lpxControlVector;
DWORD dwUse;

WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;

} WESPINIMPORTKEYEX, *LPWFSPINIMPORTKEYEX;

IpsKey
Specifies the name of key being loaded.

IpsEncKey

IpsEncKey specifies a key name which was used to encrypt (in ECB mode) the key string passed
in IpxValue. If IpsEncKey is NULL the key is loaded directly into the encryption module.
IpsEncKey must be NULL if dwUse contains WFS_PIN USECONSTRUCT or
WFS_PIN_USESECURECONSTRUCT.

IpxValue
Specifies the value of key to be loaded. If it is an RSA key the first 4 bytes contain the exponent
and the following 128 the modulus.

IpxControlVector
Specifies the control vector of the key to be loaded. It contains the attributes of the key. If this
parameter is NULL the keys is only specified by dwUse. See also [Ref. 26].

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be a combination of the following flags:

Value Meaning

WEFS PIN USECRYPT Key is used for encryption and decryption.

WEFS _PIN USEFUNCTION Key is used for PIN block creation.

WEFS_PIN USEMACING Key is used for MACing.

WEFS PIN USEKEYENCKEY Key is used as key encryption key.

WEFS PIN USEPINLOCAL Key is used only for local PIN check.

WEFS PIN USERSAPUBLIC Key is used as a public key for RSA
encryption including EMV PIN block
creation.

WFS PIN USERSAPRIVATE Key is used as a private key for RSA

decryption (it is not recommended that
private keys are imported with this function).

102

CWA 16926-65:2023 (E)

WEFS PIN USECONSTRUCT Key is under construction through the import
of multiple parts. This value is used in
combination with one of the other key usage
flags.

WEFS_PIN USESECURECONSTRUCT Key is under construction through the import
of multiple parts. This value is used in
combination with one of the other key usage
flags. IpxValue is ignored as the encryption
key part is taken from the secure key buffer.

WEFS PIN USEANSTR31MASTER Key can be used for importing keys
packaged within an ANS-TR3+ANSI
X9.143 key block. This key usage can only
be combined with
WFS_PIN USECONSTRUCT and
WFS_PIN USESECURECONSTRUCT.

WEFS PIN USEPINREMOTE Key is used only for PIN block creation.

WFS PIN USERESTRICTEDKEYENCKEY Key is used as
WFS PIN USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value Meaning

WFS PIN_KCVNONE There is no key check value verification
required.

WEFS _PIN _KCVSELF The key check value (KCV) is created by an
encryption of the key with itself. Forthe
dE\E(\F'Igt'(BF] I<e£‘eF te the

WEFS _PIN KCVZERO The key check value (KCV) is created by

encrypting a zero value with the key.-Unless

D

For descriptions of key-usedthese flags refer to generate-the KEVthe fwKeyCheckModes
capability value.
IpxKeyCheckValue

Specifies a check value to verify that the value of the imported key is correct. It can be NULL, if
no key check value verification is required and wKeyCheckMode equals WFS_PIN_ KCVNONE.

Output Param None.

Error Codes

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN KEYNOTFOUND The specified key encryption key was not
found or attempting to delete a non-existent
key.

WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

103

CWA 16926-65:2023 (E)

Events

Comments

104

WFS_ERR_PIN_DUPLICATEKEY
WFS_ERR_PIN_KEYNOVALUE
WFS_ERR_PIN_USEVIOLATION

WEFS_ERR PIN INVALIDKEYLENGTH

WFS_ERR_PIN_KEYINVALID

WFS_ERR_PIN. NOKEYRAM

A key exists with that name and cannot be
overwritten.

The specified key encryption key is not
loaded.

The specified use conflicts with a previously
for the same key specified one.

The length of lpxValue is not supported-er,
the encryption key in the secure key buffer is
invalid (or has not been entered)). or the
length of an encryption key is not compatible
with the encryption operation required.

The key value is invalid. The key check
value verification failed.

There is no space left in the key RAM for a
key of the specified type.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption

key.

When keys are loaded in multiple parts, all parts of the key loaded must set the relevant
construction value in the dwUse field along with any usages needed for the final key use. The
usage flag must be consistent for all parts of the key. Activation of a key entered in multiple parts
is indicated through an additional final call to this command, where the construction flag is
removed from dwUse but those other usages defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A
WFS_ERR PIN ACCESSDENIED error will be returned if the key cannot be activated, e.g. if

only one key part has been entered.

When a construction flag is set, the optional KCV applies to the key part being imported. If the
KVC provided for a key part fails verification, the key part will not be accepted. When the key is
being activated, the optional KCV applies to the complete key already stored. If the KVC
provided during activation fails verification, the key will not be activated.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a dwUse value that indicates it is under construction,

it cannot be used for cryptographic functions.

CWA 16926-65:2023 (E)

5.1.21 WFS_CMD_PIN_ENC_IO

Description

Input Param

Output Param

This command is used to communicate with the encryption module. Transparent data is sent from
the application to the encryption module and the response is returned transparently to the
application.

This command is used to add support for country-specific protocols.

LPWFSPINENCIO IpEncloln;

typedef struct wfs pin enc io

{

WORD wProtocol;
ULONG ulDatalLength;
LPVOID lpvData;

} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module. The following
protocol numbers are defined:

Value Meaning

WFS PIN ENC PROT CH For Swiss specific protocols. The document
specification for Swiss specific protocols is
"CMD_ENC IO - CH Protocol.doc". This
document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management
Hertistrasse 27
CH-8304 Wallisellen

WFS PIN ENC PROT GIECB Protocol for “Groupement des Cartes
Bancaires” (France).
WFS PIN ENC PROT LUX Protocol for Luxemburg commands. The

reference for this specific protocol is the
Authorization Center in Luxemburg
(CETREL.)
Cryptography Management
Postal address:
CETREL Société Coopérative
Centre de Transferts Electroniques
L-2956 Luxembourg

WFS PIN ENC PROT CHN Protocol for China commands. The reference
for this specific protocol are the Financial
industry standard of the People’s Republic of
China PBOC3.0 JR/T 0025 [Ref. 44] and the
Password industry standard of the People's
Republic of China GM/T 0003, GM/T 0004
[Ref. 43].

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field /pvData.

IpvData
Points to a structure containing the data to be sent to the encryption module. This structure
depends on the wProtocol field where each protocol may contain a different structure.

LPWFSPINENCIO IpEncloOut;

typedef struct wfs pin enc io

{

WORD wProtocol;
ULONG ulDatalLength;
LPVOID lpvData;

} WESPINENCIO, *LPWESPINENCIO;

105

CWA 16926-65:2023 (E)

wProtocol
Identifies the protocol that is used to communicate with the encryption module. This field
contains the same value as the corresponding field in the input structure.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field /pvData.

IpvData
Points to a structure containing the data responded by the encryption module.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN PROTOCOLNOTSUPP The specified protocol is not supported by
the Service Provider. For wProtocol=
WFS_PIN_ENC _PROT_GIECB.

WFS_ERR PIN RANDOMINVALID The encrypted random number in the input
data does not decrypt to the one previously
provided by the EPP.

WFS _ERR PIN SIGNATUREINVALID The signature in the input data is invalid.

WFS _ERR PIN SNSCDINVALID The SCD serial number in the input data is
invalid.

WFS ERR PIN HSMSTATEINVALID The HSM is not in a correct state to handle
this command.

WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

WFS_ERR_PIN_KEYINVALID The key value is invalid.

WFS ERR PIN KEY GENERATION ERROR
The EPP is unable to generate a key pair.

Events None.

Comments For the WFS_PIN ENC PROT CH, WFS PIN ENC PROT LUX and the
WEFS PIN_ENC PROT_CHN protocols, the WFS_CMD_PIN _ENC 10 command only returns
generic error codes. Protocol specific error codes will be returned by the AResult within the output
data.

106

CWA 16926-65:2023 (E)

5.1.22 WFS_CMD_PIN_HSM_INIT

Description

Input Param

This command is used to set the HSM out of order. If multiple logical HSMs are configured then
the command sets the currently active logical HSM out of order. At the same time the online time
can be set to control when the OPT online dialog (see WFS_PIN PROTISOPS protocol) shall be
started to initialize the HSM again. When this time is reached a
WFS_SRVE PIN OPT_REQUIRED event will be sent.

LPWFSPINHSMINIT IpHsmlnit;

typedef struct wfs pin hsm init
{

WORD wInitMode;
LPWESXDATA lpxOnlineTime;
} WFSPINHSMINIT, *LPWFSPINHSMINIT
wilnitMode
Specifies the init mode as one of the following flags:
Value Meaning
WEFS _PIN INITTEMP Initialize the HSM temporarily (K_UR
remains loaded).
WEFS_PIN INITDEFINITE Initialize the HSM definitely (K_UR is
deleted).
WEFS _PIN_INITIRREVERSIBLE Initialize the HSM irreversibly (can only be

restored by the vendor).

IpxOnlineTime

Specifies the Online date and time in the format YYYYMMDDHHMMSS like in ISO BMP 61 as
BCD packed characters. This parameter is ignored when the init mode equals

WES PIN INITDEFINITE or WFS PIN INITIRREVERSIBLE. If this parameter is NULL,
ulLength is zero or the value is 0x00 0x00 0x00 0x00 0x00 0x00 0x00 the online time will be set
to a value in the past.

Output Param None.

Error Codes

Events

Comments

The following additional error codes can be generated by this command:

Value Meaning
WFS _ERR PIN MODENOTSUPPORTED The specified init mode is not supported.
WEFS_ERR PIN HSMSTATEINVALID The HSM is not in a correct state to handle

this command.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN HSM TDATA CHANGED The terminal data has changed.

None.

107

CWA 16926-65:2023 (E)

5.1.23 WFS_CMD_PIN_SECUREKEY_ENTRY

Description

Input Param

108

This command allows a full length symmetric encryption key part to be entered directly into the
PIN pad without being exposed outside of the PIN pad. From the point this function is invoked,
encryption key digits (WFS_PIN_FK 0to WFS_PIN FK 9 and WFS PIN FK A to

WEFS PIN FK F) are not passed to the application. For each encryption key digit, or any other
active key entered (except for shift), an execute notification event WFS EXEE PIN KEY is sent
in order to allow an application to perform the appropriate display action (i.e. when the PIN pad
has no integrated display). When an encryption key digit is entered the application is not informed
of the value entered, instead zero is returned.

The WFS_EXEE PIN ENTERDATA event will be generated when the PIN pad is ready for the
user to start entering data.

The keys that can be enabled by this command are defined by the lpFuncKeyDetail parameter of
the WFS_INF_PIN SECUREKEY DETAIL command. Function keys which are not associated
with an encryption key digit may be enabled but will not contribute to the secure entry buffer
(unless they are Cancel, Clear or Backspace) and will not count towards the length of the key
entry. The Cancel and Clear keys will cause the encryption key buffer to be cleared. The
Backspace key will cause the last encryption key digit in the encryption key buffer to be removed.

If bAutoEnd is TRUE the command will automatically complete when the required number of
encryption key digits have been added to the buffer.

If bAutoEnd is FALSE then the command will not automatically complete and Enter, Cancel or
any terminating key must be pressed. When usKeyLen hex encryption key digits have been
entered then all encryption key digits keys are disabled. If the Clear or Backspace key is pressed
to reduce the number of entered encryption key digits below usKeyLen, the same keys will be re-
enabled.

Terminating keys have to be active keys to operate.

If an FDK is associated with Enter, Cancel, Clear or Backspace then the FDK must be activated to
operate. The Enter and Cancel FDKs must also be marked as a terminator if they are to terminate
entry. These FDKs are reported as normal FDKs within the WFS_EXEE PIN KEY event,
applications must be aware of those FDKs associated with Cancel, Clear, Backspace and Enter
and handle any user interaction as required. For example, if the WFS PIN FK FDKO1 is
associated with Clear, then the application must include the WFS_PIN_FK FDKO1 FDK code in
the ulActiveFDKs parameter (if the clear functionality is required). In addition when this FDK is
pressed the WFS_EXEE PIN KEY event will contain the WFS PIN_FK FDKO01 mask value in
the u/Digit field. The application must update the user interface to reflect the effect of the clear on
the encryption key digits entered so far.

On some devices that are configured as either WFS PIN_ SECUREKEY REG UNIQUE or

WEFS _PIN SECUREKEY IRREG UNIQUE all the function keys on the PIN pad will be
associated with hex digits and there may be no FDKs available either. On these devices there may
be no way to correct mistakes or cancel the key encryption entry before all the encryption key
digits are entered, so the application must set the bAutoEnd flag to TRUE and wait for the
command to auto-complete. Applications should check the KCV to avoid storing an incorrect key
component.

Encryption key parts entered with this command are stored through either the
WFS_CMD_PIN IMPORT KEY or WFS_CMD_PIN IMPORT_KEY_ EX. Each key part can
only be stored once after which the secure key buffer will be cleared automatically.

If a password is required to be entered using the WFS CMD_PIN_PASSWORD ENTRY
command before this function is called and it is not entered, then
WES_ERR SEQUENCE ERROR will be returned.

LPWFSPINSECUREKEYENTRY IpSecureKeyEntry;

CWA 16926-65:2023 (E)

typedef struct wfs pin secure key entry

{

USHORT usKeyLen;

BOOL bAutoEnd;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
WORD wVerificationType;

} WESPINSECUREKEYENTRY, *LPWEFSPINSECUREKEYENTRY;

usKeyLen
Specifies the number of digits which must be entered for the encryption key. For example, 16 for
a single-length key, 32 for a double-length key and 48 for a triple-length key.

bAutoEnd

If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of encryption key digits are entered. Otherwise, the input is terminated by the user using
Enter, Cancel or any terminating key. When usKeyLen is reached, the Service Provider will
disable all keys associated with an encryption key digit.

ulActiveFDKs
Specifies those FDKs which are active during the execution of the command. This parameter
should include those FDKs mapped to edit functions.

ulActiveKeys

Specifies all Function Keys_(not FDKs) which are active during the execution of the command.
This should be the complete set or a subset of the keys returned in the lpFuncKeyDetail parameter
of the WFS_INF PIN SECUREKEY DETAIL command. This should include WFS PIN FK 0
to WFS_PIN FK 9 and WFS PIN FK A to WFS PIN FK F for all modes of secure key entry,
but should also include WFS_PIN_FK_SHIFT on shift based systems. The WFS_PIN_FK 00,
WFS PIN FK 000 and WFS PIN FK DECPOINT function keys must not be included in the
list of active or terminate keys.

ulTerminateFFDKs
Specifies those FDKs which must terminate the execution of the command. This should include
the FDKs associated with Cancel and Enter.

ulTerminateKeys
Specifies those-aH Function Keys (not FDKs) which must terminate the execution of the
command. This does not include the FDKs associated with Enter or Cancel.

wvVerificationType
Specifies the type of verification to be done on the entered key. Possible values are as follows:
Value Meaning
WEFS _PIN_KCVSELF The key check value (KCV) is created by an
encryption of the key with itself. Forthe
d‘\s(\F'pt'(ala I<e£‘eF te the

=Y aQ

WEFS PIN KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key.-Unless

D

For descriptions of keyusedthese flags refer to generate-the KCVthe fwKeyvCheckModes
capability value.
If ene-of the following flagsflag is not included, usKeyLen will determine the cryptographic

method used. If usKeyLen is 16, the cryptographic method will be Single DES. If usKeyLen is 32
or 48, the cryptographic method will be Triple DES:

Value Meaning

WFS PIN KCV-DES— Sinsle DES.
WES—PIN-KCV-_AESKCVAES AES.

109

CWA 16926-65:2023 (E)

Output Param LPWFSPINSECUREKEYENTRYOUT IpSecureKeyEntryOut;

Error Codes

Events

Comments

110

typedef struct wfs pin secure key entry out

{

USHORT usDigits;
WORD wCompletion;
LPWESXDATA 1pxKCV;

} WESPINSECUREKEYENTRYOUT, *LPWESPINSECUREKEYENTRYOUT;

usDigits
Specifies the number of key digits entered. Applications must ensure all required digits have been
entered before trying to store the key.

wCompletion
Specifies the reason for completion of the entry. Possible values are described in
WFS_CMD_PIN_GET PIN.

IpxKCV

Contains the key check value data that can be used for verification of the entered key. This
parameter is NULL if device does not have this capability, or the key entry was not fully entered,
e.g. the entry was terminated by Enter before the required number of digits was entered.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

At least one of the specified function keys or
FDKs is invalid.

At least one of the specified function keys or
FDKs is not supported by the Service

Provider.

WFS _ERR PIN KEYINVALID

WEFS_ERR PIN KEYNOTSUPPORTED

WFS_ERR_PIN_NOACTIVEKEYS
WFS_ERR_PIN_ NOTERMINATEKEYS
WFS_ERR_PIN_INVALIDKEYLENGTH
WFS_ERR_PIN_ MODENOTSUPPORTED
WFS_ERR_PIN_TOOMANYFRAMES
WFS_ERR_PIN_PARTIALFRAME
WFS_ERR_PIN_MISSINGKEYS

WFS_ERR PIN ENTRYTIMEOUT

Value

There are no active function keys specified,
or there is no defined layout definition.
There are no terminate keys specified and
bAutoEnd is FALSE.

The usKeyLen key length is not supported.
The KCV mode is not supported.

The device requires that only one frame is
used for this command.

The single Touch Frame does not cover the
entire monitor.

The single frame does not contain a full set
of hexadecimal key definitions.

The timeout for entering data has been
reached. This is a timeout which may be due
to hardware limitations or legislative
requirements (for example PCI).

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Meaning

WFS_EXEE_PIN_KEY

WFS_EXEE PIN ENTERDATA

WFS_EXEE_PIN_LAYOUT

None.

A key has been pressed at the PIN pad.
Applications must be aware of the
association between FDKs and the edit
functions reported within the

WEFS _INF PIN SECUREKEY DETAIL
command.

The PIN pad is ready for the user to start
entering data.

The layout has changed position. For ETS
devices only.

CWA 16926-65:2023 (E)

5.1.24 WFS_CMD_PIN_GENERATE_KCV

Description

Input Param

Output Param

Error Codes

Events

Comments

This command returns the Key Check Value (KCV) for the specified key.

LPWFSPINGENERATEKCYV IpGenerateKCV;

typedef struct wfs pin generate KCV
{

LPSTR lpsKey;
WORD wKeyCheckMode;
} WESPINGENERATEKCV, *LPWFSPINGENERATEKCV;
IpsKey
Specifies the name of key that should be used to generate the KCV.
wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:
Value Meaning
WEFS PIN KCVSELF The key check value (KCV) is created by an
encryption of the key with itself. Forthe
‘< ~pe1 1 o
71 ~ coral desci .
WFS PIN KCVZERO The key check value (KCV) is created by

encrypting a zero value with the key.-Unless

For descriptions of keyusedthese flags refer to generate-the KKCVthe fwKeyvCheckModes
capability value.
LPWFSPINKCV IpKCV;

typedef struct wfs pin kcv

{
LPWESXDATA 1pxKCV;
} WESPINKCV, *LPWESPINKCV;

IpxKCV
Contains the key check value data that can be used for verification of the key.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN KEYNOTFOUND The specified key encryption key was not
found.

WFS ERR PIN KEYNOVALUE The specified key exists but has no value
loaded.

WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.
WFS_ERR PIN MODENOTSUPPORTED The KCV mode is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

111

CWA 16926-65:2023 (E)

5.1.25WFS_CMD_PIN_SET_GUIDANCE_LIGHT

Description

Input Param

Output Param

Error Codes

Events

Comments

112

This command is used to set the status of the PIN guidance lights. This includes defining the flash
rate, the color and the direction. When an application tries to use a color or direction that is not
supported then the Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

LPWFSPINSETGUIDLIGHT IpSetGuidLight;

typedef struct wfs pin set guidlight
{

WORD wGuidLight;
DWORD dwCommand;
} WESPINSETGUIDLIGHT, *LPWFSPINSETGUIDLIGHT;
wGuidLight

Specifies the index of the guidance light to set as one of the values defined within the capabilities
section:

dwCommand

Specifies the state of the guidance light indicator as WFS PIN GUIDANCE OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
one type D. If no value of type C is specified then the default color is used. The Service Provider
determines which color is used as the default color.

Value Meaning Type

WEFS _PIN_ GUIDANCE_OFF The light indicator is turned off. A

WFS PIN GUIDANCE _SLOW_FLASH The light indicator is set to flash B
slowly.

WFS_PIN GUIDANCE MEDIUM FLASH The light is blinking medium B
frequency.

WEFS PIN GUIDANCE QUICK FLASH The light indicator is set to flash B
quickly.

WEFS_PIN GUIDANCE CONTINUOUS The light indicator is turned on B
continuously (steady).

WEFS _PIN GUIDANCE RED The light indicator color is set C
to red.

WFS PIN GUIDANCE GREEN The light indicator color is setto C
green.

WFS PIN GUIDANCE YELLOW The light indicator color is setto C
yellow.

WFS _PIN_ GUIDANCE BLUE The light indicator coloris setto C
blue.

WEFS PIN GUIDANCE CYAN The light indicator coloris setto C
cyan.

WEFS _PIN GUIDANCE MAGENTA The light indicator coloris setto C
magenta.

WEFS PIN GUIDANCE WHITE The light indicator color is setto C
white.

WFS PIN GUIDANCE ENTRY The light indicator is set D
to the entry state.

WFS PIN GUIDANCE_ EXIT The light indicator is set D

to the exit state.
None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN INVALID PORT An attempt to set a guidance light to a new
value was invalid because the guidance light
does not exist.

Only the generic events defined in [Ref. 1] can be generated by this command.

Guidance light support was added into the PIN primarily to support guidance lights for
workstations where more than one instance of a PIN is present. The original SIU guidance light

CWA 16926-65:2023 (E)

mechanism was not able to manage guidance lights for workstations with multiple PINs. This
command can also be used to set the status of the PIN guidance lights when only one instance of a
PIN is present.

The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

113

CWA 16926-65:2023 (E)

5.1.26 WFS_CMD_PIN_MAINTAIN_PIN

Description

Input Param

Output Param
Error Codes
Events

Comments

114

This command is used to control if the PIN is maintained after a PIN processing command for
subsequent use by other PIN processing commands. This command is also used to clear the PIN
buffer when the PIN is no longer required.

LPWFSPINMAINTAINPIN IpMaintainPinIn;

typedef struct wfs pin maintain pin

{

BOOL bMaintainPIN;
} WESPINMAINTAINPIN, *LPWESPINMAINTAINPIN;
bMaintainPIN

Specifies if the PIN should be maintained after a PIN processing command. Once set, this setting
applies until changed through another call to this command. This value is not persistent across
reboots.

Value Meaning
TRUE The PIN should be maintained after PIN
processing commands for multiple uses.
FALSE The PIN will be cleared and subsequent
PINs will not be maintained for multiple
uses.
None.

Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

When using this command to maintain a PIN for multiple transactions/PIN processing commands,
applications should ensure that a customer’s PIN is cleared after they have completed all their
transactions. The PIN is cleared by calling this command with bMaintainPIN set to FALSE.

CWA 16926-65:2023 (E)

5.1.27 WFS_CMD_PIN_KEYPRESS_BEEP

Description

Input Param

Output Param
Error Codes
Events

Comments

This command is used to enable or disable the PIN device from emitting a beep tone on
subsequent key presses of active or in-active keys. This command is valid only on devices which
have the capability to support application control of automatic beeping. See

WFS _INF PIN_CAPABILITIES structure for information.

LPWORD IlpwMode;

IpwMode

Specifies whether automatic generation of key press beep tones should be activated for any active
or in-active key subsequently pressed on the PIN. [pwMode selectively turns beeping on and off
for active, in-active or both types of keys. [pwMode contains a combination of the following flags:

Value Meaning

WFS PIN BEEP ON ACTIVE Specifies that beeping should be enabled for
active keys. If this flag is not present then
beeping is disabled for active keys.

WEFS PIN BEEP _ON_INACTIVE Specifies that beeping should be enabled for
in-active keys. If this flag is not present then
beeping is disabled for in-active keys.

None.
Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

None.

115

CWA 16926-65:2023 (E)

5.1.28 WFS_CMD_PIN_SET_PINBLOCK_DATA

Description

Input Param

Output Param

Error Codes

Events

Comments

116

This function should be used for devices which need to know the data for the PIN block before
the PIN is entered by the user. WFS_CMD PIN GET PIN and

WFS CMD PIN GET_PINBLOCK should be called after this command. For all other devices
WFS ERR UNSUPP _COMMAND will be returned here.

If this command is required and it is not called, the WFS_ CMD PIN GET PIN command will
fail with the generic error WFS_ ERR _SEQUENCE ERROR.

If the input parameters passed to this command and WFS_ CMD PIN GET PINBLOCK are not
identical, the WFS CMD PIN GET PINBLOCK command will fail with the generic error
WFS ERR INVALID DATA.

The data associated with this command will be cleared on a WFS_ CMD_PIN GET PINBLOCK
command.

LPWFSPINBLOCK IpPinSetBlockData;
See WFS_CMD_PIN GET PINBLOCK for details.
None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS _ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN FORMATNOTSUPP The specified format is not supported.

WFS_ERR PIN INVALIDKEYLENGTH The length of IpsKeyEncKey or IpsKey is not
supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

CWA 16926-65:2023 (E)

5.1.29 WFS_CMD_PIN_SET_LOGICAL_HSM

Description

Input Param

Output Param

Error Codes

Events

Comments

This command allows an application to select the logical HSM that should be active. If the device
does not support multiple logical HSMs this command returns

WFS_ERR _UNSUPP_COMMAND. The WFS_INF_PIN QUERY_LOGICAL HSM_DETAIL
command can be called to determine the current active logical HSM.

Once the active logical HSM is set with this command, that logical HSM remains active until this
command is used to change the logical HSM or the system is re-started.

The selected HSM is not persistent across re-boots, when applications want to address a specific
logical HSM they must ensure that the correct logical HSM is set as the active logical HSM.

The commands affected by this command are as follows:
e WEFS INF PIN HSM TDATA
e WEFS INF PIN KEY DETAIL EX
e WFS CMD PIN HSM SET TDATA

e WFS CMD PIN SECURE MSG SEND (only affected for the protocols
WEFS_PIN PROTHSM EDIPROTHSMLDI and WFS_PIN PROTISOPS)

e WFS CMD PIN SECURE MSG RECEIVE (only affected for the protocols
WFS PIN PROFTHSM-EDBIPROTHSMLDI and WFS_PIN_ PROTISOPS)

e WFS_CMD PIN _HSM_INIT

e WFS CMD PIN GET JOURNAL (only affected for the protocol
WFS PIN PROTISOPS)

If there are multiple XFS applications that manipulate the current logical HSM then applications
must co-operate or use the XFS locking facilities to synchronize access to the logical HSMs. The
current logical HSM is the same for all clients.

LPWFSPINHSMIDENTIFIER IpSetHSM;

typedef struct wfs pin hsm identifier

{
WORD wHSMSerialNumber;
} WESPINHSMIDENTIFIER, *LPWEFSPINHSMIDENTIFIER;

wHSMSerialNumber

Specifies the serial number of the HSM that should be set as the active HSM. The value passed in
this field corresponds to the wHSMSerialNumber field reported in the

WEFS INF PIN QUERY LOGICAL HSM DETAIL command output structure (and hence
corresponds to the CB tag in the HSM TDATA). The wHSMSerialNumber value is encoded as a
standard binary value (i.e. it is not BCD).

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN INVALIDHSM The logical HSM serial number specified is
not valid.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS SRVE PIN HSM_CHANGED Indicates that the current logical HSM has
changed to the HSM identified within the
event.
None.

117

CWA 16926-65:2023 (E)

5.1.30 WFS_CMD_PIN_IMPORT_KEYBLOCK

Description

Input Param

Output Param

Error Codes

Events

Comments

118

The command imports an encryption key that has been passed by the application within an ANSI
X9-FR-31+.143 key block (see reference[Ref. 35)]).

LPWFSPINIMPORTKEYBLOCK IpImportKeyBlock;

typedef struct wfs pin import key block
{

LPSTR lpsKey;
LPSTR lpsEncKey;
LPWESXDATA lpxKeyBlock;

} WESPINIMPORTKEYBLOCK, *LPWFSPINIMPORTKEYBLOCK;

IpsKey
Specifies the name of key being loaded.

IpsEncKey
IpsEncKey specifies a key name which will be used to verify and decrypt the key block passed in
IpxKeyBlock. This key must have a key usage defined as WFS_PIN _USEANSTR31MASTER.

IpxKeyBlock

Specifies the complete key block for the key being imported. If importing a DUKPT Initial Key,
the Key Set Identifier (‘KS’) must be included in one of the Key Block Header optional blocks
(see referenee[Ref. 35)]).

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN KEYNOTFOUND The specified key encryption key was not
found.

WEFS_ERR PIN KEYNOVALUE The specified key encryption key is not
loaded.

WFS ERR PIN FORMATINVALID The format of the key block is invalid.

WFS _ERR PIN CONTENTINVALID The content of the key block is invalid.

WFS ERR PIN FORMATNOTSUPP The key block version or content is not
supported.

WFS_ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.
WFS ERR PIN USEVIOLATION The key control flags specified within the

key block are inconsistent, are not supported
by the hardware, or the [psEncKey is not
defined as a
WFS_PIN_USEANSTR31MASTER key.
WFS_ERR PIN INVALIDKEYLENGTH The length of the actual encryption key
within /pxKeyBlockValue is not supported.

WEFS_ERR PIN KEYINVALID The key block failed its authentication
check.
WFS_ERR PIN NOKEYRAM There is no space left in the key RAM for a

key of the specified type.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

CWA 16926-65:2023 (E)

5.1.31 WFS_CMD_PIN_POWER_SAVE_CONTROL

Description

Input Param

Output Param

Error Codes

Events

Comments

This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

LPWFSPINPOWERSAVECONTROL IpPowerSaveControl;

typedef struct wfs pin power save control
{

USHORT usMaxPowerSaveRecoveryTime;
} WESPINPOWERSAVECONTROL, *LPWESPINPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime

Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN POWERSAVETOOSHORT The power saving mode has not been
activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN POWER SAVE CHANGE The power save recovery time has changed.

None.

119

CWA 16926-65:2023 (E)

5.1.32 WFS_CMD PIN DEFINE_LAYOUT

Description

Input Param

Output Param

Error Codes

Events

Comments

120

This command allows an application to configure a layout for any PIN device. One or more
layouts can be defined with a single request of this command.

There can be a layout for each of the different types of keyboard entry modes, if the vendor and
the hardware supports these different methods. The types of keyboard entry modes are (1) Mouse
mode, (2) XFS Data mode which corresponds to the WFS CMD PIN GET DATA command,
(3) XFS PIN mode which corresponds to the WFS CMD PIN GET PIN command, and (4) XFS
Secure mode which corresponds to the WFS CMD_ PIN SECUREKEY ENTRY command. One
or more layouts can be preloaded into the device, if the device supports this, or a single layout can
be loaded into the device immediately prior to the keyboard command being requested.

Ifa WFS CMD_PIN_GET DATA, WFS CMD_ PIN GET PIN, or
WFS _CMD PIN SECUREKEY ENTRY command is already in progress (or queued), then this
command is rejected with a command result of WFS_ERR_SEQUENCE_ERROR.

It is recommended that WFS_INF PIN_ GET LAYOUT is used before this command to check
for the presence of frames containing Physical Keys (FKs or FDKs). If a layout includes one or
more frames containing Physical Keys, the number of frames containing Physical Keys, the size
and position of the frame, and the size, position and order of the keys contained in the frame,
cannot be changed.

Layouts defined with this command are persistent.
LPWFSPINLAYOUT *IppLayout;
Pointer to a null-terminated array of pointers to WFSPINLAYOUT structures.

For the definition of the WFSPINLAYOUT structure, see command
WFS_INF _PIN_GET LAYOUT.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value

Meaning

WFS_ERR PIN MODENOTSUPPORTED
WFS_ERR PIN FRAMECOORD

WFS_ERR_PIN_KEYCOORD
WFS_ERR_PIN_FRAMEOVERLAP
WFS_ERR_PIN_KEYOVERLAP
WFS_ERR_PIN_ TOOMANYFRAMES
WFS_ERR_PIN_TOOMANYKEYS
WFS_ERR_PIN_KEYALREADYDEFINED

None.

None.

The device does not support the float action.
A frame coordinate or size field is out of
range.

A key coordinate or size field is out of range.
Frames are overlapping.

Keys are overlapping.

There are more frames defined than allowed.
There are more keys defined than allowed.
The combination of the wKeyType and
values for ul/FK and ulShiftFK can only be
used once per layout.

CWA 16926-65:2023 (E)

5.1.33 WFS_CMD_PIN_START_AUTHENTICATE

Description

Input Param

Output Param

This command is used to retrieve the data that needs to be signed and hence provided to the

WFS CMD PIN AUTHENTICATE command in order to perform an authenticated action on the
PIN device. If this command returns data to be signed then the

WFS CMD_PIN AUTHENTICATE command must be used to call the command referenced by
IpStartAuthenticate. Any attempt to call the referenced command without using the

WFS _CMD_PIN_ AUTHENTICATE command, if authentication is required, shall result in
WFS_ERR AUTH REQUIRED.

LPWFSPINSTARTAUTHENTICATE IpStartAuthenticate;

typedef struct wfs pin start authenticate

{

DWORD dwCommandID;

LPVOID lpvInputData;

} WESPINSTARTAUTHENTICATE, *LPWFSPINSTARTAUTHENTICATE;
dwCommandID

The XFS command ID of the command to which authentication is being applied.

IpvinputData

Pointer to the input data structure of the command referred to by dwCommandID. For details on
the contents of the structure pointed to by [pvinputData, refer to the command referenced by
dwCommandID.

LPWFSPINSTARTAUTHENTICATEOUT IpStartAuthenticateOut;

typedef struct wfs pin start authenticate out

{

HRESULT hInternalCmdResult;
LPWESXDATA lpxDataToSign;
DWORD dwSigners;

} WESPINSTARTAUTHENTICATEOUT, *LPWEFSPINSTARTAUTHENTICATEOUT;

hinternalCmdResult

Result from the command referenced by dwCommandID. 1f the data within [pvinputData is
invalid or cannot be used for some reason, then AlnternalCmdResult will return an error but the
result of this command will be WFS_SUCCESS.

IpxDataToSign

The data that must be signed by one of the authorities indicated by dwSigners before the
command referenced by dwCommandID can be executed. If the command specified by
dwCommandID does not require authentication, then [pxDataToSign is NULL and the command
result is WES_SUCCESS.

If dwSigners includes the WFS_PIN SIGNER TR34 flag, then either the

WEFS _PIN SIGNER CA or WFS_PIN SIGNER HL flag must also be set. In this case
IpxDataToSign shall contain a TR34 Random Number Token. It shall be the responsibility of the
host/HSM to use this data to build and sign the relevant TR34 token, incorporating this random
number. Please refer to X9 TR34-2012 [Ref. 42] for more details.

dwSigners
Specifies the allowed signers of the data as a combination of the following flags:

Value Meaning
WEFS_PIN SIGNER NONE Authentication is not required.
WFS _PIN_SIGNER CERTHOST The current Host can be used to sign

IpxDataToSign, using the RSA certificate-
based scheme.

WFS PIN_SIGNER SIGHOST The current Host can be used to sign
IpxDataToSign, using the RSA signature-
based scheme.

WEFS PIN SIGNER CA The Certificate Authority (CA) can be used
to sign /pxDataToSign.
WEFS _PIN SIGNER HL The Higher Level (HL) Authority can be

used to sign [pxDataToSign.

121

CWA 16926-65:2023 (E)

Error Codes
Events

Comments

122

WFS_PIN_SIGNER_TR34

WFS_PIN_SIGNER_CBCMAC

WFS_PIN_SIGNER_CMAC

WFS_PIN_SIGNER_RESERVED 1
WFS_PIN_SIGNER_RESERVED 2

WEFS PIN SIGNER RESERVED 3

The format of the data to sign must comply
with the data defined in X9 TR34-2012 [Ref.
42]. This value can only be returned in
combination with the

WEFS PIN_SIGNER CERTHOST,
WFS_PIN_SIGNER_CA or
WFS_PIN_SIGNER_HL flags.

A MAC calculated over the IpxDataToSign
using the CBC MAC algorithm can be used
as a signature.

A MAC calculated over the /pxDataToSign
using the CMAC algorithm can be used as a
signature.

Reserved for a vendor-defined signing
method.

Reserved for a vendor-defined signing
method.

Reserved for a vendor-defined signing
method.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

None.

To allow XFS client applications to be multi-vendor, the

WFS CMD_PIN START AUTHENTICATE and WFS CMD PIN AUTHENTICATE
commands can be executed even if authentication is not required. If authentication is not required
for a particular command, then the WFS CMD PIN START AUTHENTICATE command will
return WFS_SUCCESS, lpxDataToSign will be NULL, and dwSigners will be

WEFS_PIN SIGNER NONE.

Then, the client application can do one of two things:

(1) Call the WFS_CMD_PIN AUTHENTICATE command with dwSigner set to
WEFS_PIN_SIGNER_NONE and /pxSignedData set to NULL.

(2) Call the command referenced by dwCommandID directly (i.e. if authenticated delete is not
required, then the WFS_CMD_PIN IMPORT KEY command can be called directly in order

to delete a key).

CWA 16926-65:2023 (E)

5.1.34 WFS_CMD_PIN_AUTHENTICATE

Description

Input Param

This command can be used to add authentication to any existing PIN command. The functionality
of the command specified by dwCommandID will be executed within the context of this
command, and the XFS application should not call the command specified by dwCommandID.
The signed data is unique for each command request and therefore can be used only once per
command.

The WFS_CMD PIN START AUTHENTICATE command must be called before this
command. If this command is called without first calling the
WFS_CMD_PIN _START AUTHENTICATE command, then this command will fail and
WFS ERR SEQUENCE ERROR will be returned.

The WFS_CMD_PIN START AUTHENTICATE command does not need to immediately
precede the WFS CMD_PIN AUTHENTICATE command. It is acceptable for other commands
to be executed between these commands, except for any command that will clear from the PIN
device the data that is being saved in order to verify the signed data provided in the

WFS CMD_ PIN AUTHENTICATE command. If this occurs, then

WFS_ERR SEQUENCE_ERROR will be returned.

LPWFSPINAUTHENTICATE IpAuthenticate;

typedef struct wfs pin authenticate

{

DWORD dwSigner;
LPSTR lpsSigKey;
LPWEFSXDATA lpxSignedData;
DWORD dwCommandID;
LPVOID lpvInputData;
} WEFSPINAUTHENTICATE, *LPWFSPINAUTHENTICATE;
dwSigner
Specifies the signer of the data, with one of the following values:
Value Meaning
WEFS_PIN SIGNER NONE Authentication is not required.
WEFS _PIN SIGNER CERTHOST The data is signed by the current Host, using
the RSA certificate-based scheme.
WEFS PIN SIGNER SIGHOST The data is signed by the current Host, using
the RSA signature-based scheme.
WEFS PIN SIGNER CA The data is signed by the Certificate
Authority (CA).
WEFS _PIN SIGNER HL The data is signed by the Higher Level (HL)
Authority.
WEFS PIN_SIGNER _CBCMAC A MAC is calculated over the data using
IpsKey and the CBC MAC algorithm.
WEFS PIN SIGNER CMAC A MAC is calculated over the data using
IpsKey and the CMAC algorithm.
WEFS_PIN_SIGNER RESERVED 1 Reserved for a vendor-defined signing
method.
WFS_PIN _SIGNER RESERVED 2 Reserved for a vendor-defined signing
method.
WEFS_PIN_SIGNER RESERVED 3 Reserved for a vendor-defined signing
method.

In addition, a combination of the following flags can optionally be used:

Value Meaning

WEFS _PIN SIGNER TR34 The format of the data that was signed
complies with the data defined in X9 TR34-
2012 [Ref. 42]. This value can only be used
in combination with the
WEFS PIN_SIGNER CERTHOST,
WFS_PIN_SIGNER_CA or
WFS_PIN_SIGNER_HL flags.

123

CWA 16926-65:2023 (E)

Output Param

Error Codes

124

IpsSigKey
If WFS_PIN_SIGNER CBCMAC or WFS_PIN SIGNER CMAC are specified for dwSigner,
then IpsSigKey is the name of a key with the WFS_PIN USEMACING usage.

If WFS_PIN_SIGNER SIGHOST is specified for dwSigner, then IpsSigKey specifies the name of
a previously loaded asymmetric key (i.e. an RSA Public Key). The default Signature Issuer public
key (installed in a secure environment during manufacture) will be used, if [psSigKey is either
NULL or contains the name of the default Signature Issuer as defined in section 8-1-88.1.8.

Otherwise, this parameter must be NULL.

IpxSignedData
This field contains the signed version of the data that was provided by the PIN device during the
previous call to the WFS CMD_PIN START AUTHENTICATE command.

The signer specified by dwSigner is used to do the signing. Both the signature and the data that
was signed must be verified before the operation is performed.

If WFS_PIN_SIGNER CERTHOST, WFS_PIN SIGNER_CA, or WFS_PIN_SIGNER HL are
specified for dwSigner, then IpxSignedData is a PKCS#7 signedData structure which includes the
data that was returned by the WFS_CMD_ PIN START AUTHENTICATE command. The
optional CRL field may or may not be included in the PKCS#7 signedData structure.

If the WFS_PIN SIGNER TR34 flag is set, then either the WFS PIN SIGNER CERTHOST,
WFS PIN SIGNER CA or WFS PIN SIGNER HL flag must also be set. Please refer to the X9
TR34-2012 [Ref. 42] for more details.

If WFS_PIN_SIGNER_SIGHOST is specified for dwSigner, then IpxSignedData is a PKCS#7
signedData structure which includes the data that was returned by the
WFS CMD_PIN START AUTHENTICATE command.

If WFS_PIN_SIGNER CBCMAC or WFS_PIN SIGNER CMAC are specified for dwSigner,
then IpsSigKey must refer to a key loaded with the WFS_PIN_ USEMACING usage.

dwCommandID
The XFS command ID of the command to which authentication is being applied.

IpvInputData

Pointer to the input data structure of the command referred to by dwCommandID. For details on
the contents of the structure pointed to by I[pvinputData, refer to the command referenced by
dwCommandID.

LPWFSPINAUTHENTICATEOUT IpAuthenticateOut;

typedef struct wfs pin authenticate out

{

HRESULT hInternalCmdResult;
DWORD dwCommandID;
LPVOID lpvOutputData;

} WESPINAUTHENTICATEOUT, *LPWEFSPINAUTHENTICATEOUT;

hinternalCmdResult

Result from the command referenced by dwCommandID. If the authentication was verified but
the internal command failed, then AlnternalCmdResult will return an error but the result of this
command will be WFS_SUCCESS.

dwCommandID
The XFS command ID of the command to which authentication was applied.

IpvOutputData

Pointer to the output data structure of the command referred to by dwCommandID. For details on
the contents of the structure pointed to by lpvOutputData, refer to the command referenced by
dwCommandID.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

Events

Comments

CWA 16926-65:2023 (E)

WFS _ERR PIN KEYNOTFOUND The supplied key name cannot be found.

WFS _ERR PIN RANDOMINVALID The random number is either incorrect or no
random number has been generated prior to
this command.

WFS ERR PIN MACINVALID The MAC calculated by the PIN device does
not match the MAC supplied in
IpxSignedData
WFS_ERR PIN SIGNATUREINVALID The signature in the input data is invalid.
WFS_ERR PIN INVALIDID The data that was signed was not valid.
None.

To allow XFS client applications to be multi-vendor, the

WFS CMD_PIN START AUTHENTICATE and WFS_CMD_ PIN AUTHENTICATE
commands can be executed even if authentication is not required. If authentication is not required
for a particular command, then the WFS_CMD_PIN START AUTHENTICATE command will
return WFS_SUCCESS, IpxDataToSign will be NULL, and dwSigners will be

WFS PIN SIGNER NONE.

Then, the client application can do one of two things:

(1) Call the WFS CMD_PIN AUTHENTICATE command with dwSigner set to
WFS _PIN SIGNER NONE and /pxSignedData set to NULL.

(2) Call the command referenced by dwCommandID directly (i.e. if authenticated delete is not
required, then the WFS_CMD_PIN IMPORT_KEY command can be called directly in order
to delete a key).

125

CWA 16926-65:2023 (E)

5.1.35 WFS_CMD_PIN_GET_PINBLOCK_EX

Description

Input Param

126

This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the algorithms
specified in the WFS_INF_PIN CAPABILITIES command. This command will clear the PIN
unless the application has requested that the PIN be maintained through the

WFS CMD_ PIN MAINTAIN PIN command.

In order to access the maximum functionality it is recommended that applications should use the
WFS CMD_PIN GET PINBLOCK 340 command.

LPWFSPINBLOCKEX IpPinBlockEx;

typedef struct wfs pin block ex
{

LPSTR lpsCustomerData;
LPSTR 1lpsXORData;

BYTE bPadding;

DWORD dwFormat;

LPSTR lpsKey;

LPSTR lpsKeyEncKey;
DWORD dwAlgorithm;

} WEFSPINBLOCKEX, *LPWEFSPINBLOCKEX;

IpsCustomerData

The customer data should be an ASCII string. Used for ANSI, ISO-0, ISO-1, ISO-3 and ISO-4
algorithm (see [Ref. 3]. [Ref. 20], [Ref. 21]) to build the formatted PIN. For ANSI, ISO-0, ISO-3,
and ISO-4 the PAN (Primary Account Number, without the check number) is supplied, for ISO-1
a ten digit transaction field is required. If not used a NULL is required.

Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed
as unpacked string, for example: 0123456789 ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check
digit), and the CCS (8 digits).

IpsXORData

If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation. This parameter is a string of
hexadecimal data that must be converted by the application, e.g. 0x0123456789 ABCDEF must be
converted to 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45
0x46 and terminated with 0x00. In other words the application would set [psXORData to
“0123456789ABCDEF\0”. The hex digits 0xA to OxF can be represented by characters in the
ranges ‘a’ to ‘f” or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed.

If the formatted PIN is not encrypted twice (i.e. if [psKeyEncKey is NULL) this parameter is
ignored.

bPadding
Specifies the padding character. The valid range is 0x00 to 0xOF. Only the least significant nibble
is used.

dwFormat
Specifies the format of the PIN block. Possible values are one of the following:
(see command WFS_INF PIN CAPABILITIES)

IpsKey

Specifies the key used to encrypt the formatted PIN for the first time, NULL if no encryption is
required. If this specifies a double-length or triple-length key, triple DES encryption will be
performed. The key referenced by IpsKey must have the WFS_PIN USEFUNCTION or

WEFS PIN USEPINREMOTE attribute. If this specifies an RSA key, RSA encryption will be
performed.

Output Param

Error Codes

Events

Comments

CWA 16926-65:2023 (E)

IpsKeyEncKey

Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required. The key referenced by /psKeyEncKey must have the

WEFS _PIN USEFUNCTION or WFS_PIN_USEPINREMOTE attribute. If this specifies a
double-length or triple-length key, triple DES encryption will be performed.

dwAlgorithm
Specifies the encryption algorithm. Possible values are one of the following:
Value Meaning
WFS PIN CRYPTDESECB Electronic Code Book.
WEFS PIN CRYPTDESCBC Cipher Block Chaining.
WFS PIN CRYPTDESCFB Cipher Feed Back.
WFS _PIN CRYPTRSA RSA Encryption.
WFS PIN CRYPTECMA ECMA Encryption.
WEFS PIN CRYPTTRIDESECB Triple DES with Electronic Code Book.
WEFS PIN CRYPTTRIDESCBC Triple DES with Cipher Block Chaining.
WEFS PIN CRYPTTRIDESCFB Triple DES with Cipher Feed Back.
WEFS PIN CRYPTSM4 SM4 block cipher algorithm as defined in

Password industry standard of the People’s
Republic of China GM/T 0002-2012 [Ref.
43].

LPWFSXDATA IpxPinBlock;

IpxPinBlock
Pointer to the encrypted PIN block.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS _ERR PIN KEYNOVALUE The specified key is not loaded.

WFS ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN NOPIN The PIN has not been entered was not long
enough or has been cleared.

WFS ERR PIN FORMATNOTSUPP The specified format is not supported.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of IpsKeyEncKey or IpsKey is not
supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

WFS_ERR PIN ALGORITHMNOTSUPP The specified algorithm is not supported by
this command.

WFS_ERR PIN DUKPTOVERFLOW The DUKPT KSN encryption counter has
overflowed to zero. A new IPEK must be
loaded.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

WFS EXEE PIN DUKPT KSN An lpsKey with WFS_PIN USEDUKPT
usage has been used to encrypt the PIN
block.

None.

127

CWA 16926-65:2023 (E)

5.1.36 WFS_CMD_PIN_SYNCHRONIZE_COMMAND

Description

Input Param

Output Param

Error Codes

Events

Comments

128

This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in
the [pdwSynchronizableCommands parameter of the WFS INF PIN CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command other than the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the

WFS _CMD PIN SYNCHRONIZE COMMAND again in order to start a synchronization.

LPWFSPINSYNCHRONIZECOMMAND IpSynchronizeCommand;

typedef struct wfs pin synchronize command

{

DWORD dwCommand;

LPVOID lpCmdData;

} WESPINSYNCHRONIZECOMMAND, *LPWFSPINSYNCHRONIZECOMMAND;
dwCommand
The command ID of the command to be synchronized and executed next.
IpCmdData

Pointer to data or a data structure that represents the parameter that is normally associated with
the command that is specified in dwCommand. For example, if dwCommand is

WFS _CMD PIN CRYPT then IpCmdData will point to a WFSPINCRYPT structure. This
parameter can be NULL if no command input parameter is needed or if this detail is not needed to
synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
not result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
IpCmdData of this command and the subsequent corresponding execute command.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN COMMANDUNSUPP The command specified in the dwCommand
field is not supported by the Service
Provider.

WFS _ERR PIN SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the [pCmdData is not supported
by the Service Provider.

Only the generic events defined in [Ref. 1] can be generated by this command.

For sample flows of this synchronization see the [Ref. 1] Appendix C.

CWA 16926-65:2023 (E)

5.1.37 WFS_CMD_PIN_CRYPT_340

Description

Input Param

The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the lppCryptAttributes of the
WEFS_INF_PIN CAPABILITIES command.

This command cannot be used for random number generation. For random number generation,
the WFS CMD_ PIN CRYPT command should be used.

This command cannot be used with externally encrypted keys, which can be specified using the
IpxKeyEncKey parameter of the WFS_ CMD _PIN _CRYPT command

This command can be used for Message Authentication Code generation and verification (i.e.
MACing). The input data is padded to the necessary length mandated by the encryption algorithm
using the bPadding parameter.

This command can be used for asymmetric signature generation and verification. The input data is
padded to the necessary length mandated by the signature algorithm using the bPadding
parameter.

Applications can use an alternative padding method by pre-formatting the data passed and
combining this with the standard padding method.

The Start Value (or Initialization Vector) can be provided as input data to this command, or it can
be imported via TR-31X9.143 prior to requesting this command and referenced by name. The
Start Value and Start Value Key are both optional parameters.

LPWFSPINCRYPT340 IpCrypt340;

typedef struct wfs pin crypt 340
{

LPSTR lpsKey;

LPSTR lpsStartValueKey;
LPWEFSXDATA lpxStartValue;
BYTE bPadding;

BYTE bCompression;
LPWFSXDATA lpxCryptData;
LPWFSXDATA lpxVerifyData;
LPWEFSPINATTRIBUTES lpCryptAttributes;

} WESPINCRYPT340, *LPWESPINCRYPT340;

IpsKey
Specifies the name of the stored key.

IpsStartValueKey

If IpxStartValue specifies an Initialization Vector (IV), then this parameter specifies the name of
the stored key used to decrypt the [pxStartValue to obtain the IV. If IpxStartValue is NULL and
this parameter is not NULL, then this parameter specifies the name of the I'V that has been
previously imported via FR-3+X9.143. If this parameter is NULL, /pxStartValue is used as the
Initialization Vector.

IpxStartValue
The initialization vector for CBC / CFB encryption and MACing. If this parameter and
IpsStartValueKey are both NULL the default value for CBC / CFB / MAC is 16 hex digits 0x0.

bPadding
Specifies the padding character. The padding character is a full byte, e.g. OXFF. The valid range is
0x00 to OxFF.

bCompression

Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character (e.g. 0x20 in ASCII or 0x40 in EBCDIC).

IpxCryptData

Pointer to the data to be encrypted, decrypted, MACed, or signed. If
IpCryptAttributes.bModeOfUse is “V’, then the PIN device will either generate a MAC or sign the
IpxCryptData and compare with IpxVerifyData.

129

CWA 16926-65:2023 (E)

Output Param

Error Codes

Events

Comments

130

IpxVerifyData
Pointer to the data to be verified by MAC or signature. If the bModeOfUse is ‘E’, ‘D’, ‘G’, or ‘S’,
then this parameter must be NULL.

IpCryptAttributes

Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used for this command. For a list of valid values see the
IppCryptAttributes capability field. The values specified must be compatible with the key
identified by IpsKey.

LPWFSXDATA IpxCryptData;

IpxCryptData
Pointer to the encrypted or decrypted data, MAC value or signature. This parameter will be NULL
if the IpCryptAttributes.bModeOfUse is ‘V’.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value

Meaning

WFS_ERR_PIN_KEYNOTFOUND
WFS_ERR_PIN_MODENOTSUPPORTED

WFS_ERR_PIN_ACCESSDENIED

WEFS_ERR PIN KEYNOVALUE

WFS_ERR_PIN_USEVIOLATION

WFS_ERR PIN_ INVALIDKEYLENGTH

WFS_ERR PIN NOCHIPTRANSACTIVE
WFS _ERR PIN ALGORITHMNOTSUPP

WFS _ERR PIN MACINVALID
WFS _ERR PIN SIGNATUREINVALID

The specified key was not found.

The mode specified by bModeOfUse is not
supported.

The encryption module is either not
initialized or not ready for any vendor
specific reason.

The specified key name was found but the
corresponding key value has not been
loaded.

The use specified by bKeyUsage is not
supported.

The length of IpxStartValue is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

A chipcard key is used as encryption key and
there is no chip transaction active.

The algorithm specified by bAlgorithm is not
supported.

The MAC verification failed.

The signature verification failed.

WFS ERR PIN CRYPTOMETHODNOTSUPPThe cryptographic method specified by
dwCryptoMethod is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

WFS_EXEE PIN DUKPT KSN An IpsKey with

WFS_PIN _USEKEYDERKEY usage has
been used to encrypt or MAC the data.

This command can be used in place of the following commands, except for the cases mentioned in
the description of this command:

- WFS_CMD_PIN_CRYPT

The length of the key must match the encryption algorithm and cryptographic method specified.
For example, if a double-length or triple-length key is used when a DES encryption algorithm is
specified, or a single-length key is used when Triple DES is specified, the

WFS _ERR PIN INVALIDKEYLENGTH error is returned.

The data type LPWFSXDATA is used to pass hexadecimal data and is defined as follows:

typedef struct wfs hex data
{
USHORT usLength;
LPBYTE lpbData;
} WESXDATA, *LPWEFSXDATA;

usLength
Length of the byte stream pointed to by [pbData.

IpbData
Pointer to the binary data stream.

Valid IpCryptAttributes

CWA 16926-65:2023 (E)

bKeyUsage bAlgorithm bModeOfUse
‘DO’ ‘A, ‘D, T ‘D’, ‘E’
‘D1’ ‘R’ ‘D’, ‘E’
‘MO’ ‘A, ‘D, T ‘G, 'V’
‘M1’ ‘A, ‘D, T ‘G, 'V’
‘M2’ ‘A, ‘D, T ‘G, 'V’
‘M3’ ‘A, ‘D, T ‘G, 'V’
‘M4’ ‘A, ‘D, T ‘G, 'V’
‘M5’ ‘A, ‘D, T ‘G, 'V’
‘M6’ ‘A, ‘D, T ‘G, 'V’
‘M7’ ‘A, ‘D, T ‘G, 'V’
‘M8’ ‘A, ‘D, T ‘G, 'V’
‘S0’ ‘R’ ‘S’ ‘T
‘S1° ‘R’ ‘S’ ‘T
‘52’ ‘R’ ‘S’ ‘T

Mapping of legacy algorithms to IpCryptAttributes:

wAlgorithm/dwAlgorithm bKeyUsage | bAlgorithm | bModeOfUse | dwCryptoMethod

WES PIN CRYPTDESECB ‘DO’ ‘D’ ‘E’ or ‘D’ WES PIN CRYPTOECB

WES PIN CRYPTDESCBC ‘DO’ ‘D’ ‘E’ or ‘D’ WES PIN CRYPTOCBC

WFS PIN CRYPTDESCFB ‘DO’ ‘D’ ‘E’ or ‘D’ WES PIN CRYPTOCFB

WEFS_PIN CRYPTRSA ‘DI’ ‘R’ ‘E’ or ‘D’ See
dwRSAEncipherAlgorithm
for valid values.

WFS PIN_ CRYPTECMA! N/A N/A N/A N/A

WES PIN CRYPTDESMAC ‘M1’ ‘D’ ‘G’ 0

WES PIN CRYPTTRIDESECB ‘DO’ ‘T ‘E’ or ‘D’ WES PIN CRYPTOECB

WES PIN CRYPTTRIDESCBC ‘DO’ ‘T ‘E’ or ‘D’ WEFS PIN CRYPTOCBC

WES PIN CRYPTTRIDESCFB ‘DO’ ‘T ‘E’ or ‘D’ WEFS PIN CRYPTOCFB

WES PIN CRYPTTRIDESMAC ‘M3’ ‘T ‘G’ 0

WFS PIN_ CRYPTMAAMAC? N/A N/A N/A N/A

WES PIN CRYPTTRIDESMAC2805 | ‘M1’ ‘T ‘G’ 0

131

CWA 16926-65:2023 (E)

WFS PIN_ CRYPTSM43 N/A N/A N/A N/A

WFS PIN CRYPTSM4MAC3 N/A N/A N/A N/A

. ECMA is not supported with this command. ECMA can still be used with the WFS_CMD_PIN_CRYPT
command.

2: ISO recommended in 2002 to stop using the MAA MAC algorithm. This command does not support MAA
MAC. MAA MAC can still be used with the WFS_CMD_ PIN CRYPT command.

3: This command does not support the SM4 algorithms. The SM4 algorithms can still be used with the
WFS _CMD PIN CRYPT command.

132

CWA 16926-65:2023 (E)

5.1.38 WFS_CMD_PIN_GET_PINBLOCK_340

Description

Input Param

This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the algorithms
specified in the WFS_INF_PIN_CAPABILITIES command. This command will clear the PIN
unless the application has requested that the PIN be maintained through the

WFS CMD_ PIN MAINTAIN PIN command.

LPWFSPINBLOCK340 IpPinBlock340;

typedef struct wfs pin block 340
{

LPSTR lpsCustomerData;
LPSTR lpsXORData;

BYTE bPadding;

DWORD dwFormat;

LPSTR lpsKey;

LPSTR lpsSecondEncKey;
LPWEFSPINATTRIBUTES 1pPINBlockAttributes;

} WEFSPINBLOCK340, *LPWEFSPINBLOCK340;

IpsCustomerData

The customer data should be an ASCII string. Used for ANSI, ISO-0, ISO-1, ISO-3, and ISO-4
algorithm (see [Ref. 3]. [Ref. 20]. [Ref. 21]) to build the formatted PIN. For ANSI, ISO-0, ISO-3
and ISO-4 the PAN (Primary Account Number, without the check number) is supplied, for ISO-1
a ten digit transaction field is required. If not used a NULL is required.

Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed
as unpacked string, for example: 0123456789 ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check
digit), and the CCS (8 digits).

IpsXORData

If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation. This parameter is a string of
hexadecimal data that must be converted by the application, e.g. 0x0123456789 ABCDEF must be
converted to 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45
0x46 and terminated with 0x00. In other words the application would set /[psXORData to
“0123456789ABCDEF\0”. The hex digits OxA to OxF can be represented by characters in the
ranges ‘a’ to ‘f” or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed.

If the formatted PIN is not encrypted twice (i.e. if [psSecondEncKey is NULL) this parameter is
ignored.

bPadding
Specifies the padding character. The valid range is 0x00 to 0xOF. Only the least significant nibble
is used.

dwFormat
Specifies the format of the PIN block. Possible values are one of the following:
(see command WFS_INF_PIN CAPABILITIES)

IpsKey

Specifies the key used to encrypt the formatted PIN for the first time, NULL if no encryption is
required. Hthisspeeifies sl el bl e e S ke
performed—The key referenced by IpsKey must have the WFS_PIN _USEFUNCTION or
WFS_PIN_USEPINREMOTE attribute.

IpsSecondEncKey

Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required. The key referenced by IpsSecondEncKey must have the
WEFS_PIN USEFUNCTION or WFS_PIN_ USEPINREMOTE attribute.

133

CWA 16926-65:2023 (E)

Output Param

Error Codes

Events

Comments

134

IpPINBlockAttributes
Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used for thls command For a list of Vahd Values see the
IppPINBlockAttributes capabilities field. b = : .
capability-field-The values specified must be compatlble with the key 1dent1ﬁed by lpsKey

LPWFSXDATA IpxPinBlock;

IpxPinBlock
Pointer to the encrypted PIN block.

Value

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Meaning

WFS_ERR PIN KEYNOTFOUND
WEFS_ERR PIN ACCESSDENIED

WFS_ERR_PIN_KEYNOVALUE
WFS_ERR_PIN_USEVIOLATION
WFS_ERR_PIN_NOPIN

WFS_ERR PIN FORMATNOTSUPP
WFS_ERR PIN INVALIDKEYLENGTH

WFS_ERR PIN_ ALGORITHMNOTSUPP

WFS_ERR PIN DUKPTOVERFLOW

WFS_ERR PIN MODENOTSUPPORTED

WFS ERR PIN CRYPTOMETHNOTSUPP

The specified key was not found.

The encryption module is either not
initialized or not ready for any vendor
specific reason.

The specified key is not loaded.

The use specified by bKeyUsage is not
supported.

The PIN has not been entered was not long
enough or has been cleared.

The specified format is not supported.

The length of IpsSecondEncKey or IpsKey is
not supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

The algorithm specified by bAlgorithm is not
supported by this command.

The DUKPT KSN encryption counter has
overflowed to zero. A new IPEK must be
loaded.

The mode specified by bModeOfUse is not
supported.

The cryptographic method specified by
dwCryptoMethod is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

WFS_EXEE_PIN_DUKPT_KSN

- WFS_CMD_PIN_GET PINBLOCK

- WFS_CMD_PIN_GET PINBLOCK_EX

command:
Value Meaning
WFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

An IpsKey with WFS_PIN_ USEDUKPT
usage has been used to encrypt the PIN
block.

This command can be used in place of the following commands::

CWA 16926-65:2023 (E)

5.1.39 WFS_CMD_PIN_IMPORT_KEY_340

Description

Input Param

The encryption key passed by the application is loaded in the encryption module. For secret keys,
the key must be passed encrypted with an accompanying “key encrypting key” or "key block
protection key". For public keys, they key is not required to be encrypted but is required to have
verification data in order to be loaded.

This command can also be used to delete a key without authentication. Where an authenticated
delete is required, the WFS CMD PIN START AUTHENTICATE and
WFS CMD_ PIN AUTHENTICATE commands should be used.

LPWFSPINIMPORTKEY340 IpImportKey340;

typedef struct wfs pin import key 340
{

LPSTR lpsKey;
LPWEFSPINATTRIBUTES lpKeyAttributes;
LPWESXDATA lpxValue;

LPSTR lpsDecryptKey;

DWORD dwDecryptMethod;
LPWESXDATA lpxVerificationData;
LPSTR lpsVerifyKey;
LPWEFSPINATTRIBUTES lpVerifyAttributes;
LPWESXDATA lpxVendorAttributes;

} WESPINIMPORTKEY340, *LPWESPINIMPORTKEY340;

IpsKey
Specifies the name of the key being loaded or deleted.

IpKeyAttributes
Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used for the key 1mported by th1s command For a hst of

Vahd values see the lppKeyAttrzbutes capability field.-Fhe 2o

=

When constructing the key specified by IlpsKey, dwCryptoMethod must be
WFES_PIN_CRYPTOCONSTRUCT. When all components of the key specified by IpsKey have
been imported and the key is being activated, dwCryptoMethod must be 0.

Must be NULL if the key specified by /psKey is to be deleted.

If a keyblock is being imported, the Service Provider should ignore this parameter as the key
attributes are contained in the keyblock.

IpxValue

Specifies the value of the key to be loaded or the complete key block for the key being loaded.
Must be NULL if the key specified by /psKey is to be deleted or the key is being constructed or
activated.

IpsDecryptKey

Specifies the name of the key used to decrypt the key being loaded. If [pxValue contains a TR~
31X9.143 key block, then IpsDecryptKey is the name of the key block protection key that is used
to verify and decrypt the key block. Can be NULL if the data in /pxValue is not encrypted.

Must be NULL if the key specified by /psKey is to be deleted or the key is being constructed or
activated.

dwDecryptMethod

Specifies the cryptographic method that shall be used with the key specified by IpsDecryptKey.
The PIN device shall use this method to decrypt the encrypted value in the [pxValue parameter.
For a list of valid values see the dwCryptoMethod field in the [ppDecryptAttributes capability
field.

Must be 0 if [psDecryptKey is NULL

Must be 0 if a keyblock is being imported, as the decrypt method is contained within the
keyblock.

135

CWA 16926-65:2023 (E)

Output Param

Error Codes

136

IpxVerificationData

Contains the data to be verified before importing. [pxVerificationData is NULL when no
verification is needed before importing or deleting the key. Where an authenticated delete is
required, the WFS_CMD PIN START AUTHENTICATE and

WFS CMD PIN AUTHENTICATE commands should be used.

IpsVerifyKey

Specifies the name of the previously loaded key which will be used to verify the
IpxVerificationData. IpsVerifyKey is NULL when no verification is needed before importing or
deleting the key.

IpVerifyAttributes

Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used to verify this command or to generate verification
output data. Verifying input data will result in no verification output data. For a list of valid values
see the IppVerifyAttributes capability fields.

Must be NULL if IpxVerificationData is NULL.

IpxVendorAttributes
Specifies the vendor attributes of the key to be imported. Refer to vendor documentation for
details. If no vendor attributes are used, then this parameter must be NULL.

LPWFSPINIMPORTKEY3400UT IpImportKey3400ut;

typedef struct wfs pin import key 340 out
{

LPWESXDATA lpxVerificationData;
LPWESPINATTRIBUTES lpVerifyAttributes;
ULONG ulKeyLength;

} WESPINIMPORTKEY3400UT, *LPWEFSPINIMPORTKEY3400UT;

IpxVerificationData
Pointer to the verification data. This parameter is NULL if there is no verification data.

IpVerifyAttributes

Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode used to verify this command. For a list of valid values see the
IppVerifyAttributes capability fields.

This parameter is NULL if there is no verification data.

ulKeyLength
Specifies the length, in bits, of the key. 0 if the key length is unknown.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND One of the keys specified was not found.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS ERR PIN KEYNOVALUE One of the specified keys is not loaded.

WFS _ERR PIN USEVIOLATION The use specified by bKeyUsage is not

supported or conflicts with a previously
loaded key with the same name as /psKey.

WFS ERR PIN FORMATNOTSUPP The specified format is not supported.

WFS ERR PIN INVALIDKEYLENGTH The length of lpxValue is not supported. the
encryption key in the secure key buffer is
invalid (or has not been entered), or the
length of an encryption key is not compatible
with the encryption operation required.

WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

Events

Comments

CWA 16926-65:2023 (E)

WFS_ERR PIN_SIG NOT_SUPP The dwCryptoMethod of the
IpVerifyAttributes is not supported. The key
is not stored in the PIN.

WFS _ERR PIN SIGNATUREINVALID The verification data in the input data is
invalid. The key is not stored in the PIN.
WFS _ERR PIN RANDOMINVALID The encrypted random number in the input

data does not match the one previously
provided by the PIN device. The key is not
stored in the PIN.

WFS_ERR PIN ALGORITHMNOTSUPP The algorithm specified by bAlgorithm is not
supported by this command.

WFS_ERR PIN MODENOTSUPPORTED The mode specified by bModeOfUse is not
supported.

WFS_ERR PIN CRYPTOMETHODNOTSUPPThe cryptographic method specified by
dwCryptoMethod for IpKeyAttributes or
IpVerifyAttributes is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

This command can be used in place of the following commands. Please see the tables in Appendix
A, section 8 of this specification for examples of accomplishing various key import scenarios
using this command compared to older commands prior to this command’s introduction to this
specification:

- WFS_CMD_PIN_IMPORT KEY

- WFS_CMD_PIN_IMPORT KEY EX

- WFS_CMD_PIN_IMPORT RSA PUBLIC_KEY

- WFS_CMD_PIN_IMPORT RSA_SIGNED DES KEY
- WFS_CMD_PIN_IMPORT KEYBLOCK

137

CWA 16926-65:2023 (E)

5.2 Common commands for Remote Key Loading Schemes

This section describes those commands that are common between the two Remote Key Loading Schemes. The
commands defined within this section can be used for both the Remote Key Loading Scheme using Signatures and
the Remote Key Loading Scheme using Certificates. Section 8 provides additional explanation on how these
commands are used.

5.21 WFS_CMD_PIN_START_KEY_EXCHANGE

Description

Input Param

Output Param

Error Codes

Events

Comments

138

This command is used to start communication with the host, including transferring the host’s Key
Transport Key, replacing the Host certificate, and requesting initialization remotely.

This output value is returned to the host and is used in the

WFS CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY,
WFS_CMD_PIN IMPORT RSA SIGNED DES KEY,

WEFS CMD_PIN LOAD CERTIFICATE EX,

WFS CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY EX, and

WFS CMD PIN IMPORT KEY 340 commands to verify that the encryptor is talking to the
proper host.

The WFS_CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEY,
WFS_CMD_PIN_IMPORT RSA_ENCIPHERED PKCS7 KEY EX,
WFS_CMD_PIN_IMPORT RSA_SIGNED DES_KEY, and

WFS CMD_PIN IMPORT KEY 340 commands end the key exchange process.

None.

LPWFSPINSTARTKEYEXCHANGE IpStartKeyExchange;

typedef struct wfs pin start key exchange

{
LPWEFSXDATA lpxRandomItem;
} WESPINSTARTKEYEXCHANGE, *LPWFSPINSTARTKEYEXCHANGE;

IpxRandomlitem

Pointer to a randomly generated number created by the encryptor. If the PIN device does not
support random number generation and verification, a zero length random number is returned and
a NULL IpbData pointer is returned.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

None.

None.

CWA 16926-65:2023 (E)

5.3 Remote Key Loading Using Signatures

This section contains commands that are used for Remote Key Loading with Signatures. Applications wishing to
use such functionality must use these commands. Section 8.1 provides additional explanation on how these
commands are used. Section 8.1.8 defines the fixed names for the Security Item and RSA keys that must be loaded
during manufacture.

5.3.1_WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

Description

Input Param

The Public RSA key passed by the application is loaded in the encryption module. The dwUse
parameter restricts the cryptographic functions that the imported key can be used for.

This command provides similar public key import functionality to that provided with

WFS CMD_PIN IMPORT KEY EX. The primary advantage gained through using this function
is that the imported key can be verified as having come from a trusted source. If a Signature
algorithm is specified that is not supported by the PIN Service Provider, then the request will not
be accepted and the command fails.

LPWFSPINIMPORTRSAPUBLICKEY IpImportRSAPublicKey;

typedef struct wfs pin import rsa public key
{

LPSTR lpsKey;

LPWESXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WESPINIMPORTRSAPUBLICKEY, *LPWEFSPINIMPORTRSAPUBLICKEY;

IpsKey
Specifies the name of key being loaded.

IpxValue
Contains the PKCS #1 formatted RSA Public Key to be loaded, represented in DER encoded
ASN.1.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning

WFS PIN USERSAPUBLIC Key is used as a public key for RSA
Encryption including EMV PIN block
creation.

WFS PIN USERSAPUBLICVERIFY Key is used as a public key for RSA

signature verification and/or data decryption.
If dwUse equals zero the specified key is deleted.

When no signature is required to authenticate the deletion of a public key, all parameters but
IpsKey are ignored. In addition, WFS_CMD_PIN IMPORT KEY,

WFS _CMD_PIN IMPORT KEY EX, WFS CMD_PIN IMPORT RSA PUBLIC KEY and
WFS CMD_PIN IMPORT RSA SIGNED DES KEY can be used to delete a key that has been
imported with this command.

When a signature is required to authenticate the deletion of the public key, all parameters in the
command are used. /pxValue must contain the concatenation of the Security Item which uniquely
identifies the PIN device (see the command

WFS_CMD_PIN_EXPORT RSA_ISSUER_SIGNED ITEM) and the PKCS #1 formatted RSA
public key to be deleted, i.e. Ularm|| PKro peELETE. IpXSignature contains the signature generated
from IpxValue using the private key component of the public key being deleted.

The equivalent commands in the certificate scheme must not be used to delete a key imported
through the signature scheme.

139

CWA 16926-65:2023 (E)

Output Param

Error Codes

140

IpsSigKey

IpsSigKey specifies the name of a previously loaded asymmetric key (i.e. an RSA Public Key)
which will be used to verify the signature passed in /pxSignature. The default Signature Issuer
public key (installed in a secure environment during manufacture) will be used, if lpsSigKey is
either NULL or contains the name of the default Signature issuer as defined in section 8.1.8.

dwRSASignatureAlgorithm
Defines the algorithm used to generate the Signature specified in I[pxSignature. Contains one of
the following values:

Value Meaning

WEFS _PIN SIGN_NA No signature algorithm specified. No
signature verification will take place and the
contents of [psSigKey and IpxSignature are

ignored.
WEFS PIN SIGN RSASSA PKCS1 V1 5 Use the RSASSA-PKCS1-v1.5 algorithm.
WEFS PIN SIGN RSASSA PSS Use the RSASSA-PSS algorithm.

IpxSignature

Contains the Signature associated with the key being imported or deleted. The Signature is used to
validate the key request has been received from a trusted sender. This value contains NULL when
no key validation is required.

LPWFSPINIMPORTRSAPUBLICKEYOUTPUT IpImportRSAPublicKeyOutput;

typedef struct wfs pin import rsa public key output
{
DWORD dwRSAKeyCheckMode;
LPWESXDATA lpxKeyCheckValue;
} WESPINIMPORTRSAPUBLICKEYOUTPUT,
*LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

dwRSAKeyCheckMode

Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be one of the
following flags:

Value Meaning

WFS PIN RSA KCV_NONE No check value is returned in
IpxKeyCheckValue.

WEFS PIN RSA KCV_SHAI IpxKeyCheckValue contains a SHA-1 digest
of the public key.

WEFS PIN RSA KCV_SHA256 lpxKeyCheckValue contains a SHA-256
digest of the public key.

IpxKeyCheckValue

Contains the public key check value as defined by the dwRSAKeyCheckMode flag.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN KEYNOTFOUND The key name supplied in IpsSigKey was not
found.

WFS ERR PIN USEVIOLATION An invalid use was specified for the key
being imported.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR PIN INVALIDKEYLENGTH The length of IpxValue is not supported.

WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

WFS ERR PIN SIG NOT_SUPP The Service Provider does not support the
Signature Algorithm requested. The key was
discarded.

CWA 16926-65:2023 (E)

WFS _ERR PIN SIGNATUREINVALID The signature verification failed. The key
has not been stored or deleted.
Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
Comments None.

141

CWA 16926-65:2023 (E)

5.3.2 WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED ITEM

Description This command is used to export data elements from the PIN device, which have been signed by
an offline Signature Issuer. This command is used when the default keys and Signature Issuer
signatures, installed during manufacture, are to be used for remote key loading.

This command allows the following data items are to be exported:

e The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

e The RSA Public key component of a public/private key pair that exists within the PIN
device. These public/private key pairs are installed during manufacture. Typically, an
exported public key is used by the host to encipher the symmetric key.

See section 8.1.8 (Default Keys and Security Item loaded during manufacture) for the default
names and the description of the keys installed during manufacture. These names are defined to
ensure multi-vendor applications can be developed.

The WFS_INF PIN KEY DETAIL EX command can be used to determine the valid uses for
the exported public key.

Input Param LPWFSPINEXPORTRSAISSUERSIGNEDITEM IpExportRSAlssuerSignedItem;

typedef struct wfs pin export rsa issuer signed item
{
WORD wExportItemType;
LPSTR lpsName;
} WFSPINEXPORTRSAISSUERSIGNEDITEM,
*LPWEFSPINEXPORTRSAISSUERSIGNEDITEM;

wExportlitemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:
Value Meaning
WEFS _PIN EXPORT EPP _ID The Unique ID for the PIN will be exported,
IpsName is ignored.
WFS PIN EXPORT PUBLIC KEY The public key identified by IpsName will be
exported.
IpsName

Specifies the name of the public key to be exported. The private/public key pair was installed
during manufacture; see section 8.1.8 (Default Keys and Security Item loaded during
manufacture) for a definition of these default keys. If /[psName is NULL, then the default EPP
public key that is used for symmetric key encryption is exported.

Output Param LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT IpExportRSAlssuerSignedItemOutput;

typedef struct wfs pin export rsa issuer signed item output

{

LPWESXDATA lpxValue;
DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WESPINEXPORTRSAISSUERSIGNEDITEMOUTPUT,
*LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

IpxValue

If a public key was requested then /pxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then /pxValue
contains the PIN’s Security Item, which may be vendor specific.

dwRSASignatureAlgorithm.
Specifies the algorithm used to generate the Signature returned in /pxSignature. Contains one of
the following values:

Value Meaning

WEFS _PIN SIGN _NA No signature algorithm used, no signature
will be provided in IpxSignature, the data
item may still be exported.

142

Error Codes

Events

Comments

CWA 16926-65:2023 (E)

WFS_PIN_SIGN RSASSA PKCS1 V1 5 RSASSA-PKCSI1-vl.5 algorithm used.
WFS_PIN_SIGN_RSASSA_PSS RSASSA-PSS algorithm used.

IpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when key
Signatures are not supported.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN NORSAKEYPAIR The PIN device does not have a private key.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOTFOUND The data item identified by /psName was not
found.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

143

CWA 16926-65:2023 (E)

5.3.3 WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

Description

Input Param

144

This command is used to load a Symmetric Key that is either a single-length, double-length or
triple-length DES key into the encryptor. The key passed by the application is loaded in the
encryption module, the (optional) signature is used during validation, the key is decrypted using
the device’s RSA Private Key, and is then stored. The loaded key will be discarded at any stage if
any of the above fails.

The random number previously obtained from the

WFS CMD_ PIN START KEY EXCHANGE command and sent to the host is included in the
signed data. This random number (when present) is verified during the load process. This
command ends the Key Exchange process.

The dwUse parameter restricts the cryptographic functions that the imported key can be used for.

If a Signature algorithm is specified that is not supported by the PIN Service Provider, then the
message will not be decrypted and the command fails.

LPWFSPINIMPORTRSASIGNEDDESKEY IpImportRSASignedDESKey;

typedef struct wfs pin import rsa signed des key

{

LPSTR lpsKey;

LPSTR lpsDecryptKey;

DWORD dwRSAEncipherAlgorithm;
LPWESXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WESPINIMPORTRSASIGNEDDESKEY, *LPWEFSPINIMPORTRSASIGNEDDESKEY;

IpsKey
Specifies the name of key being loaded.

IpsDecryptKey

Specifies the name of the RSA private key used to decrypt the symmetric key. See section §.1.8
(Default Keys and Security Item loaded during manufacture) for a description of the fixed name
defined for the default decryption private key. If [psDecryptKey is NULL then the default
decryption private key is used.

dwRSAEncipherAlgorithm
Specifies the RSA algorithm that is used, along with the private key, to decipher the imported key.
Contains one of the following values:

Value Meaning

WFS _PIN CRYPT RSAES PKCS1 VI 5 Use the RSAES PKCS1-v1.5 algorithm.

WFS PIN CRYPT RSAES OAEP Use the RSAES OAEP algorithm.
IpxValue

Specifies the enciphered value of the key to be loaded. IpxValue contains the concatenation of the
random number (when present) and enciphered key.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise, the parameter can be a combination of the following flags:

Value Meaning

WEFS PIN USECRYPT Key is used for encryption and decryption.

WEFS _PIN USEFUNCTION Key is used for PIN block creation.

WFS PIN USEMACING Key is used for MACing.

WFS_PIN_USEKEYENCKEY Key is used as key encryption key.

WFS_PIN USEPINLOCAL Key is used only for local PIN check.

WFS_PIN_USENODUPLICATE Key can be imported only once.

WFS PIN USESVENCKEY Key is used as CBC Start Value encryption
key.

Output Param

CWA 16926-65:2023 (E)

WEFS _PIN USEANSTR31MASTER Key can be used for importing keys
packaged within an ANSANSI X9.143 TR-
31 key block.

Key is used only for PIN block creation.
Key is used as

WFS PIN USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_ USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

WFS_PIN_USEPINREMOTE
WEFS_PIN USERESTRICTEDKEYENCKEY

If dwUse equals zero the specified key is deleted. In that case all parameters but /psKey are
ignored. WFS_CMD_PIN_IMPORT KEY, WFS CMD_PIN IMPORT KEY EX,
WFS_CMD_PIN IMPORT _RSA PUBLIC KEY and

WFS _CMD_PIN IMPORT RSA SIGNED DES KEY can be used to delete a key that has been
imported with this command. The equivalent commands in the certificate scheme must not be
used to delete a key imported through the signature scheme.

IpsSigKey

If IpsSigKey is NULL then the key signature will not be used for validation and /pxSignature is
ignored. Otherwise /psSigKey specifies the name of an Asymmetric Key (i.e. an RSA Public Key)
previously loaded which will be used to verify the signature passed in lpxSignature.

dwRSASignatureAlgorithm
Specifies the algorithm used to generate the Signature specified in /pxSignature. Contains one of
the following values:

Value
WFS_PIN_SIGN NA

Meaning

No signature algorithm specified. No
signature verification will take place and the
content of I[pxSignature is ignored.

Use the RSASSA-PKCS1-v1.5 algorithm.
Use the RSASSA-PSS algorithm.

WFS_PIN_SIGN_RSASSA PKCSI VI 5
WFS_PIN_SIGN_RSASSA PSS

IpxSignature

Contains the Signature associated with the key being imported. The Signature is used to validate
the key has been received from a trusted sender. The signature is generated over the contents of
the IpxValue. The IpxSignature signature contains NULL when no key validation is required.

LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT IpImportRSASignedDESKeyOutput;

typedef struct wfs pin import rsa signed des key output

{

WORD wKeyLength;
WORD wKeyCheckMode;
LPWESXDATA lpxKeyCheckValue;

} WESPINIMPORTRSASIGNEDDESKEYOUTPUT,
*LPWEFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:
Value Meaning

WEFS _PIN KEYSINGLE
WEFS_PIN KEYDOUBLE
WEFS_PIN_KEYTRIPLE

The imported key is single length.
The imported key is double length.
The imported key is triple length.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:
Value Meaning

WFS_PIN_KCVNONE

There is no key check value provided.

145

CWA 16926-65:2023 (E)

Error Codes

Events

Comments

146

WFS_PIN_KCVSELF

WEFS_PIN KCVZERO

The key check value (KCV) is created by an
encryption of the key with itself. Forthe

=Y aQ

The key check value (KCV) is created by
encrypting a zero value with the key.-Unless

For descriptions of keyusedthese flags refer to generate-the KKCVthe fwKeyvCheckModes

capability value.
IpxKeyCheckValue

peinterPointer to the key verification data that can be used for verification of the loaded key,

NULL if device does not have that capability.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value

Meaning

WFS_ERR_PIN_ACCESSDENIED

WEFS _ERR PIN DUPLICATEKEY

WFS_ERR_PIN. KEYNOTFOUND
WFS_ERR_PIN_KEYNOVALUE

WFS_ERR_PIN_USEVIOLATION

WFS_ERR_PIN_INVALIDKEYLENGTH
WFS_ERR_PIN_NOKEYRAM

WFS ERR PIN SIG NOT SUPP

WEFS _ERR PIN SIGNATUREINVALID

WFS_ERR PIN RANDOMINVALID

The encryption module is either not
initialized or not ready for any vendor
specific reason.

A key exists with that name and cannot be
overwritten.

One of the keys specified were not found.
The specified key encryption key is not
loaded.

The specified use is not supported by this
key.

The length of IpxValue is not supported.
There is no space left in the key RAM for a
key of the specified type.

The Service Provider does not support the
Signature Algorithm requested. The key was
discarded.

The signature in the input data is invalid.
The key is not stored in the PIN.

The encrypted random number in the input
data does not match the one previously
provided by the EPP. The key is not stored
in the PIN.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption

None.

key.

CWA 16926-65:2023 (E)

5.3.4 WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR

Description

Input Param

Output Param

Error Codes

Events

This command will generate a new RSA key pair. The public key generated as a result of this
command can subsequently be obtained by calling
WFS _CMD_PIN _EXPORT RSA EPP_SIGNED ITEM.

The newly generated key pair can only be used for the use defined in the dwUse flag. This flag
defines the use of the private key; its public key can only be used for the inverse function.

LPWFSPINGENERATERSAKEYPAIR IpGenerateRSAKeyPair;

typedef struct wfs pin generate rsa key

{

LPSTR lpsKey;
DWORD dwUse;
WORD wModulusLength;
WORD wExponentValue;

} WESPINGENERATERSAKEYPAIR, *LPWEFSPINGENERATERSAKEYPAIR;

IpsKey
Specifies the name of the new key-pair to be generated. Details of the generated key-pair can be
obtained through the WFS INF PIN KEY DETAIL EX command.

dwUse

Specifies what the private key component of the key pair can be used for. The public key part can
only be used for the inverse function. For example, if the WFS PIN USERSAPRIVATESIGN
use is specified, then the private key can only be used for signature generation and the partner
public key can only be used for verification. dwUse can take one of the following values:

Value Meaning

WEFS PIN USERSAPRIVATE Key is used as a private key for RSA
decryption.

WEFS PIN USERSAPRIVATESIGN Key is used as a private key for RSA

Signature generation. Only data generated
within the device can be signed.

wModulusLength
Specifies the number of bits for the modulus of the RSA key pair to be generated. When zero is
specified then the PIN device will be responsible for defining the length.

wExponentValue
Specifies the value of the exponent of the RSA key pair to be generated. The following defines
valid values the exponent:

Value Meaning
WFS PIN DEFAULT The device will decide the exponent.
WEFS_PIN EXPONENT 1 Exponent of 2!+1 (3).
WFS _PIN EXPONENT 4 Exponent of 24+1 (17).
WFS_PIN EXPONENT 16 Exponent of 2!%+1 (65537).
None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS ERR PIN INVALID MOD LEN The modulus length specified is invalid.

WFS_ERR PIN USEVIOLATION The specified use is not supported by this
key.

WEFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_KEY GENERATION_ERROR
The EPP is unable to generate a key pair.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

147

CWA 16926-65:2023 (E)

command:
Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
Comments None.

148

CWA 16926-65:2023 (E)

5.3.5 WFS_CMD_PIN_EXPORT RSA_EPP_SIGNED_ITEM

Description

Input Param

This command is used to export data elements from the PIN device that have been signed by a
private key within the EPP. This command is used in place of the

WFS CMD PIN EXPORT RSA ISSUER SIGNED ITEM command, when a private key
generated within the PIN device is to be used to generate the signature for the data item. This
command allows an application to define which of the following data items are to be exported:

e The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

e The RSA Public key component of a public/private key pair that exists within the PIN
device.

See section 8.1.8 (Default Keys and Security Item loaded during manufacture) for the default
names and the description of the keys installed during manufacture. These names are defined to
ensure multi-vendor applications can be developed.

The public/private key pairs exported by this command are either installed during manufacture or
generated through the WFS CMD PIN GENERATE RSA KEY PAIR command.

The WFS_INF PIN KEY DETAIL EX command can be used to determine the valid uses for
the exported public key.

LPWFSPINEXPORTRSAEPPSIGNEDITEM IpExportRSAEPPSignedItem;

typedef struct wfs pin export rsa epp signed item

{

WORD wExportItemType;
LPSTR lpsName;
LPSTR lpsSigKey;
DWORD dwSignatureAlgorithm;
} WESPINEXPORTRSAEPPSIGNEDITEM, *LPWFSPINEXPORTRSAEPPSIGNEDITEM
wExportltemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:
Value Meaning
WEFS PIN EXPORT EPP_ID The Unique ID for the PIN will be exported,
IpsName is ignored.
WFS PIN EXPORT PUBLIC KEY The public key identified by IpsName will be
exported.
IpsName

Specifies the name of the public key to be exported. This can either be the name of a key-pair
generated through WFS CMD_PIN_ GENERATE RSA KEY PAIR or the name of one of the
default key-pairs installed during manufacture.

IpsSigKey
Specifies the name of the private key to use to sign the exported item.
dwSignatureAlgorithm.

Specifies the algorithm to use to generate the Signature returned in both the [pxSelfSignature and
IpxSignature fields. Contains one of the following values:

Value Meaning

WEFS PIN SIGN NA No signature algorithm used, no signature
will be provided in IpxSelfSignature or
IpxSignature. The requested item may still

be exported.
WFS PIN SIGN RSASSA PKCS1 VI 5 RSASSA-PKCS1-v1.5 algorithm used.
WFS PIN SIGN RSASSA PSS RSASSA-PSS algorithm used.

Output Param LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT IpExportRSAEPPSignedItemOutput;

149

CWA 16926-65:2023 (E)

Error Codes

Events

Comments

150

typedef struct wfs pin export rsa epp signed item output

{

LPWESXDATA lpxValue;
LPWESXDATA lpxSelfSignature;
LPWESXDATA lpxSignature;

} WESPINEXPORTRSAEPPSIGNEDITEMOUTPUT,
*LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

IpxValue

If a public key was requested then /pxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then IpxValue
contains the PIN’s Security Item, which may be vendor specific.

IpxSelfSignature

If a public key was requested then /pxSelfSignature contains the RSA signature of the public key
exported, generated with the key-pair’s private component. NULL can be returned when key Self-
Signatures are not supported/required.

IpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when signatures are
not supported/required.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN NORSAKEYPAIR The PIN device does not have a private key.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS _ERR PIN KEYNOTFOUND The data item identified by [psName was not
found.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

CWA 16926-65:2023 (E)

5.4 Remote Key Loading with Certificates

This section contains commands that are used for Remote Key Loading with Certificates. Applications wishing to
use such functionality must use these commands.

5.41 WFS_CMD_PIN_LOAD_CERTIFICATE

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to load a host certificate or to load a new encryptor certificate from a
Certificate Authority to make remote key loading possible. This command can be called only once
if there are no plans for a new CA to take over the duties. If a new CA does take over the duties,
then this command should be called after the WFS CMD PIN REPLACE CERTIFICATE
command. The type of certificate (Primary or Secondary) to be loaded will be embedded within
the actual certificate structure.

LPWFSPINLOADCERTIFICATE IpLoadCertificate;

typedef struct wfs pin load certificate

{
LPWESXDATA lpxLoadCertificate;
} WESPINLOADCERTIFICATE, *LPWESPINLOADCERTIFICATE

IpxLoadCertificate

Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 (see [Ref. 2]) using
the degenerate certificate only case of the signed-data content type in which the inner content’s
data file is omitted and there are no signers.

LPWFSPINLOADCERTIFICATEOUTPUT IpLoadCertificateOutput;

typedef struct wfs pin load certificate output

{
LPWESXDATA lpxCertificateData;
} WESPINLOADCERTIFICATEOUTPUT, *LPWEFSPINLOADCERTIFICATEOUTPUT;

IpxCertificateData
Pointer to a PKCS #7 (see [Ref. 2]) structure using a Digested-data content type. The digest
parameter should contain the thumb print value.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN FORMATINVALID The format of the message is invalid.

WFS ERR PIN INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN CERTIFICATE CHANGE The certificate module state has changed.

None.

151

CWA 16926-65:2023 (E)

5.4.2 WFS_CMD_PIN_GET _CERTIFICATE

Description

Input Param

Output Param

Error Codes

Events

Comments

152

This command is used to read out the encryptor’s certificate, which has been signed by the trusted
Certificate Authority and is sent to the host. This command only needs to be called once if no new
Certificate Authority has taken over. The output of this command will specify in the PKCS #7
(see [Ref. 2]) message the resulting Primary or Secondary certificate.

LPWFSPINGETCERTIFICATE IpGetCertificate;

typedef struct wfs pin get certificate
{
WORD wGetCertificate;
} WESPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

wGetCertificate

Specifies which public key certificate is requested. If the WFS INF PIN STATUS command
indicates Primary Certificates are accepted, then the Primary Public Encryption Key or the
Primary Public Verification Key will be read out. If the WFS _INF PIN STATUS command
indicates Secondary Certificates are accepted, then the Secondary Public Encryption Key or the
Secondary Public Verification Key will be read out.

Value Meaning

WEFS PIN PUBLICENCKEY The corresponding encryption key is to be
returned.

WFS_PIN PUBLICVERIFICATIONKEY The corresponding verification key is to be
returned.

WFS PIN PUBLICHOSTKEY The host public key is to be returned.

LPWFSPINGETCERTIFICATEOUTPUT IpGetCertificateOutput;

typedef struct wfs pin get certificate output
{
LPWESXDATA lpxCertificate;
} WESPINGETCERTIFICATEOUTPUT, *LPWESPINGETCERTIFICATEOUTPUT;

IpxCertificate

Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 (see [Ref. 2]) using
the degenerate certificate only case of the signed-data content type in which the inner content’s
data file is omitted and there are no signers.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.
WFS ERR PIN KEYNOTFOUND The specified public key was not found.
None.
None.

5.4.3 WFS_

CWA 16926-65:2023 (E)

CMD_PIN_REPLACE_CERTIFICATE

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to replace the existing primary or secondary Certificate Authority
certificate already loaded into the encryptor. This operation must be done by an Initial Certificate
Authority or by a Sub-Certificate Authority. These operations will replace either the primary or
secondary Certificate Authority public verification key inside of the encryptor. After this
command is complete, the application should send the WFS_ CMD PIN LOAD CERTIFICATE
and WFS CMD_GET CERTIFICATE commands to ensure that the new HOST and the
encryptor have all the information required to perform the remote key loading process.

LPWFSPINREPLACECERTIFICATE IpReplaceCertificate;

typedef struct wfs pin replace certificate

{
LPWESXDATA lpxReplaceCertificate;
} WESPINREPLACECERTIFICATE, *LPWEFSPINREPLACECERTIFICATE;

IpxReplaceCertificate

Pointer to the PKCS # 7 message that will replace the current Certificate Authority. The outer
content uses the Signed-data content type, the inner content is a degenerate certificate only
content containing the new CA certificate and Inner Signed Data type The certificate should be in
a format represented in DER encoded ASN.1 notation.

LPWFSPINREPLACECERTIFICATEOUTPUT IpReplaceCertificateOuput

typedef struct wfs pin replace certificate output
{
LPWESXDATA lpxNewCertificateData;
} WESPINREPLACECERTIFICATEOUTPUT,
*LPWEFSPINREPLACECERTIFICATEOUTPUT;

IpxNewCertificateData
Pointer to a PKCS #7 (see [Ref. 2]) structure using a Digested-data content type. The digest
parameter should contain the thumb print value.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN FORMATINVALID The format of the message is invalid.

WFS _ERR PIN INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN CERTIFICATE CHANGE The certificate module state has changed.

None.

153

CWA 16926-65:2023 (E)

5.4.4 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED PKCS7_KEY

Description

Input Param

Output Param

154

This command is used to load a Key Transport Key that is either a single-length, double-length or
triple-length DES key into the encryptor. The Key Transport Key should be destroyed if the entire
process is not completed. In addition, a new Key Transport Key should be generated each time
this protocol is executed. This method ends the Key Exchange process.

LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY IpImportRSAEncipheredPKCS7Key;

typedef struct wfs pin import rsa enciphered pkcs7 key
{

LPWESXDATA lpxImportRSAKeyIn;
LPSTR lpsKey;
DWORD dwUse;

JWESPINIMPORTRSAENCIPHEREDPKCS7KEY,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY;

IpxImportRSAKeyln

Pointer to a binary encoded PKCS #7 (see [Ref. 2]) represented in DER encoded ASN.1 notation.
This allows the Host to verify that key was imported correctly and to the correct encryptor. The
message has an outer Signed-data content type with the SignerInfo encryptedDigest field
containing the HOST’s signature. The random numbers are included as authenticatedAttributes
within the SignerInfo. The inner content is an Enveloped-data content type. The ATM identifier is
included as the issuerAndSerialNumber within the RecipientInfo. The enciphered KTK is
included within RecipientInfo. The encryptedContent is omitted.

IpsKey

Specifies the name of the key to be stored.

dwUse

Specifies the type of access for which the key can be used as a combination of the following flags:
Value Meaning
WEFS PIN USECRYPT Key can be used for encryption/decryption.
WEFS _PIN USEFUNCTION Key can be used for PIN functions.
WEFS_PIN USEMACING Key can be used for MACing.
WEFS PIN USEKEYENCKEY Key is used as key encryption key.
WFS _PIN_USENODUPLICATE Key can be imported only once.
WFS PIN USESVENCKEY Key is used as CBC Start Value encryption

key.

WEFS PIN USEANSTR3IMASTER Key can be used for importing keys

packaged within an ANS-TR-3+ANSI
X9.143 key block.

WEFS_PIN USERESTRICTEDKEYENCKEY Key is used as
WEFS_PIN USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN _USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

If dwUse equals zero the specified key is deleted. In that case all parameters but /psKey are
ignored. WFS_CMD_PIN_IMPORT KEY, WFS CMD_PIN IMPORT KEY EX,

WFS CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEY can be used to delete a key that
has been imported with this command. The equivalent commands in the signature scheme must
not be used to delete a key imported through the certificate scheme.

LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT
IpImportRSAEncipheredKeyOut;

Error Codes

Events

Comments

CWA 16926-65:2023 (E)

typedef struct wfs pin import rsa enciphered pkcs7 key output
{
WORD wKeyLength;
LPWEFSXDATA 1pxRSAData;
}JWESPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT,
*LPWEFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:
Value Meaning
WEFS PIN KEYSINGLE The imported key is single length.
WFS PIN KEYDOUBLE The imported key is double length.
WEFS PIN KEYTRIPLE The imported key is triple length.
IpxRSAData

Pointer to a binary encoded PKCS #7; (see [Ref. 2]), represented in DER encoded ASN.1
notation. The message has an outer Signed-data content type with the SignerInfo encryptedDigest
field containing the ATM’s signature. The random numbers are included as

authenticated Attributes within the SignerInfo. The inner content is a data content type, which
contains the HOST identifier as an issuerAndSerialNumber sequence.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR PIN INVALIDKEYLENGTH The length of IpxValue is not supported.

WFS ERR PIN INVALIDID The ID passed was not valid.

WFS _ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

WFS_ERR PIN FORMATINVALID The format of the message is invalid.

WFS_ERR PIN USEVIOLATION The specified use conflicts with a previously

for the same key specified one.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

The following is a generic structure of how the /pxImportRSAIn field is structured regarding the
outer signed data content type and the inner content as an Envelope-data content type:

ContentInfo ::= SEQUENCE
{
contentType ContentType = signedData
content
SignedData ::= SEQUENCE
{
version Version,
DigestAlgorithms DigestAlgorithmIdentifiers,
contentInfo ContentInfo ::= SEQUENCE,
{
contentType ContentType = EnvelopedData
content

155

CWA 16926-65:2023 (E)

5.4.5 WFS_CMD_PIN_LOAD_ CERTIFICATE_EX

Description

Input Param

Output Param

156

This command is used to load a host certificate to make remote key loading possible. This
command can be used to load a host certificate when there is not already one present in the
encryptor as well as replace the existing host certificate with a new host certificate. The type of
certificate (Primary or Secondary) to be loaded will be embedded within the actual certificate
structure.

LPWFSPINLOADCERTIFICATEEX lpLoadCertificateEx;

typedef struct wfs pin load certificate ex

{

DWORD dwLoadOption;
DWORD dwSigner;
LPWFSXDATA lpxCertificateData;
} WESPINLOADCERTIFICATEEX, *LPWFSPINLOADCERTIFICATEEX
dwLoadOption
Specifies the method to use to load the certificate, with one of the following values:
Value Meaning
WEFS PIN LOAD NEWHOST Load a new Host certificate, where one has
not already been loaded.
WEFS PIN LOAD REPLACEHOST Replace (or rebind) the PIN device to a new

Host certificate, where the new Host
certificate is signed by dwSigner.

dwSigner
Specifies the signer of the certificate to be loaded, with one of the following values:
Value Meaning
WEFS PIN SIGNER CERTHOST The certificate to be loaded is signed by the

current Host. Cannot be combined with
WFS PIN LOAD NEWHOST.

WFS PIN SIGNER CA The certificate to be loaded is signed by the
Certificate Authority (CA).
WFS PIN SIGNER HL The certificate to be loaded is signed by the

Higher Level (HL) Authority.

IpxCertificateData
Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation.

For WFS_PIN LOAD NEWHOST, this data should be in a binary encoded PKCS #7 (see [Ref.
2]) using the “degenerate certificate only” case of the signed-dataSigned-Data content type in
which the inner content’s data file is omitted and there are no signers.

For WFS_PIN LOAD REPLACEHOST, the message has an outer SignedData content type with
the SignerInfo encryptedDigest field containing the signature of dwSigner. The inner content is
binary encoded PKCS#7 using the degenerate certificate.

The optional CRL field may or may not be included in the PKCS#7 signedData structure.
LPWFSPINLOADCERTIFICATEEXOUTPUT IpLoadCertificateExOutput;

typedef struct wfs pin load certificate ex output

{

DWORD dwRSAKeyCheckMode;

LPWESXDATA lpxRSAData;

} WESPINLOADCERTIFICATEEXOUTPUT, *LPWEFSPINLOADCERTIFICATEEXOUTPUT;
dwRSAKeyCheckMode

Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be one of the
following flags:

Value Meaning

WFS PIN RSA KCV _NONE No check value is returned in /pxRSAData.

Error Codes

Events

Comments

CWA 16926-65:2023 (E)

WEFS PIN RSA KCV_SHAI1 IpxRSAData contains a SHA-1 digest of the
public key.
WEFS PIN RSA KCV_SHA256 IpxRSAData contains a SHA-256 digest of
the public key.
IpxRSAData

Pointer to a PKCS #7 (see [Ref. 2]) structure using a Digested-data content type. The digest
parameter should contain the thumb print value calculated by the algorithm specified by
dwRSAKeyCheckMode. If dwRSAKeyCheckMode is WFS PIN RSA KCV_NONE, then this
field must be NULL.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN FORMATINVALID The format of the message is invalid.

WFS ERR PIN INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.

WFS _ERR PIN SIGNATUREINVALID The signature in the input data is invalid.

WFS _ERR PIN RANDOMINVALID The encrypted random number in the input

data does not match the one previously
provided by the PIN device. Only applies to
load options that use a random number.

WFS ERR PIN. MODENOTSUPPORTED The specified combination of dwLoadOption
and dwSigner is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS SRVE PIN CERTIFICATE CHANGE The certificate module state has changed.

The WFS_PIN_ LOAD NEWHOST load option combined with the WFS_PIN SIGNER CA
signer is equivalent to the WFS_ CMD PIN LOAD_CERTIFICATE command. This option will
accomplish the KDH Bind Phase described by X9 TR34-2012 [Ref. 42].

The WFS_PIN LOAD REPLACEHOST load option combined with the
WFS_PIN_SIGNER _CERTHOST signer can be used to support the KDH Rebind Phase
described by X9 TR34-2012 [Ref. 42]. Before executing the

WFS CMD PIN LOAD CERTIFICATE EX with this option, a random number must be
requested using the WFS_CMD_ PIN START KEY EXCHANGE command. The random
number must then be incorporated into the input message of the
WFS_CMD_PIN LOAD CERTIFICATE EX command.

The WFS_PIN_ LOAD REPLACEHOST load option combined with the

WEFS PIN_SIGNER HL signer can be used to support the Higher Level Authority Rebind Phase
described by X9 TR34-2012 [Ref. 42]. Before executing the

WFS CMD PIN LOAD CERTIFICATE EX with this option, a random number must be
requested using the WFS_CMD PIN START KEY EXCHANGE command. The random
number is not used to construct the input message of the

WFS _CMD_ PIN LOAD CERTIFICATE EX command, and the random number stored in the
EPP is ignored by the EPP during execution of this load option.

157

CWA 16926-65:2023 (E)

5.4.6 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED PKCS7_KEY_EX

Description

Input Param

158

This command is used to load a Key Transport Key that is either a single-length, double-length or
triple-length DES key or an AES-128, AES-192, or AES-256 bit key into the encryptor. The Key
Transport Key should be destroyed if the entire process is not completed. In addition, a new Key
Transport Key should be generated each time this protocol is executed. This method ends the Key
Exchange process.

LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX
IpImportRSAEncipheredPKCS7KeyEx;

typedef struct wfs pin import rsa enciphered pkcs7 key ex

{

LPWESXDATA lpxImportRSAKeyIn;
LPSTR lpsKey;

DWORD dwUse;

DWORD dwCRKLLoadOption;

} WEFSPINIMPORTRSAENCIPHEREDPKCST7KEYEX,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX;

IpxImportRSAKeyln

Pointer to a binary encoded PKCS #7 (see [Ref. 2]) represented in DER encoded ASN.1 notation.
This allows the Host to verify that key was imported correctly and to the correct encryptor. The
message has an outer Signed-data content type with the SignerInfo encryptedDigest field
containing the HOST’s signature. The inner content is an Enveloped-data content type. The ATM
identifier is included as the issuerAndSerialNumber within the RecipientInfo.

If dwCRKLLoadOption is WFS_PIN_ CRKLLOAD RANDOM or
WFS PIN CRKLLOAD RANDOM CRL, the random numbers are included as
authenticated Attributes within the SignerInfo.

If dwCRKLLoadOption is WFS_PIN_ CRKLLOAD NORANDOM or
WFS PIN CRKLLOAD NORANDOM CRL, a timestamp is included as an
authenticated Attribute within the SignerInfo.

IpsKey

Specifies the name of the key to be stored.

dwUse

Specifies the type of access for which the key can be used as a combination of the following flags:
Value Meaning
WEFS PIN USECRYPT Key can be used for encryption/decryption.
WEFS _PIN USEFUNCTION Key can be used for PIN functions.
WEFS_PIN USEMACING Key can be used for MACing.
WFS_PIN _USEKEYENCKEY Key is used as key encryption key.
WFS _PIN_USENODUPLICATE Key can be imported only once.
WFS PIN USESVENCKEY Key is used as CBC Start Value encryption

key.

WEFS PIN USEANSTR31IMASTER Key can be used for importing keys

packaged within an ANS-FR-31+ANSI
X9.143 key block.

If dwCRKLLoadOption is WFS_PIN_ CRKLLOAD NORANDOM CRL or
WEFS PIN CRKLLOAD RANDOM_ CRL, the usage is embedded in the [pxImportRSAKeyln
message. In this case, dwUse must be zero.

If the intention is to delete the key then dwUse must be zero and dwCRKLLoadOption must also
be zero. In this case, [pxImportRSAKeylIn is ignored. WFS_CMD_PIN IMPORT KEY,
WFS_CMD_PIN_IMPORT KEY_EX,

WFS_CMD_PIN_IMPORT RSA_ENCIPHERED PKCS7 KEY, and

WFS CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY EX can be used to delete a key
that has been imported with this command. The equivalent commands in the signature scheme
must not be used to delete a key imported through the certificate scheme.

dwCRKLLoadOption
Specifies the method to use to load the Key Transport Key, with one of the following values:

CWA 16926-65:2023 (E)

Value Meaning

WEFS PIN CRKLLOAD NORANDOM Import a Key Transport Key without
generating and using a random number.

WFS PIN CRKLLOAD NORANDOM CRL Import a Key Transport Key with a
Certificate Revocation List appended to the
IpxImportRSAKeylIn parameter. A random
number is not generated nor used.

WEFS PIN CRKLLOAD RANDOM Import a Key Transport Key by generating
and using a random number.

WEFS _PIN CRKLLOAD RANDOM CRL Import a Key Transport Key with a
Certificate Revocation List appended to the
IpxImportRSAKeyIn parameter. A random
number is generated and used.

Output Param LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT
IpImportRSAEncipheredKeyExOut;

typedef struct wfs pin import rsa enciphered pkcs7 key ex output

{

WORD wKeyLength;

DWORD dwRSAKeyCheckMode;
LPWEFSXDATA lpxRSAData;

WORD wKeyCheckMode;
LPWESXDATA lpxKeyCheckValue;

}JWESPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT;

wKeyLength
If the key loaded is a DES or 3DES key, then this parameter specifies the length of the key loaded
as one of the following flags:

Value Meaning

WEFS PIN KEYSINGLE The imported key is single length.
WFS PIN KEYDOUBLE The imported key is double length.
WFS PIN KEYTRIPLE The imported key is triple length.

If the key length is not reported then this will be zero.

dwRSAKeyCheckMode
Defines the algorithm used to generate the signature contained in the message (/pxRSAData) sent
to the host (see section 8.2.2 step 2c¢). It can be one of the following flags:

Value Meaning
WEFS PIN RSA KCV_NONE No check value is returned in /pxRSAData.
WEFS _PIN RSA KCV_SHAI IpxRSAData contains a SHA-1 digest of the
public key.
WFS PIN RSA KCV_SHA256 IpxRSAData contains a SHA-256 digest of
the public key.
IpxRSAData

If dwCRKLLoadOption is WFS_PIN_ CRKLLOAD NORANDOM or

WEFS PIN CRKLLOAD RANDOM, this data is a pointer to a binary encoded PKCS #7; (see
Ref. 2]). represented in DER encoded ASN.1 notation. The message has an outer Signed-data

content type with the SignerInfo encryptedDigest field containing the ATM’s signature. The

random numbers are included as authenticated Attributes within the SignerInfo. The inner content

is a data content type, which contains the HOST identifier as an issuerAndSerialNumber

sequence.
If dwRSAKeyCheckMode is WES_PIN_RSA KCV_NONE, then this field must be NULL.
wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:
Value Meaning
WFS PIN_ KCVNONE There is no key check value provided.

159

CWA 16926-65:2023 (E)

Error Codes

Events

Comments

160

WFS_PIN_KCVSELF

WEFS_PIN KCVZERO

The key check value (KCV) is created by an
encryption of the key with itself. Forthe

depersneppetas o the

=Y aQ

The key check value (KCV) is created by
encrypting a zero value with the key.-Unless

For descriptions of keyusedthese flags refer to generate-the KCVthe fwKeyCheckModes

capability value.
IpxKeyCheckValue

Contains the key verification code data that can be used for verification of the loaded key, NULL

if device does not have that capability.

If wKeyCheckMode is WFS_PIN_ _KCVNONE, then this field must be NULL.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value

Meaning

WEFS_ERR PIN ACCESSDENIED

WFS_ERR_PIN_DUPLICATEKEY
WFS_ERR_PIN_INVALIDKEYLENGTH
WFS_ERR_PIN_ NOKEYRAM
WFS_ERR_PIN_FORMATINVALID
WFS_ERR_PIN_CONTENTINVALID

WFS_ERR_PIN_USEVIOLATION

WFS_ERR PIN RANDOMINVALID

WEFS ERR PIN SIGNATUREINVALID
WFS _ERR PIN INVALIDCERTSTATE

The encryption module is either not
initialized or not ready for any vendor
specific reason.

A key exists with that name and cannot be
overwritten.

The length of the Key Transport Key is not
valid.

There is no space left in the key RAM for a
key of the specified type.

The format of the message or key block is
invalid.

The content of the message or key block is
invalid.

The specified use is not supported, or if a
key with the same name has already been
loaded, the specified use conflicts with the
use of the key previously loaded.

The encrypted random number in the input
data does not match the one previously
provided by the PIN device. Only applies to
CRKL load options that use a random
number.

The signature in the input data is invalid.
A Host certificate has not been previously
loaded.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption

key.

The WFS_PIN CRKLLOAD NORANDOM CRL load option will accomplish the TDEA
Symmetric Key Transport Phase — One-Pass Protocol described by X9 TR34-2012 [Ref. 42]. A
random number does not need to be requested via the

WFS CMD PIN START KEY EXCHANGE command before executing this option.

The WFS_PIN_ CRKLLOAD_ RANDOM load option is equivalent to the functionality available
with the WFS CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY command. A random
number must be requested via the WFS CMD PIN START KEY EXCHANGE command
before executing this option. The random number is then incorporated into the constructed

CWA 16926-65:2023 (E)

IpxImportRSAKeyln input message.

The WFS_PIN_ CRKLLOAD RANDOM CRL load option will accomplish the TDEA
Symmetric Key Transport Phase — Two Pass Protocol described by X9 TR34-2012 [Ref. 42]. This
option performs the same functionality as the WFS PIN CRKLLOAD RANDOM option with
the addition of the use of the Certificate Revocation List (CRL). Refer to X9 TR34-2012 [Ref. 42]
for the validation that the PIN device must perform on the CRL.

161

CWA 16926-65:2023 (E)

5.5 EMV

This section defines the commands needed to import the EMV RSA keys provided either by a Certification
Authority (for example VISA or MASTERCARD EUROPE) or by the chip card itself (ISSUER KEY, ICC KEY
and ICC PIN KEY).

5.51 WFS_CMD_PIN_EMV_IMPORT PUBLIC_KEY

Description The Certification Authority and the Chip Card RSA public keys needed for EMV are loaded or
deleted in/from the encryption module. This command is similar to the
WFS CMD_PIN IMPORT KEY EX command, but it is specifically designed to address the
key formats and security features defined by EMV. Mainly the extensive use of “signed
certificate” or “EMV certificate” (which is a compromise between signature and a pure
certificate) to provide the public key is taken in account. The Service Provider is responsible for
all EMV public key import validation. Once loaded, the Service Provider is not responsible for
key/certificate expiry, this is an application responsibility.

Input Param LPWFSPINEMVIMPORTPUBLICKEY IpEMVImportPublicKey;

typedef struct wfs pin emv import public key
{

LPSTR lpsKey;

DWORD dwUse;

WORD wImportScheme;

LPWESXDATA lpxImportData;

LPSTR lpsSigKey;

} WESPINEMVIMPORTPUBLICKEY, *LPWEFSPINEMVIMPORTPUBLICKEY;
IpsKey
Specifies the name of key being loaded.
dwUse

Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning

WFS PIN USERSAPUBLIC Key is used as a public key for RSA
encryption including EMV PIN block
creation.

WFS _PIN USERSAPUBLICVERIFY Key is used as a public key for RSA

signature verification and/or data decryption.
If dwUse equals zero the specified key is
deleted. In that case all parameters but
IpsKey are ignored.

wimportScheme
Defines the import scheme used. Contains one of the following values:

Value Meaning

WFS PIN EMV_IMPORT PLAIN_CA This scheme is used by VISA. A plain text
CA public key is imported with no
verification. The two parts of the key
(modulus and exponent) are passed in clear
mode as a DER encoded PKCS#1 public
key. The key is loaded directly in the
security module.

WFS PIN EMV_IMPORT CHKSUM CA This scheme is used by VISA. A plain text
CA public key is imported using the EMV
2000 Book II verification algorithm and it is
verified before being loaded in the security
module. (See [Ref. 4] under references
section for this document).

WFS PIN EMV IMPORT EPI CA This scheme is used by MasterCard Europe.
A CA public key is imported using the self-
signed scheme defined in [Ref. 5].

162

CWA 16926-65:2023 (E)

WFS PIN EMV_IMPORT ISSUER An Issuer public key is imported as defined
in EMV 2000 Book Il;+eference4-—+See (see
[Ref. 4] under references section for this
document).

WFS PIN EMV_IMPORT ICC An ICC public key is imported as defined in
EMYV 2000 Book II, reference-4-{See(see
[Ref. 4] under references section for this
document).

WFS PIN EMV _IMPORT ICC PIN An ICC PIN public key is imported as
defined in EMV 2000 Book II, reference4-
{See(see [Ref. 4] under references section for
this document).

WFS PIN EMV_IMPORT PKCSV1 5 CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

IpxImportData
The IpxImportData parameter contains all the necessary data to complete the import using the
scheme specified within wimportScheme.

If wimportScheme is WFS _PIN_ EMV_IMPORT PLAIN CA then [pxImportData contains a
DER encoded PKCS#1 public key. No verification is possible. IpsSigKey is ignored.

If wimportScheme is WFS_PIN EMV_IMPORT CHKSUM CA then I[pxImportData contains
table 23 data, as specified in EMV 2000 Book 2 (See Ref. [4] under the reference section for this
document). The plain text key is verified as defined within EMV 2000 Book 2, page 73.
IpsSigKey is ignored (See Ref. [4] under the reference section for this document).

If wimportScheme is WFS_PIN_EMV_IMPORT _ EPI CA then IpxImportData contains the
concatenation of tables 4 and 13, as specified in reference[Ref. 5;]. Europay International, EPI CA
Module Technical — Interface specification Version 1.4. These tables are also described in the
EMV-Suppert-AppendeEMV Support Appendix. The self-signed public key is verified as
defined by the reference document. IpsSigKey is ignored.

If wimportScheme is WES _PIN_ EMV_IMPORT ISSUER then lpxImportData contains the EMV
public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length —
EMV Tag value: ‘OF32°), the EMV certificate length (1 byte), the EMV certificate value (variable
length — EMV Tag value: ‘90°), the remainder length (1 byte). The remainder value (variable
length — EMV Tag value: ‘92”), the PAN length (1 byte) and the PAN value (variable length —
EMV Tag value: ‘5A’). The Service Provider will compare the leftmost three to eight hex digits
(where each byte consists of two hex digits) of the PAN to the Issuer Identification Number
retrieved from the certificate. For more explanations, the reader can refer to EMVCo, Book2 —
Security & Key Management Version 4.0, Table 4 (See [Ref. 4] under the reference section for
this document). /psSigKey defines the previously loaded key used to verify the signature.

If wimportScheme is WFS_PIN_EMV_IMPORT ICC then IpxImportData contains the EMV
public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length— EMV
Tag value: ‘OF47’), the EMV certificate length (1 byte), the EMV certificate value (variable
length — EMV Tag value:’9F46°), the remainder length (1 byte), the remainder value (variable
length — EMV Tag value: ‘9F48’), the SDA length (1 byte), the SDA value (variable length), the
PAN length (1 byte) and the PAN value (variable length — EMV Tag value: ‘5A”). The Service
Provider will compare the PAN to the PAN retrieved from the certificate. For more explanations,
the reader can refer to EMVCo, Book2 — Security & Key Management Version 4.0, Table 9 (See
[Ref. 4] under the reference section for this document). [psSigKey defines the previously loaded
key used to verify the signature.

163

CWA 16926-65:2023 (E)

Output Param

Error Codes

Events

Comments

164

If wimportScheme is WFS_PIN_EMV_IMPORT ICC PIN then lpxImportData contains the
EMV public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length —
EMYV Tag value: ‘9F2E’), the EMV certificate length (1 byte), the EMV certificate value (variable
length — EMV Tag value:’9F2D’), the remainder length (1 byte), the remainder value (variable
length — EMV Tag value: ‘OF2F’), the SDA length (1 byte), the SDA value (variable length), the
PAN length (1 byte) and the PAN value (variable length — EMV Tag value: ‘5A’). The Service
Provider will compare the PAN to the PAN retrieved from the certificate. For more explanations,
the reader can refer to EMVCo, Book2 — Security & Key Management Version 4.0, Table 9 (See
[Ref. 4] under the reference section for this document). /psSigKey defines the previously loaded
key used to verify the signature.

If wImportScheme is WFS_PIN_EMV_IMPORT PKCSV1 5 CA then lpxImportData contains
the CA public key signed with the previously loaded public key specified in /psSigKey.
IpxImportData consists of the concatenation of EMV 2000 Book II Table 23{reference4) + § byte
random number + Signature (See Ref. [4] under the reference section for this document). The 8-
byte random number is not used for validation; it is used to ensure the signature is unique. The
Signature consists of all the bytes in the [px/mportData buffer after table 23 and the 8-byte
random number.

IpsSigKey
This field specifies the name of the previously loaded key used to verify the signature, as detailed
in the descriptions above.

LPWFSPINEMVIMPORTPUBLICKEYOUTPUT IpEM VImportPublicKeyOutput;

typedef struct wfs pin emv import public key output
{
LPSTR lpsExpiryDate;
} WESPINEMVIMPORTPUBLICKEYOUTPUT,
*LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

IpsExpiryDate
Contains the expiry date of the certificate in the following format MMY'Y. If no expiry date
applies then [psExpiryDate is NULL.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.
WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
WFS _ERR PIN EMV_ VERIFY FAILED The verification of the imported key failed
and the key was discarded.

WFS ERR PIN KEYNOTFOUND The specified key name is not found.
WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

This command only imports one key per use. If the same key value has to be imported for two
different uses, this command must be called twice and different key names must be specified.

5.5.2 WFS_

CWA 16926-65:2023 (E)

CMD_PIN_DIGEST

Description:

Input Param

Output Param

Error Codes

Events

Comments

This command is used to compute a hash code on a stream of data using the specified hash
algorithm. This command can be used to verify EMV static and dynamic data.

LPWFSPINDIGEST IpDigest;

typedef struct wfs pin digest
{
WORD wHashAlgorithm;
LPWESXDATA lpxDigestInput;
} WESPINDIGEST, *LPWEFSPINDIGEST;

wHashAlgorithm
Specifies which hash algorithm should be used to calculate the hash. See the Capabilities section
for valid algorithms.

IpxDigestinput
Pointer to the structure that contains the length and the data to be hashed.

LPWFSPINDIGESTOUTPUT IpDigestOutput;

typedef struct wfs pin digest output
{
LPWEFSXDATA lpxDigestOutput;
} WESPINDIGESTOUTPUT, *LPWESPINDIGESTOUTPUT;

IpxDigestOuput
Pointer to the structure that contains the length and the data containing the calculated hash.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

None.

None.

165

CWA 16926-65:2023 (E)

5.6 Entering and Changing a Password

5.6.1 WFS CMD PIN PASSWORD ENTRY

Description This command is used for entry of a password to access a sensitive function (for example, secure
key entry), or to change a password. The password is entered directly without being exposed
outside of the device. From the point the WFS EXEE PIN ENTERDATA event is sent,
characters are not passed to the application. For each active key entered (except for shift), an
execute notification event WFS EXEE PIN_KFEY is sent in order to allow an application to
perform the appropriate display action (i.e. when the device has no integrated display).

The WFS_EXEE_PIN_ENTERDATA event will be generated when the device is ready for the
user to start entering data.

The keys that can be enabled by this command are defined by the

WES_INF_PIN_GET LAYOUT command. Function keys which are not associated with a
character may be enabled but will not contribute to the password buffer (unless they are Cancel,
Clear or Backspace) and will not count towards the length of the password. The Cancel and Clear
keys will cause the character buffer to be cleared. The Backspace key will cause the last character
in the character buffer to be removed.

If bAutoEnd is TRUE the command will automatically complete when the required number of
characters have been added to the buffer, as described by the usMaxLen parameter.

If bAutoEnd is FALSE then the command will not automatically complete and Enter, Cancel or
any terminating key must be pressed. When usMaxLen characters have been entered then all
character keys are disabled. If the Clear or Backspace key is pressed to reduce the number of
entered characters below usMaxLen, the same keys will be re-enabled.

Terminating keys must be active keys to operate.

If an FDK is associated with Enter, Cancel, Clear or Backspace then the FDK must be activated to
operate. The Enter and Cancel FDKs must also be marked as a terminator if they are to terminate
entry. These FDKSs are reported as normal FDKs within the WES EXEE PIN KEY event,
applications must be aware of those FDKs associated with Cancel, Clear, Backspace and Enter
and handle any user interaction as required. For example, if the WFS PIN FK FDKOI is
associated with Clear, then the application must include the WFS PIN FK FDKOI FDK code in
the uldctiveFDKs parameter (if the clear functionality is required). In addition, when this FDK is
pressed the WFS _EXEE PIN KEY event will contain the WFS_PIN_FK FDKO1 mask value in
the ulDigit field. The application must update the user interface to reflect the effect of the clear on
the encryption key digits entered so far.

If the ENTER key (or FDK representing the ENTER key — note that the association of an FDK to
ENTER functionality is vendor specific) is pressed prior to usMinLen being met, then the ENTER
key or FDK is ignored. In some cases the PIN pad device cannot ignore the ENTER key then the
command will complete normally. To handle these types of devices the application should use the
output parameter usDigits field to check that sufficient digits have been entered. The application
should then get the user to re-enter their password with the correct number of digits

Entering a password is done by referencing the indexed entries in the lppPasswords field defined
in the WFSPINCAPS structure as follows:

Password verification for Secure Key Entry:

Verifying a password for secure key entry can be done in multiple stages. An example is as
follows:

1. Call WES CMD_PIN PASSWORD_ENTRY with dwindex referencing an entry in the
IppPasswords array that includes WFS PIN PWATTRIB SKE in the fwPasswordAttributes
field. In this case the dwPasswordMode input parameter is set to
WES PIN PWATTRIB SKE. This verifies the first password.

2. Repeat step 1 for the next password in the [ppPasswords array. If necessary, repeat this until
all passwords have been entered for this key part. Once this has been done the secure key part
can be loaded using the WFS CMD PIN SECURE KEY ENTRY and
WES_CMD_PIN_IMPORT_KEY commands.

Changing a password:
166

Input Param

CWA 16926-65:2023 (E)

Changing a password may be done in stages:

1. Call WES CMD_PIN PASSWORD_ENTRY with dwindex referencing an entry in the
IppPasswords array that includes WFS PIN PWATTRIB_SKE in the fwPasswordAttributes
field. In this case dwPasswordMode is set to WFS PIN PWATTRIB_SKE. This will then
verify the current password is correct.

2. Call WES CMD_PIN PASSWORD_ENTRY again with dwlndex referencing the same entry
as step 1, but with dwPasswordMode set to WFS PIN PWATTRIB CHANGE. If the

password needs to be confirmed then step 3 must be performed, otherwise the password is
now changed.

3. If confirmation of the new password is required, call
WES _CMD_PIN_PASSWORD_ENTRY again with dwindex referencing the same entry as
step 1, but with dwPasswordMode set to WES PIN PWATTRIB_CONFIRM. If successful,

the password is now changed. Entering a password is done by referencing the indexed entries
in the /ppPasswords field defined in the WFSPINCAPS structure as follows:

For a description of the above sequences and flow diagrams see section 8.9 in the Appendix.

LPWFSPINPASSWORDENTRY IpPasswordEntry;

typedef struct wfs pin password entry

{

USHORT usMinLen;

USHORT usMaxLen;

BOOL bAutoEnd;

CHAR cEcho;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
DWORD dwPasswordMode;
DWORD dwIndex;

} WESPINPASSWORDENTRY, *LPWEFSPINPASSWORDENTRY;

usMinlLen
Specifies the minimum number of characters specified by the application which must be entered

for the password. A value of zero indicates no minimum password length verification. Note: PCI
requirements are that the minimum length should be 7 characters.

usMaxLen
Specifies the maximum number of characters which can be entered for the password. This must
be greater or equal to the usMinLen parameter.

bAutoEnd
If bAutoEnd is set to TRUE, the Service Provider terminates the command when the maximum
number of characters are entered. Otherwise, the input is terminated by the user using one of the

termination keys. bAutoEnd is ignored when usMaxLen is set to zero.

cEcho
Specifies the replace character to be echoed on a local display for the PIN digit.

ulActiveFDKs

Specifies a mask of those FDKs which are active during the execution of the command (see
WES INF PIN FUNCKEY DETAIL).

ulActiveKeys
Specifies a mask of those (other) Function Keys which are active during the execution of the

command (see WFS_INF_PIN_FUNCKEY_ DETAIL).

ulTerminateFDKs
Specifies a mask of those FDKs which must terminate the execution of the command (see
WES _INF_PIN FUNCKEY_ DETAIL).

ulTerminateKeys
Specifies a mask of those (other) Function Keys which must terminate the execution of the

command (see WFS_INF_PIN_FUNCKEY DETAIL).

dwPasswordMode
Specifies the function being performed. This must be one of the following values

167

CWA 16926-65:2023 (E)

Output Param

Value Meaning

WES _PIN_ PWATTRIB_SKE The password is being entered to gain access
to the sensitive function described by the
dwlindex field in the
WESPINCAPS./ppPasswords field.

WES PIN PWATTRIB_CHANGE The password is being entered to replace the
current password.

WES PIN PWATTRIB CONFIRM A new password has already been entered,
this is confirmation of the new password. It
must be the same as the previously entered

new password.

dwlndex
The index into the array described in the WESPINCAPS.lppPasswords field, indicating which
password is being entered.

LPWFSPINPASSWORDENTRYOUT IpPasswordEntryQOut;

Error Codes

typedef struct wfs pin password entry out
{
USHORT usDigits;
WORD wCompletion;
} WFSPINPASSWORDENTRYOUT, *LPWFSPINPASSWORDENTRYOUT;

usDigits
Specifies the number of characters entered.

wCompletion
Specifies the reason for completion of the entry. Possible values are described in

WFS_CMD_PIN_GET_PIN.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

Events

generated by this command:

Value Meaning

WES_ERR PIN ACCESSDENIED The module is either not initialized or not
ready for any vendor specific reason.

WES_ERR PIN KEYINVALID At least one of the specified function keys or
FDKSs is invalid.

WFS _ERR _PIN_KEYNOTSUPPORTED At least one of the specified function keys or
FDKs is not supported by the Service
Provider.

WFS ERR _PIN_NOACTIVEKEYS There are no active function keys specified,
or there is no defined layout definition.

WES_ERR PIN NOTERMINATEKEYS There are no terminate keys specified and
bAutoEnd is FALSE.

WES_ERR PIN TOOMANYFRAMES The device requires that only one frame is
used for this command.

WES _ERR PIN PARTIALFRAME The single Touch Frame does not cover the
entire monitor.

WES ERR PIN MISSINGKEYS The single frame does not contain a full set
of hexadecimal key definitions.

WES ERR PIN MINIMUMLENGTH The minimum password length field is

invalid or greater than the maximum
password length field when the maximum
password length is not zero.

WES_ERR PIN PASSWORDWRONG The password entered for verification is
wrong.

WES_ERR PIN PASSWORDMISMATCH The repeated passwords do not match.

WES _ERR PIN PASSWORDTIMEOUT The timeout for entering the password has

been reached. This is a timeout which may
be due to hardware limitations or legislative
requirements (for example PCI).

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

168

command:

Value

CWA 16926-65:2023 (E)

Meaning

WFS_EXEE_PIN_KEY

A key has been pressed at the PIN pad.

WFS_EXEE_PIN_ENTERDATA

Applications must be aware of the
association between FDKs and the edit
functions reported within the
WES_INF_PIN_PASSWORD_ENTRY
command.

The PIN pad is ready for the user to start

WFS_EXEE_PIN_LAYOUT

entering data.
The layout has changed position. For ETS

WES SRVE_PIN_PASSWORD_CLEARED

devices only.
A password has been automatically cleared

None.

by the device.

169

CWA 16926-65:2023 (E)

6. Events

6.1 WFS_EXEE_PIN_KEY

Description

Event Param

Comments

170

This event specifies that any active key has been pressed at the PIN pad. It is used if the device
has no internal display unit and the application has to manage the display of the entered digits. It
is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

LPWFSPINKEY IpKey;

typedef struct wfs pin key
{
WORD wCompletion;
ULONG ulDigit;
} WESPINKEY, *LPWEFSPINKEY;

wCompletion
Specifies the reason for completion or continuation of the entry. Possible values are:
(see command WFS_CMD_PIN GET PIN)

ulDigit

Specifies the digit entered by the user. When working in encryption mode or secure key entry
mode (WFS_CMD PIN GET PIN and WFS CMD PIN SECUREKEY ENTRY), the value of
this field is 0x00 for the function keys 0-9 and A-F. Otherwise, for each key pressed, the
corresponding FK or FDK mask value is stored in this field.

None.

CWA 16926-65:2023 (E)

6.2 WFS_SRVE_PIN_INITIALIZED

Description This event specifies that, as a result of a WFS_ CMD_PIN INITIALIZATION, the encryption
module is now initialized and the master key (where required) and any other initial keys are
loaded; ready to import other keys.

Event Param LPWFSPININIT Iplnit;

IpInit
For a definition of the WFSPININIT structure see command
WFS _CMD_PIN_INITIALIZATION.

Comments None.

171

CWA 16926-65:2023 (E)

6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ ACCESS

Description

Event Param

Comments

172

This event specifies that an error occurred accessing an encryption key. Possible situations for
generating this event are listed in the description of [ErrorCode.

LPWFSPINACCESS IpAccess;

typedef struct wfs pin access
{
LPSTR lpsKeyName;
LONG lErrorCode;
} WESPINACCESS, *LPWEFSPINACCESS;

IpsKeyName

Specifies the name of the key that caused the error.

IErrorCode

Specifies the type of illegal key access that occurred. Possible values are:

Value Meaning

WFS _ERR PIN KEYNOTFOUND The specified key was not loaded or
attempting to delete a non-existent key.

WFS _ERR PIN KEYNOVALUE The specified key is not loaded.

WFS_ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS ERR PIN ALGORITHMNOTSUPP The specified algorithm is not supported by
this key.

WFS _ERR PIN DUKPTOVERFLOW The DUKPT KSN encryption counter has
overflowed to zero. A new IPEK must be
loaded.

None.

CWA 16926-65:2023 (E)

6.4 WFS_SRVE_PIN_OPT_REQUIRED

Description

Event Param

Comments

This event indicates that the online date/time stored in a HSM has been reached.

LPWFSPINHSMIDENTIFIER 1IpOPTRequired;

typedef struct wfs pin hsm identifier

{

WORD wHSMSerialNumber;
} WESPINHSMIDENTIFIER, *LPWEFSPINHSMIDENTIFIER;
wHSMSerialNumber

Specifies the serial number of the logical HSM where the online time has been reached. If logical
HSMs are not supported then [pOPTRequired is NULL. The wHSMSerialNumber value is
encoded as a standard binary value (i.e. it is not BCD).

This event may be triggered by the clock reaching a previously stored online time or by the online
time being set to a time that lies in the past.

The online time may be set by the command WFS_CMD PIN HSM_ SET TDATA or by a
command WFS CMD_PIN SECURE MSG RECEIVE that contains a message from a host
system containing a new online date/time.

The event does not mean that any keys or other data in the HSM is out of date now. It just

indicates that the terminal should communicate with a “Personalisierungsstelle” as soon as
possible using the commands WFS_CMD_PIN SECURE _MSG _SEND/ RECEIVE and
wProtocol=WFS_PIN PROTISOPS.

173

CWA 16926-65:2023 (E)

6.5 WFS_SRVE_PIN_CERTIFICATE_CHANGE

Description

Event Param

Comments

174

This event indicates that the certificate module state has changed from Primary to Secondary.

LPWORD IpwCertificateChange;

IpwCertificateChange

SpeeifiesPointer to change of the certificate state inside of the encryptor as one of the following:
Value Meaning
WEFS PIN CERT SECONDARY The certificate state of the encryptor is now

Secondary and Primary Certificates will no
longer be accepted.

None.

CWA 16926-65:2023 (E)

6.6 WFS_SRVE_PIN_HSM_TDATA_CHANGED

Description

Event Param

Comments

This event indicates that one of the values of the terminal data has changed (these are the data that
can be set using WFS_ CMD_PIN HSM_SET TDATA). Le. this event will be sent especially
when the online time or the HSM status is changed because of a WFS CMD_ PIN HSM _INIT
command or an OPT online dialog (WFS_CMD_ PIN SECURE MSG SEND/ RECEIVE with
WFS PIN PROTISOPS).

On configurations with multiple logical HSMs, the serial number tag must be included within the
data so that the logical HSM that has changed can be identified.

LPWFSXDATA IpxTData;

IpxTData
Contains the parameter settings as a series of “tag/length/value” items. See command
WFS CMD PIN HSM_SET TDATA for the tags supported.

None.

175

CWA 16926-65:2023 (E)

6.7 WFS_SRVE_PIN_HSM_CHANGED

Description This event indicates that the currently active logical HSM has been changed. This event will be
triggered when an application changes the current HSM through the
WFS CMD PIN SET LOGICAL HSM command. This event is not generated if the HSM is
not changed.

Event Param LPWFSPINHSMIDENTIFIER IpHSMChanged;

typedef struct wfs pin hsm identifier

{

WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;
wHSMSerialNumber

Specifies the serial number of the logical HSM that has been made active. The
wHSMSerialNumber value is encoded as a standard binary value (i.e. it is not BCD).

Comments None.

176

CWA 16926-65:2023 (E)

6.8 WFS_EXEE_PIN_ENTERDATA

Description This mandatory event notifies the application when the device is ready for the user to start
entering data.

Event Param None.

Comments None.

177

CWA 16926-65:2023 (E)

6.9 WFS_SRVE_PIN_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSPINDEVICEPOSITION IpDevicePosition;

typedef struct wfs pin device position

{
WORD wPosition;
} WESPINDEVICEPOSITION, *LPWEFSPINDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning

WEFS_PIN DEVICEINPOSITION The device is in its normal operating
position.

WFS PIN DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS PIN DEVICEPOSUNKNOWN The position of the device cannot be
determined.

Comments None.

178

CWA 16926-65:2023 (E)

6.10 WFS_SRVE_PIN_POWER_SAVE_CHANGE

Description

Event Param

Comments

This service event specifies that the power save recovery time has changed.

LPWFSPINPOWERSAVECHANGE IpPowerSaveChange;

typedef struct wfs pin power save change

{

USHORT usPowerSaveRecoveryTime;
} WESPINPOWERSAVECHANGE, *LPWEFSPINPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

If another device class compounded with this device enters into a power saving mode, this device
will automatically enter into the same power saving mode and this event will be generated.

179

CWA 16926-65:2023 (E)

6.11 WFS_EXEE_PIN_LAYOUT

Description This event sends the layout for a specific keyboard entry mode if the layout has changed since it
was loaded (i.e. if a float action is being used).

Event Param LPWFSPINLAYOUT IpLayout;

For the definition of the WFSPINLAYOUT structure see command
WEFS INF PIN GET LAYOUT.

Comments None.

180

CWA 16926-65:2023 (E)

6.12 WFS_EXEE_PIN_DUKPT_KSN

Description This event sends the DUKPT KSN of the key used in the command. The receiving TRSM uses
this to derive the key from the BDK.

Event Param LPWFSPINDUKPTKSN IpKSN;

typedef struct wfs pin dukpt ksn
{

LPSTR lpsKey;

LPWFSXDATA 1pxKSN;

} WFSPINDUKPTKSN, *LPWFSPINDUKPTKSN;
IpsKey
Specifies the name of the DUKPT Key derivation key.
IpxKSN

Pointer to the structure that contains the KSN.

Comments None.

181

CWA 16926-65:2023 (E)

6.13 WFS SRVE PIN PASSWORD CLEARED

Description A previously entered password has been automatically cleared by the device. If more than one
password has been cleared this event will be sent for each password.

Event Param LPWFSPINPASSWORDCLEARED IpPasswordCleared;

typedef struct wfs pin password cleared
{
DWORD dwIndex;
} WESPINPASSWORDCLEARED, *LPWESPINPASSWORDCLEARED;

dwilndex
Specifies the index of one of the entries in the /lppPasswords array defined in the WFSPINCAPS
structure.

Comments None.

182

7. C - Header File

CWA 16926-65:2023 (E)

/**

xfspin.h XFS - Personal Identification Number Keypad

3.48 (D mhar o 0101
s = sSASE S ==

T

*
*
* Version
*
*
*

50

*

(PIN) definitions *

*

(November 18 2022)

*

***/

#ifndef INC XFSPIN H
#define _ INC XFSPIN H

#ifdef cplusplus
extern "C" {
fendif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSPINCAPS.wClass */

#define
#define
*/

#define

WFS_SERVICE CLASS PIN
WFS_SERVICE CLASS VERSION PIN

WFS SERVICE CLASS NAME PIN

#define PIN SERVICE OFFSET

/* PIN Info Commands */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_INF PIN STATUS
WFS_INF PIN CAPABILITIES
WFS_INF PIN KEY DETAIL

WFS_INF_PIN FUNCKEY DETAIL
WFS_INF _PIN HSM TDATA
WFS_INF _PIN KEY DETAIL EX
WFS_INF PIN SECUREKEY DETAIL
WFS_INF_PIN QUERY LOGICAL HSM DETAIL
WFS_INF PIN QUERY PCIPTS DEVICE ID
WFS_INF_PIN GET LAYOUT
WFS_INF PIN KEY DETAIL 340

/* PIN Command Verbs */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_CMD PIN CRYPT
WFS_CMD PIN IMPORT KEY
WFS_CMD PIN GET PIN
WFS_CMD_PIN GET PINBLOCK
WFS_CMD PIN GET DATA
WFS_CMD PIN INITIALIZATION
WFS_CMD_PIN LOCAL DES
WFS_CMD PIN LOCAL EUROCHEQUE
WFS_CMD_PIN LOCAL VISA
WFS_CMD PIN CREATE OFFSET
WFS_CMD_PIN DERIVE KEY
WFS_CMD PIN PRESENT IDC
WFS_CMD_PIN LOCAL BANKSYS
WFS_CMD PIN BANKSYS IO
WFS_CMD_PIN RESET
WFS_CMD PIN HSM SET TDATA
WFS_CMD_PIN SECURE MSG_SEND
WFS_CMD PIN SECURE MSG RECEIVE
WFS_CMD PIN GET JOURNAL

(4)
(6%28630x3203) /* Version 3.4650
"PIN"

(WEFS_SERVICE CLASS PIN * 100)

(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET

O 0 J o U DN -

+ 4+

o e
N RO

(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET

B T L L S
=
w

183

CWA 16926-65:2023 (E)

#define WFS CMD PIN IMPORT KEY EX

#define WFS_CMD PIN ENC IO

#define WFS CMD PIN HSM INIT

#define WFS_CMD PIN IMPORT RSA PUBLIC KEY

#define WFS_CMD PIN EXPORT RSA ISSUER SIGNED ITEM
#define WFS_CMD PIN IMPORT RSA SIGNED DES KEY
#define WFS_CMD PIN GENERATE RSA KEY PATR

#define WFS_CMD PIN EXPORT RSA EPP SIGNED ITEM
#define WFS_CMD PIN LOAD CERTIFICATE

#define WFS_CMD PIN GET CERTIFICATE

#define WFS_CMD PIN REPLACE CERTIFICATE (PIN_SERVICE OFFSET
#define WFS_CMD PIN START KEY EXCHANGE (PIN_SERVICE OFFSET
#define WFS_CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEY (PIN SERVICE OFFSET
#define WFS_CMD PIN EMV IMPORT PUBLIC KEY (PIN SERVICE OFFSET
#define WFS_CMD PIN DIGEST (PIN_SERVICE OFFSET
#define WFS_CMD PIN SECUREKEY ENTRY (PIN SERVICE OFFSET
#define WFS_CMD PIN GENERATE KCV (PIN_SERVICE OFFSET
#define WFS_CMD PIN SET GUIDANCE LIGHT (PIN SERVICE OFFSET
#define WFS_CMD PIN MAINTAIN PIN (PIN_SERVICE OFFSET
#define WFS_CMD PIN KEYPRESS BEEP (PIN SERVICE OFFSET
#define WFS_CMD PIN SET PINBLOCK DATA (PIN_SERVICE OFFSET
#define WFS_CMD PIN SET LOGICAL_ HSM (PIN_SERVICE OFFSET
#define WFS_CMD PIN IMPORT KEYBLOCK (PIN SERVICE OFFSET
#define WFS_CMD PIN POWER SAVE CONTROL (PIN_SERVICE OFFSET
#define WFS_CMD PIN LOAD CERTIFICATE EX (PIN SERVICE OFFSET + 48
#define WFS_CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEY EX (PIN_SERVICE OFFSET + 49)
#define WFS_CMD PIN DEFINE LAYOUT (PIN_SERVICE OFFSET + 50
#define WFS_CMD PIN START AUTHENTICATE (PIN_SERVICE OFFSET
#define WFS_CMD PIN AUTHENTICATE (PIN SERVICE OFFSET
#define WFS_CMD PIN GET PINBLOCK EX (PIN_SERVICE OFFSET
#define WFS_CMD PIN SYNCHRONIZE COMMAND (PIN SERVICE OFFSET
#define WFS_CMD PIN CRYPT 340 (PIN_SERVICE OFFSET
#define WFS_CMD PIN IMPORT KEY 340 (PIN SERVICE OFFSET
#define WFS_CMD PIN GET PINBLOCK 340 (PIN_SERVICE OFFSET
#define WFS CMD PIN PASSWORD ENTRY (PIN SERVICE OFFSET

(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET

B
w
[1sy

B
(@)
(1

/* PIN Messages */

#define WFS_EXEE_PIN KEY

#define WFS_SRVE PIN INITIALIZED
#define WFS_SRVE PIN ILLEGAL KEY ACCESS
#define WFS_SRVE PIN OPT REQUIRED
#define WFS SRVE PIN HSM TDATA CHANGED
#define WFS_SRVE PIN CERTIFICATE CHANGE
#define WFS SRVE PIN HSM CHANGED
#define WFS EXEE PIN ENTERDATA

#define WFS_SRVE PIN DEVICEPOSITION
#define WFS SRVE PIN POWER SAVE CHANGE
#define WFS_EXEE PIN LAYOUT

#define WFS EXEE PIN DUKPT KSN

#define WFS SRVE PIN PASSWORD CLEARED

(PIN_SERVICE_ OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET
(PIN SERVICE OFFSET

B
~J

/* values of WESPINSTATUS.fwDevice */

#define WFS PIN DEVONLINE WEFS STAT DEVONLINE

#define WFS PIN DEVOFFLINE WFS STAT DEVOFFLINE
#define WFS PIN DEVPOWEROFF WEFS STAT DEVPOWEROFF
#define WFS PIN DEVNODEVICE WEFS STAT DEVNODEVICE
#define WFS_ PIN DEVHWERROR WEFS STAT DEVHWERROR

#define WFS_PIN DEVUSERERROR
#define WFS_PIN DEVBUSY

#define WFS PIN DEVFRAUDATTEMPT
#define WFS_PIN DEVPOTENTIALFRAUD

WFS STAT DEVUSERERROR

WEFS STAT DEVBUSY

WFS STAT DEVFRAUDATTEMPT
WEFS STAT DEVPOTENTIALFRAUD

/* values of WESPINSTATUS.fwEncStat */

#define WFS_PIN ENCREADY (0)
#define WFS PIN ENCNOTREADY (1)
#define WFS PIN ENCNOTINITIALIZED (2)

184

#define
#define
#define
#define

/* Size

#define
#define

WE'S PIN ENCBUSY

WEFS PIN ENCUNDEFINED
WES PIN ENCINITIALIZED
WEFS PIN ENCPINTAMPERED

and max index of dwGuidLights array */

WEFS PIN GUIDLIGHTS SIZE
WFS PIN GUIDLIGHTS MAX

/* Indices of WFSPINSTATUS.dwGuidLights [...]

*/

#define

WESPINCAPS.dwGuidLights [...]

WEFS PIN GUIDANCE PINPAD

/* Values of WFSPINSTATUS.dwGuidLights [...]

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WESPINCAPS.dwGuidLights [...]

WFS_PIN GUIDANCE NOT AVAILABLE
WFS_PIN GUIDANCE OFF

WFS_PIN GUIDANCE SLOW_FLASH
WFS_PIN GUIDANCE MEDIUM FLASH
WFS_PIN GUIDANCE QUICK FLASH
WFS_PIN GUIDANCE CONTINUOUS
WFS_PIN GUIDANCE RED

WFS_PIN GUIDANCE GREEN
WFS_PIN GUIDANCE YELLOW
WFS_PIN GUIDANCE BLUE

WFS_PIN GUIDANCE CYAN

WFS_PIN GUIDANCE MAGENTA
WFS_PIN GUIDANCE WHITE
WFS_PIN GUIDANCE ENTRY
WFS_PIN GUIDANCE EXIT

/* values for WFSPINSTATUS.fwAutoBeepMode and

WFS_CMD_

#define
#define

PIN KEYPRESS BEEP lpwMode parameter */

WFS_PIN BEEP ON ACTIVE
WFS_PIN BEEP ON INACTIVE

/* values of WEFSPINSTATUS.wDevicePosition

#define
#define
#define
#define

WESPINDEVICEPOSITION.wPosition */

WEFS PIN DEVICEINPOSITION
WFS PIN DEVICENOTINPOSITION
WES PIN DEVICEPOSUNKNOWN
WEFS PIN DEVICEPOSNOTSUPP

/* values of WFSPINCAPS.fwType */

#define
#define
#define
#define

/* values of WFSPINCAPS.fwAlgorithms,

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_PIN TYPEEPP
WFS_PIN TYPEEDM
WFS_PIN TYPEHSM
WFS_PIN TYPEETS

WFS_PIN CRYPTDESECB
WFS_PIN CRYPTDESCBC
WFS_PIN CRYPTDESCFB
WFS_PIN CRYPTRSA
WFS_PIN CRYPTECMA
WFS_PIN CRYPTDESMAC
WFS_PIN CRYPTTRIDESECB
WFS_PIN CRYPTTRIDESCBC
WFS_PIN CRYPTTRIDESCFB
WFS_PIN CRYPTTRIDESMAC

(32)

CWA 16926-65:2023 (E)

(WFS_PIN GUIDLIGHTS SIZE - 1)

(0x00000000)
(0x00000001)
(0x00000004)
(0x00000008)
(0x00000010)
(0x00000080)
(0x00000100)
(0x00000200)
(0x00000400)
(0x00000800)
(0x00001000)
(0x00002000)
(0x00004000)
(0x00100000)
(0x00200000)

(0x0001)
(0x0002)

0x0001
0x0002
0x0004

(
(
(
(0x0008

)
)
)
)

WESPINCRYPT.wAlgorithm */

(0x0001)
(0x0002)
(0x0004)
(0x0008)
(0x0010)
(0x0020)
(0x0040)
(0x0080)
(0x0100)
(0x0200)

185

CWA 16926-65:2023 (E)

#define WFS_PIN CRYPTMAAMAC (0x0400)
#define WFS PIN CRYPTTRIDESMAC2805 (0x0800)
#define WFS_PIN CRYPTSM4 (0x1000)
#define WFS_PIN CRYPTSM4MAC (0x2000)

/* values of WFSPINCAPS.fwPinFormats */

#define WFS_PIN FORM3624 (0x0001)
#define WFS PIN FORMANSI (0x0002)
#define WFSiPINiFORMISOO (0x0004)
#define WFS_PIN FORMISOl (0x0008)
#define WFSiPINiFORMECIZ (0x0010)
#define WFS PIN FORMECI3 (0x0020)
#define WEFS PIN FORMVISA (0x0040)
#define WFS_PIN_FORMDIEBOLD (0x0080)
#define WEFS PIN FORMDIEBOLDCO (0x0100)
#define WFS_PIN FORMVISA3 (0x0200)
#define WEFS PIN FORMBANKSYS (0x0400)
#define WFS PIN FORMEMV (0x0800)
#define WFS_PIN_FORMISO3 (0x2000)
#define WFS PIN FORMAP (0x4000)
#define WFS PIN FORMISO4 (0x8000)

/* values of WFSPINCAPS.fwDerivationAlgorithms */

#define WFS PIN CHIP ZKA (0x0001)

/* values of WFSPINCAPS.fwPresentationAlgorithms */
#define WFS_PIN PRESENT CLEAR (0x0001)

/* values of WFSPINCAPS.fwDisplay */

#define WFS_PIN DISPNONE (1)
#define WFS_PIN DISPLEDTHROUGH
#define WFS_PIN DISPDISPLAY (3)

/* values of WESPINCAPS.fwIDKey */

#define WFS_PIN IDKEYINITIALIZATION (0x0001)
#define WFS_PIN IDKEYIMPORT (0x0002)

/* values of WFSPINCAPS.fwValidationAlgorithms */

#define WFS_PIN DES (0x0001)
#define WEFS PIN EUROCHEQUE (0x0002)
#define WFS PIN VISA (0x0004)
#define WFS_PIN DES_ OFFSET (0x0008)
#define WFS PIN BANKSYS (0x0010)

/* values of WFSPINCAPS.fwKeyCheckModes,
WESPINIMPORTKEYEX.wKeyCheckMode and WESPINATTRIBUTES.dwCryptoMethod */

#define WEFS PIN KCVNONE (0x0000)
#define WFS PIN KCVSELF (0x0001)
#define WEFS PIN KCVZERO (0x0002)

/* Additional values for values of WFSPINSECUREKEYENTRY.wVerificationType */

#define WFS PIN KCv DR (05860666607

HAdaf 1 irvanl DTN KO DES (O 400000000
ettt 1AE= N p=p =y t “r A
bdefine WES PIN KCV AR (0520000060KCVAES
(0x8000)

/* values of WFSPINCAPS.dwSymmetricKeyManagementMethods */

#define WFS_PIN KM FIXED KEY (0x0001)
#define WFS_PIN KM MASTER KEY (0x0002)
#define WFS_PIN KM TDES DUKPT (0x0004)

186

CWA 16926-65:2023 (E)

/* values of WFSPINCAPS.fwAutoBeep */

#define WFS_PIN BEEP ACTIVE AVAILABLE (0x0001)
#define WFS_PIN BEEP ACTIVE SELECTABLE (0x0002)
(
(

#define WFS PIN BEEP INACTIVE AVAILABLE 0x0004)
#define WFS_PIN BEEP INACTIVE SELECTABLE 0x0008)
/* values of WFSPINCAPS.fwKeyBlockImportFormats */

#define WFS_PIN ANSTR31KEYBLOCK 0x0001

#define WFS PIN ANSTR31KEYBLOCKC 0x0004

()
#define WFS_PIN_ ANSTR31KEYBLOCKB (0x0002)
()
#define WFS PIN ANSTR31KEYBLOCKD (0x0008)

/* values of WFSPINETSCAPS.wFloatFlags and WESPINFRAME.wFloatAction */

#define WFS_PIN FLOAT NONE (0x0000)
#define WFS_PIN FLOATX (0x0001)
#define WFS_PIN FLOATY (0x0002)

/* values of WEFSPINKEYDETAIL.fwUse and values of WFSPINKEYDETAILEX.dwUse */

#define WFS_PIN USECRYPT 0x0001)
#define WFS_PIN USEFUNCTION 0x0002)
#define WFS_PIN USEMACING 0x0004)
#define WFS_PIN USEKEYENCKEY 0x0020)
#define WFS_PIN USENODUPLICATE 0x0040)

)

(
(
(
(
(
#define WFS PIN USESVENCKEY (0x0080
(
(
(
(
(

#define WFS_PIN USECONSTRUCT 0x0100)
#define WES PIN USESECURECONSTRUCT 0x0200)
#define WFS_PIN_USEANSTR31MASTER 0x0400)
#define WES PIN USERESTRICTEDKEYENCKEY 0x0800)
#define WFS_PIN_USEKEYDERKEY 0x1000)

/* additional values for WFSPINKEYDETAILEX.dwUse */

#define WFS PIN USEPINLOCAL (0x00010000)
#define WEFS PIN USERSAPUBLIC (0x00020000)
#define WFS_PIN_USERSAPRIVATE (0x00040000)
#define WES PIN USECHIPINFO (0x00100000)
#define WFS PIN USECHIPPIN (0x00200000)
#define WEFS PIN USECHIPPS (0x00400000)
#define WFS PIN USECHIPMAC (0x00800000)
#define WES PIN USECHIPLT (0x01000000)
#define WEFS PIN USECHIPMACLZ (0x02000000)
#define WEFS PIN USECHIPMACAZ (0x04000000)
#define WES PIN USERSAPUBLICVERIFY (0x08000000)
#define WEFS PIN USERSAPRIVATESIGN (0x10000000)
#define WEFS PIN USEPINREMOTE (0x20000000)
/* values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS_PIN FK O (0x00000001)
#define WFS PIN FK 1 (0x00000002)
#define WFS_PIN FK 2 (0x00000004)
#define WFS PIN FK 3 (0x00000008)
#define WFS_PIN FK 4 0x00000010)
#define WFS PIN FK 5 0x00000020)
#define WFS PIN FK 6 0x00000040)
#define WFS PIN FK 7 0x00000080)
#define WFS_PIN FK 8 0x00000100)
#define WFS PIN FK 9 0x00000200)

(
(
(
(
(
(
#define WFS_PIN FK_ENTER (0x00000400
(
(
(
(
(
(

)
#define WFS_PIN FK CANCEL 0x00000800)
#define WFS_PIN FK CLEAR 0x00001000)
#define WFS_PIN FK BACKSPACE 0x00002000)
#define WFS_PIN FK HELP 0x00004000)
#define WFS_PIN FK DECPOINT 0x00008000)
#define WFS PIN FK 00 0x00010000)

187

CWA 16926-65:2023 (E)

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_PIN FK 000

WFS_PIN FK RES1
WFS_PIN FK RES2
WFS_PIN FK RES3
WFS_PIN FK RES4
WFS_PIN FK RESS
WFS_PIN FK RES6
WFS_PIN FK RES7
WFS_PIN FK RES8
WFS_PIN FK OEM1
WFS_PIN FK_OEM2
WFS_PIN FK_OEM3
WFS_PIN FK_OEM4
WFS_PIN FK_OEM5
WFS_PIN FK_OEM6

(0x00020000)
(0x00040000)
(0x00080000)
(0x00100000)
(0x00200000)
(0x00400000)
(0x00800000)
(0x01000000)
(0x02000000)
(0x04000000)
(0x08000000)
(0x10000000)
(0x20000000)
(0x40000000)
(0x80000000)

/* additional values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define

#define
#define
#define
#define
#define
#define
#define

/* values of WEFSPINFDK.ulFDK */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/* values of WEFSPINCRYPT.wMode */
#define WFS PIN MODEENCRYPT
#define WFS_PIN MODEDECRYPT
#define WFS_ PIN MODERANDOM

/* values of WFSPINENTRY.wCompletion */

188

WFS_PIN FK UNUSED

WFS_PIN FK A
WFS_PIN FK B
WFS_PIN FK C
WFS_PIN FK D
WFS_PIN FK E
WFS_PIN FK F
WFS_PIN FK SHIFT

WFS_PIN FK FDKO1
WFS_PIN FK_FDKO02
WFS_PIN FK FDKO3
WFS_PIN FK FDKO4
WFS_PIN FK FDKO5
WFS_PIN FK_FDK06
WFS_PIN FK FDKO7
WFS_PIN FK_FDKO8
WFS_PIN FK FDK09
WFS_PIN FK FDK10
WFS_PIN FK FDK11
WFS_PIN FK FDK12
WFS_PIN FK FDK13
WFS_PIN FK FDK14
WFS_PIN FK FDK15
WFS_PIN FK FDK16
WFS_PIN FK FDK17
WFS_PIN FK FDK18
WFS_PIN FK FDK19
WFS_PIN FK_FDK20
WFS_PIN FK FDK21
WFS_PIN FK_FDK22
WFS_PIN FK FDK23
WFS_PIN FK_FDK24
WFS_PIN FK_FDK25
WFS_PIN FK FDK26
WFS_PIN FK FDK27
WFS_PIN FK FDK28
WFS_PIN FK FDK29
WFS_PIN FK_FDK30
WFS_PIN FK FDK31
WFS_PIN FK_FDK32

(0x00000000)

WFS_PIN FK RES1
WFS_PIN FK RES2
WFS_PIN FK RES3
WFS_PIN FK RES4
WFS_PIN FK RESS
WFS_PIN FK RES6
WFS_PIN FK RES7

(0x00000001)
(0x00000002)
(0x00000004)
(0x00000008)
(0x00000010)
(0x00000020)
(0x00000040)
(0x00000080)
(0x00000100)
(0x00000200)
(0x00000400)
(0x00000800)
(0x00001000)
(0x00002000)
(0x00004000)
(0x00008000)
(0x00010000)
(0x00020000)
(0x00040000)
(0x00080000)
(0x00100000)
(0x00200000)
(0x00400000)
(0x00800000)
(0x01000000)
(0x02000000)
(0x04000000)
(0x08000000)
(0x10000000)
(0x20000000)
(0x40000000)
(0x80000000)

#define WFS PIN COMPAUTO
#define WFS_PIN COMPENTER
#define WFS PIN COMPCANCEL
#define WFS_PIN_COMPCONTINUE
#define WFS_PIN COMPCLEAR
#define WFS_PIN COMPBACKSPACE
#define WFS_PIN COMPFDK
#define WFS PIN COMPHELP
#define WFS_PIN COMPFK
#define WFS PIN COMPCONTEDK

/* values of WFSPINSECMSG.wProtocol */

#define WFS_PIN PROTISOAS
#define WFS_PIN PROTISOLZ
#define WFS_PIN PROTISOPS
#define WFS_PIN PROTCHIPZKA
#define WFS_PIN PROTRAWDATA
#define WFS_PIN PROTPBM
#define WFS PIN PROTHSMLDI
#define WFS_PIN PROTGENAS
#define WFS_PIN PROTCHIPINCHG
#define WFS_PIN PROTPINCMP
#define WFS_PIN PROTISOPINCHG

/* values of WFSPINHSMINIT.wInitMode. */
#define WEFS PIN INITTEMP

#define WFS_PIN INITDEFINITE
#define WFS_PIN INITIRREVERSIBLE

PP OWOWwWJoNREr O

N R O — — — — — — —

PP WOWOow-Joud whN -
P O — — — — — — — — —

— —

CWA 16926-65:2023 (E)

/* values of WEFSPINENCIO.wProtocol and WFSPINCAPS.fwENCIOProtocols */

#define WFS_PIN ENC PROT CH
#define WFS_PIN ENC PROT GIECB
#define WFS_PIN ENC PROT LUX
#define WFS_PIN ENC_PROT CHN

0x0001)
0x0002)
0x0004)
0x0008)

/* values for WFS_SRVE PIN CERTIFICATE CHANGE and WESPINSTATUS.dwCertificateState */

#define WFS_PIN CERT SECONDARY

/* values for WFSPINSTATUS.dwCertificateState*/
#define WFS_PIN CERT UNKNOWN

#define WFS_PIN CERT PRIMARY

#define WFS_PIN CERT NOTREADY

/* Values for WFSPINCAPS.dwRSAAuthenticationScheme,

WESPINCAPS.dwRestrictedKeyEncKeySupport (LOWORD only)

lpszExtra parameter, REMOTE KEY SCHEME. */

#define WFS PIN RSA AUTH 2PARTY SIG
#define WFS_PIN RSA AUTH 3PARTY CERT
#define WFS PIN RSA AUTH 3PARTY CERT TR34

/* Values for WFSPINCAPS.dwRestrictedKeyEncKeySupport

#define WFS_ PIN RESTRICTED SECUREKEYENTRY

(0x00000002)

(0x00000000)
(0x00000001)
(0x00000004)

and the fast-track Capabilities

(0x00000001)
(0x00000002)
(0x00000004)

(0x00010000)

(HIWORD only) */

/* Values for WFSPINCAPS.dwSignatureScheme and the fast-track Capabilities lpzExtra

parameter, SIGNATURE CAPABILITIES. */

#define WFS PIN SIG GEN RSA KEY PAIR
#define WFS_PIN SIG RANDOM NUMBER
#define WFS PIN SIG EXPORT EPP ID
#define WFS_PIN SIG ENHANCED RKL

0x00000001)
0x00000002)
0x00000004)
0x00000008)

/* values of WFSPINIMPORTRSAPUBLICKEY.dwRSASignatureAlgorithm,
WESPINCAPS.dwRSASignatureAlgorithm and WESPINATTRIBUTES.dwCryptoMethod */

189

CWA 16926-65:2023 (E)

#define WFS PIN SIGN NA (0)
#define WFS PIN SIGN RSASSA PKCS1 V1 5 (0x00000001)
#define WFS PIN SIGN RSASSA PSS (0x00000002)

/* values of WFSPINIMPORTRSAPUBLICKEYOUTPUT.dwRSAKeyCheckMode */

#define WFS_PIN RSA KCV NONE (0x00000000)
#define WFS_PIN RSA KCV SHAI (0x00000001)
#define WFS_PIN RSA KCV SHA256 (0x00000002)

/* values of WFSPINEXPORTRSAISSUERSIGNEDITEM.wExportItemType and */

/* WFSPINEXPORTRSAEPPSIGNEDITEM. wExportItemType */
#define WFS_PIN EXPORT EPP_ID (0x0001)
#define WFS_PIN EXPORT PUBLIC KEY (0x0002)

/* values of WESPINIMPORTRSASIGNEDDESKEY.dwRSAEncipherAlgorithm,
WFSPINCAPS.dwRSACryptAlgorithm and WFSPINATTRIBUTES.dwCryptoMethod */

#define WFS_PIN CRYPT RSAES PKCS1 V1 5 (0x00000001)
#define WFS_PIN CRYPT RSAES OAEP (0x00000002)

/* values of WFSPINGENERATERSAKEYPAIR.wExponentValue */

#define WFS_PIN DEFAULT (0)

#define WFS_PIN EXPONENT 1 (1)

#define WFS PIN EXPONENT 4 (2)

#define WFS_PIN EXPONENT 16 (3)

/* values of WFSPINCAPS.wDESKeyLength, */
/* WESPINIMPORTRSASIGNEDDESKEYOUTPUT.wKeyLength and */
/* WESPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT.wKeyLength */
#define WFS PIN KEYSINGLE (0x0001)
#define WES PIN KEYDOUBLE (0x0002)
#define WFS_ PIN KEYTRIPLE (0x0004)

/* values of WESPINGETCERTIFICATE.wGetCertificate and
WEFSPINCAPS.wCertificateTypes */

#define WFS PIN PUBLICENCKEY (0x0001)
#define WFS PIN PUBLICVERIFICATIONKEY (0x0002)
#define WFS PIN PUBLICHOSTKEY (0x0004)

/* values of WEFSPINAUTHENTICATE.dwSigner, */

/* WFSPINLOADCERTIFICATEEX.dwSigner, and */

/* WESPINSIGNERCAP.dwSigner */

#define WFS_PIN SIGNER NONE 0x00000001)

#define WFS PIN SIGNER CERTHOST 0x00000002)

#define WFS_PIN SIGNER SIGHOST 0x00000004)

#define WFS PIN SIGNER CA 0x00000008)

#define WFS_PIN SIGNER HL 0x00000010)
)
)
)

(
(
(
(
(
#define WFS PIN SIGNER CBCMAC (0x00000020
(
(
(
(
(

#define WFS_PIN SIGNER CMAC 0x00000040
#define WFS_PIN SIGNER TR34 0x10000000
#define WFS_PIN SIGNER RESERVED 1 0x20000000)
#define WFS_PIN SIGNER RESERVED 2 0x40000000)
#define WFS PIN SIGNER RESERVED 3 0x80000000)

/* values of WFSPINLOADCERTIFICATEEX.dwLoadOption and */

/* WFSPINSIGNERCAP.dwOption */
#define WFS_PIN LOAD NEWHOST (0x00000001)
#define WFS_PIN LOAD REPLACEHOST (0x00000002)

/* values of WFSPINIMPORTRSAENCIPHEREDPKCS7EX.dwCRKLLoadOption */

#define WFS PIN CRKLLOAD NORANDOM (0x00000001)

190

CWA 16926-65:2023 (E)

#define WFS_PIN CRKLLOAD NORANDOM CRL (0x00000002)
#define WFS_PIN CRKLLOAD RANDOM (0x00000004)
#define WFS_PIN CRKLLOAD RANDOM CRL (0x00000008)

/* values for WFSPINEMVIMPORTPUBLICKEY.wImportScheme and
WESPINCAPS.lpwEMVImportSchemes */

#define WFS_PIN EMV_IMPORT PLAIN CA (1)
#define WFS_PIN EMV IMPORT CHKSUM CA (2)
#define WFS_PIN EMV_IMPORT EPI CA (3)
#define WFS_PIN EMV IMPORT ISSUER (4)
#define WFS_PIN EMV_ IMPORT ICC (5)
#define WFS_PIN EMV_IMPORT ICC_PIN (6)
#define WFS_PIN EMV_IMPORT PKCSV1 5 CA (7)

/* values for WFSPINDIGEST.wHashAlgorithm and WFSPINCAPS.fwEMVHashAlgorithm */

#define WFS_PIN HASH SHAl DIGEST (0x0001)
#define WFS_PIN HASH SHA256 DIGEST (0x0002)

/* values of WFSPINSECUREKEYDETAIL.fwKeyEntryMode */

#define WFS_PIN SECUREKEY NOTSUPP (0x0000)
#define WFS PIN SECUREKEY REG SHIFT (0x0001)
#define WFS_PIN SECUREKEY REG UNIQUE (0x0002)
#define WFS PIN SECUREKEY IRREG SHIFT (0x0004)
#define WFS_PIN SECUREKEY IRREG_UNIQUE (0x0008)

/* values of WFSPINSTATUS.wAntiFraudModule */

#define WFS PIN AFMNOTSUPP
#define WFS PIN AFMOK

#define WFS PIN AFMINOP

#define WFS PIN AFMDEVICEDETECTED

0
1
2
3
#define WFS_ PIN AFMUNKNOWN 4

~ e~~~ —~

/* values of WFSPINLAYOT.dwEntryMode and WEFSPINGETLAYOUT.dwEntryMode */

#define WFS_PIN LAYOUT DATA (0x00000001)
#define WFS_PIN LAYOUT PIN (0x00000002)
#define WFS_PIN LAYOUT SECURE (0x00000004)
#define WFS PIN LAYOUT PASSWORD (0x00000008)

/* values of WFSPINFK.wKeyType */

#define WFS_PIN FK (0x0001)
#define WFS_PIN FDK (0x0002)

/* values of WFSPINATTRIBUTES.dwCryptoMethod */

#define WFS_PIN CRYPTOECB (1)
#define WFS_PIN CRYPTOCBC (2)
#define WFS_PIN CRYPTOCFB (3)
#define WFS_PIN CRYPTOOFB (4)
#define WFS_PIN CRYPTOCTR (5)
#define WFS_PIN CRYPTOXTS (6)

/* value of WFSPINATTRIBUTES.dwCryptoMethod to be used when
constructing a key */

#define WEFS PIN CRYPTOCONSTRUCT (7)

/* values of WFSPINATTRIBUTES.dwCryptoMethod Hash Algorithms */

#define WFS PIN SIGNHASH SHA1 (0x80000000)
#define WFS_PIN SIGNHASH SHA256 (0x40000000)

/* values of WFSPINKEYDETAIL340.fwLoaded */

191

CWA 16926-65:2023 (E)

#define WFS PIN LOADED NO (0x00000001)
#define WFS PIN LOADED YES (0x00000002)
#define WFS PIN LOADED UNKNOWN (0x00000004)
#define WFS PIN LOADED CONSTRUCT (0x80000000)
/* values of WESPINPASSWORD.fwPasswordAttributes and
WEFSPINPASSWORDENTRY .dwPasswordMode */

#define WFS PIN PWATTRIB CHANGE (0x00000001)
#define WFS PIN PWATTRIB CONFIRM (0x00000002)
#define WFS PIN PWATTRIB SKE (0x00000004)
/* values of WEFSPINSTATUS.lpdwPasswordState */

#define WFS PIN PWSTATUS LOADED (1)
#define WFS PIN PWSTATUS UNLOADED (2)
#define WFS PIN PWSTATUS EXPIRED (3)
#define WEFS PIN PWSTATUS UNKNOWN (4)

/* XFS PIN Errors */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

192

WFS_ERR PIN KEYNOTFOUND
WFS_ERR_PIN_MODENOTSUPPORTED
WFS_ERR_PIN ACCESSDENIED
WFS_ERR _PIN INVALIDID
WFS_ERR_PIN DUPLICATEKEY
WFS_ERR _PIN KEYNOVALUE
WFS_ERR_PIN USEVIOLATION
WFS_ERR_PIN NOPIN
WFS_ERR_PIN INVALIDKEYLENGTH
WFS_ERR PIN KEYINVALID
WFS_ERR _PIN KEYNOTSUPPORTED
WFS_ERR PIN NOACTIVEKEYS
WFS_ERR_PIN NOTERMINATEKEYS
WFS_ERR_PIN MINIMUMLENGTH
WFS_ERR_PIN PROTOCOLNOTSUPP
WFS_ERR PIN INVALIDDATA
WFS_ERR_PIN NOTALLOWED
WFS_ERR_PIN NOKEYRAM
WFS_ERR_PIN NOCHIPTRANSACTIVE
WFS_ERR PIN ALGORITHMNOTSUPP
WFS_ERR_PIN FORMATNOTSUPP
WFS_ERR _PIN HSMSTATEINVALID
WFS_ERR_PIN MACINVALID
WFS_ERR PIN PROTINVALID
WFS_ERR PIN FORMATINVALID
WFS_ERR_PIN_CONTENTINVALID
WFS_ERR PIN SIG NOT SUPP
WFS_ERR_PIN_INVALID MOD_LEN
WFS_ERR PIN INVALIDCERTSTATE

WFS_ERR _PIN KEY GENERATION ERROR

WFS_ERR_PIN EMV VERIFY FAILED
WFS_ERR_PIN RANDOMINVALID
WFS_ERR_PIN SIGNATUREINVALID
WFS_ERR_PIN SNSCDINVALID
WFS_ERR_PIN NORSAKEYPAIR
WFS_ERR_PIN INVALID PORT
WFS_ERR_PIN POWERSAVETOOSHORT
WFS_ERR_PIN INVALIDHSM
WFS_ERR_PIN TOOMANYFRAMES
WFS_ERR_PIN PARTIALFRAME
WFS_ERR_PIN MISSINGKEYS
WFS_ERR_PIN FRAMECOORD
WFS_ERR_PIN KEYCOORD
WFS_ERR_PIN FRAMEOVERLAP
WFS_ERR_PIN KEYOVERLAP
WFS_ERR_PIN TOOMANYKEYS
WFS_ERR_PIN KEYALREADYDEFINED
WFS_ERR_PIN COMMANDUNSUPP

(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE OFFSET

T T T T T

P P WOWOow-Jod W O

N2 O ——— — — — — — —

CWA 16926-65:2023 (E)

#define WFS ERR PIN SYNCHRONIZEUNSUPP (= (PIN_SERVICE OFFSET + 52))
#define WFS ERR PIN DUKPTOVERFLOW (- (PIN_SERVICE OFFSET + 53))
#define WFS_ERR _PIN ENTRYTIMEOUT (- (PIN_SERVICE OFFSET + 54))
#define WEFS ERR PIN CRYPTOMETHODNOTSUPP (- (PIN_SERVICE OFFSET + 55))
#define WFS ERR PIN PASSWORDMISMATCH (- (PIN SERVICE OFFSET + 57))
#define WFS ERR PIN PASSWORDWRONG (- (PIN SERVICE OFFSET + 58)
#define WFS ERR PIN PASSWORDTIMEOUT (= (PIN SERVICE OFFSET + 59)
/* */

/* PIN Info Command Structures and variables */

/* */

typedef struct wfs pin password
{

DWORD fwPasswordAttributes;
USHORT usMinLen;
USHORT usMaxLen;

} WESPINPASSWORD, *LPWESPINPASSWORD;

typedef struct wfs hex data
{
USHORT usLength;
LPBYTE lpbData;
} WESXDATA, *LPWEFSXDATA;

typedef struct wfs pin status
{

WORD fwDevice;

WORD fwEncStat;

LPSTR lpszExtra;

DWORD dwGuidLights [WFS PIN GUIDLIGHTS SIZE];
WORD fwAutoBeepMode;

DWORD dwCertificateState;

WORD wDevicePosition;

USHORT usPowerSaveRecoveryTime;

WORD wAntiFraudModule;

LPDWORD lpdwPasswordState;

} WEFSPINSTATUS, *LPWFSPINSTATUS;

typedef struct wfs pin rest keyenckey

{
DWORD dwLoadingMethod;
DWORD dwUses;

} WESPINRESTKEYENCKEY, *LPWEFSPINRESTKEYENCKEY;

typedef struct wfs pin signer capability
{
DWORD dwSigner;
DWORD dwOption;
} WESPINSIGNERCAP, *LPWEFSPINSIGNERCAP;

typedef struct wfs pin ets caps
{

LONG 1XPos;

LONG 1YPos;

USHORT usXSize;

USHORT usYSize;

WORD wMaximumTouchFrames;
WORD wMaximumTouchKeys;
WORD wFloatFlags;

} WESPINETSCAPS, *LPWEFSPINETSCAPS;

typedef struct wfs pin attributes
{

BYTE bKeyUsage[2];
BYTE bAlgorithm;
BYTE bModeOfUse;
DWORD dwCryptoMethod;

193

CWA 16926-65:2023 (E)

} WESPINATTRIBUTES, *LPWFSPINATTRIBUTES;

typedef struct wfs pin caps

{
WORD
WORD
BOOL
USHORT
WORD
WORD
WORD
WORD
WORD
BOOL
WORD
WORD
WORD
LPSTR
DWORD
BOOL
WORD
LPSTR
BOOL
DWORD
DWORD
DWORD
DWORD
DWORD
LPWORD
WORD
BOOL
WORD
BOOL
BOOL
WORD
BOOL
BOOL
WORD
WORD
LPWEFSPINSIGNERCAP
DWORD
LPWFSPINETSCAPS
LPDWORD
LPWEFSPINRESTKEYENCKEY
DWORD
LPWFSPINATTRIBUTES
LPWFSPINATTRIBUTES
LPWESPINATTRIBUTES
LPWEFSPINATTRIBUTES
LPWFSPINATTRIBUTES
LPWFSPINPASSWORD

wClass;

fwType;

bCompound;

usKeyNum;

fwAlgorithms;
fwPinFormats;
fwDerivationAlgorithms;
fwPresentationAlgorithms;
fwDisplay;

bIDConnect;

fwIDKey;
fwValidationAlgorithms;
fwKeyCheckModes;
lpszExtra;
dwGuidLights [WFS PIN GUIDLIGHTS SIZE];
bPINCanPersistAfterUse;
fwAutoBeep;

lpsHSMVendor;
bHSMJournaling;
dwRSAAuthenticationScheme;
dwRSASignatureAlgorithm;
dwRSACryptAlgorithm;
dwRSAKeyCheckMode;
dwSignatureScheme;
lpwEMVImportSchemes;
fwEMVHashAlgorithm;
bKeyImportThroughParts;
fwENCIOProtocols;
bTypeCombined;
bSetPinblockDataRequired;
fwKeyBlockImportFormats;
bPowerSaveControl;
bAntiFraudModule;
wDESKeyLength;
wCertificateTypes;
*lppLoadCertOptions;
dwCRKLLoadOptions;
1pETSCaps;
lpdwSynchronizableCommands;
*1lppRestrictedKeyEncKeySupport;
dwSymmetricKeyManagementMethods;
*lppCryptAttributes;
*lppPINBlockAttributes;
*lppKeyAttributes;
*lppDecryptAttributes;
*lppVerifyAttributes;
*lppPasswords;

} WESPINCAPS, *LPWESPINCAPS;

typedef struct wfs pin key detail

{
LPSTR
WORD
BOOL
LPWEFSXDATA

lpsKeyName;

fwUse;

bLoaded;
lpxKeyBlockHeader;

} WESPINKEYDETAIL, *LPWEFSPINKEYDETAIL;

typedef struct wfs pin fdk

{
ULONG
USHORT
USHORT

} WESPINFDK, *LPWEFSPINFDK;

ulFDK;
usXPosition;
usYPosition;

typedef struct wfs pin func key detail

194

ULONG
USHORT
LPWFSPINFDK

CWA 16926-65:2023 (E)

ulFuncMask;
usNumberFDKs;
*1ppFDKs;

} WESPINFUNCKEYDETAIL, *LPWFSPINFUNCKEYDETAIL;

typedef struct wfs pin key detail ex
{

LPSTR lpsKeyName;

DWORD dwUse;

BYTE bGeneration;

BYTE bVersion;

BYTE bActivatingDate[4];
BYTE bExpiryDate[4];
BOOL bLoaded;
LPWFSXDATA lpxKeyBlockHeader;

} WESPINKEYDETAILEX, *LPWFSPINKEYDETAILEX;

/* WFS_INF PIN SECUREKEY DETAIL command key layout output structure */

typedef struct wfs pin hex keys
{

USHORT usXPos;
USHORT usYPos;
USHORT usXSize;
USHORT usYSize;
ULONG ulFK;
ULONG ulShiftFK;

} WESPINHEXKEYS, *LPWEFSPINHEXKEYS;

/* WFS INF PIN SECUREKEY DETAIL command output structure */
typedef struct wfs pin secure key detail

{

WORD fwKeyEntryMode;
LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;
ULONG ulClearFDK;
ULONG ulCancelFDK;
ULONG ulBackspaceFDK;
ULONG ulEnterFDK;
WORD wColumns;

WORD wRows;
LPWFSPINHEXKEYS *lppHexKeys;

} WESPINSECUREKEYDETAIL, *LPWFSPINSECUREKEYDETAIL;

/* WFS_INF PIN PCIPTS DEVICE ID command output structure */
typedef struct wfs pin pcipts deviceid
{

LPSTR lpszManufacturerIdentifier;
LPSTR lpszModelIdentifier;

LPSTR lpszHardwareIdentifier;
LPSTR lpszFirmwareIdentifier;
LPSTR lpszApplicationIdentifier;

} WESPINPCIPTSDEVICEID, *LPWEFSPINPCIPTSDEVICEID;

/* WEFSPINKEYBLOCKINFO structure */
typedef struct wfs pin key block info
{

BYTE bKeyUsage[2];

BYTE bAlgorithm;

BYTE bModeOfUse;

BYTE bKeyVersionNumber[2];
BYTE bExportability;
LPWESXDATA lpxOptionalBlockHeader;
ULONG ulKeyLength;

} WESPINKEYBLOCKINFO, *LPWFSPINKEYBLOCKINFO;

/* WFS_INF PIN KEY DETAIL 340 command output structure */
typedef struct wfs pin key detail 340
{

LPSTR
DWORD

lpsKeyName;
dwUse;

195

CWA 16926-65:2023 (E)

BYTE bGeneration;

BYTE bVersion;

BYTE bActivatingDate[4];
BYTE bExpiryDate[4];
DWORD fwLoaded;

LPWEFSPINKEYBLOCKINEO lpKeyBlockInfo;
} WESPINKEYDETAIL340, *LPWFSPINKEYDETAIL340;

/*

/* PIN Execute Command Structures */

/*

typedef struct wfs pin crypt
{

WORD wMode;

LPSTR lpsKey;
LPWESXDATA lpxKeyEncKey;
WORD wAlgorithm;

LPSTR lpsStartValueKey;
LPWEFSXDATA lpxStartValue;
BYTE bPadding;

BYTE bCompression;
LPWFSXDATA lpxCryptData;

} WESPINCRYPT, *LPWESPINCRYPT;

typedef struct wfs pin import
{

LPSTR lpsKey;
LPSTR lpsEncKey;
LPWESXDATA lpxIdent;
LPWESXDATA lpxValue;
WORD fwUse;

} WESPINIMPORT, *LPWESPINIMPORT;

typedef struct wfs pin derive

{

WORD wDerivationAlgorithm;
LPSTR lpsKey;

LPSTR lpsKeyGenKey;

LPSTR lpsStartValueKey;
LPWESXDATA lpxStartvalue;

BYTE bPadding;

LPWESXDATA lpxInputData;
LPWESXDATA lpxIdent;

} WEFSPINDERIVE, *LPWFSPINDERIVE;

typedef struct wfs pin getpin
{

USHORT usMinLen;

USHORT usMaxLen;

BOOL bAutoEnd;

CHAR cEcho;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;

} WESPINGETPIN, *LPWESPINGETPIN;

typedef struct wfs pin entry
{
USHORT usDigits;
WORD wCompletion;
} WESPINENTRY, *LPWFSPINENTRY;

typedef struct wfs pin local des
{

LPSTR lpsValidationData;
LPSTR lpsOffset;

BYTE bPadding;

USHORT usMaxPIN;

196

USHORT usValDigits;
BOOL bNoLeadingZero;
LPSTR lpsKey;
LPWESXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WEFSPINLOCALDES, *LPWEFSPINLOCALDES;

typedef struct wfs pin create offset

{

LPSTR lpsValidationData;
BYTE bPadding;

USHORT usMaxPIN;

USHORT usValDigits;

LPSTR lpsKey;

LPWESXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WESPINCREATEOFFSET, *LPWFSPINCREATEOFFSET;

typedef struct wfs pin local eurocheque

{

LPSTR lpsEurochequeData;
LPSTR 1lpsPVV;

WORD wFirstEncDigits;
WORD wFirstEncOffset;
WORD wPVVDigits;

WORD wPVVOffset;

LPSTR lpsKey;

LPWESXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WESPINLOCALEUROCHEQUE, *LPWFSPINLOCALEUROCHEQUE;

typedef struct wfs pin local visa

{

LPSTR 1lpsPAN;

LPSTR lpsPVV;

WORD wPVVDigits;
LPSTR lpsKey;
LPWESXDATA lpxKeyEncKey;

} WESPINLOCALVISA, *LPWEFSPINLOCALVISA;

typedef struct wfs pin presentidc
{

WORD wPresentAlgorithm;
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
LPVOID lpAlgorithmData;

} WESPINPRESENTIDC, *LPWFSPINPRESENTIDC;

typedef struct wfs pin present result

{

WORD wChipProtocol;
ULONG ulChipDatalLength;
LPBYTE lpbChipData;

} WESPINPRESENTRESULT, *LPWFSPINPRESENTRESULT;

typedef struct wfs pin presentclear

{
ULONG ulPINPointer;
USHORT usPINOffset;

} WESPINPRESENTCLEAR, *LPWESPINPRESENTCLEAR;

typedef struct wfs pin block
{

LPSTR lpsCustomerData;
LPSTR lpsXORData;

BYTE bPadding;

WORD wEFormat;

LPSTR lpsKey;

LPSTR lpsKeyEncKey;

CWA 16926-65:2023 (E)

197

CWA 16926-65:2023 (E)

} WESPINBLOCK,

*LPWFSPINBLOCK;

typedef struct wfs pin block ex

{

LPSTR
LPSTR
BYTE

DWORD
LPSTR
LPSTR
DWORD

} WEFSPINBLOCKEX,

lpsCustomerData;
lpsXORData;
bPadding;
dwFormat;
lpsKey;
lpsKeyEncKey;
dwAlgorithm;

*LPWFSPINBLOCKEX;

typedef struct wfs pin getdata

{
USHORT
BOOL
ULONG
ULONG
ULONG
ULONG

} WESPINGETDATA,

typedef struct wfs pin key

{
WORD
ULONG

} WESPINKEY, *LPWEFSPINKEY;

usMaxLen;
bAutoEnd;
ulActiveFDKs;
ulActiveKeys;
ulTerminateFDKs;
ulTerminateKeys;

*LPWFSPINGETDATA;

wCompletion;
ulDigit;

typedef struct wfs pin data

{
USHORT

LPWFSPINKEY

WORD

usKeys;
*1pPinKeys;
wCompletion;

} WESPINDATA, *LPWESPINDATA;

typedef struct wfs pin init

{
LPWFSXDATA
LPWFSXDATA

lpxIdent;
lpxKey;

} WESPININIT, *LPWESPININIT;

typedef struct wfs pin local banksys

{
LPWFSXDATA

} WESPINLOCALBANKSYS,

1pxATMVAC;

*LPWFSPINLOCALBANKSYS;

typedef struct wfs pin banksys io

{
ULONG
LPBYTE

} WFSPINBANKSYSIO,

ulLength;
lpbData;

*LPWFSPINBANKSYSIO;

typedef struct wfs pin secure message

{
WORD
ULONG
LPBYTE
} WESPINSECMSG,

wProtocol;
ullLength;
1lpbMsg;

*LPWEFSPINSECMSG;

typedef struct wfs pin import key ex

{

LPSTR
LPSTR
LPWEFSXDATA
LPWFSXDATA
DWORD

WORD
LPWFSXDATA

} WESPINIMPORTKEYEX,

198

lpsKey;
lpsEncKey;
lpxValue;
lpxControlVector;
dwUse;
wKeyCheckMode;
lpxKeyCheckValue;

*LPWFSPINIMPORTKEYEX;

CWA 16926-65:2023 (E)

typedef struct wfs pin enc io

{

WORD wProtocol;
ULONG ulDataLength;
LPVOID lpvData;

} WEFSPINENCIO, *LPWESPINENCIO;

/* WFS CMD PIN SECUREKEY ENTRY command input structure */
typedef struct wfs pin secure key entry

{

USHORT usKeyLen;

BOOL bAutoEnd;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
WORD wVerificationType;

} WESPINSECUREKEYENTRY, *LPWESPINSECUREKEYENTRY;

/* WFS _CMD PIN SECUREKEY ENTRY command output structure */
typedef struct wfs pin secure key entry out

{

USHORT usDigits;
WORD wCompletion;
LPWFSXDATA 1pxKCV;

} WESPINSECUREKEYENTRYOUT, *LPWESPINSECUREKEYENTRYOUT;

/* WFS_CDM PIN IMPORT KEYBLOCK command input structure */
typedef struct wfs pin import key block
{

LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxKeyBlock;

} WESPINIMPORTKEYBLOCK, *LPWEFSPINIMPORTKEYBLOCK;

typedef struct wfs pin import rsa public key
{

LPSTR lpsKey;

LPWESXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WESPINIMPORTRSAPUBLICKEY, *LPWFSPINIMPORTRSAPUBLICKEY;

typedef struct wfs pin import rsa public key output
{
DWORD dwRSAKeyCheckMode;
LPWESXDATA lpxKeyCheckValue;
} WESPINIMPORTRSAPUBLICKEYOUTPUT, *LPWESPINIMPORTRSAPUBLICKEYOUTPUT;

typedef struct wfs pin export rsa issuer signed item
{
WORD wExportItemType;
LPSTR lpsName;
} WESPINEXPORTRSAISSUERSIGNEDITEM, *LPWEFSPINEXPORTRSAISSUERSIGNEDITEM;

typedef struct wfs pin export rsa issuer signed item output

{

LPWESXDATA lpxValue;
DWORD dwRSASignatureAlgorithm;
LPWESXDATA lpxSignature;

} WESPINEXPORTRSAISSUERSIGNEDITEMOUTPUT, *LPWESPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

typedef struct wfs pin import rsa signed des key

{

LPSTR lpsKey;
LPSTR lpsDecryptKey;
DWORD dwRSAEncipherAlgorithm;

199

CWA 16926-65:2023 (E)

LPWESXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWESXDATA lpxSignature;

} WESPINIMPORTRSASIGNEDDESKEY, *LPWFSPINIMPORTRSASIGNEDDESKEY;

typedef struct wfs pin import rsa signed des key output

{

WORD wKeyLength;
WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;

} WESPINIMPORTRSASIGNEDDESKEYOUTPUT, *LPWEFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

typedef struct wfs pin generate rsa key

{

LPSTR lpsKey;
DWORD dwUse;
WORD wModulusLength;
WORD wExponentValue;

} WESPINGENERATERSAKEYPAIR, *LPWEFSPINGENERATERSAKEYPAIR;

typedef struct wfs pin export rsa epp signed item

{

WORD wExportItemType;
LPSTR lpsName;

LPSTR lpsSigKey;

DWORD dwSignatureAlgorithm;

} WESPINEXPORTRSAEPPSIGNEDITEM, *LPWESPINEXPORTRSAEPPSIGNEDITEM;

typedef struct wfs pin export rsa epp signed item output

{

LPWEFSXDATA lpxValue;
LPWFSXDATA lpxSelfSignature;
LPWESXDATA lpxSignature;

} WESPINEXPORTRSAEPPSIGNEDITEMOUTPUT, *LPWEFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

typedef struct wfs pin load certificate
{
LPWFSXDATA lpxLoadCertificate;
} WESPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE;

typedef struct wfs pin load certificate output
{
LPWESXDATA lpxCertificateData;
} WESPINLOADCERTIFICATEOUTPUT, *LPWEFSPINLOADCERTIFICATEOUTPUT;

typedef struct wfs pin get certificate

{
WORD wGetCertificate;
} WESPINGETCERTIFICATE, *LPWESPINGETCERTIFICATE;

typedef struct wfs pin get certificate output

{
LPWEFSXDATA lpxCertificate;
} WESPINGETCERTIFICATEOUTPUT, *LPWESPINGETCERTIFICATEOUTPUT;

typedef struct wfs pin replace certificate

{
LPWFSXDATA lpxReplaceCertificate;
} WESPINREPLACECERTIFICATE, *LPWEFSPINREPLACECERTIFICATE;

typedef struct wfs pin replace certificate output

{
LPWFSXDATA lpxNewCertificateData;
} WESPINREPLACECERTIFICATEOUTPUT, *LPWEFSPINREPLACECERTIFICATEOUTPUT;

typedef struct wfs pin start key exchange

{
LPWFSXDATA lpxRandomItem;

200

CWA 16926-65:2023 (E)

} WESPINSTARTKEYEXCHANGE, *LPWEFSPINSTARTKEYEXCHANGE;

typedef struct wfs pin import rsa enciphered pkcs7 key

{

LPWFSXDATA lpxImportRSAKeyIn;
LPSTR lpsKey;
DWORD dwUse;

} WESPINIMPORTRSAENCIPHEREDPKCS7KEY, *LPWFSPINIMPORTRSAENCIPHEREDPKCST7KEY;

typedef struct wfs pin import rsa enciphered pkcs7 key output
{
WORD wKeyLength;
LPWFSXDATA lpxRSAData;
}JWESPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT, *LPWESPINIMPORTRSAENCIPHEREDPKCST7KEYOUTPUT;

typedef struct wfs pin emv_import public key
{

LPSTR lpsKey;

DWORD dwUse;

WORD wlmportScheme;
LPWESXDATA lpxImportData;
LPSTR lpsSigKey;

} WEFSPINEMVIMPORTPUBLICKEY, *LPWESPINEMVIMPORTPUBLICKEY;

typedef struct wfs pin emv import public key output
{
LPSTR lpsExpiryDate;
} WESPINEMVIMPORTPUBLICKEYOUTPUT, *LPWESPINEMVIMPORTPUBLICKEYOUTPUT;

typedef struct wfs pin digest
{
WORD wHashAlgorithm;
LPWESXDATA lpxDigestInput;
} WEFSPINDIGEST, *LPWFSPINDIGEST;

typedef struct wfs pin digest output
{

LPWFSXDATA lpxDigestOutput;
} WESPINDIGESTOUTPUT, *LPWESPINDIGESTOUTPUT;

typedef struct wfs pin hsm init
{
WORD wInitMode;
LPWEFSXDATA lpxOnlineTime;
} WESPINHSMINIT, *LPWEFSPINHSMINIT;

typedef struct wfs pin generate KCV
{

LPSTR lpsKey;

WORD wKeyCheckMode;
} WESPINGENERATEKCV, *LPWFSPINGENERATEKCV;

typedef struct wfs pin kcv
{

LPWEFSXDATA 1pxKCV;
} WESPINKCV, *LPWFSPINKCV;

typedef struct wfs pin set guidlight
{
WORD wGuidLight;
DWORD dwCommand;
} WFSPINSETGUIDLIGHT, *LPWFSPINSETGUIDLIGHT;

typedef struct wfs pin maintain pin

{
BOOL bMaintainPIN;
} WESPINMAINTAINPIN, *LPWFSPINMAINTAINPIN;

typedef struct wfs pin hsm info

{

201

CWA 16926-65:2023 (E)

WORD wHSMSerialNumber;
LPSTR 1psZKAID;
} WEFSPINHSMINFO, *LPWESPINHSMINFO;

typedef struct wfs pin hsm detail

{

WORD wActiveLogicalHSM;
LPWEFSPINHSMINFO *1ppHSMInfo;
} WFSPINHSMDETAIL, *LPWFSPINHSMDETAIL;

typedef struct wfs pin hsm identifier

{
WORD
} WESPINHSMIDENTIFIER,

wHSMSerialNumber;

*LPWFSPINHSMIDENTIFIER;

typedef struct wfs pin power save control

{
USHORT
} WESPINPOWERSAVECONTROL,

usMaxPowerSaveRecoveryTime;

*LPWEFSPINPOWERSAVECONTROL;

typedef struct wfs pin get layout

{

DWORD dwEntryMode;
} WEFSPINGETLAYOUT, *LPWFSPINGETLAYOUT;
typedef struct wfs pin fk
{
USHORT usXPos;
USHORT usYPos;
USHORT usXSize;
USHORT usYSize;
WORD wKeyType;
ULONG ulFK;
ULONG ulShiftFK;

} WESPINFK, *LPWEFSPINFK;

typedef struct wfs pin frame

{

USHORT usFrameXPos;
USHORT usFrameYPos;
USHORT usFrameXSize;
USHORT usFrameYSize;
WORD wFloatAction;
LPWFSPINFK *1ppFKs;

} WFSPINFRAME, *LPWFSPINFRAME;

typedef struct wfs pin layout

{

DWORD dwEntryMode;
USHORT usNumberOfFrames;
LPWEFSPINFRAME *lppFrames;

} WEFSPINLAYOUT, *LPWFSPINLAYOUT;

typedef struct wfs pin load certificate ex

{
DWORD
DWORD
LPWFSXDATA
} WESPINLOADCERTIFICATEEX,

dwLoadOption;

dwSigner;
lpxCertificateData;
*LPWESPINLOADCERTIFICATEEX;

typedef struct wfs pin load certificate ex output

{
DWORD
LPWFSXDATA

} WESPINLOADCERTIFICATEEXOUTPUT,

typedef struct wfs pin import rsa enciphered pkcs7 key ex

{
LPWFSXDATA
LPSTR

202

dwRSAKeyCheckMode;
lpxRSAData;

lpxImportRSAKeyIn;
lpsKey;

*LPWFSPINLOADCERTIFICATEEXOUTPUT;

CWA 16926-65:2023 (E)

DWORD dwUse;
DWORD dwCRKLLoadOption;
} WESPINIMPORTRSAENCIPHEREDPKCS7KEYEX, *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX;

typedef struct wfs pin import rsa enciphered pkcs7 key ex output

{

WORD wKeyLength;

DWORD dwRSAKeyCheckMode;
LPWEFSXDATA lpxRSAData;

WORD wKeyCheckMode;
LPWESXDATA lpxKeyCheckValue;

} WESPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT;

typedef struct wfs pin start authenticate
{
DWORD dwCommandID;
LPVOID lpvInputData;
} WEFSPINSTARTAUTHENTICATE, *LPWFSPINSTARTAUTHENTICATE;

typedef struct wfs pin start authenticate out

{

HRESULT hInternalCmdResult;
LPWEFSXDATA lpxDataToSign;
DWORD dwSigners;

} WESPINSTARTAUTHENTICATEOUT, *LPWESPINSTARTAUTHENTICATEOUT;

typedef struct wfs pin authenticate

{

DWORD dwSigner;
LPSTR lpsSigKey;
LPWFSXDATA lpxSignedData;
DWORD dwCommandID;
LPVOID lpvInputData;

} WESPINAUTHENTICATE, *LPWEFSPINAUTHENTICATE;

typedef struct wfs pin authenticate out

{

HRESULT hInternalCmdResult;
DWORD dwCommandID;
LPVOID lpvOutputData;

} WESPINAUTHENTICATEOUT, *LPWFSPINAUTHENTICATEOUT;

typedef struct wfs pin synchronize command
{
DWORD dwCommand;
LPVOID lpCmdData;
} WESPINSYNCHRONIZECOMMAND, *LPWEFSPINSYNCHRONIZECOMMAND;

typedef struct wfs pin crypt 340
{

LPSTR lpsKey;

LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;

BYTE bCompression;
LPWFSXDATA lpxCryptData;
LPWFSXDATA lpxVerifyData;
LPWEFSPINATTRIBUTES lpCryptAttributes;

} WESPINCRYPT340, *LPWEFSPINCRYPT340;

typedef struct wfs pin block 340
{

LPSTR lpsCustomerData;
LPSTR lpsXORData;

BYTE bPadding;

DWORD dwFormat;

LPSTR lpsKey;

LPSTR lpsSecondEncKey;
LPWEFSPINATTRIBUTES 1pPINBlockAttributes;

203

CWA 16926-65:2023 (E)

} WESPINBLOCK340, *LPWEFSPINBLOCK340;

typedef struct wfs pin import key 340
{

LPSTR lpsKey;
LPWEFSPINATTRIBUTES lpKeyAttributes;
LPWFSXDATA lpxValue;

LPSTR lpsDecryptKey;

DWORD dwDecryptMethod;
LPWEFSXDATA lpxVerificationData;
LPSTR lpsVerifyKey;
LPWEFSPINATTRIBUTES lpVerifyAttributes;
LPWESXDATA lpxVendorAttributes;

} WESPINIMPORTKEY340, *LPWESPINIMPORTKEY340;

typedef struct _wfs pin import key 340 out
{

LPWESXDATA lpxVerificationData;
LPWEFSPINATTRIBUTES lpVerifyAttributes;
ULONG ulKeyLength;

} WESPINIMPORTKEY3400UT, *LPWFSPINIMPORTKEY3400UT;

typedef struct wfs pin password entry
{

USHORT usMinlLen;

USHORT usMaxLen;

BOOL bAutoEnd;

CHAR cEcho;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
DWORD dwPasswordMode;
DWORD dwIndex;

} WESPINPASSWORDENTRY, *LPWFSPINPASSWORDENTRY;

typedef struct wfs pin password entry out

{

USHORT usDigits;
WORD wCompletion;
} WESPINPASSWORDENTRYOUT, *LPWFSPINPASSWORDENTRYOUT;

/*

/* PIN Message Structures */
/*

typedef struct wfs pin access
{
LPSTR lpsKeyName;
LONG lErrorCode;
} WESPINACCESS, *LPWFSPINACCESS;

typedef struct wfs pin device position
{
WORD wPosition;
} WESPINDEVICEPOSITION, *LPWESPINDEVICEPOSITION;

typedef struct wfs pin power save change
{

USHORT usPowerSaveRecoveryTime;
} WESPINPOWERSAVECHANGE, *LPWFSPINPOWERSAVECHANGE;

typedef struct wfs pin dukpt ksn

{
LPSTR lpsKey;
LPWESXDATA 1pxKSN;

} WESPINDUKPTKSN, *LPWESPINDUKPTKSN;

typedef struct wfs pin password cleared

{

204

DWORD dwIndex;

} WESPINPASSWORDCLEARED, *LPWFSPINPASSWORDCLEARED;

/* restore alignment */
#pragma pack (pop)

#ifdef _ cplusplus

} /*extern "C"*/
#endif
#endif /* __INC_XFSPIN H */

CWA 16926-65:2023 (E)

205

CWA 16926-65:2023 (E)

8. Appendix-A

This section provides extended explanation of concepts and functionality needing further clarification. The
terminology as described below is used within the following sections.

Definitions and Abbreviations

ATM Automated Teller Machine, used here for any type of self-service terminal,
regardless whether it actually dispenses cash

CA Certificate Authority

Certificate A data structure that contains a public key and a name that allows certification of a
public key belonging to a specific individual. This is certified using digital
signatures.

Host The remote system that an ATM communicates with.

KTK Key Transport Key

PKI Public Key Infrastructure

Private Key FhatThe key of an entity’s key pair that should only be used by that entity.

Public Key FhatThe key of an entity’s key pair that can be made public.

Symmetric Key

A key used with symmetric cryptography

Verification Key

A key that is used to verify the validity of a certificate

Signaturelssuer

An entity that signs the ATM's public key at production time, may be the ATM
manufacturer

Notation of Cryptographic Items and Functions

SKe The private key belonging to entity E

PKe The public belonging to entity E

SKartm The private key belonging to the ATM/PIN

PKatm The public key belonging to the ATM/PIN

SKuost The private key belonging to the Host

PKHost The public key belonging to the Host

SKsi The private key belonging to Signature Issuer

PKs1 The public key belonging to Signature Issuer

SKroor The root private key belonging to the Host

PKRroor The root public key belonging to the Host

KnamE A symmetric key

Certuosr A Certificate that contains the public verification of the host and is signed by a
trusted Certificate Authority.

Certatm A Certificate that contains the ATM/PIN public verification or encipherment key,
which is signed by a trusted Certificate Authority.

Certca The Certificate of a new Certificate Authority

Rarm Random Number of the ATM/PIN

Inost Identifier of the Host

Kkrk Key Transport Key

Ruosr Random number of the Host

Iatv Identifier of the ATM/PIN

TParm Thumb Print of the ATM/PIN

Sign(SKe)[D] The signing of data block D, using the private key SKg

Recover(PKg)[S] The recovery of the data block D from the signature S, using the private key PKg

RSACrypt(PKg)[D] | RSA Encryption of the data block D using the public key PKg

Hash [M] Hashing of a message M of arbitrary length to a 20 Byte hash value

Des(K) [D] DES encipherment of an 8 byte data block D using the secret key K

Des(K)[D] DES decipherment of an 8 byte data block D using the 8 byte secret key K

Des3(K)[D] Triple DES encipherment of an 8 byte data block D using the 16 byte secret key K =

(K || KR), equivalent to Des(Ky) [Des!(Kgr) [Des(Ky) [D]]]

Des3" (K) [D]

Triple DES decipherment of an 8 byte data block D using the 16 byte secret key K =
(Kv || KRr), equivalent to Des™! (K1) [Des (Kgr) [Des! (K1) [D]]]

Rnde A random number created by entity E
Ule Unique Identifier for entity E
(A||B) Concatenation of A and B

206

CWA 16926-65:2023 (E)

8.1 Remote Key Loading Using Signatures
8.1.1 RSA Data Authentication and Digital Signatures

Digital signatures rely on a public key infrastructure (PKI). The PKI model involves an entity, such as a Host,
having a pair of encryption keys — one private, one public. These keys work in consort to encrypt, decrypt and
authenticate data. One way authentication occurs is through the application of a digital signature. For example:

1. The Host creates some data that it would like to digitally sign:.

2. Host runs the data through a hashing algorithm to produce a hash or digest of the data. The digest is unique
to every block of data — a digital fingerprint of the data, much smaller and therefore more economical to
encrypt than the data itself.

3. Digest is encrypted with the Host’s private key.

This is the digital signature — a data block digest encrypted with the private key. The Host then sends the following
to the ATM:

1. DataThe data block.
2. DigitalThe digital signature.
3. Hest’sThe host’s public key.
To validate the signature, the ATM performs the following:

1. ATM runs data through the standard hashing algorithm — the same one used by the Host — to produce a
digest of the data received. Consider this digest,:.

2. ATM uses the Host’s public key to decrypt the digital signature. The digital signature was produced using
the Host’s private key to encrypt the data digest; therefore, when decrypted with the Host’s public key it
produces the same digest. Consider this digest;. Incidentally, no other public key in the world would work
to decrypt digest; — only the public key corresponding to the signing private key.

3. ATM compares digest; with digest,.
If digest; matches digest, exactly, the ATM has confirmed the following:

e DataThe data was not tampered with in transit. Changing a single bit in the data sent from the Host to the
ATM would cause digest, to be different than digest;. Every data block has a unique digest; therefore, an
altered data block is detected by the ATM.

e PublieThe public key used to decrypt the digital signature corresponds to the private key used to create it.
No other public key could possibly work to decrypt the digital signature, so the ATM was not handed
someone else’s public key.

This gives an overview of how Bigital Sisnaturesdigital signatures can be used in Bata-Authentication-data
authentication. In particular, Sigraturessignatures can be used to validate and securely install Eneryption

Keys-encryption keys. The following section describes ¥ey-Exehansekey exchange and the use of Digitaldigital
signatures.

207

CWA 16926-65:2023 (E)

8.1.2 RSA Secure Key Exchange using Digital Signatures

In summary, both end points, the ATM and the Host, inform each other of their Public Keys. This information is
then used to securely send the PIN device Master Key to the ATM. A trusted third party, the Signature Issuer, is
used to generate the signatures for the Public keys of each end point, ensuring their validity.

The detail of this is as follows:
Purpose: The Host wishes to install a new master key (Kym) on the ATM securely.
Assumptions:

1. The Host has obtained the Public Key (PKs;) from the Signature Issuer.

2. The Host has provided the Signature Issuer with its Public Key (PKnosr), and receives the corresponding
signature Sign(SKsi)[PKuost]. The Signature Issuer uses its own Private Key (SKg) to create this
signature.

3. Inthe case where Enhanced Remote Key Loading is used, the host has provided the Signature Issuer with
its Public Key (PKroor), and receives the corresponding signature Sign(SKsi)[PKroor]. The host has
generated another key pair PKuost and SKruost and signs the PKuost with the SKroor.

4. (Optional) The host obtains a list of the valid PIN device’s Unique Identifiers. The Signature Issuer installs
a Signature Sign(SKsi)[Ulatm] for the Unique Id (Ulatm) on the ATM PIN. The Signature Issuer uses
SKsr to do this.

5. The Signature Issuer installs its Public Key (PKsi) on the ATM PIN. It also derives and installs the
Signature Sign(SKsi)[PKarm] of the ATM PIN’s Public Key (PKarm) on the ATM PIN. The Signature
Issuer uses SKs; to do this.

6. The ATM PIN device additionally contains its own Public (PKarm) and Private Key (SKatwm).

Step 1
The ATM PIN sends its Public Key to the Host in a secure structure:

The ATM PIN sends its ATM Public Key with its associated Signature. When the Host receives this information it
will use the Signature Issuer’s Public Key to validate the signature and obtain the ATM Public Key.

The XFS command used to export the PIN public key securely as described above is
WFS_CMD_PIN_EXPORT RSA ISSUER _SIGNED ITEM.

Step 2 (Optional
The Host verifies that the key it has just received is from a valid sender.

It does this by obtaining the PIN device unique identifier. The ATM PIN sends its Unique Identifier with its
associated Signature. When the Host receives this information it will use the Signature Issuer’s Public Key to
validate the signature and retrieve the PIN Unique Identifier. It can then check this against the list it received from
the Signature Issuer.

The XFS command used to export the PIN Unique Identifier is
WFS_CMD PIN_EXPORT RSA ISSUER _SIGNED ITEM.

Step 3 (Enhanced Remote Key Loading only)
The Host sends its root public key to the ATM PIN:

The Host sends its Root Public Key (PKroot) and associated Signature. The ATM PIN verifies the signature using
PKGg; and stores the key.

The XFS command used to import the host root public key securely as described above is
WFS_CMD_PIN_IMPORT RSA PUBLIC KEY.

Step 4
The Host sends its public key to the ATM PIN:

The Host sends its Public Key (PKnost) and associated Signature. The ATM PIN verifies the signature using PKg;
(or PKRroor in the Enhanced Remote Key Loading Scheme) and stores the key.

The XFS command used to import the host public key securely as described above is
WFS_CMD_PIN _IMPORT RSA PUBLIC KEY.

Step 5
The ATM PIN receives its Master Key from the Host:

208

CWA 16926-65:2023 (E)

The Host encrypts the Master Key (Kwm) with PKatum. A signature for this is then created using SKuost. The ATM
PIN will then validate the signature using PKnost and then obtain the master key by decrypting using SKarwm.

The XFS commands used to exchange master symmetric keys as described above are:
e WFS CMD PIN START KEY EXCHANGE
e WFS CMD PIN IMPORT RSA SIGNED DES KEY

Step 6 — Alternative including random number
The host requests the ATM PIN to begin the DES key transfer process and generate a random number.

The Host encrypts the Master Key (Km) with PKarwm. A signature for the random number and encrypted key is then
created using SKosr.

The ATM PIN will then validate the signature using PKyosr, verify the random number and then obtain the master
key by decrypting using SKatm.

The XFS commands used to exchange master symmetric keys as described above are:
e WFS CMD PIN START KEY EXCHANGE
e WFS CMD PIN IMPORT RSA SIGNED DES KEY

The following diagrams summaries the key exchange process described above:

209

CWA 16926-65:2023 (E)

8.1.3 Initialization Phase — Signature Issuer and ATM PIN

This would typically occur in a secure manufacturing environment.

Stgnature
Issuer Ylamm
<
PKs:
>
—| ———— Sign{SKsiHPKarm Parm
> PKs:
Sign{SKsiHYIamd StgRtSKsotPRarm}
> SKarm
Yiarm
Sigh{SksiIammd
. PIN
Signature | — —
Issuer ULurs
<
PKst
Sian(SKsi)[PKatm] PKatm
PKs1

Sign(SKsi)[UIatm]

Sign(SKs1)[PKatm]
SKaTtm

VvVYyY

Ulatm
Sign(SKs1)[UIatm]

210

8.1.4 |Initialization Phase — Signature Issuer and Host

CWA 16926-65:2023 (E)

This would typically occur in a secure offline environment.

Issuer
PKs:
>
T | Sigr{SKsiHPKuest} PK
—
SkKrost
Signature < PKtost Host
Issuer
PKs1

Sign(SKs1)[PKhosT]

PKhost

PKs1
Sign(SKsr1)[PKhost]
SKhost

211

CWA 16926-65:2023 (E)

8.1.5 Key Exchange — Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key in a typical ATM
Network. The following is the recommended sequence of interchanges.

Hest PIN
WSI
PKarv-obtained

Optionaty—send PN

Yarn-obtained—&
i .
Hst
PiN-validates
. sighatare-with—PKs:
PKrostHSigr{SKsiHPKrost} L
— — PKyostobtained
EneryptKu-with
Pkatv-and-generate
Signature-forresult RSACrypHPKarm HKMHHSigR{SKHosTH PIN-validates
ustg-SKuost+ RSACFYBEPKarm YKt} : i
PKhostand-ebtains
> Km-by-deerypting
with-Siarm
Kv-ebtained

212

CWA 16926-65:2023 (E)

PKatm||Sign(SKs1)[PKatm]

<

<

Ulamm| [Sign(SKsi)[UIatm]

PKHost||Sign(SKs1)[PKhosT]

RSACrypt(PKatm)[Km]||Sign(SKhost)[

RSACrypt(PKatv)[Km]]

>

Optionally send PIN

Unigue Identifier

PIN validates
signature with PKs:

PKhnosT obtained

PIN validates

signature with
PKhost, and obtains

Km by decrypting

>

with SKarm

Km_obtained

This following is a typical interaction for the exchange of the initial symmetric master key when the PIN device and
Service Provider supports the WFS_ CMD_PIN _START KEY EXCHANGE command.

213

CWA 16926-65:2023 (E)

Rarm

PKuostHSigh{SKsiHPKuost}

RequestRamm

Ratm

RarmHRSACHpEPKaT KM
Hmtd

Ranvand-obtains KM

SkKarm

K—ebtained

214

Host

Host validates
signature with PKs:

PKatm Obtained

Host validates

PKatm||Sign(SKs1)[PKatm]

CWA 16926-65:2023 (E)

Ulatm||Sign(SKsi)[UIatm]

Optionally send PIN
Unigue Identifier

Ulatm obtained &
verified against
list

Host requests
random number Ratm

signature with PKs: 4

PKHost||Sign(SKs1)[PKHosT]

Request Ratm

>

Encrypt Kv with
PKatv_and generate
Signature for Ratm
and encryption
result using SKhosrt.

Ratm

Ratm| |[RSACrypt(PKatm)[Km]
[[Sign(SKhost)[Ratm | [RSACrypt(PKatm

) [Km

>

PIN validates
signature with PKs:

PKhnosT obtained

PIN generates
random number,
Ratm, and starts key

exchange

PIN validates
signature with
PKhost, validates
Ratm_and obtains Km
by decrypting with
SKatm

Km_obtained

215

CWA 16926-65:2023 (E)

8.1.7 Enhanced RKL, Key Exchange (with random number) — Host and ATM PIN

Host PIN
Host validates .
+PKarm-ebtained 4
Hostvatidares } Y Sigr{SKsi}fammd o o
+~Uiarv-obtained Briqueldentifier
Q £
PKroorHSigR{SKsiHPKroott > -vatigates
Hostsendsroot sighature-with—PKs:
oublic key-PKroot 4—P'KR993F
PKrostHStgR{SKroorHPKrostt
: i
PKroor——PKHosT
obtatned
RequestRamu
rardemAumber
Rarm > PIN-generates
randemAumber;
RA—'FM- RATM,ﬁ}Hd%taFt&key
<)
EnecryptKu-with RarmHRSACHpEHPKam KM
aﬂd%%wa%ieﬁw T PKrost—validates
resuit-using-Skeesw > Ramv-ahe-obtatnsKm
))
Skarm
Kv-ebtained

This following is a typical interaction for the exchange of the initial symmetric master key when the PIN device and
Service Provider supports the Enhanced Signature Remote Key Loading scheme-.

216

CWA 16926-65:2023 (E)

8.1.8 Default Keys and Security Item loaded during manufacture

Several keys and a security item which are mandatory for the 2 party/Signature authentication scheme are installed
during manufacture. These items are given fixed names so multi-vendor applications can be developed without the

need for vendor specific configuration tools.

Item Name Item Type Signed by Description
“ SiglssuerVendor” Public Key N/A The public key of the signature
issuer, i.e. PKg;
“ EPPCryptKey” Public/Private The private key The key-pair used to encrypt and
key-pair associated with decrypt the symmetric key, i.e.
_SiglssuerVendor SKarm and PKarwm. The public

key is used for encryption by the
host and the private for

decryption by the EPP.
In addition the following optional keys can be loaded during manufacture.
Item Name Item Type Signed by Description
“ EPPSignKey” Public/Private The private key A key-pair where the private key
key-pair associated with is used to sign data, e.g. other
SiglssuerVendor generated key pairs.

217

CWA 16926-65:2023 (E)

8.2 Remote Key Loading Using Certificates

The following sections demonstrate the proper usage of the CEN PIN interface to accomplish Remote Key Loading

using Certificates. Beginning with Section 8.2.5, there are sequence diagrams to demonstrate how the CEN PIN
interface can be used to complete each of the TR34 operations.

8.2.1 Certificate Exchange and Authentication

In summary, both end points, the ATM and the Host, inform each other of their Public Keys. This information is

then used to securely send the PIN device Master Key to the ATM. A trusted third party, Certificate Authority (or a

HOST if it becomes the new CA), is used to generate the certificates for the Public Keys of each end point,

ensuring their validity. NOTE: The WFS CMD PIN LOAD_ CERTIFICATE and
WFS CMD PIN GET CERTIFICATE do not necessarily need to be called in the order below. This way though is

the recommend way.

The following flow is how the exchange authentication takes place:

WFS CMD PIN LOAD_CERTIFICATE is called. In this message contains the host certificate, which
has been signed by the trusted CA. The encryptor uses the Public Key of the CA (loaded at the time of
production) to verify the validity of the certificate. If the certificate is valid, the encryptor stores the

HOST’s Public Verification Key.

Next, WFS CMD PIN GET CERTIFICATE is called. The encryptor then sends a message that contains
a certificate, which is signed by the CA and is sent to the HOST. The HOST uses the Public Key from the
CA to verify the certificate. If valid then the HOST stores the encryptor’s verification or encryption key

(primary or secondary this depends on the state of the encryptor).

The following diagram shows how the Host and ATM Load and Get each other’s information to make Remote Key

Loading possible:
Host €erthost
FheHostsenrds-its
16
aRd-returas-the
Requestfor- Certarv
FheHostReguests
the-ATM-Keys-:
FhePIN-senrdsthe
N €ertarm keys-inside-of-a
Fhe Hostverifiesthe eertificates
message— -t
| .
storesthekey-
CertHost
Threteeteeres s
CertHost to the ATM. The PIN verifies the
message. If it verifies
TPatm then it stores the key

218

The Host Requests
the ATM Keys.

The Host verifies the

Reaquest for Certatm

message. If it
verifies then it

stores the key.

Certatm

and returns the
thumbprint.

The PIN sends the

keys inside of a
certificate.

CWA 16926-65:2023 (E)

219

CWA 16926-65:2023 (E)

8.2.2 Remote Key Exchange

After the above has been completed, the HOST is ready to load the key into the encryptor. The following is done to
complete this and the application must complete the Remote Key Exchange in this order:

First, the WFS_ CMD_PIN START KEY EXCHANGE is called. This returns Ratm from the encryptor
to be used in the authenticating the WFS CMD_PIN IMPORT RSA ENCHIPERED PKCS7 KEY
message.

Next, WFS_ CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY is called. This command sends
down the KTK to the encryptor. The following items below show how this is accomplished.

1.

a)

b)

d)

HOST has obtained a Key Transport Key and wants to transfer it to the encryptor. HOST constructs a
key block containing an identifier of the HOST, Ixost, and the key, Kkrk, and enciphers the block,
using the encryptor’s Public Encryption Key from the WFS_CMD_PIN_ GET CERTIFICATE
command.

After completing the above, the HOST generates random data and builds the outer message containing
the random number of the host, Ruosr, the random number of the encryptor returned in the

WFES CMD PIN START KEY EXCHANGE command, Ratm , the identifier of the encryptor, Ienc,
and the enciphered key block. The HOST signs the whole block using its private signature key and
sends the message down to the encryptor.

The encryptor then verifies the HOST’s signature on the message by using the HOST’s Public
Verification Key. Then the encryptor checks the identifier and the random number of the encryptor
passed in the message to make sure that the encryptor is talking to the right HOST. The encryptor then
deciphers the enciphered block using its private verification key. After the message has been
deciphered, the encryptor checks the Identifier of the HOST. Finally, if everything checks out to this
point the encryptor will load the Key Transport Key. NOTE: If one step of this verification occurs the
encryptor will return the proper error to the HOST.

After the Key Transport Key has been accepted, the encryptor constructs a message that contains the
random number of the host, the random number of the encryptor and the HOST identifier all signed
by the private signature key of the encryptor. This message is sent to the host.

The HOST verifies the message sent from the encryptor by using the ATM’s public verification key.
The HOST then checks the identifier of the host and then compares the identifier in the message with
the one stored in the HOST. Then checks the random number sent in the message and to the one
stored in the HOST. The HOST finally checks the encryptor’s random number with the one received
in received in the WFS_ CMD PIN START KEY EXCHANGE command.

The following diagram below shows how the Host and ATM transmit the Key Transport Key.

RequestRamm

Rarm The PI}

Sigh{SKuost HRuost HRaATuHEATM HRSACrY pHPKarmH Erost HHC AT the host
-

Sign{SKarmHRuestHRaTH EHostT FhrePHN-veriftes

8.2.3 Replace Certificate

CWA 16926-65:2023 (E)

After the key ishas been loaded into the encryptor, the following could be completed:

(Optional) WFS_CMD_PIN REPLACE CERTIFICATE. This is called by entity that would like to take
over the job of being the CA. The new CA requests a Certificate from the previous Certificate Authority.
The HOST must over-sign the message to take over the role of the CA to ensure that the encryptor accepts
the new Certificate Authority. The HOST sends the message to the encryptor. The encryptor uses the
HOST’s Public Verification Key to verify the HOST’s signature. The encryptor uses the previous CA’s
Public Verification Key to verify the signature on the new Certificate sent down in the message. If valid,
the EPP stores the new CA’s certificate and uses the new CA’s Public Verification Key as its new CA
verification key. The diagram below shows how the Host and the ATM communicate to load the new CA.

Sign{SKnest)fCerteal

MOStU

Sian(SKuo<t)[Certeal

Host wants to

take CA duties,
sends new
Certificate

TPatm

The PIN verifies
the message, if
valid the PIN
stores the new

CA.
The PIN then

sends the

221

CWA 16926-65:2023 (E)

8.2.4 Primary and Secondary Certificates

Primary and Secondary Certificates for both the Public Verification Key and Public Encipherment Key are pre-
loaded into the encryptor. Primary Certificates will be used until told otherwise by the HOST via the

WFS_CMD PIN_LOAD_ CERTIFICATE or WFS_ CMD_PIN REPLACE_ CERTIFICATE commands. This
change in state will be specified in the PKCS #7 (see [Ref. 2]) message of the

WFS CMD PIN LOAD CERTIFICATE or WFS CMD PIN REPLACE CERTIFICATE commands. The
reason why the HOST would want to change states is because the HOST thinks that the Primary Certificates have
been compromised.

After the HOST tells the encryptor to shift to the secondary certificate state, only Secondary Certificates can be
used. The encryptor will no longer be able to go back to the Primary State and any attempts from the HOST to get
or load a Primary Certificate will return an error. When either Primary or Secondary certificates are compromised it
is up to the vendor on how the encryptor should be handled with the manufacturer.

222

CWA 16926-65:2023 (E)

8.2.5 TR34 BIND To Host

This section defines the command to use when transferring a TR34 BIND token as defined in X9 TR34-2012 [Ref.
42].

This step is a pre-requisite for all other TR34 operations. The PIN device must be bound to a host before any other
TR34 operation will succeed.

It is recommended that the encryption certificate retrieved during this process is stored for future use otherwise it
will need to be requested prior to every operation.

Heost PIN

A\ 4

A

(WES-PIN-LOAD NEWHOST,
WESPIN-_SIGNER—CA)}
Host PIN

WES CMD PIN_GET_CERTIFICATE

A 4

PKCS#7 Certificate

WFS_CMD _PIN LOAD CERTIFICATE EJ
(WFS_PIN_ LOAD NEWHOST.
WFS_PIN SIGNER_CA)

\ 4

Checksum of public key (optional)

>l
l

223

CWA 16926-65:2023 (E)

8.2.6 TR34 Key Transport

There are two mechanisms that can be used to transport symmetric keys under TR34; these are the One Pass and
Two Pass protocols. The use of CEN commands for these two protocols are shown in the following sections.

NOTE: Refer to dwCRKLLoadOptions in the WFS _INF PIN CAPABILITIES output structure for an indication of
whether the PIN device supports one-pass and/or two-pass protocols.

8.2.6.1 One Pass

This section defines the command to use when transferring a TR34 KEY token (1-pass) as defined in X9 TR34-
2012 [Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

Heost PIN

v

A

224

Host

WFS_CMD_PIN_IMPORT RSA_ENCIPHERE

D_PKCS7_KEY_EX

(WFS_PIN_CRKLLOAD_CRL)

CWA 16926-65:2023 (E)

KCV of new key

A\ 4

PIN

225

CWA 16926-65:2023 (E)

8.2.6.2 Two Pass

This section defines the command to use when transferring a TR34 KEY token (2-pass) as defined in reference
fa[Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

Heost

———————————————— S PIN

v

A

\ 4

A

Host

WES CMD_ PIN_GET_CERTIFICATE
(WFS_PIN PUBLICENCKEY)

WFS_CMD_PIN_START KEY_EXCHANGE

»
»

Random Number Token

WFS_CMD_PIN_IMPORT_RSA_ENCIPHERE
D_PKCS7 KEY_EX
(WFS_PIN_CRKLLOAD_RANDOM_CRL)

\ 4

KCV of new key

PIN

NB: Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

226

8.2.7 TR34 REBIND To New Host

CWA 16926-65:2023 (E)

This section defines the command to use when transferring a TR34 REBIND token as defined in X9 TR34-2012

[Ref, 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

Heost

\4

v

Host

WES CMD_ PIN_GET_CERTIFICATE
(WFS_PIN PUBLICENCKEY)

WFS_CMD_PIN_START KEY_EXCHANGE

PIN

A\ 4

Random number token

WFS_CMD_PIN_LOAD_CERTIFICATE_EX
(WFS_PIN_LOAD_REPLACEHOST,
WFS_PIN_SIGNER_CERTHOST)

A\ 4

PIN

NB: Dotted lines represent commands that are only required if the PIN device encryption certificate has not been

previously stored by the host.

227

CWA 16926-65:2023 (E)

8.2.8 TR34 Force REBIND To New Host

This section defines the command to use when transferring a TR34 Force REBIND token as defined in X9 TR34-
2012 [Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

Host AVESPIN-PUBLICENCKEY) PIN

A\ 4

\4

WFS_CMD_PIN_GET_CERTIFICATE
Host (WFS PIN PUBLICENCKEY) PIN

WFS_CMD_PIN_START_KEY_EXCHANGE

»
L

Random number token

WFS_CMD_PIN_LOAD_CERTIFICATE_EX
(WFS_PIN_LOAD REPLACEHOST.,
WFS_PIN_SIGNER_HL)

\4

NB:

Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

Although the random number token is requested as part of this operation, it is discarded by the host and is not
actually used in the Force Rebind token.

228

8.2.9 TR34 UNBIND From Host

CWA 16926-65:2023 (E)

This section defines the command to use when transferring a TR34 UNBIND token as defined in X9 TR34-2012

[Ref, 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

Heost

A\ 4

v

PIN

Host

WES CMD_ PIN_GET_CERTIFICATE
(WFS_PIN PUBLICENCKEY)

WES CMD_ PIN_START AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION)

A 4

Data to sign

WFS_CMD_PIN_AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION
WFS_PIN_SIGNER_HOST |
WFS_PIN SIGNER TR34)

A\ 4

PIN

NB:

Dotted lines represent commands that are only required if the PIN device encryption certificate has not been

previously stored by the host.

229

CWA 16926-65:2023 (E)

8.2.10 TR34 Force UNBIND From Host

This section defines the command to use when transferring a TR34 Force UNBIND token as defined in X9 TR34-
2012 [Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

\ 4

\4

WFS_CMD_PIN_GET_CERTIFICATE
Host (WFS PIN PUBLICENCKEY) PIN

WES CMD_ PIN_START AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION)

\ 4

Data to sign

WFS_CMD_PIN_AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION,
WFS_PIN_SIGNER_HL |
WFS_PIN_SIGNER_TR34)

\4

NB:

Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

Although the random number token is requested as part of this operation, it is discarded by the host and is not
actually used in the Force Unbind token.

230

CWA 16926-65:2023 (E)

8.3 German ZKA GeldKarte (Deutsche Kreditwirtschaft)

The PIN service is able to handle the German "Geldkarte", which is an electronic purse specified by the DK
(Deutsche Kreditwirtschaft) formerly known as the ZKA (Zentraler Kreditausschuf3) protocol.

For anyone attempting to write an application that handles this type of chip card, it is essential to read and
understand the ZK A specifications see [Ref. 17], [Ref. 6] and [Ref. 7].

8.3.1 How to use the SECURE=MSG commands

This is to describe how an application should use the WFS_ CMD PIN SECURE MSG SEND and
WFS _CMD PIN SECURE _MSG_RECEIVE commands for transactions involving chipcards with a German ZKA
GeldKarte chip.

Applications must call SECURE MSG SEND for every command they send to the chip or to a host
system, including those commands that do not actually require secure messaging. This enables the Service
Provider to remember security-relevant data that may be needed or checked later in the transaction.

Applications must pass a complete message as input to SECURE_MSG_SEND, with all fields - including
those that will be filled by the Service Provider - being present in the correct length. All fields that are not
filled by the Service Provider must be filled with the ultimate values in order to enable MACing by the
Service Provider.

Every command SECURE MSG SEND that an application issues must be followed by exactly one
command SECURE MSG RECEIVE that informs the Service Provider about the response from the chip
or host. If no response is received (timeout or communication failure) the application must issue a
SECURE MSG RECEIVE command with lpSecMsgln->IpbMsg = NULL to inform the Service Provider
about this fact.

If a system is restarted after a SECURE_MSG_SEND was issued to the Service Provider but before the
SECURE MSG_RECEIVE was issued, the restart has the same effect as a SECURE_MSG_RECEIVE
command with I[pSecMsgin->IpbMsg = NULL.

Between a SECURE_MSG_SEND and the corresponding SECURE_MSG_RECEIVE no
SECURE _MSG_SEND with the same /pSecMsgln->wProtocol must be issued. Other WFS_CMD_PIN...
commands — including SECURE_MSG_SEND / RECEIVE with different wProtocol — may be used.

231

CWA 16926-65:2023 (E)

8.3.2 Protocol WFS_PIN_PROTISOAS

This protocol handles ISO8583 messages between an ATM and an authorization system (AS).

Only messages in the new ISO format, with new PAC/MAC-format (see [Ref. 14] and [Ref. 19]) using session keys
and Triple-DES are supported.

Authorization messages may be used to dispense the amount authorized in cash or to load the amount into an
electronic purse (GeldKarte).

For loading a GeldKarte the only type of authorization supported is a transaction originating from track 3 of a
German ec-card (message types 0200/0210 for authorization and 0400/0410 for reversal).

For dispensing cash, transactions originating from international cards (message types 0100/0110 and 0400/0410)
are supported as well.

The following bitmap positions are filled by the Service Provider:
e BMPI1 - Trace-Nummer
e BMP52-PAC
e BMP57 - Verschliisselungsparameter (only the challenge values RNDwygs and RNDpac)
e BMP64 - MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the Service Provider and have to be filled by the application:
e Nachrichtentyp
e BMP3 - Abwicklungskennzeichen (only for GeldKarte, not for cash)
e BMP4 - Transaktionsbetrag (only for GeldKarte, not for cash)
e BMP41 - Terminal-ID
e BMP42 - Betreiber-BLZ

For additional documentation of authorization messages see [Ref. 27] — [Ref. 30].

232

CWA 16926-65:2023 (E)

8.3.3 Protocol WFS_PIN_PROTISOLZ

This protocol handles ISO8583 messages between a ,,Ladeterminal” and a ,,Ladezentrale" (LZ).
Only messages in the new SO format, with new MAC-format using session keys and Triple-DES are supported.
Both types of GeldKarte chip (type 0 = DEM, type 1 = EUR) are supported.
The following bitmap positions are filled by the Service Provider:
e BMPI11: Trace-Nummer
e BMPS57: Verschliisselungsparameter (only the challenge value RNDMES)
e BMP64: MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the Service Provider and have to be filled by the application:
e Nachrichtentyp
e BMP3: Abwicklungskennzeichen
e BMP4: Transaktionsbetrag
e BMPI12: Uhrzeit
e BMPI13: Datum
e BMP25: Konditionscode
e BMP41: Terminal-ID
e BMP42: Betreiber-BLZ (caution: "Ladeentgelt" also in BMP42 is not set by the EPP)
e BMP61: Online-Zeitpunkt
e BMP62: Chipdaten
The following bitmap positions are only checked if they are available:
e BMP43: Standort
e BMP60: Kontodaten Ladeterminal

For a documentation of the Ladezentrale interface see [Ref. 31].

233

CWA 16926-65:2023 (E)

8.3.4 Protocol WFS_PIN_PROTISOPS

This protocol handles ISO8583 messages between a terminal and a "Personalisierungsstelle" (PS). These messages
are about OPT.

The Service Provider creates the whole message with WFS CMD_PIN SECURE MSG_SEND, including
message type and bitmap.

For a documentation of the Personalisierungsstelle interface see [Ref. 7].

234

CWA 16926-65:2023 (E)

8.3.5 Protocol WFS_PIN_PROTCHIPZKA

This protocol is intended to handle messages between the application and a GeldKarte.
Both types of GeldKarte are supported.

Both types of load transactions ("Laden vom Kartenkonto" and "Laden gegen andere Zahlungsmittel") are
supported.

See the chapter "Command Sequence" below for the actions that Service Providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the Service Provider, the
ATR (answer to reset) data from the chip is not passed to the Service Provider.

For a documentation of the chip commands used to load a GeldKarte see [Ref. 31].

235

CWA 16926-65:2023 (E)

8.3.6 Protocol WFS_PIN_PROTRAWDATA

This protocol is intended for vendor-specific purposes. Generally the use of this protocol is not recommended and
should be restricted to issues that are impossible to handle otherwise.

For example a HSM that requires vendor-specific, cryptographically secured data formats for importing keys or
terminal data may use this protocol.

Application programmers should be aware that the use of this command may prevent their applications from
running on different hardware.

236

CWA 16926-65:2023 (E)

8.3.7 Protocol WFS_PIN_PROTPBM

This protocol handles host messages between a terminal and a host system, as specified by PBM protocol.

For documentation of this protocol see [Ref. 8] — [Ref. 13].

Some additions are defined to the PBM protocol in order to satisfy the German ZKA 3.0 PAC/MAC standard-—See
(see [Ref. 14}] and [Ref. 19]).

The commands WFS_CMD_PIN _SECURE_MSG_SEND and WFS_CMD_PIN_SECURE_MSG_RECEIVE
handle the PAC and MAC in the VARDATA ‘K’ or ‘Q’ subfield of transactions records and responses. The MAC
in the traditional MACODE field is not affected.

In order to enable the Service Provider to understand the messages, the application must provide the messages
according to the following rules:

e All alphanumeric fields must be coded in EBCDIC.

e Pre-Edit (padding and blank compression) must not be done by the application. The Service Provider will
check the MACMODE field and will perform the pre-edit according to what the MACMODE field
intends.

e In order to enable the Service Provider to find the vardata subfield ‘K’ or ‘Q’, it must be included in the
message by the application, with the indicator ‘K’ or ‘Q’ and its length set.

e Because CARDDATA (track 2) and T3DATA (track 3) fields always take part in the MAC computation
for a transaction record, these fields must be included in the message, even if they already have been sent
to the host in a previous transaction record and the CI-Option SHORTREC prevents them from being sent
again.

237

CWA 16926-65:2023 (E)

8.3.8 Protocol WFS_PIN_PROTHSMLDI

With this protocol an application can request information about the personalized OPT groups.
The information returned consists of personalization record like in BMP62 of an OPT response but without MAC.
Data format:

XX XX VV - group ID and version number (BCD format)

XX - number of LDIs within the group (BCD format)

ﬁr.st LDI of the group

last LDI of the group
XX XX VV - group ID and version number (BCD format)

etc. for several groups

Each LDI consists of:
NN Number of the LDI
00 Alg. Code
LL Length of the following data
XX... XX data of the LDI

For each group ID the Service Provider must always return the standard LDI. LDI 01 must also be returned for
groups AF XX VV. Further LDIs can be returned optionally.

238

CWA 16926-65:2023 (E)

8.3.9 Protocol WFS_PIN_PROTGENAS

This protocol provides the capability to create a PAC (encrypted PIN block) and to create and verify a MAC for a
proprietary message. As the Service Provider does not know the message format, it cannot complete the message by
adding security relevant fields like random values, PAC and MAC, like it does for the protocol

WFS PIN PROTISOAS. Only the application is able to place these fields into the proper locations. Using this
protocol, an application can generate the PAC and the random values in separate steps, adds them to the proprietary
send-message, and finally lets the Service Provider generate the MAC. The generated MAC can then be added to
the send-message as well.

For a received message, the application extracts the MAC and the associated random value and passes them along
with the entire message data to the Service Provider for MAC verification.

PAC generation supports PIN block ISO-Format 0 and 1 for 3DES and ISO-Format 4 for AES.

Command description:
The first byte of field [pbMsg of WFSPINSECMSG contains a subcommand, which is used to qualify the type of
operation. The remaining bytes of the command data are depending on the value of the subcommand.

The following sub-commands are defined:

e GeneratePAC 3DES (Code 0x01)
Returns the encrypted PIN block together with generation and version values of the Master Key and the
PAC random value.

e GetMACRandom 3DES (Code 0x02)
Returns the generation and version values of the Master Key and the MAC random value.

e GenerateMAC 3DES (Code 0x03)
Returns the generated MAC for the message data passed in. Note that the MAC is generated for exactly
the data that is presented (contents and sequence). Data that should not go into MAC calculation must not
be passed in.

e VerifyMAC 3DES (Code 0x04)
Generates a MAC for the data passed in and compares it with the provided MAC value. MAC random
value, key generation and key version must be passed in separately.

e Generate PAC AES (Code 0x05)
Returns the encrypted PIN block wrapped in the BMP110.2 (Dataset 01).

e Get MAC Random AES (Code 0x06)
Returns the MAC random value wrapped in the BMP110.3 (Dataset 02).

e Generate MAC AES (Code 0x07)
Returns the generated MAC for the message data passed in. Note that the MAC is generated for exactly
the data that is presented (contents and sequence). Data that should not go into MAC calculation must not
be passed in.
Used algorithm is CMAC.

e Verify MAC AES (Code 0x08)
Generates a MAC for the data passed in and compares it with the provided MAC value. The MAC data
must be passed in as BMP110.3 (Dataset 02) in the format:
08 (sub-command) + BMP110.3 + MAC + message to be verified.

239

CWA 16926-65:2023 (E)

Command/Message sequence:

Byte 1: format (0 or 1)
Byte 2-9: ANF (Primary
Account Number, if
length is less than 12
digits, value must be left

Byte 2-17: PAC random
Byte 18-25: PAC value
(all values are binary
values)

Command IpbMsg in IpbMsg in Service Provider’s

WFS_CMD_PIN IpbSecMsglIn IpbSecMsgOut actions

SECURE_MSG SEND Byte 0: 0x01 Byte 0: key generation Generates a session key for
(Generate PAC) Byte 1: key version PAC generation and

finally the PAC

itself.

Determine generation and
version values of Master-
Key and return them along

Byte 2: key version

Byte 3-18: MAC random
Byte 19-26: MAC

Byte 27-n: Message to be
verified (all values are
binary values)

NOTE: If no message
has been received, this
function must be called
by omitting Bytes 1-n

padded with binary 0, with the random value.
only applicable for
format 0)
SECURE_MSG SEND Byte 0: 0x02 Byte 0: key generation Generates a session key for
(Get MAC Random) Byte 1: key version MAC generation (see next
Byte 2-17: MAC random step below)
(all values are binary Determine generation and
values) version values of Master-
Key and return them along
with the random value
SECURE_MSG SEND Byte 0: 0x03 Byte 0-7: generated MAC | Generates MAC over bytes
(Generate MAC) (binary value) 1-n of the inbound
Byte 1-n: Message to be message using the session
mac’ed (all values are key created in the previous
binary values) step.
SECURE_MSG RECEIVE | Byte 0: 0x04 N/a Generates a session key
(Verify MAC) using the Master key
Byte 1: key generation identified by key

generation and version by
using the random value
passed in.

Generates a MAC for the
message data passed in and
compare the resulting
MAC with the MAC
passed in.

240

CWA 16926-65:2023 (E)

Command IpbMsg in IpbMsg in Service Provider’s
WFS_CMD_PIN _ IpbSecMsgIn IpbSecMsgOut actions
SECURE MSG_SEND Byte 0: 0x05 (Generate | Byte 0: 01 Identification Generates a session key for
PAC AES) for Dataset 01 PAC generation and
Byte 1: format (4) Byte 1-2: length of data finally the PAC
Byte 3-n: data itself.

Returned values are in the
format of dataset 01 of

BMP110
SECURE_MSG SEND Byte 0: 06 (Get MAC Byte 0: 02 Identification Generates a session key for
Random AES) for Dataset 02 MAC generation (see next
Byte 1-2: length of data step below)
Byte 3-n: data Returned values are in the
format of dataset 02 of
BMP110
SECURE MSG SEND Byte 0: 0x07 (Generate | Byte 0-7: generated MAC | Generates MAC over bytes
MAC AES) (binary value) 1-n of the inbound
Byte 1-n: Message to be message using the session
mac’ed (all values are key created in the previous
binary values) step.
SECURE_MSG RECEIVE | Byte 0: 0x08 (Verify N/a Generates a session key
MAC AES) using the Master key
Byte 1-37: BMP110 identified by key
Dataset 02 generation and version by
Byte 38-45: MAC using the random value
Byte 46-n: Message to be passed in.
verified (all values are Generates a MAC for the
binary values) message data passed in and
compare the resulting
MAC with the MAC
passed in.

Returns:

The error code WFS_ERR_PIN FORMATINVALID is returned when:

The subcommand in Byte 0 of [ppMsg for Execute Command WFS_CMD PIN SECURE MSG _SEND
with protocol WFS_PIN_PROTGENAS is not 01, 02, 03, 05, 06 or 07.

The subcommand in Byte 0 of [pbMsg for Execute Command
WFS _CMD PIN SECURE MSG RECEIVE with protocol WFS_PIN PROTGENAS is not 04 or 08.

The subcommand in Byte 0 of [pbMsg for Execute Command WFS_CMD_ PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 01 and Byte 1 is not 00 and not 01 (PIN block format is not
ISO-0 and ISO-1).

The subcommand in Byte 0 of [ppMsg for Execute Command WFS_CMD PIN SECURE MSG _SEND
with protocol WFS_PIN PROTGENAS is 05 and Byte 1 is not 04 (PIN block format is not ISO-4)

The individual command data length for a subcommand is less than specified.

The error code WFS_ERR PIN HSMSTATEINVALID is returned when:

The subcommand in Byte 0 of [pbMsg for Execute Command WFS CMD_PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 03 (Generate MAC) without a preceding GetMACRandom
(WFS_CMD PIN SECURE MSG SEND with subcommand 02).

The subcommand in Byte 0 of [pbMsg for Execute Command WFS CMD_PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 07 (Generate MAC) without a preceding GetMACRandom
(WFS_CMD_PIN SECURE MSG SEND with subcommand 06).

The error code WFS_ERR _PIN MACINVALID is returned when:

The subcommand in Byte 0 of [pbMsg for Execute Command
WFS_CMD_PIN SECURE _MSG_RECEIVE with protocol WFS_PIN_PROTGENAS is 04 (Verify
MAC) and the MACs did not match.

241

CWA 16926-65:2023 (E)

The error code WFS_ERR _PIN KEYNOTFOUND is returned when:

e The subcommand in Byte 0 of /pbMsg for Execute Command WFS CMD PIN SECURE MSG SEND
with protocol WFS_PIN PROTGENAS is 01 or 05 (Generate PAC) and the Service Provider does not
find a master key.

e The subcommand in Byte 0 of [pbMsg for Execute Command WFS _CMD_ PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 02 or 06 (Get MAC Random) and the Service Provider does
not find a master key.

e The subcommand in Byte 0 of [pbMsg for Execute Command
WFS CMD PIN SECURE MSG RECEIVE with protocol WFS PIN PROTGENAS is 04 or 08 (Verify
MAC) and the Service Provider does not find a key for the provided key generation and key version
values.

The error code WFS_ERR PIN NOPIN is returned when:

e The subcommand in Byte 0 of /pbMsg for Execute Command WFS CMD PIN SECURE MSG SEND
with protocol WFS_PIN PROTGENAS is 01 or 05 (Generate PAC) and no PIN or insufficient PIN-digits
have been entered.

242

CWA 16926-65:2023 (E)

8.3.10 Protocol WFS_PIN_PROTCHIPINCHG

This protocol is intended to handle messages exchanged between the PIN pad and a GeldKarte, which are all
related to the PIN change transaction.

Only Type-1-GeldKarte is supported, because the former Type-0-GeldKarte will no longer be used as it was a
dedicated Deutsche Mark electronic purse only. The Type-1-GeldKarte is used for Euro currency.

The transaction types supported are:
e PIN-Activation (,,PIN-Aktivierung)
e PIN-Activation after Failure (,,PIN-Aktivierung nach Fehlerfall®)
e PIN-Change ("PIN-Anderung")

See the command sequence section below for the actions that Service Providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the Service Provider, the
ATR (answer to reset) data from the chip is not passed to the Service Provider.

For the complete documentation of the chip commands used for PIN-Change see [Ref. 34].

243

CWA 16926-65:2023 (E)

8.3.11 Protocol WFS_PIN_PROTPINCMP

This simple protocol is used to perform a comparison of two PINs entered into the PIN Pad. In order to be able to
compare the PINs, the first value must be temporary stored while the second value is entered. The user will be
prompted to enter the PIN twice. After the PIN has been entered for the first time, the PIN pad needs to store the
PIN value into a temporary location. After the user has entered the PIN for the second time, the PIN pad has to
compare both values.

This protocol consists of two subcommands. The first subcommand requests the PIN pad to save the PIN value
entered by the WFS CMD PIN GET PIN command for subsequent comparison. The second subcommand forces
the PIN pad to compare the PIN stored with the second value entered by the WFS CMD PIN GET PIN
command. The status of the PIN comparison is returned in the output data.

See the command sequence section below for the actions that Service Providers take for this protocol.

8.3.11.1 UseUse of WFS_PIN_PROTPINCMP with non-GeldKarte ZKA PIN Management

For use with the non-GeldKarte ZKA PIN compare function (see [Ref. 37]) there are two more subcommands “‘start
PIN compare” and “end PIN compare”. These have to be called before entry of the first PIN and after querying of
the PAC to signal the end of the PIN comparison, respectively.

This is the command sequence for the non-GeldKarte transaction:

Flow Command wProtocol lobMse in lobMse in Service
WFS_CMD_PIN_ WFS_PIN_PRO | P’ 2 P> VS8 Provider’
pbSecMsgl i IpbSecMsgOu)
T s actions
n t
PIN Compare
Start PIN comparison SECURE _MSG_SEN : PINCMP Byte 0: 0x00 Prepare
D (Start PIN EPP for
compare) PIN
comparison.
Output data
buffer
length is
Zero.
Let the user enter the new GET _PIN n/a n/a n/a PIN entry.
PIN for the first time.
SECURE_MSG SEN | PINCMP Byte 0: 0x01 Save the
D (Save PIN) PIN value
entered for
subsequent
compare.
Output data
buffer
length is
Zero.
Let the user enter the new GET_PIN n/a n/a n/a PIN entry.
PIN for the second time
SECURE _MSG_SEN : PINCMP Byte 0: 0x02 ; Byte 0: 0x00 Compare
D (Compare when PIN does | PIN values.
PINs) not match, and
0x01 when PIN
does match.
Get the PAC of the new
PIN via
WEFS _PIN PROTGENA
S or
WEFS_PIN PROTISOAS
(as usual).

244

CWA 16926-65:2023 (E)

End PIN comparison.

SECURE MSG SEN
D

PINCMP

Byte 0: OxFF
(End PIN
compare)

All PIN
buffers are
cleared.
Output data
buffer
length is
Z€r0.

Please note that no other PIN commands apart from WFS_CMD PIN GET_PIN and

WFS CMD PIN SECURE MSG SEND as specified above are allowed inside a start / end PIN compare flow,
with the exception of creating the PAC for the old PIN. While the old PIN always has to be entered (using

WFS CMD PIN GET_PIN) before the “Start PIN Compare”, the PAC for the old PIN may be created (using
WFS CMD PIN SECURE MSG_SEND with wProtocol=WFS PIN PROTGENAS) after the “Start PIN
Compare” if (enforced by the host protocol) the same session key SK PAC has to be used for encrypting both the

old and the new PIN.

245

CWA 16926-65:2023 (E)

8.3.12 Protocol WFS_PIN_PROTISOPINCHG

This protocol handles ISO8583 messages between an ATM and an authorization system (AS) related to the
transactions:

e PIN-Activation (,,PIN-Aktivierung*)
e PIN-Activation after Failure (,,PIN-Aktivierung nach Fehlerfall®)
e PIN-Change ("PIN-Anderung")
The message types supported are:
e 0640 (PIN Change / PIN Activation Request)
e 0642 (Confirmation / Reversal Request for PIN Change / PIN Activation)
e (0643 (Confirmation Repeat Request for PIN Change / PIN Activation)
e (0650 (PIN Change / PIN Activation Response)
e (0652 (Confirmation / Reversal Response)
The following bitmap positions are filled by the Service Provider:
e BMP52 PAC
e BMP57 Verschliisselungsparameter (Krerminat Generation, Krerminat Version, RNDyes and RNDpac)

e BMP62 (EF _ID, EF INFO, Record number of PIN, Key Version of Kcard, EF FBZ, PAC, Random value
returned by GET CHALLENGE)

e BMP64 MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

See the command sequence section below for the actions that Service Providers take for the various messages.

For the complete documentation of the messages used for PIN-Change see [Ref. 34].

246

CWA 16926-65:2023 (E)

8.3.13 Command Sequence

The following list shows the sequence of actions an application has to take for the various GeldKarte Transactions.
Please note that this is a summary and is just intended to clarify the purpose of the chipcard-related
WES _CMD PIN ... commands. In no way it can replace the ZKA specifications mentioned above.

Command wProtocol | lpbMsg Service Provider’s actions
WFS_CMD_PIN _ WFS_PIN_
PROT

Preparation for
Load/Unload
SECURE MSG SEND CHIPZKA Command APDU

SELECT FILE DF_BORSE
SECURE MSG RECEIVE : CHIPZKA Response APDU recognize type of chip
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD EF 1D
SECURE MSG RECEIVE : CHIPZKA record EF 1D store EF 1D
SECURE MSG SEND CHIPZKA Command APDU

READ RECORD EF LLOG
SECURE MSG RECEIVE : CHIPZKA record EF LLOG
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD EF BORSE
SECURE MSG RECEIVE i CHIPZKA record EF_ BORSE

SECURE _MSG SEND CHIPZKA Command APDU

READ _RECORD

EF BETRAG

SECURE MSG RECEIVE : CHIPZKA record EF BETRAG

Load against other ec-Card
SECURE MSG SEND CHIPZKA for type 0 chips only
Command APDU

READ RECORD EF KEYD
SECURE MSG RECEIVE : CHIPZKA record EF KEYD

SECURE MSG SEND CHIPZKA for type 1 chips only
Command APDU
GET KEYINFO
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RNDI from store RNDI1
Chip
SECURE _MSG SEND CHIPZKA Command APDU fill:
LADEN EINLEITEN -Terminal ID
with Secure Msg. -Traceno.
-RND2
-MAC
SECURE MSG RECEIVE | CHIPZKA Response APDU store response APDU for later check of
ISOLZ message, BMP 62
SECURE _MSG SEND ISOAZ ISO8583 message 0200 Fill:
Authorization Request - Traceno. (BMP 11)
-PAC (BMP 52)
- RNDwEs + RNDpac (BMP 57)
- MAC (BMP 64)
check other security relevant fields
SECURE MSG RECEIVE {ISOAZ ISO8583 message 0210 check MAC and other security relevant
Authorization Response fields
SECURE_MSG SEND ISOLZ ISO8583 message 0200 Fill:
Ladeanfrage - Traceno. (BMP 11)
- RNDwmes (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE MSG RECEIVE | ISOLZ ISO8583 message 0210 check MAC and other security relevant
Ladeantwort fields, store BMP62 for later use in
LADEN command.
SECURE_MSG SEND CHIPZKA Command APDU
GET CHALLENGE

247

CWA 16926-65:2023 (E)

248

Command wProtocol :lpbMsg Service Provider’s actions
WFS_CMD_PIN _ WFS_PIN
PROT
SECURE MSG RECEIVE | CHIPZKA Random number RND3 from store RND3
chip
SECURE_MSG_SEND CHIPZKA Command APDU provide complete command from
LADEN with Secure Msg. BMP62 of ISOLZ response , compute
command MAC
SECURE MSG RECEIVE i CHIPZKA Response APDU check response MAC
GET JOURNAL ISOLZ Vendor specific
GET JOURNAL ISOAZ Vendor specific
Reversal of a Load against
other ec-Card
SECURE MSG SEND CHIPZKA Command APDU
SELECT FILE DF_BORSE
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE CHIPZKA Random number RNDS5 from store RND5
chip
SECURE MSG SEND CHIPZKA Command APDU Fill:
LADEN EINLEITEN -Terminal ID
with Secure Msg. -Traceno.
-RND6
-Keyno. KGKrr
-MAC
SECURE MSG RECEIVE | CHIPZKA Response APDU store response APDU for later check of
ISOLZ message, BMP 62
SECURE _MSG SEND ISOAZ ISO8583 message 0400 Fill:
Storno - Traceno. (BMP 11)
-PAC (BMP 52)
- RNDwEes + RNDpac (BMP 57)
- MAC (BMP 64)
check other security relevant fields
SECURE MSG RECEIVE {ISOAZ ISO8583 message 0410 check MAC and other security relevant
Storno Response fields.
SECURE_MSG SEND ISOLZ ISO8583 message 0400 Fill:
Storno - Traceno. (BMP 11)
- RNDwmes (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE MSG RECEIVE | ISOLZ ISO8583 message 0410 check MAC and other security relevant
Storno Response fields, store BMP62 for later use in
LADEN command.
SECURE_MSG SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RND7 from store RND7
chip
SECURE _MSG SEND CHIPZKA Command APDU provide complete command from
LADEN with Secure Msg. BMP62 of ISOLZ response , compute
command MAC
SECURE MSG RECEIVE : CHIPZKA Response APDU check response MAC
GET JOURNAL ISOLZ Vendor specific
GET JOURNAL ISOAZ Vendor specific
PIN Verification Type 0
SECURE MSG SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RNDO from store RNDO
chip
SECURE_MSG SEND CHIPZKA Command APDU fill
EXTERNAL -Keyno. Kinro
AUTHENTICATE -ENCRND
SECURE MSG RECEIVE i CHIPZKA Response APDU

CWA 16926-65:2023 (E)

SECURE_MSG_SEND CHIPZKA Command APDU fill RND1
PUT DATA
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU
READ RECORD
EF_INFO
with Secure Messaging
SECURE MSG RECEIVE : CHIPZKA record EF_INFO check MAC
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RND2 from store RND2
chip
SECURE_MSG_SEND CHIPZKA Command APDU provide complete command APDU
VERIFY
SECURE MSG RECEIVE : CHIPZKA Response APDU
PIN Verification Type 1
SECURE_MSG_SEND CHIPZKA Command APDU
GET KEYINFO
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RNDO from store RNDO
chip
SECURE_MSG_SEND CHIPZKA Command APDU fill ENCO
MUTUAL AUTHENTICATE
SECURE MSG RECEIVE : CHIPZKA Response APDU check ENC1
SECURE_MSG_SEND CHIPZKA Command APDU provide complete command APDU
VERIFY
SECURE MSG RECEIVE i CHIPZKA Response APDU check MAC
,»Laden vom Kartenkonto“
(both types)
SECURE_MSG_SEND CHIPZKA Command APDU fill
LADEN EINLEITEN -Terminal ID
-Trace No.
SECURE MSG RECEIVE i CHIPZKA Response APDU
SECURE _MSG SEND ISOLZ ISO8583 message 0200 fill
Ladeanfrage - Traceno. (BMP 11)
- RNDwes (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE MSG RECEIVE | ISOLZ ISO8583 message 0210 check MAC and other security relevant
Ladeantwort fields.
SECURE_MSG_SEND CHIPZKA Command APDU
LADEN
SECURE_MSG _RECEIVE | CHIPZKA Response APDU
GET JOURNAL ISOLZ Vendor specific
Reversal of a ,,.Laden vom
Kartenkonto“
SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BORSE
SECURE_MSG_RECEIVE | CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU fill
LADEN EINLEITEN -Terminal ID
-Traceno.
SECURE_MSG_RECEIVE | CHIPZKA Response APDU
SECURE_MSG_SEND ISOLZ 1SO8583 message 0400 fill

Storno

- Traceno. (BMP 11)

- RNDwmes (BMP 57)

- MAC (BMP 64)

check other security relevant fields.

249

CWA 16926-65:2023 (E)

SECURE _MSG_RECEIVE ;ISOLZ ISO8583 message 0410 check MAC and other security relevant
Storno Response fields
SECURE_MSG SEND CHIPZKA Command APDU
LADEN
SECURE MSG RECEIVE i CHIPZKA Response APDU
GET JOURNAL ISOLZ Vendor specific
Unload
SECURE_MSG SEND CHIPZKA ENTLADEN EINLEITEN fill
-Terminal ID
-Trace No.
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG SEND ISOLZ ISO8583 message fill
Entladeanfrage 0200 - Traceno. (BMP 11)
- RNDwmes (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE MSG RECEIVE | ISOLZ ISO8583 message check MAC and other security relevant
Entladeantwort 0210 fields
SECURE MSG SEND CHIPZKA ENTLADEN
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE MSG SEND CHIPZKA ENTLADEN EINLEITEN fill
-Terminal ID
-Trace No.
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG SEND ISOLZ ISO8583 message fill
Entladequittung 0202 - Traceno. (BMP 11)
- RNDwmes (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE MSG RECEIVE | ISOLZ ISO8583 message check MAC and other security relevant
Entladebestétigung 0212 fields
SECURE_MSG SEND CHIPZKA Command APDU
ENTLADEN
SECURE MSG RECEIVE : CHIPZKA Response APDU
GET JOURNAL ISOLZ Vendor specific
Repeated Messages
(Stornowiederholung /
Entladequittungswiederhol
ung)
SECURE _MSG SEND ISOLZ ISO8583 message fill
Stornowiederholung 0401 or - Traceno. (BMP 11)
Entladequittungswiederholung i - RNDwmes (BMP 57)
0203 - MAC (BMP 64)
check other security relevant fields.
SECURE MSG RECEIVE | ISOLZ ISO8583 message check MAC and other security relevant
Stornoantwort 410 or fields
Entladebestitigung 0212
GET JOURNAL ISOLZ Vendor specific
Command wProtocol IpbMsg Service Provider’s actions
WFS_CMD_PIN _ WFS_PIN P
ROT
Preparation for PIN
Change
SECURE MSG SEND CHIPPINCHG | Command APDU
READ RECORD EF 1D
SECURE MSG RECEIVE | CHIPPINCHG : Response APDU Store EF 1D
Record EF_ID Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG SEND CHIPPINCHG | Command APDU
GET CHALLENGE

250

CWA 16926-65:2023 (E)

Command wProtocol IpbMsg Service Provider’s actions
WFS_CMD_PIN _ WFS_PIN P
ROT

SECURE MSG RECEIVE | CHIPPINCHG Random number RNDO from § Store RNDO

Chip
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU Fill RND1

READ RECORD EF INFO
SECURE MSG RECEIVE | CHIPPINCHG | Response APDU Record Check MAC, Store EF_INO

EF_INFO Will be inserted into BMP62 of a PIN

Change request
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU
GET KEYINFO
SECURE _MSG RECEIVE | CHIPPINCHG | Response APDU Store version byte
Version of KCard Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU
SEARCH RECORD ‘01’ of
EF_ PWDD
SECURE _MSG_RECEIVE : CHIPPINCHG ; Response APDU Store record number
Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU
READ RECORD EF FBZ
SECURE_MSG_RECEIVE | CHIPPINCHG | Response APDU
Initial value FBZ
Actual value FBZ
PIN Verification
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU
GET KEYINFO
SECURE MSG _RECEIVE : CHIPPINCHG | Response APDU
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPPINCHG | Random number RNDO from | Store RNDO
chip
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU Fill ENCO
MUTUAL
AUTHENTICATE
SECURE MSG RECEIVE : CHIPPINCHG : Response APDU Check ENC1
SECURE_MSG SEND CHIPPINCHG | Command APDU Provide complete command APDU
VERIFY
SECURE_MSG_RECEIVE | CHIPPINCHG | Response APDU Check MAC
Create PAC for old PIN
PIN Change
Let the user enter the PIN for
the first time, by invoking the
command
WFES CMD PIN GET PIN
SECURE _MSG SEND HSMPINCMP | Byte 0: 0x01 Save the PIN value entered for
(Save PIN) subsequent compare. Output data
buffer length is zero.
Let the user enter the PIN for
the second time, by invoking
the command
WFES CMD PIN GET PIN
SECURE MSG SEND HSMPINCMP | Byte 0: 0x02 Compare PIN values.

(Compare PINs) Returns Byte 0: as 0x00 when PIN
does not match, and 0x01 when PIN
does match.

Create PAC for new PIN if values
match
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU
MANAGE SECURITY
ENVIRONMENT
SECURE MSG RECEIVE : CHIPPINCHG : Response APDU
SECURE_MSG_SEND CHIPPINCHG | Command APDU
GET CHALLENGE

251

CWA 16926-65:2023 (E)

252

Command wProtocol IpbMsg Service Provider’s actions
WFS_CMD_PIN _ WFS PIN P
ROT
SECURE MSG RECEIVE | CHIPPINCHG Random number RNDO from § Store RNDO
Chip Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG_SEND ISOPINCHG 1SO8583 Message 0640 Fill
- PAC old PIN (BMP52)
- KTerminal generation + Kterminal version
+ RNDweEs + RNDpac (BMP57)
- Chip Data (BMP62) with PAC of
new PIN
- MAC (BMP64)
SECURE MSG RECEIVE | ISOPINCHG 1SO8583 message 0650 Check MAC
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU
from BMP62
SECURE MSG RECEIVE i CHIPPINCHG : Response APDU
PIN Change Confirmation/
Repeated Confirmation
SECURE_MSG_SEND ISOPINCHG 1SO8583 Fill
message 0642 or 0643 - Krerminal generation + Kterminal version
BMP25 =00 + RNDwmes (BMP57)
- Chip Data (BMP62) with PAC of
new PIN
- MAC (BMP64)
SECURE MSG RECEIVE | ISOPINCHG 1SO8583 message 0652 Check MAC
PIN Change Reversal/
Repeated Reversal
SECURE _MSG SEND ISOPINCHG ISO8583 Fill
message 0642 or 0643 - KTerminal generation + Kterminal version
BMP25 #00 + RNDwmes (BMP57)
- Chip Data (BMP62) with PAC of old
PIN
- MAC (BMP64)
SECURE MSG RECEIVE : ISOPINCHG 1SO8583 message 0652 Check MAC
PIN Activation after failure
SECURE_MSG_SEND ISOPINCHG 1SO8583 Fill
message 0640 - PAC entered PIN (BMP52)
- KTerminal generation + Kterminal version
+ RNDwes + RNDpac (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)
SECURE MSG RECEIVE | ISOPINCHG 1SO8583 message 0650 Check MAC
PIN Activation
SECURE _MSG SEND CHIPPINCHG { Command APDU
MANAGE SECURITY
ENVIRONMENT
SECURE MSG RECEIVE : CHIPPINCHG : Response APDU
SECURE _MSG SEND CHIPPINCHG { Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPPINCHG :Random number RNDO from § Store RNDO
Chip Will be inserted into BMP62 of a PIN
Activation request
SECURE_MSG_SEND ISOPINCHG 1SO8583 Message 0640 Fill
- PAC entered PIN (BMP52)
- KTerminal generation + Kterminal version
+ RNDweEs + RNDpac (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)
SECURE MSG RECEIVE | ISOPINCHG 1SO8583 message 0650 Check MAC

CWA 16926-65:2023 (E)

SECURE_MSG_SEND CHIPPINCHG | Command APDU
from BMP62
SECURE MSG RECEIVE i CHIPPINCHG : Response APDU
PIN Activation
Confirmation/ Repeated
Confirmation
SECURE_MSG_SEND CHIPPINCHG | Command APDU
MANAGE SECURITY
ENVIRONMENT
SECURE MSG RECEIVE i CHIPPINCHG : Response APDU
SECURE _MSG SEND CHIPPINCHG { Command APDU
GET CHALLENGE
SECURE_MSG _RECEIVE | CHIPPINCHG : Random number RNDO from | Store RNDO
Chip Will be inserted into BMP62 of a PIN
Activation confirmation
SECURE_MSG_SEND ISOPINCHG 1SO8583 Fill
message 0642 or 0643 - KTerminal generation + Kterminal version
BMP25 =00 + RNDwmes (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)
SECURE MSG RECEIVE {ISOPINCHG ISO8583 message 0652 Check MAC
SECURE _MSG SEND CHIPPINCHG | Command APDU
from BMP62
SECURE MSG RECEIVE | CHIPPINCHG : Response APDU

253

CWA 16926-65:2023 (E)

8.4 EMV Support

EMV support by this specification consists in the ability of importing Certification Authority and Chip Card Public
Keys, creating the PIN blocks for offline PIN verification and verifying static and dynamic data. This section is
used to further explain concepts and functionality that needs further clarification.

The PIN service is able to manage the EMV chip card regarding the card authentication and the RSA local PIN
verification. Two steps are mandatory in order to reach these two functions: The loading of the keys which come
from the Certification Authorities or from the card itself, and the EMV PIN block management.

The Service Provider is responsible for all key validation during the import process. The application is responsible
for management of the key lifetime and expiry after the key is successfully imported.

8.4.1 Keys loading

The final goal of an application is to retrieve the keys located on card to perform the operations of authentication or
local PIN check (RSA encrypted). These keys are provided by the card using EMV certificates and can be retrieved
using a Public Key provided by a Certification Authority. The application should first load the keys issued by the
Certification Authority. At transaction time the application will use these keys to load the keys that the application
has retrieved from the chip card.

Certification Authority keys
These keys are provided in the following formats:

e Plain text.
e Plain Text with EMV 2000 Verification Data (See [Ref. 4] under the reference section for this document).

e EPI CA (or self signed) format as specified in the Europay International, EPI CA Module Technical —
Interface specification Version 1.4 (See [Ref. 5] under the reference section for this document).

e PKCSVI1 5 encrypted (as used by GIECB in France) (See [Ref. 15] under the reference section for this
document).
EPI CA format
The following table corresponds to table 4 of the Europay International, EPI CA Module Technical — Interface
specification Version 1.4 (See [Ref. 5]) and identifies the Europay Public Key (self-certified) and the associated
data:

Field name Length Description Format

ID of Certificate Subject 5 RID for Europay Binary

Europay public key Index 1 Europay public key Index Binary

Subject public key Algorithm 1 Algorithm to be used with the Europay public | Binary

Indicator key Index, set to 0x01

Subject public key Length 1 Length of the Europay public key Modulus Binary
(equal to Nca)

Subject public key Exponent 1 Length of the Europay public key Exponent Binary

Length

Leftmost Digits of Subject public | Nca-37 Nca-37 most significant bytes of the Europay | Binary

key public key Modulus

Subject public key Remainder 37 37 least significant bytes of the Europay public | Binary
key Modulus

Subject public key Exponent 1 Exponent for Europay public key Binary

Subject public key Certificate Nca Output of signature algorithm Binary

Table 1

254

CWA 16926-65:2023 (E)

The following table corresponds to table 13 of the Europay International, EPI CA Module Technical — Interface
specification Version 1.4 and identifies the Europay Public Key Hash code and associated data.

Check Sum

Field name Length Description Format
ID of Certificate Subject 5 RID for Europay Binary
Europay public key Index 1 Europay public key Index Binary
Subject public key Algorithm 1 Algorithm to be used with the Europay public | Binary
Indicator key Index, set to 0x01

Certification Authority public key |20 Hash-code for Europay public key Binary

Table 2

Table 2 corresponds to table 13 of the Europay International, EPI CA Module Technical — Interface specification

Version 1.4 (See [Ref. 5]).
Chip card keys

These keys are provided as EMV certificates which come from the chip card in a multiple layer structure (issuer
key first, then the ICC keys). Two kinds of algorithm are used with these certificates in order to retrieve the keys:
One for the issuer key and the other for the ICC keys (ICC Public Key and ICC PIN encipherment key). The
associated data with these algorithms — The PAN (Primary Account Number) and the SDA (Static Data to be
Authenticated) - come also from the chip card.

255

CWA 16926-65:2023 (E)

8.4.2 PIN Block Management

The PIN block management is done through the command WFS_CMD_PIN GET PINBLOCK. A new format
WEFS PIN FORMEMY has been added to indicate to the PIN service that the PIN block must follow the
requirements of the EMVCo, Book2 — Security & Key management Version 4.0 document The parameter
IpsCustomerData is used in this case to transfer to the PIN service the challenge number coming from the chip card.
The final encryption must be done using a RSA Public Key. Please note that the application is responsible to send
the PIN block to the chip card inside the right APDU.

256

CWA 16926-65:2023 (E)

8.4.3 SHA-1 Digest

The SHA-1 Digest is a hash algorithm used by EMV in validating ICC static and dynamic data item. The SHA-1
Digest is supported through the WFS CMD_PIN DIGEST command. The application will pass the data to be
hashed to the Service Provider. Once the encryptor completes the SHA-1 hash code, the Service Provider will
return the 20-byte hash value back to the application.

257

CWA 16926-65:2023 (E)

8.5 French Cartes Bancaires

“Groupement des Cartes Bancaires” from France has specified a cryptographic architecture for ATM networks.
See the document [Ref. 15] for details.

The XFS command WFS_CMD_PIN ENC IO with the protocol WFS_PIN_ENC PROT GIECB is used for:
e ATM initialization
e Renewal of ATM master key
e Renewal of HOST master key
e Generation and loading of key transport key

Keys loaded or generated with WFS CMD_PIN ENC IO get names like any other keys in a XFS PIN service.
WES_INF PIN KEY DETAIL[EX] shows the key with this name and the name may be used with
WFS CMD_PIN IMPORT KEY[EX] to delete a key.

8.5.1 Data Structure for WFS_CMD _PIN_ENC IO

Data will be transferred as tag-length-value (TLV) structure, encoded according to the distinguished encoding rules
(DER) defined in [Ref. 16].

The following is a list of top level tags defined for the use with WFS PIN ENC PROT_GIECB. All these tags
have the APPLICATION class, therefore the Identifier Octets are (binary):

e 010n nnnn - for the primitive types

e 011n nnnn- for the constructed types

Tag Number Primitive / Identifier Contents
Constructed Octet
0 P 0x40 Protocol Version
The INTEGER value zero for this version of the
protocol
1 P 0x41 Interchange Code

An ASCII string holding one of the interchange
codes defined in [Ref. 15], e.g. “HRN-H1”

2 C 0x62 Interchange Data
The data items as defined by [Ref.15], see table
below for details

3 P 0x43 Key Name
An ASCII string holding the name for the key being
loaded or generated.

The Interchange Data (Tag 2) is constructed from data items where tag numbers of the sub-tags from 1 to 23
correspond to the data item numbers (“N° donnée”) as defined in section 3.1 of [Ref. 15]. Some of the data items
consist of data elements, for these the constructed encoding will be used. For data items with no data elements the
primitive encoding will be used.

All Tags have the CONTEXT class, therefore the Identifier Octets are (binary):
e 100n nnnn- for the primitive types

e 101n nnnn- for the constructed types

258

CWA 16926-65:2023 (E)

Tag Primitive / Identifier Data Item Label
(=Data Item Constructed Octet
No)

1 C 0xA1l IdKG

2 C 0xA2 KTK-encrypted

3 C 0xA3 KGp

4 C 0xA4 KDp

5 C 0xAS SnSCD

6 P 0x86 Rand

7 P 0x87 HOST authentication
8 P 0x88 KDp signature

9 P 0x89 KGp signature

10 P 0x8A KTK signature

11 P 0x8B KT-encrypted

12 P 0x8C Ksc-encrypted

13 P 0x8D PIN cryptogram

14 P 0x8E Seal

15 P 0x8F Thumbprint of KDp
16 P 0x90 Thumbprint of KGp
17 C 0xB1 IdKD

18 C 0xB2 IdKTK

19 C 0xB3 IdKT
20 C 0xB4 IdKSC
21 P 0x95 Manufacturer
22 C 0xB6 SCD type
23 C 0xB7 Firmware version

Inside the constructed data items, primitive encoding is used for the data elements, all tags having CONTEXT class
with tag numbers corresponding to the data element numbers (“N° d’élément de donnée™) as defined in section 3.1

of [Ref. 15].

Example:

The example shows the DER encoding of the input fora WFS CMD PIN ENCIO command, for the interchange
“GIN-H5”. All data except the 128 byte content of data item 7 is shown in hexadecimal (0x omitted for the sake of

readability).
40 01 00
41 06 47 49 4E 2D 48 35
62 81 B5S
Al 14
81 01 00
82 0C 00 00 00 00
83 01 00
A5 10
81 03 00 00 00
82 09 00 00 00 00
86 08 00 00 00 00 0O
87 81 80 <128 bytes>
43 05 4D 59 4B 45 59

(tag / length / value for Protocol Version 0)
(tag / length / value for Interchange Code “GIN-H5")

(tag / length
(tag / length
(data

00 00 00 00 00 00 00 00 (data element

00 00 00 00 00
00 00 00

(data
(tag / length
(data
(data element
(tag / length

(tag / length / wvalue
(tag / length / value

for Interchange Data)
for data item 1)
element 1)

2)

element 3)

for data item 5)
element 1)

2)

/ value for data item 6)
for data item 7)

for Key Name “MYKEY”)

259

CWA 16926-65:2023 (E)

8.5.2 Command Sequence

The following list shows the sequence of actions an application has to take for the various Cartes Bancaires
interchanges.

e GIN (ATM initialization)

Action Interchange Key Name Input Output
Code Data Items Data Items

Thumbprint supplied by host via external channel (GIN-H1)

WFS_CMD_PIN_ENCIO | GIN-G2 | 21,2223

Host Communication (GIN-G2 / GIN-H3)

WFS_CMD_PIN_ENCIO GIN-H3 Key Name for KG 3 16

WFS_CMD_PIN_ENCIO GIN-G4 5,6,1

Host Communication (GIN-G4 / GIN-H5)

WFS_CMD PIN_ENCIO | GIN-H5 Key Name for KD 5,6,1,7

WFS_CMD PIN_ENCIO | GIN-G6 548

Host Communication (GIN-G6)
WES_CMD_PIN_ENCIO | GIN-G7 | 15

Send thumbprint to host via external channel (GIN-G7)

e GRN (Renewal of ATM Master Key)

Action Interchange Key Name Input Output
Code Data Items Data Items
WFS_CMD_PIN ENCIO GRN-Gl1 5,6,1

Host Communication (GRN-G1 / GRN-H2)

WFS_CMD PIN ENCIO | GRN-H2 | Key Name for 5,6,1,7
KD

WFS_CMD PIN ENCIO | GRN-G3 548,17

Host Communication (GRN-G3)

WFS_CMD_PIN_ENCIO GRN-C 17
or
GRN-R

The Interchange codes “GRN-C” to commit the transaction resp. “GRN-R” to roll back the transactions are an
addition to those defined in [Ref. 15].

e HRN (Renewal of HOST Master Key)

Action Interchange Key Name Input Output
Code Data Items Data Items

Host Communication (HRN-H1)

WFS_CMD PIN_ENCIO | HRN-HI Key Name for 39,1
KG

260

CWA 16926-65:2023 (E)

e DKT (Generation and Loading of KTK)

Action Interchange Key Name Input Output
Code Data Items Data Items
WES_CMD_PIN_ENCIO DKT-GI 5,6

Host Communication (DKT-G1 / DKT-H2)

WFS_CMD PIN_ENCIO | DKT-H2 Key Name for | 5,6,2,10,1,17
KTK

261

CWA 16926-65:2023 (E)

8.6 Secure Key Entry

This section provides additional information to describe how encryption keys are entered securely through the PIN
pad keyboard and also provides examples of possible keyboard layouts.

8.6.1 Keyboard Layout

The following sections describe what is returned within the WFS_INF PIN SECUREKEY DETAIL output
parameters to describe the physical keyboard layout. These descriptions are purely examples to help understand the
usage of the parameters they do not indicate a specific layout per Key Entry Mode.

In the following section all references to parameters relate to the output fields of the
WFS INF PIN SECUREKEY DETAIL command.

When fwKeyEntryMode represents a regular shaped PIN pad (WFS_PIN SECUREKEY REG UNIQUE or

WEFS PIN SECUREKEY REG SHIFT) then [ppHexKeys must contain one entry for each physical key on the PIN
pad (i.e. the product of wRows by wColumns). On a regular shaped PIN pad the application can choose to ignore the
position and size data and just use the wRows and wColumns parameters to define the layout. However, a Service
Provider must return the position and size data for each key.

8.6.1.1 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_UNIQUE

When fwKeyEntryMode is WFS_PIN _SECUREKEY REG_UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the [pFuncKeyDetail parameter. Any positions on the PIN pad that are not used must be defined as a
WEFS PIN FK UNUSED in the u/FK and ulShiftFK field of the [ppHexKeys structure.

1 2 3 Clear (A)
4 5 6 Cancel (B)
7 8 9 Enter (C)
(D) 0) (F)

In the above example, where all keys are the same size and the hex digits are located as shown the lppHexKeys will
contain the entries in the array as defined in the following table.

Index wusXPos usYPos usXSize usY Size ulFK ulShiftFK

0 0 0 250 250 FK 1 FK_UNUSED
1 250 0 250 250 FK 2 FK_UNUSED
2 500 0 250 250 FK 3 FK_UNUSED
3 750 0 250 250 FK A FK_UNUSED
4 0 250 250 250 FK 4 FK_UNUSED
5 250 250 250 250 FK 5 FK_UNUSED
6 500 250 250 250 FK 6 FK_UNUSED
7 750 250 250 250 FK B FK_UNUSED
8 0 500 250 250 FK 7 FK_UNUSED
9 250 500 250 250 FK 8 FK_UNUSED
10 500 500 250 250 FK 9 FK_UNUSED
11 750 500 250 250 FK C FK_UNUSED
12 0 750 250 250 FK D FK_UNUSED
13 250 750 250 250 FK 0 FK_UNUSED
14 500 750 250 250 FK E FK_UNUSED
15 750 750 250 250 FK F FK_UNUSED

8.6.1.2 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_SHIFT

When fwKeyEntryMode is WFS_PIN _SECUREKEY REG SHIFT then the values in the array report which
physical keys are associated with the function keys 0-9, A-F, and the shift key as defined in the lpFuncKeyDetail
parameter. Other function keys as defined by the [pFuncKeyDetail parameter that can be enabled must also be
reported. Any positions on the PIN pad that are not used must be defined as a WFS_PIN FK_UNUSED in the u/FK
and ulShifiFK field of the [ppHexKeys structure. Digits 0 to 9 are accessed through the numeric keys as usual.

Digits A to F are accessed by using the shift key in combination with another function key, e.g. shift-0 (zero) is hex
digit A.

262

1(B)
4 (E)
7
SHIFT

2(0)
5(F)
8

0(A)

3 (D)

Clear
Cancel
Enter

CWA 16926-65:2023 (E)

In the above example, where all keys are the same size and the hex digits 'A' to 'F' are accessed through shift '0' to
'S, then the IppHexKeys will contain the entries in the array as defined in the following table.

Index

O 01NN WN—O

10
11
12
13
14
15

8.6.1.3

usXPos usYPos usXSiz
e
0 0 250
250 0 250
500 0 250
750 0 250
0 250 250
250 250 250
500 250 250
750 250 250
0 500 250
250 500 250
500 500 250
750 500 250
0 750 250
250 750 250
500 750 250
750 750 250

usYSize

250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250

ulFK

FK 1

FK 2

FK 3
FK_CLEAR
FK 4

FK 5

FK 6
FK_CANCEL
FK 7

FK 8

FK 9
FK_ENTER
FK_SHIFT
FK 0
FK_UNUSED
FK_UNUSED

ulShiftFK

FK B
FK C
FK D
FK_UNUSED
FK E
FK F
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_A
FK_UNUSED
FK_UNUSED

fwlKeyEntryModefwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_SHIFT

When fwKeyEntryMode represents an irregular shaped PIN pad the wRows and wColumns parameters define the

ratio of the width to height, i.e. square if the parameters are the same or rectangular if wColumns is larger than
wRows, etc. A Service Provider must return the position and size data for each key reported.

When fwKeyEntryMode is WFS_PIN_SECUREKEY IRREG_SHIFT then the values in the array must be the
function keys codes for 0-9 and the shift key as defined in the lpFuncKeyDetail parameter. Other function keys as
defined by the [pFuncKeyDetail parameter that can be enabled must also be reported. Any positions on the PIN pad
that are not used must be defined as a WFS PIN FK UNUSED in the u/FK and ulShifiFK field of the [ppHexKeys
structure. Digits 0 to 9 are accessed through the numeric keys as usual. Digits A - F are accessed by using the shift
key in combination with another function key, e.g. shift-0(zero) is hex digit A.

1 (B) 2(C) 3 (D) Clear
4 (E) 5(F) 6 Cancel
7 8 9 Enter
0(A)
SHIFT

In the above example, where the hex digits 'A' to 'F' are accessed through shift '0' to ‘5°, wColumns will be 4,
wRows will be 5 and the IppHexKeys will contain the entries in the array as defined in the following table.

Index usXPos

— = 0 01O LNk WD —O

—_ O

0

250
500
750
0

250
500
750
0

250
500
750

usYPos

0
0
0
0
200
200
200
200
400
400
400
400

usXSize
250
250
250
250
250
250
250
250
250
250
250
250

usYSize
200
200
200
200
200
200
200
200
200
200
200
200

ulFK

FK 1

FK 2

FK 3
FK_CLEAR
FK 4

FK 5

FK 6
FK_CANCEL
FK_7

FK_8

FK_9
FK_ENTER

ulShiftFK
FK B
FK_C
FK D
FK_UNUSED
FK E
FK F
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED

263

CWA 16926-65:2023 (E)

Index usXPos

12
13
14
15
16

0
250
500
750
0

usYPos

600
600
600
600
800

usXSize

250
250
250
250
1000

usYSize
200
200
200
200
200

ulFK
FK_UNUSED
FK 0
FK_UNUSED
FK_UNUSED
FK_SHIFT

ulShiftFK
FK_UNUSED
FK_A
FK_UNUSED
FK_UNUSED
FK_UNUSED

8.6.1.4 fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_UNIQUE

When fwKeyEntryMode is WFS_PIN_ SECUREKEY REG_UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the lpFuncKeyDetail parameter. The wRows and wColumns parameters define the ratio of the width to
height, i.e. square if the parameters are the same or rectangular if wColumns is larger than wRows, etc. A Service
Provider must return the position and size data for each key.

20 70 RSO 930

0 60 780 929 00

I I I I I
(_)_
%(_)_

o W E R T ¥ as I al p 1 2 3 Caneel
200—
220—

A S D E G H J Kk L 4 5 6 | |Enter

e X c AvA B N M - : 7 8 9| |Clear

Space 0
A B3] &S] |23 |4 =

264

[y}

CWA 16926-65:2023 (E)

0 60 780 920 990
| | | | |
Q J—
20 —
0 Y E T Y I 0] P 1 2 3 Cancel
200
220
A F G H K L 4 5 6 Enter
V4 X \Y B M 7 8 9 Clear
Space 0
(A (B [(O) [(D)] [(E) (F)

In the above example, where an alphanumeric keyboard supports secure key entry and the hex digits are located as
shown, the [ppHexKeys will contain the entries in the array as defined in the following table. All the hex digits and
function keys that can be enabled must be included in the array; in addition any keys that would help an application
display an image of the keyboard can be included. In this example only the PIN pad digits (the keys on the right)
and the unique hex digits are reported. Note that the position data in this example may not be 100% accurate as the

diagram is not to scale.

Index usXPos

OO DN bW~ O

780
830
880
930
780
830
880
930
780
830
880
930
780
830
880
930
680
730
780
830
880
930

usYPos

18

18

18

18

216
216
216
216
414
414
414
414
612
612
612
612
810
810
810
810
810
810

usXSize

40 180
40 180
40 180
60 180
40 180
40 180
40 180
60 180
40 180
40 180
40 180
60 180
40 180
40 180
40 180
60 180
40 180
40 180
40 180
40 180
40 180
60 180

usYSize

ulFK
FK 1

FK 2

FK_3
FK_CANCEL
FK 4

FK 5

FK 6
FK_ENTER
FK 7

FK 8

FK 9
FK_CLEAR
FK_UNUSED
FK_0
FK_UNUSED
FK_UNUSED
FK_A

FK B

FK C

FK D

FK E

FK F

ulShiftFK
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED

265

CWA 16926-65:2023 (E)

8.6.2 Command Usage - WFS CMD PIN SECUREKEY DETAIL and
WFS CMD PIN IMPORT KEY

This section provides an example of the sequence of commands required to enter an encryption key securely-— using
the WES_INF_PIN_SECUREKEY DETAIL and WFES_CMD_PIN_IMPORT KEY commands. It is recommended
that the WES CMD_PIN_GET_LAYOUT and WFS_CMD_PIN_IMPORT _KEY_ 340 commands be used for
maximum compatibility with all device types and key algorithms.

In the following sequence, the application retrieves the keyboard secure key entry mode and associated keyboard
layout and displays an image of the keyboard for the user. It then gets the first key part, verifies the KCV for the
key part and stores it. The sequence is repeated for the second key part and then finally the key partis activated.

WFS_INF-PIN_SECUREKEY_DETAIL tP—I—N

-
LPSIL 1 11IUDLCl _CIILl y PULUIVIL NCYy VAIUTD OIC 1HdITUdIily CIHILCITU Uil UIT T Iirgu

WES—PIN-USESECURECONSTRUCH
fpartt-masterencryptionkey-valuesloaded-with-the seecure key-entry
command]

COITITidrnd k

WHFS—CEMB—PIN-—SECUREKEY—ENTRY
E ; ; . 3 k

|Part £ master encryption Key values are manuadlly entered on tne rinrad|

Yerify KEV
Prerify-part2-master key KEV-asreturned-with-the-output-data—of-the
WFS—EMB—PIN-SECUREKEY—ENTRY-command}

WFS CMD PIN]ECUREKEY ENTRY command]

n A\
(aste gey T JH‘:I:, JHI:E/W Sf 147HSE EYENCKE)

LdClivVdiles thne |ﬂ|| dSter eENCryption KeEy|

UUFS lI!B F H.lIVII‘UKI KEY cOommana|

2¢

CWA 16926-65:2023 (E)

8.6.3 Command Usage - WFS INF PIN GET LAYOUT and
WFS CMD PIN IMPORT KEY 340

This section provides an example of the sequence of commands required to enter an encryption key securely using
the preferred WES _INF_PIN_GET LAYOUT and WFS_CMD_PIN_IMPORT _KEY 340 commands.

In the following sequence, the application retrieves the keyboard secure key entry mode and associated keyboard
layout and displays an image of the keyboard for the user. It then gets the first key part, verifies the KCV for the
key part and stores it. The sequence is repeated for the second key part and then finally the key is activated.

WFS_INF_PIN GET LAYOUT PI

App >
' I Display Keyboard Layout

Enter partl of the MasterKey using the device keyboard.
WFS CMD_PIN SECUREKEY ENTRY
wVerificationType = WFS _PIN_KCVZERO | WFS_PIN_KCVAES

I Verify the KCV of part 1 of the MasterKey returned with the output
data of the WFS CMD_ PIN SECUREKEY ENTRY command

<

Import part 1 of the MasterKey.
WFS _CMD PIN IMPORT KEY 340
IpsKey = MasterKe
IpKeyAttributes = ‘KQ’, ‘A’, ‘D’, WFS PIN CRYPTOCONSTRUCT
IpxValue = NULL

IpsDecryptKey = NULL
dwDecryptMethod = 0
IpxVerificationData = NULL
IpsVerifyKey = NULL
IpVerifyAttributes = NULL
IpxVendorAttributes = NULL

Enter part2 of the MasterKey entered using the device keyboard.
WFS CMD_PIN SECUREKEY ENTRY
wVerificationType = WFS PIN KCVZERO | WFS PIN KCVAES

data of the WFS CMD_PIN SECUREKEY ENTRY command

_ll Verify the KCV of part 2 of the MasterKey returned with the output

Import part 2 of the MasterKey.
WFS CMD_PIN IMPORT KEY 340
IpsKey = MasterKe
IpKeyAttributes = ‘K0’, ‘A’, ‘D’, WFS PIN_ CRYPTOCONSTRUCT
IpxValue = NULL

IpsDecryptkKey = NULL
dwDecryptMethod = 0
IpxVerificationData = NULL
IpsVerifyKey = NULL
IpVerifyAttributes = NULL
IpxVendorAttributes = NULL

Activate the MasterKey.

WFS CMD_PIN IMPORT KEY 340
IpsKey = MasterKey
IpKeyAttributes = ‘K0’, ‘A’, ‘D', 0
IpxValue = NULL

IpsDecryptkKey = NULL
dwDecryptMethod = 0
IpxVerificationData = ‘00, ‘A’, 'V, WFS PIN KCVZERO
IpsVerifyKey = NULL
IpVerifyAttributes = NULL
IpxVendorAttributes = NULL

>

'ﬁ Verify the KCV of the full MasterKey KCV as returned with the output

data of the WFS CMD PIN IMPORT KEY 340 command

267

CWA 16926-65:2023 (E)

8.7 WFS_PIN_USERESTRICTEDKEYENCKEY key usage

This section provides additional information to describe the WFS_PIN USERESTRICTEDKEYENCKEY key
usage.

8.7.1 Command Usage

This sample command flow sequence shows how encryption keys can be derived/not derived if the master key has a
restricted use. NOTE: In this example the master encryption key is loaded using the secure key entry command
instead of using RKL commands. The loading with RKL works in the same way.

Secure key entry based restricted master encryption key loading with
WFS_PIN USERESTRICTEDKEYENCKEY flag:

App

n A\

T 7 7 — —

WFS—PIN_USEFUNCTION,)
Facti ol et ionkey]

CWA 16926-65:2023 (E)

WFS CMD PIN SECUREKEY ENTRY
[part 1 crypt master encryption key values are manually entered on the PinPad]

WFS CMD PIN IMPORT KEY

(“MasterKey1”,"",NULL,NULL,WFS PIN USERESTRICTEDKEYENCKEY |
WFS_PIN_USECRYPT | WFS PIN USESECURECONSTRUCT)

[part 1 crypt master encryption key values loaded with the secure key entry command]

>

WFS CMD PIN SECUREKEY ENTRY
[part 2 crypt master encryption key values are manually entered on the PinPad]

WFS CMD PIN IMPORT KEY

(“MasterKey1”,"",NULL,NULL,WFS PIN USERESTRICTEDKEYENCKEY |
WFS_PIN_USECRYPT | WFS PIN USESECURECONSTRUCT)

[part 2 crypt master encryption key values loaded with the secure key entry command]

WFS CMD PIN IMPORT KEY

(“MasterKey1”,"",NULL,NULL,WFS PIN USERESTRICTEDKEYENCKEY |
WFS PIN USECRYPT)

[activates the previously loaded and XORed crypt master encryption key parts]

WFS CMD PIN SECUREKEY ENTRY
[part 1 function master encryption key values are manually entered on the PinPad]

WES CMD PIN IMPORT KEY

(“MasterKey2"” """ ,NULL,NULL,WFS PIN USERESTRICTEDKEYENCKEY |

WFS_ PIN_USEFUNCTION | WFS PIN USESECURECONSTRUCT)

[part 1 function master encryption key values loaded with the secure key entry command]

WFS CMD PIN SECUREKEY ENTRY
[part 2 function master encryption key values are manually entered on the PinPad]

WFS CMD PIN IMPORT KEY

(“MasterKey2” " ,NULL,NULL,WFS PIN USERESTRICTEDKEYENCKEY |
WFS_PIN_USEFUNCTION | WFS PIN USESECURECONSTRUCT)

[part 2 function master encryption key values loaded with the secure key entry command]

WFS CMD PIN IMPORT KEY

(“MasterKey2"” " ,NULL,NULL,WFS PIN USERESTRICTEDKEYENCKEY |
WFS PIN USEFUNCTION)

[activates the full function master encryption key]

269

CWA 16926-65:2023 (E)

New master keys loaded with WFS_PIN_ USERESTRICTEDKEYENCKEY flag, encrypted with themselves:

ApPP PIR

WFS CMD PIN IMPORT KEY PI
(“MasterKey1” “MasterKey1”,NULL,<key

data>,WFS PIN USERESTRICTEDKEYENCKEY | WFS PIN_ USECRYPT)
[crypt master key values are loaded encrypted with previous crypt master key values]

g

>

WFS CMD PIN IMPORT KEY

(“MasterKey2"” “MasterKey2"” NULL,<key

data>,WFS PIN USERESTRICTEDKEYENCKEY | WFS_PIN USEFUNCTION)
[function master key values are loaded encrypted with previous function master key values]

>

Loading derived keys:

.

I I n ” W ”
(c 7ﬁt gey 7 aste Eeyl 7 JuI:E/ < <EY data; A Sf IJfHSEG{ }

WFS CMD PIN IMPORT KEY PI
(“CryptKey”,“MasterKey1”,NULL,<key data>,WFS PIN USECRYPT)
[crypt encryption key is derived from the crypt master encryption key]

g

WFS CMD PIN IMPORT KEY
(“FunctionKey”,“"MasterKey2”,NULL,<key data>,WFS PIN USEFUNCTION)
[function encryption key is derived from the function the master encryption key]

>

Usage sample for derived keys:

Ap-pWPS—GM—D—P—I—N—GR%LPIF

", ”

CWA 16926-65:2023 (E)

>

WFS CMD_PIN_ CRYPT PIN

(WFS PIN MODEENCRYPT,”CryptKey”,...,<data to encrypt>)
[crypt encryption key is used to encrypt data]

g

WFS CMD PIN GET PINBLOCK
(..., “FunctionKey"”, NULL)
[function encryption key is used encrypts the formatted PIN]

Master key restriction disallows loading of derived keys with different usage:

Ap.pWI;S—GMD;P}Nj}M-PGw

.

g

WFS CMD_PIN IMPORT KEY PI
(“CryptKey2”,“MasterKey2”,NULL,<key data>,WFS PIN USECRYPT)

[this command fails with WFS ERR PIN USEVIOLATION because the encryption key MasterKey2
is of fwUse WFS PIN USERESTRICTEDKEYENCKEY | WFS PIN USEFUNCTION and cannot be

used to derive an encryption key with fwUse WFS PIN USECRYPT]

271

CWA 16926-65:2023 (E)

Typical fwUse encryption key use combinations are:

PIN ERYPTFUSECRYPT

WFS PIN KEYENCKEYUSEKEYENCKEY

WFS_PIN EUNCHONUSEFUNCTION
WFS PIN MACINGUSEMACING

WFS_PIN USESVENCKEY
WFS_PIN USEPINLOCAL
WFS_PIN USEPINREMOTE

WFS_PIN_ANSTR31MASTER

RESTRICTEDKEYENCKEY

WFS_PIN RESTRICTEDKEYENCKEYUSE

Description

_| WFS

Data encryption/decryption key

2|

PIN encryption key

2|

MACing key

CBC Start Value encryption key

Local PIN check key

PIN block creation key

Master/key encryption key

ANSANSI X9-FR-3+.143 master/key encryption
key

Master/key encryption key, keys later derived are
restricted to the use WFS PIN USECRYPT

Master/key encryption key, keys later derived are
restricted to the use WFS PIN_ _USEFUNCTION

Master/key encryption key, keys later derived are
restricted to the use WFS PIN USEMACING

Master/key encryption key, keys later derived are
restricted to the use WFS PIN USESVENCKEY

Master/key encryption key, keys later derived are
restricted to the use WFS PIN USEPINLOCAL

< |
< 2 21 2] <21 <]

< 2 2 2] <21 <]

Master/key encryption key, keys later derived are
restricted to the use WFS PIN USEPINREMOTE

272

CWA 16926-65:2023 (E)

8.8 WFS_CMD_PIN_IMPORT_KEY_340 command Input/Output Parameters

The tables in this section describe the input/output parameters for various scenarios in which the
WFES CMD PIN IMPORT KEY 340 command is used, compared to input/output parameters for older
commands that it supercedes.

273

CWA 16926-65:2023 (E)

8.8.1 Importing a 3DES 16-byte terminal master key using signature-based
remote key loading (SRKL):

For this example, the following input data is available:
Name of key to be imported = TestKey
Name of the key used to decrypt the encrypted key value = EPPCryptKey
Name of the key used to verify the signature = HostKey
Encrypted key value = <encrypted key value>
Signature = <signature generated by the host>
Usage of the key to be imported = key encrypting key
RSA Encipher Algorithm = RSA ES OAEP
RSA Signature Algorithm = RSA SSA PSS

WES CMD PIN IMPORT RSA SIGNED DES KEY Input Data

Parameter Name Example Value

IpsKey TestKey

IpsDecryptKey EPPCryptKey
dwRSAEnchiperAlgorithm WES PIN CRYPT RSAES OAEP
IpxValue <encrypted key value>

dwUse WFS PIN USEKEYENCKEY
IpsSigKey HostKey

dwRSASignatureAlgorithm WES PIN SIGN RSASSA PSS

IpxSignature <signature generated by the host>

For this example, the following output data is expected:

Key Check Mode = KCV Zero
Key Check Value = <key check value>
Key Length = double length key

WFS CMD PIN IMPORT RSA SIGNED DES KEY Output Data

Parameter Name Example Value

wKeyLength WFS PIN KEYDOUBLE

wKeyCheckMode WFS PIN KCVZERO

IpxKeyCheckValue <key check value>

WEFS CMD PIN IMPORT KEY 340 Input Data

Parameter Name Example Value

IpsKey TestKey
IpKeyAttributes->bKeyUsage KO’
IpKeyAttributes->bAlgorithm ‘T

274

CWA 16926-65:2023 (E)

IpKeyAttributes->bModeOfUse

LD’

IpKeyAttributes->dwCryptoMethod

0

IpxValue <encrypted key value>
IpsDecryptKey EPPCryptKey

dwDecryptMethod WES PIN CRYPT RSAES OAEP
IpxVerificationData <signature generated by the host>
IpsVerifyKey HostKey
IpVerifyAttributes->bKeyUsage ‘S0’
IpVerifyAttributes->bAlgorithm ‘R’
IpVerifyAttributes->bModeOfUse A
IpVerifyAttributes->dwCryptoMethod WEFS PIN SIGN RSASSA PSS
IpxVendorAttributes NULL

WFS CMD PIN IMPORT KEY 340 Output Data

Parameter Name

Example Value

IpVerifyAttributes->bKeyUsage ‘00’
IpVerifyAttributes->bAlgorithm ‘T
IpVerifyAttributes->bModeOfUse A

IpVerifyAttributes->dwCryptoMethod

WFS PIN KCVZERO

IpxVerifyData

<key check value>

ulKeyLength

128

(Similar to wKeyLength, but a ULONG measuring the
number of bits in the imported key)

275

CWA 16926-65:2023 (E)

8.8.2 Importing a 16-byte DES key for PIN encryption with a key check value in

the input

For this example, the following input data is available:

Name of key to be imported = TestKey

Name of the key used to decrypt the encrypted key value = MasterKey

Encrypted key value = <encrypted key value>

Usage of the key to be imported = PIN Encryption

Key Check Mode = KCV Zero

Key Check Value = <key check value>

WES CMD PIN IMPORT KEY EX lmpertlnput Data

Parameter Name Example Value

IpsKey TestKey

IpsEncKey MasterKey

IpxValue <encrypted key value>
IpxControlVector NULL

dwUse WFS PIN USEPINREMOTE
wKeyCheckMode WEFS PIN KCVZERO
IpxKeyCheckValue <key check value>

For this example, the following output data is expected:

Key Length = double length key

WFS_CMD_PIN_IMPORT KEY_EX Output Data

None

WFS CMD PIN IMPORT KEY 340 Input Data

Parameter Name

Example Value

IpsKey

TestKey

IpKeyAttributes->bKeyUsage

‘PO,

(Similar to dwUse but a more precise key usage)

IpKeyAttributes->bAlgorithm

IpKeyAttributes->bModeOfUse

IpKeyAttributes->dwCryptoMethod

IpxValue <encrypted key value>
IpsDecryptKey MasterKey
dwDecryptMethod WFS PIN CRYPTOECB
IpxVerificationData <key check value>
IpsVerifyKey NULL

276

CWA 16926-65:2023 (E)

IpVerifyAttributes->bKeyUsage ‘00’
IpVerifyAttributes->bAlgorithm ‘T
IpVerifyAttributes->bModeOfUse A

IpVerifyAttributes->dwCryptoMethod

WFS PIN KCVZERO

IpxVendorAttributes

NULL

Likewise, the following output data is expected:

WFS_CMD_PIN_IMPORT KEY_340 Output Data

Parameter Name Example Value
IpVerifyAttributes NULL
IpxVerifyData NULL
ulKeyLength 128

277

CWA 16926-65:2023 (E)

8.8.3 Importing a 16-byte DES key for MACing (MAC Algorithm 3)

For this example, the following input data is available:
Name of key to be imported = TestKey
Name of the key used to decrypt the encrypted key value = MasterKey
Encrypted key value = <encrypted key value>
Usage of the key to be imported = MAC

WES CMD PIN IMPORT KEY Input Data

Parameter Name Example Value

IpsKey TestKey

IpsEncKey MasterKey

IpxIdent NULL

IpxValue <encrypted key value>
fwUse WES PIN USEMACING

For this example, the following output data is expected:
Key Check Mode = KCV Zero
Key Check Value = <key check value>
Key Length = double length key

WFS CMD PIN IMPORT KEY Output Data

Parameter Name

Example Value

IpxKVC

<key check value>

WEFS CMD PIN IMPORT KEY 340 Input Data

Parameter Name

Example Value

IpsKey

TestKey

IpKeyAttributes->bKeyUsage

GM3 B

(Similar to fwUse but a more precise key usage)

IpKeyAttributes->bAlgorithm

IpKeyAttributes->bModeOfUse

IpKeyAttributes->dwCryptoMethod

IpxValue <encrypted key value>
IpsDecryptKey MasterKey
dwDecryptMethod WEFS PIN CRYPTOECB
IpxVerificationData NULL

IpsVerifyKey NULL

IpVerifyAttributes NULL
IpxVendorAttributes NULL

278

WEFS CMD PIN IMPORT KEY 340 Output Data

CWA 16926-65:2023 (E)

Parameter Name

Example Value

IpVerifyAttributes->bKeyUsage ‘00’
IpVerifyAttributes->bAlgorithm ‘T
IpVerifyAttributes->bModeOfUse A

IpVerifyAttributes->dwCryptoMethod

WFS PIN KCVZERO

IpxVerifyData

<key check value>

ulKeyLength

128

279

CWA 16926-65:2023 (E)

8.8.4 Importing a 2048-bit Host RSA public key

For this example, the following input data is available:

Name of key to be imported = HostKey

Name of the key used to verify the signature = _SiglssuerVendor

Key value = <key value>

Signature = <signature generated by the vendor signature issuer>

Usage of the key to be imported = RSA signature verification
RSA Signature Algorithm = RSA SSA PSS

WFS CMD PIN IMPORT RSA PUBLIC KEY Input Data

Parameter Name

Example Value

IpsKey HostKey

IpxValue <key value>

dwUse WFS PIN USERSAPUBLICVERIFY
IpsSigKey SiglssuerVendor

dwRSASignatureAlgorithm

WFS PIN SIGN RSASSA PSS

IpxSignature

<signature generated by the vendor signature issuer>

For this example, the following output data is expected:
RSA Key Check Mode = SHA256 digest
Key Check Value = <SHA256 digest>

Key Length = 2048

WES CMD PIN IMPORT RSA PUBLIC KEY Output Data

Parameter Name

Example Value

dwRSAKeyCheckMode

WFS PIN RSA KCV_SHA256

IpxKeyCheckValue

<SHA256 digest>

WES CMD PIN IMPORT KEY 340 Input Data

Parameter Name

Example Value

IpsKey HostKey
IpKeyAttributes->bKeyUsage ‘S0°
IpKeyAttributes->bAlgorithm ‘R’
IpKeyAttributes->bModeOfUse ‘v’
IpKeyAttributes->dwCryptoMethod 0

IpxValue <key value>

IpsDecryptKey NULL

dwDecryptMethod 0

IpxVerificationData <signature generated by the vendor signature issuer>
IpsVerifyKey SiglssuerVendor

280

CWA 16926-65:2023 (E)

IpVerifyAttributes->bKeyUsage ‘S1°
IpVerifyAttributes->bAlgorithm ‘R’
IpVerifyAttributes->bModeOfUse v’

IpVerifyAttributes->dwCryptoMethod

WFS PIN SIGN RSASSA PSS

IpxVendorAttributes

NULL

WEFS CMD PIN IMPORT KEY 340 Output Data

Parameter Value

Example Value

IpVerifyAttributes->bKeyUsage ‘00’
IpVerifyAttributes->bAlgorithm ‘R’
IpVerifyAttributes->bModeOfUse v’
IpVerifyAttributes->dwCryptoMethod | WFS PIN RSA KCV SHA256
IpxVerifyData <SHA256 digest>

ulKeyLength 2048

281

CWA 16926-65:2023 (E)

8.8.5 Importing a 24-byte DES symmetric data encryption key via TR-31X9.143

keyblock

For this example, the following input data is available:

Name of key to be imported = TestKey

Name of the key block protection key = MasterKey

Key block = <key block>

WEFS CMD PIN IMPORT KEYBLOCK Input Data

Parameter Name

Example Value

IpsKey TestKey
IpsEncKey MasterKey
IpxKeyBlock <key block>

For this example, the following output data is expected:

Key Length = triple length (192 bits) DES key

WFS_CMD_PIN_IMPORT KEYBLOCK Output Data

None

WFS CMD PIN IMPORT KEY 340 Input Data

Parameter Name

Example Value

IpsKey TestKey
IpKeyAttributes->bKeyUsage ‘DO’
IpKeyAttributes->bAlgorithm ‘T
IpKeyAttributes->bModeOfUse ‘E’
IpKeyAttributes->dwCryptoMethod 0

IpxValue <key block>
IpsDecryptKey MasterKey
dwDecryptMethod 0
IpxVerificationData NULL
IpsVerifyKey NULL
IpVerifyAttributes NULL
IpxVendorAttributes NULL

WES CMD PIN IMPORT KEY 340 Output Data

Parameter Name Example Value
IpVerifyAttributes NULL
IpxVerifyData NULL
ulKeyLength 192

282

CWA 16926-65:2023 (E)

8.9 Entering passwords using the WFS CMD PIN PASSWORD ENTRY
command.

The below sequences show how the WFS CMD_PIN_PASSWORD_ENTRY command can be used to allow a
password to be entered and changed. It also shows how passwords can be entered to allow a secure key part to be
loaded. Both examples assume two entries in the Capabilities [ppPasswords array with the following indexes:

IppPasswords[0].fwPasswordAttributes = WES _PIN PWATTRIB_CHANGE |
WES PIN_ PWATTRIB_CONFIRM | WFS _PIN PWATTRIB_SKE

IppPasswords[1].fwPasswordAttributes = WES PIN PWATTRIB_CHANGE |
WES PIN_ PWATTRIB_CONFIRM | WFS _PIN PWATTRIB_SKE

In this case the passwords referenced at index 0 and 1 allow the user to enter and change the passwords, and also
enter passwords to allow the loading of secure key parts using the WFS CMD_PIN _SECUREKEY_ ENTRY and
WES _CMD_PIN_IMPORT_KEY commands. Note that entering a password is unaffected by any other command
except a Reset, which will cancel the entry and reset the device to a known good condition.

8.9.1 Entering passwords individually to allow secure key parts to be loaded

The following example flow diagram shows the WFS_CMD_PIN_PASSWORD_ENTRY command being used to

enter passwords to allow two secure key parts to be subsequently entered:
ServiceProvider

User I App

1
User enters password to allow : 1 Enters password
entering of secure key part 1 . P

App issues WFS_CMD_FIN_FPASSWORD_ENTRY Command
Parameters:

dwPasswordMode = WFS_PIN_PWATTRIB_SKE

dwindex =0

Y

User has now been verified. Secure functions can
now ke performed to allow loading of key part 1
l

3 WFS_CMD_PIN_PASSWORD_ENTRY completion = WFS_SUCCESS

1
1
I
l
1
1
1
|
| 2 WFS_CMD_PIN_PASSWORD_ENTRY Command
T
1
I
1
1
1
l
l
I
l

User_enters password to allow ' 4 Enters Password

entering of secure key part 2 —),
I

App issues WFS_CMD_FIN_FASSWORD_ENTRY Command

Parameters:

dwPasswordMode = WFS_PIN_PWATTRIB_SKE

dwindex =1

SWFS CMD_PIN_PASSWORD_ENTRY Command

b et S s 15 6 WFS_CMD_PIN_PASSWORD_ENTRY completion = WFS_SUCCESS
now be performed to allow loading of key part 2

8.9.2 Entering and changing a password

The following flow diagram shows the WES CMD_PIN PASSWORD_ENTRY command being used to enter a
password, input a new password and then confirm the new password:

283

CWA 16926-65:2023 (E)

|
User enters current password Bh: 1 Enters password
|

1

3
App issues WFS_CMD_PIN_PASSWORD_ENTRY Command BH

Parameters:
dwPasswordMode= WFS_PIN_PWATTRIB_SKE
dwindex =10

2 WFS_CMD_PIN_PASSWORD_ENTRY Command

¥

1
\ | User has now been verified 3 WFS_CMD_PIN_PASSWORD_ENTRY completion = WFS_SUCCESS
X <

I
I

User enters new password Bn| 4 User enters new password
]

]
App issues WFS_CMD_PIN_PASSWORD_ENTRY Command &
Parameters:
dwPasswordMode = WFS_PIN_PWATTRIB_CHANGE '
dwindex =0

5 WFS_CMD_PIN_PASSWORD_ENTRY Command

¥

If confirmation is needed then go to step 7, otherwise &
go to step 10

6 WFS_CMD_PIN_PASSWORD_ENTRY completion = WFS_SUCCESS

-
-«

I
User enters new password again Bh} 7 Enters new password again
I

Parameters:
dwPasswordMode = WFS_PIN_PWATTRIB_CONFIRM
dwindex =0

8 WFS_CMD_PIN_PASSWORD_ENTRY Command

SR RN AN b

The new passwaord is now confirmed Bh
T

9 WFS_CMD_PIN_PASSWORD_ENTRY completion = WFS_SUCCESS

10 Notify password changed

I
I
I
I
I
I
[
I
I
I
I
i
I
App issues WFS_CMD_PIN_PASSWORD_ENTRY Command B !
I
I
T
I
I
I
I
I
I
I
I
1
|

[
ll
<
|

284

CWA 16926-65:2023 (E)

9. Appendix-B (Country Specific WFS_CMD_PIN_ENC _IO protocols)

This section is used for country-specific extensions to the WFS_CMD_PIN ENC_IO command.

9.1 Luxemburg Protocol

The general XFS command WFS CMD_PIN ENC IO is used to communicate transparently with the security
module (see also command specifications).

In particular, to access the Luxembourg encryption commands defined in the following paragraphs, the input
structure WFSPINENCIO of the WFS CMD PIN ENC IO command has to be defined as follows:

Input Param LPWFSPINENCIO IpEncloln;

typedef struct wfs pin enc io

{

WORD wProtocol;
ULONG ulDatalLength;
LPVOID lpvData;

} WESPINENCIO, *LPWESPINENCIO;

wProtocol
Must be set to the constant WFS PIN_ ENC PROT LUX.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field /pvData.

IpvData

Points to an input structure that contains the data specific to the Luxemburg protocol that has to be
sent to the encryption module. This input structure is specific for each command defined in the
protocol (see following paragraphs), but has following general form:

LPPROTLUXIN lpvData;
typedef struct prot lux in
{
WORD wCommand;

. Command Input Data ...
} PROTLUXIN, *LPPROTLUXIN;

wCommand
Specifies the command that has to be executed in the security module.

Value Meaning

WFS_CMD_ENC 10 LUX_LOAD_APPKEY
WFS_CMD_ENC_I0_LUX_GENERATE_MAC
WFS_CMD_ENC _I0_LUX_CHECK_MAC
WFS_CMD_ENC I0_LUX_BUILD PINBLOCK
WFS_CMD_ENC IO LUX DECRYPT TDES
WFS_CMD_ENC IO LUX_ENCRYPT TDES

... Command Input Data ...

Load an Application Key.
Generate the CBC-MAC.
Check the CBC-MAC.
Build the PIN block.
Decrypt data.

Encrypt data.

Specifies the command input data. This field is specific for each command defined in the

protocol (see following paragraphs).

In the same way, to access the results of the private Luxembourg encryption commands, the output structure

LPWFSPINENCIO of the WFS CMD_PIN ENC IO command will be as follows:

Output Param LPWFSPINENCIO IpEncloOut;

typedef struct wfs pin enc io

{

WORD wProtocol;
ULONG ulDatalLength;
LPVOID lpvData;

} WESPINENCIO, *LPWESPINENCIO;

wProtocol
Is set to the constant WFS_PIN_ ENC PROT_ LUX.

285

CWA 16926-65:2023 (E)

Comments

286

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field /pvData.

IpvData

Points to a PROTLUXOUT structure that contains the reply data specific to the Luxembourg
protocol. This output structure is specific for each command defined in the protocol (see
following paragraphs), but has following general form:

typedef struct prot lux out
{
WORD wCommand;
WORD wResult;
. Command Output Data ...
} PROTLUXOUT, *LPPROTLUXOUT;

wCommand
Specifies the command that has to be executed in the encryption module. This field contains
the same value as the corresponding field in the input structure.

wResult

Specifies the command reply codes specific for this protocol. Possible general values for the
Luxemburg protocol are:

Value Meaning

PROT LUX SUCCESS Command terminated correctly.

PROT LUX ERR INVALID CMD Invalid command. The wCommand
issued is not valid or not supported.

PROT LUX ERR INVALID DATA The data structure passed as input

parameter for the command contains
invalid or incoherent data.

PROT LUX ERR INVALID KEY The key needed for the operation was not
loaded or is invalid. This operation
failed.

... Command Output Data ...

Specifies the command output data. This field is specific for each command defined in the
protocol (see following paragraphs). In the case of an error, the command specific structure is
returned, but only the wCommand and the wResult fields are valid.

Luxembourg encryption commands defined in the following paragraphs will return the generic
error PROT LUX ERR INVALID DATA when the input data is invalid.

Note that since the introduction of the error codes for the Luxemburg Protocol, they have been
redefined in the header file as positive values. This is to correct the original oversight of being
defined as negative values which cannot be meaningfully returned in the WORD wResult output
parameter. They have therefore been redefined as positive values in such a way that existing and
future implementations which type cast them to an unsigned type will not be impacted.

CWA 16926-65:2023 (E)

9.1.1 WFS_CMD_ENC_IO_LUX_LOAD_APPKEY

Description

Input Param

This command can be used to load an Application Key and to replace the Transport Key. Once
the keys are loaded the encryptor will use the keys to do the other commands.

The encryptor will use the Application Key to obtain a random encrypted session key needed for
the PIN Encryption, the MAC Computation and the Data Encryption/Decryption.

The application will use the Transport Key for loading the other keys (MK_MAC, MK PAC and
MK ENC) into the encryptor.

When this command is used for replacing the Transport Key, the new Transport key is provided
encrypted by the existing Transport Key.

The generation of the first Transport Key is the responsibility of the Authorization Center in
Luxemburg (CETREL). The loading method of the first Transport Key into the encryptor is
vendor dependent.

Keys loaded through this command are reported through the WFS INF PIN KEY DETAIL and
WEFS_INF PIN KEY DETAIL EX commands.

Keys loaded through this command do not require to be deleted before the application can replace
them.

To access this command, the structure WFSPINENCIO of the WFS CMD_PIN _ENC 10
command has to be defined as required by the Luxembourg protocol (see general definition in the
first paragraph). The only definitions specific to this command are the input and output structures
pointed to by the IpvData fields. They are defined as follows:

LPPROTLUXLOADAPPKEY IpvData;

typedef struct prot lux load app key in
{

WORD wCommand;

LPSTR lpsKeyName;

LPSTR lpsSequenceNumber;
LPWFSXDATA lpxKeyData;

} PROTLUXLOADAPPKEYIN, *LPPROTLUXLOADAPPKEYIN;

wCommand
Is set to WFS_CMD_ENC I0_LUX LOAD_APPKEY.

IpsKeyName
This field contains the name of the key to be loaded. The Service Provider will right pad the
IpsKeyName to 20 bytes with char 0x20.

Allowed values are:
= “MK MAC” for the MAC key. Used for MAC calculation only.
= “MK PAC” for the PIN block key. Used for PIN block construction only.
= “MK ENC” for the ENC/DEC key. Used for data encryption/decryption only.

= “BANK TRANS KEY” for the Transport Key. It can only be used for loading the other
keys (MK _MAC, MK PAC and MK_ENC) into the encryptor.

IpsSequenceNumber
This field is defined by the Authorization Center in Luxemburg (CETREL) and contains a 4 bytes
key logic number as follows:

= Least significant 2 bytes represent the Key Generation
= Most significant 2 bytes represent the Key Version

The key logic number will contribute in the MAC calculation, in the PIN block construction and
in the Data Encryption/Decryption.

Allowed values are:
= “2001” for the MK MAC key
= “2002” for the MK PAC key

287

CWA 16926-65:2023 (E)

Output Param

Comments

288

= “2003” for the MK ENC key
= “2004” for the BANK TRANS KEY encrypted by the existing BANK TRANS KEY

IpxKeyData
IpxKeyData contains the 40 bytes of the Key data in ZKA key-file format (encrypted key of 16
bytes, HASH of 16 bytes and MAC of 8 bytes).

The MAC in the [pxKeyData is calculated with the contribution of the values from the
IpsKeyName (20 bytes), [psSequenceNumber (4 bytes) and the key data itself (16 bytes) in the
following order:

= [psKeyName
= [psSequenceNumber
= Keydata

LPPROTLUXLOADAPPKEYOUT IpvData;

typedef struct prot lux load app key out

{

WORD wCommand;

WORD wResult;

} PROTLUXLOADAPPKEYOUT, *LPPROTLUXLOADAPPKEYOUT;

wCommand
Is set to WFS_CMD_ENC I0_LUX LOAD_APPKEY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes are possible:

Value Meaning

PROT LUX ERR VERIFICATION FAILED Verification failed. The supplied MAC does
not match with the calculated MAC.

This command will return generic error PROT_LUX ERR INVALID KEY when Key Transport
Key is not loaded.

9.1.2 WFS_

CWA 16926-65:2023 (E)

CMD_ENC_IO_LUX_GENERATE_MAC

Description

Input Param

Output Param

Comments

This command is used to generate the CBC-MAC (Message Authentication Code ISO9797-
1:1999, Padding Method 1, MAC Algorithm 3).

This command returns the generated MAC for the data passed in.

To access the WFS CMD_ENC 10 LUX GENERATE MAC command, the structure
WESPINENCIO of the WFS_ CMD PIN_ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the IlpvData fields. Those are
defined as follows:

LPPROTLUXGENERATEMACIN IpvData;

typedef struct prot lux generate mac_in

{

WORD wCommand;
LPWESXDATA lpxData;
WORD wMacLength;

} PROTLUXGENERATEMACIN, *LPPROTLUXGENERATEMACIN;

wCommand
Is set to WFS_CMD_ENC 10 LUX GENERATE MAC.

IpxData
The IpxData parameter contains the data whose MAC is to be generated. Data will be padded
according to ISO9797-1:1999, Padding Method 1 if it is not passed in as multiple of 8 bytes.

wMacLength
Specifies the MAC length. Legal values are: 2, 4, 6 or 8.

LPPROTLUXGENERATEMACOUT IpvData;

typedef struct prot lux generate mac out

{

WORD wCommand;
WORD wResult;
LPWEFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXGENERATEMACOUT, *LPPROTLUXGENERATEMACOUT;

wCommand
Is setto WFS_CMD_ENC 10 LUX GENERATE MAC.

wResult
The command reply codes (see general definition in the first paragraph).

IpxMac
The IpxMac parameter contains the generated MAC.

IpxRandom
The IpxRandom parameter contains the random value used to work out the session key.

The MAC is in ISO9797-1 format and is obtained from a random session key. The generated
MAC is returned with the [pxRandom value that was used to obtain the random session key. This
command will return generic error PROT_LUX ERR INVALID KEY when MK MAC key is
not loaded.

289

CWA 16926-65:2023 (E)

9.1.3 WFS_CMD_ENC_IO_LUX_CHECK_MAC

Description

Input Param

Output Param

Comments

290

This command verifies the CBC-MAC (Message Authentication Code ISO9797-1:1999, Padding
Method 1, MAC Algorithm 3).

This command generates a MAC for the data passed in and compares it with the provided MAC
value.

To access the WFS CMD_ENC 10 LUX CHECK MAC command, the structure
WEFSPINENCIO of the WFS CMD PIN ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the IlpvData fields. Those are
defined as follows:

LPPROTLUXCHECKMACIN IpvData;

typedef struct prot lux check mac in

{

WORD wCommand;
LPWEFSXDATA lpxData;
LPWFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXCHECKMACIN, *LPPROTLUXCHECKMACIN;

wCommand
Is set to WFS_CMD_ENC I0_LUX CHECK MAC.

IpxData
The IpxData parameter contains the data whose MAC is to be checked. Data will be padded
according to ISO9797-1:1999, Padding Method 1 if it is not passed in as multiple of 8 bytes.

IpxMac
The IpxMac parameter contains the MAC that is to be checked.

Legal values for the MAC length are: 2, 4, 6 or 8.

IpxRandom
The IpxRandom parameter contains the random value used to work out the session key.

LPPROTLUXCHECKMACOUT IpvData;

typedef struct prot lux check mac out
{
WORD wCommand;
WORD wResult;
} PROTLUXCHECKMACOUT, *LPPROTLUXCHECKMACOUT;

wCommand
Is set to WFS_CMD_ENC 10 LUX CHECK MAC.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes can be returned:

Value Meaning

PROT LUX ERR VERIFICATION FAILED Verification Failed. The MAC generated by
this command does not compare with the
MAC passed in by the application.

If the value of wResult is PROT LUX SUCCESS, then the MAC check was successful. This
command will return generic error PROT LUX ERR INVALID KEY when MK MAC key is
not loaded.

CWA 16926-65:2023 (E)

9.1.4 WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK

Description

Input Param

Output Param

Comments

This command is used to construct the PIN blocks described below for remote PIN check. For
PIN block format see comment section below.

To access the WFS CMD ENC 10 LUX BUILD PINBLOCK command, the structure
WESPINENCIO of the WFS_ CMD PIN_ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the IlpvData fields. Those are
defined as follows:

LPPROTLUXPINBLOCKIN IpvData;

typedef struct prot lux pinblock in
{
WORD wCommand;
WORD wEFormat;
} PROTLUXPINBLOCKIN, *LPPROTLUXPINBLOCKIN;

wCommand

Is set to WFS_CMD_ENC IO _LUX_BUILD PINBLOCK.

wFormat
Specifies the format of the PIN block. Possible values are:

Value Meaning

PROT LUXFORMISOI1 ISO-1 PIN Block

PROTLUXPINBLOCKOUT IpvData;

typedef struct prot lux pinblock out
{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxPinBlock;
LPWFSXDATA lpxRandom;

} PROTLUXPINBLOCKOUT, *LPPROTLUXPINBLOCKOUT;

wCommand

Is set to WFS_CMD_ENC_I0_LUX_BUILD PINBLOCK.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT LUX ERR PIN FORMAT LENGTH The PIN block could not be constructed
because PIN was not entered or the PIN
length was invalid.

IpxPinBlock
The IpxPinBlock parameter contains the constructed PIN block.

IpxRandom
The IpxRandom parameter contains the random value used to calculate the session key.

The PIN block is constructed in an ISO-1 format with random number padding and then Triple
DES encrypted using a random session key. The encrypted PIN block is returned with the
IpxRandom value that was used to obtain the random session key. This command will return
generic error PROT LUX ERR INVALID KEY when MK PAC key is not loaded.

291

CWA 16926-65:2023 (E)

9.1.5 WFS_CMD_ENC_IO_LUX DECRYPT_TDES

Description

Input Param

Output Param

Comments

292

This command is used to decrypt the data according to triple DES algorithm.

To access the WFS CMD_ENC 10 LUX DECRYPT TDES command, the structure
WEFSPINENCIO of the WFS_ CMD_PIN_ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the IpvData fields. Those are
defined as follows:

LPPROTLUXDECRYPTTDESIN IpvData;

typedef struct prot lux decrypt tdes in
{

WORD wCommand;
WORD wType;
LPWFSXDATA lpxData;
LPWESXDATA lpxIV;
LPWEFSXDATA lpxRandom;

} PROTLUXDECRYPTTDESIN, *LPPROTLUXDECRYPTTDESIN;

wCommand
Is set to WFS_ CMD_ENC 10 LUX DECRYPT TDES.

wType
An integer word specifying the type of triple DES decryption to be used as one of the following
flags:

Value Meaning

PROT LUXTRIDESECB Triple DES with Electronic Code Book.

PROT LUXTRIDESCBC Triple DES with Cipher Block Chaining.
IpxData
The IpxData parameter contains the data to be decrypted. Data must be multiple of 8-byte blocks.
IpxIV

If wType is WES—PINPROT LUXTRIDESCBC then this field contains the 8 bytes of data
containing the Initial Value needed for decryption in CBC mode. Otherwise this field is ignored.

IpxRandom
The IpxRandom parameter contains the random value used to calculate the session key.

LPPROTLUXDECRYPTTDESOUT IpvData;

typedef struct prot lux decrypt tdes out
{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxData;

} PROTLUXDECRYPTTDESOUT, *LPPROTLUXDECRYPTTDESOUT;

wCommand
Is set to WFS_ CMD_ENC 10 LUX DECRYPT TDES.

wResult
The command reply codes (see general definition in the first paragraph).

IpxData
The IpxData parameter contains the decrypted data.

The Triple-DES decryption uses a random session key. The session key is derived from a random
number that is provided in [pxRandom. This command will return generic error
PROT LUX ERR INVALID KEY when MK ENC key is not loaded.

CWA 16926-65:2023 (E)

9.1.6 WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES

Description

Input Param

Output Param

Comments

This command is used to encrypt the data according to triple DES algorithm.

To access the WFS CMD_ENC 10 LUX ENCRYPT TDES command, the structure
WEFSPINENCIO of the WFS_ CMD_PIN_ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the IpvData fields. Those are
defined as follows:

LPPROTLUXENCRYPTTDESIN IpvData;

typedef struct prot lux encrypt tdes in
{

WORD wCommand;
WORD wType;
LPWFSXDATA lpxData;
LPWESXDATA lpxIV;

} PROTLUXENCRYPTTDESIN, *LPPROTLUXENCRYPTTDESIN;

wCommand
Is set to WFS_CMD_ENC 10 _LUX ENCRYPT_TDES.

wlype
An integer word specifying the type of triple DES encryption to be used as one of the following
flags:

Value Meaning

WES—PINPROT LUXTRIDESECB Triple DES with Electronic Code Book.

WES—PINPROT LUXTRIDESCBC Triple DES with Cipher Block Chaining.
IpxData

The IpxData parameter contains the data to be encrypted. Data must be multiple of 8-byte blocks.
Application must fill the end of the data with 0x00 if the data does not contain a multiple of 8-
byte blocks.

IpxIV
If wlype is WES—PINPROT LUXTRIDESCBC then this field contains the 8 bytes of data
containing the Initial Value needed for encryption in CBC mode. Otherwise this field is ignored.

LPPROTLUXENCRYPTTDESOUT IpvData;

typedef struct prot lux encrypt tdes out
{

WORD wCommand;
WORD wResult;
LPWEFSXDATA lpxData;
LPWFSXDATA lpxRandom;

} PROTLUXENCRYPTTDESOUT, *LPPROTLUXENCRYPTTDESOUT;

wCommand
Is set to WFS_ CMD_ENC 10 _LUX ENCRYPT_ TDES.

wResult
The command reply codes (see general definition in the first paragraph).

IpxData
The IpxData parameter contains the encrypted data.

IpxRandom
The IpxRandom parameter contains the random value used to calculate the session key.

The Triple-DES encryption uses a random session key. The session key is derived from a random
number that is returned in /pxRandom. This command will return generic error.

293

CWA 16926-65:2023 (E)

9.1.7 Luxemburg-specific Header File

This header section is to be created into a separate file from the standard xfspin.h and identifies the definitions for

the Luxemburg Protocol only.
/**

*

*xfspinlux.h XFS - Personal Identification Number Keypad (PIN) Luxemburg

*Protocol definitions
*

*
*
*
* *
* *
**/
#ifndef INC XFSPINLUX H

#define INC XFSPINLUX H

#ifdef cplusplus
extern "C" {
#endif

/* be aware of alignment */

#pragma pack (push, 1)

/* values of PROTLUXIN.wCommand */

#define WFS_CMD ENC IO LUX LOAD APPKEY 0x0001

()
#define WFS_CMD ENC IO LUX GENERATE MAC (0x0002)
#define WFS CMD ENC IO LUX CHECK MAC (0x0003)
()
()
()

#define WFS_CMD ENC IO LUX BUILD PINBLOCK 0x0004

#define WFS CMD ENC IO LUX DECRYPT TDES 0x0005

#define WFS_CMD ENC IO LUX ENCRYPT TDES 0x0006

#define PROT LUX RESULT OFFSET (0)

/* values of PROTLUXOUT.wResult */

#define PROT LUX SUCCESS (0)

#define PROT LUX ERR INVALID CMD (USHRT MAX- (PROT_LUX RESULT OFFSET))

#define PROTiLUXiERRilNVALIDfDATA (USHRTiMAX—(PROTiLUXiRESULTioFFSET + 1))
(

#define PROT LUX ERR INVALID KEY USHRT MAX- (PROT LUX RESULT OFFSET + 2))

/* values of PROTLUXLOADAPPKEYOUT.wResult */
/* values of PROTLUXCHECKMACOUT.wResult */

#define PROT LUX ERR VERIFICATION FATLED (USHRT MAX - (PROT LUX RESULT OFFSET + 3))
/* values of PROTLUXPINBLOCKOUT.wResult */

#define PROT LUX ERR PIN FORMAT LENGTH (USHRT MAX - (PROT LUX RESULT OFFSET + 4))

/* values of PROTLUXDECRYPTTDESIN.wType and PROTLUXENCRYPTTDESIN.wType*/

#define PROT LUXTRIDESECB (0x0000)
#define PROT LUXTRIDESCBC (0x0001)

/* values of PROTLUXPINBLOCKIN.fwFormat */
#define PROT LUXFORMISO1 (0x0001)
// Used to type-cast specific command to access common fields

typedef struct prot lux in

{
WORD wCommand;
} PROTLUXIN, *LPPROTLUXIN;

// Used to type-cast specific response to access common fields
typedef struct prot lux out

294

WORD wCommand;
WORD wResult;
} PROTLUXOUT, *LPPROTLUXOUT;

typedef struct prot lux load app key in
{

WORD wCommand;

LPSTR lpsKeyName;

LPSTR lpsSequenceNumber;
LPWFSXDATA lpxKeyData;

} PROTLUXLOADAPPKEYIN, *LPPROTLUXLOADAPPKEYIN;

typedef struct prot lux load app key out
{
WORD wCommand;
WORD wResult;
} PROTLUXLOADAPPKEYOUT, *LPPROTLUXLOADAPPKEYOUT;

typedef struct prot lux generate mac_in

{

WORD wCommand;
LPWFSXDATA lpxData;
WORD wMacLength;

} PROTLUXGENERATEMACIN, *LPPROTLUXGENERATEMACIN;

typedef struct prot lux generate mac out

{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXGENERATEMACOUT, *LPPROTLUXGENERATEMACOUT;

typedef struct prot lux check mac in

{

WORD wCommand;
LPWFSXDATA lpxData;
LPWFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXCHECKMACIN, *LPPROTLUXCHECKMACIN;

typedef struct prot lux check mac out
{
WORD wCommand;
WORD wResult;
} PROTLUXCHECKMACOUT, *LPPROTLUXCHECKMACOUT;

typedef struct prot lux pinblock in
{

WORD wCommand;

WORD wFormat;
}PROTLUXPINBLOCKIN, *LPPROTLUXPINBLOCKIN;

typedef struct prot lux pinblock out
{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxPinBlock;
LPWFSXDATA lpxRandom;

} PROTLUXPINBLOCKOUT, *LPPROTLUXPINBLOCKOUT;

typedef struct prot lux decrypt tdes in
{

WORD wCommand;
WORD wType;
LPWESXDATA lpxData;
LPWEFSXDATA lpxIV;
LPWFSXDATA lpxRandom;

} PROTLUXDECRYPTTDESIN, *LPPROTLUXDECRYPTTDESIN;

CWA 16926-65:2023 (E)

295

CWA 16926-65:2023 (E)

typedef struct prot lux decrypt tdes out

{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxData;
} PROTLUXDECRYPTTDESOUT , *LPPROTLUXDECRYPTTDESOUT;

typedef struct prot lux encrypt tdes in

{

WORD wCommand;
WORD wType;
LPWFSXDATA lpxData;
LPWESXDATA lpxIV;

} PROTLUXENCRYPTTDESIN, *LPPROTLUXENCRYPTTDESIN;

typedef struct prot lux encrypt tdes out

{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxData;
LPWFSXDATA lpxRandom;

} PROTLUXENCRYPTTDESOUT, *LPPROTLUXENCRYPTTDESOUT;

/* restore alignment */
#pragma pack (pop)

#ifdef cplusplus

} /*extern "C"*/
#endif
#endif /* __INC_XFSPINLUX H */

9.2 China Protocol

The general XFS command WFS CMD_PIN ENC IO is used to communicate transparently with the security
module (see also command specifications).

In particular, to access the China encryption commands defined in the following paragraphs, the input structure
WEFSPINENCIO of the WFS_ CMD_PIN ENC IO command has to be defined as follows:

Input Param

296

LPWEFSPINENCIO IpEncloln;

typedef struct wfs pin enc io

{

WORD wProtocol;
ULONG ulDatalLength;
LPVOID lpvData;

} WESPINENCIO, *LPWESPINENCIO;

wProtocol
Must be set to the constant WFS PIN. ENC PROT CHN.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field /pvData.

IpvData

Points to an input structure that contains the data specific to the China protocol that has to be sent
to the encryption module. This input structure is specific for each command defined in the
protocol (see following paragraphs), but has following general form:

LPPROTCHNIN lpvData;

typedef struct prot chn in
{
WORD wCommand;
Command Input Data
} PROTCHNIN, *LPPROTCHNIN;

CWA 16926-65:2023 (E)

wCommand
Specifies the command that has to be executed in the security module.

Value Meaning
WFS CMD ENC 10 CHN DIGEST ———Compute a hash code.
WFS_CMD_ENC 10 CHN SET SM2 PARAM

Set SM2 parameter.
WFS_CMD_ENC 10 CHN IMPORT SM2 PUBLIC KEY

Load SM2 public key.

WFS CMD_ENC IO _CHN_SIGN Sign SM2 algorithm data.

WFS CMD _ENC 10 _CHN_VERIFY Verify SM2 algorithm signature.

WFS _CMD_ENC 10 CHN_EXPORT SM2 ISSUER SIGNED ITEM———FEzxpest
dataeclements:

Export data elements.
WEFS_CMD_ENC 10 CHN GENERATE SM2 KEY PAIR

Generate a new SM2 key pair.
WFS_CMD_ENC 10 CHN _EXPORT SM2 EPP SIGNED ITEM

Export data elements signed by a private

key.
WFS CMD_ENC 10 CHN IMPORT SM2 SIGNED SM4 KEY

Load SM4 key.

... Command Input Data ...
Specifies the command input data. This field is specific for each command defined in the
protocol (see following paragraphs).

In the same way, to access the results of the private China encryption commands, the output structure
LPWFSPINENCIO of the WFS_ CMD_PIN_ ENC IO command will be as follows:

Output Param LPWFSPINENCIO IpEncloOut;

typedef struct wfs pin enc io

{

WORD wProtocol;
ULONG ulDatalLength;
LPVOID lpvData;

} WESPINENCIO, *LPWESPINENCIO;

wProtocol
Is set to the constant WFS_PIN_ ENC PROT_CHN.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field /pvData.

IpvData

Points to a PROTCHNOUT structure that contains the reply data specific to the China protocol.
This output structure is specific for each command defined in the protocol (see following
paragraphs), but has following general form:

typedef struct prot chn out
{
WORD wCommand;
WORD wResult;
. Command Output Data ...
} PROTCHNOUT, *LPPROTCHNOUT;

wCommand
Specifies the command that has to be executed in the encryption module. This field contains
the same value as the corresponding field in the input structure.

wResult
Specifies the command reply codes specific for this protocol. Possible general values for the
China protocol are:

Value Meaning
PROT_CHN_SUCCESS Command terminated correctly.
PROT CHN_ERR INVALID CMD Invalid command. The wCommand

issued is not valid or not supported.

297

CWA 16926-65:2023 (E)

PROT _CHN_ERR INVALID DATA The data structure passed as input
parameter for the command contains
invalid or incoherent data.

PROT CHN_ERR INVALID KEY The key needed for the operation was not
loaded or is invalid. This operation
failed.

... Command Output Data ...

Specifies the command output data. This field is specific for each command defined in the
protocol (see following paragraphs). In the case of an error, the command specific structure is
returned, but only the wCommand and the wResult fields are valid.

Comments China encryption commands defined in the following paragraphs will return the generic error
PROT _CHN_ERR INVALID DATA when the input data is invalid.

298

CWA 16926-65:2023 (E)

9.2.1 WFS_CMD_ENC_IO_CHN_DIGEST

Description:

Input Param

Output Param

Comments

This command is used to compute a hash code on a stream of data using the specified SM3 hash
algorithm. This command can be used to verify PBOC static and dynamic data.

LPPROTCHNDIGESTIN IpDigestIn;

typedef struct prot chn digest in
{

WORD wCommand;
WORD wHashAlgorithm;
LPWFSXDATA lpxDigestInput;
} PROTCHNDIGESTIN, *LPPROTCHNDIGESTIN;
wCommand
Is set to WFS_CMD_ENC 10 _CHN_DIGEST.
wHashAlgorithm
Specifies which hash algorithm should be used to calculate the hash.
Value Meaning
PROT _CHN_HASH SM3 DIGEST The SM3 digest algorithm. SM3

Cryptographic hash algorithm is defined in
Password industry standard of the People's
Republic of China GM/T 0004.

IpxDigestinput
Pointer to the structure that contains the length and the data to be hashed.

LPPROTCHNDIGESTOUT IpDigestOut;

typedef struct prot chn digest out
{

WORD wCommand;
WORD wResult;
LPWESXDATA lpxDigestOutput;

} PROTCHNDIGESTOUT, *LPPROTCHNDIGESTOUT;

wCommand

Is set to WFS_CMD_ENC_IO_CHN_DIGEST.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT CHN_ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

IpxDigestOuput
Pointer to the structure that contains the length and the data containing the calculated hash.

None.

299

CWA 16926-65:2023 (E)

9.2.2 WFS_CMD_ENC_IO_CHN_SET _SM2_PARAM

Description

Input Param

Output Param

Comments

300

This command is used to set SM2 algorithm parameter. The SM2 algorithm is based on elliptic
curves. Six parameters need to be set before using to calculate. There are defined in Password
industry standard of the People's Republic of China GM/T 0003.5-2012 [Ref. 43].

LPPROTCHNSM2ALGORITHMPARAMIN IpSM2AlgorithmParamln;

typedef struct prot chn sm2 algorithm param in

{

WORD wCommand;
LPWEFSXDATA lpxP;
LPWFSXDATA 1pxA;
LPWFSXDATA 1lpxB;
LPWFSXDATA 1lpxN;
LPWESXDATA 1pxXg;
LPWFSXDATA 1lpxYg;
} PROTCHNSM2ALGORITHMPARAMIN, *LPPROTCHNSM2ALGORITHMPARAMIN;
wCommand
Is set to WFS_CMD_ENC 10_CHN_SET SM2 PARAM.
IpxP

Prime number p. It should be greater than 3. It is used to define prime number field F), It is
defined in Password industry standard of the People's Republic of China GM/T 0003.5-2012 [Ref.
43].

IpxA

An element a in prime number field F,. They are used to define elliptic curve’s equation: y° = x;
+ a*x + b. It is defined in Password industry standard of the People's Republic of China GM/T
0003.5-2012 [Ref. 43].

IpxB

An element b in prime number field F,. They are used to define elliptic curve’s equation: y° = x3
+ a*x + b. It is defined in Password industry standard of the People's Republic of China GM/T
0003.5-2012 [Ref. 43].

IpxN

The number of base points on the elliptic curve. It should be greater than 2!°!, and greater than
4*p'”? Tt is defined in Password industry standard of the People's Republic of China GM/T
0003.5-2012 [Ref. 43].

IpxXg

The X coordinate of one base point G= (Xg, Y¢) on the elliptic curve. The base point G should be
in the set of prime number field F). It is defined in Password industry standard of the People's
Republic of China GM/T 0003.5-2012 [Ref. 43].

IpxYg

The Y coordinate of one base point G= (Xg, Ys) on the elliptic curve. The base point G should be
in the set of prime number field F),. It is defined in Password industry standard of the People's
Republic of China GM/T 0003.5-2012 [Ref. 43].

LPPROTCHNSM2ALGORITHMPARAMOUT lpSM2AlgorithmParamOut;

typedef struct prot chn sm2 algorithm param out
{
WORD wCommand;
WORD wResult;
} PROTCHNSM2ALGORITHMPARAMOUT, *LPPROTCHNSM2ALGORITHMPARAMOUT;

wCommand
Is set to WFS_CMD_ENC I0_CHN_SET SM2 PARAM.

wResult
The command reply codes (see general definition in the first paragraph).

None.

CWA 16926-65:2023 (E)

9.2.3 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY

Description

Input Param

The Public SM2 key passed by the application is loaded in the encryption module. The dwUse
parameter restricts the cryptographic functions that the imported key can be used for.

LPPROTCHNIMPORTSM2PUBLICKEYIN IpImportSM2PublicKeyIn;

typedef struct prot chn import sm2 public key in
{

WORD wCommand;

LPSTR lpsKey;

LPWESXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwSM2SignatureAlgorithm;
LPWEFSXDATA lpxSignature;

} PROTCHNIMPORTSM2PUBLICKEYIN, *LPPROTCHNIMPORTSM2PUBLICKEYIN;

wCommand
Is set to WFS_CMD_ENC I0_CHN_IMPORT_SM2 PUBLIC KEY./psKey
Specifies the name of key being loaded.

IpxValue
Contains the GM/T 2012 SM2 Public Key to be loaded.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning

PROT CHN_USESM2PUBLIC Key is used as a public key for SM2
Encryption including PBOC PIN block
creation.

PROT CHN_USESM2PUBLICVERIFY Key is used as a public key for SM2

signature verification and/or data decryption.
If dwUse equals zero the specified key is deleted.

When no signature is required to authenticate the deletion of a public key, all parameters but
IpsKey are ignored. In addition, WFS CMD ENC 10 CHN IMPORT SM2 PUBLIC KEY and
WFS CMD_ENC 10 CHN IMPORT SM2 SIGNED SM4 KEY can be used to delete a key
that has been imported with this command.

When a signature is required to authenticate the deletion of the public key, all parameters in the
command are used. /pxValue must contain the concatenation of the Security Item which uniquely
identifies the PIN device (see the command

WFS CMD ENC IO CHN EXPORT SM2 ISSUER SIGNED ITEM) and the GM/T 2012
SM2 public key to be deleted. /pxSignature contains the signature generated from IpxValue using
the private key component of the public key being deleted.

The equivalent commands in the certificate scheme must not be used to delete a key imported
through the signature scheme.

IpsSigKey

IpsSigKey specifies the name of a previously loaded asymmetric key (i.e. a SM2 Public Key)
which will be used to verify the signature passed in /pxSignature. The default Signature Issuer
public key (installed in a secure environment during manufacture) will be used, if [psSigKey is
either NULL or contains the name of the default Signature issuer.

dwSM?2SignatureAlgorithm
Defines the algorithm used to generate the Signature specified in IpxSignature. Contains one of
the following values:

Value Meaning

PROT _CHN_PIN SIGN NA No signature algorithm specified. No
signature verification will take place and the
contents of [psSigKey and IpxSignature are
ignored.

PROT _CHN SIGN SM2 GM T 2012 Use the GM/T 2012 SM2 algorithm.

301

CWA 16926-65:2023 (E)

Output Param

Comments

302

IpxSignature

Contains the Signature associated with the key being imported or deleted. The Signature is used to
validate the key request has been received from a trusted sender. This value contains NULL when
no key validation is required.

LPPROTCHNIMPORTSM2PUBLICKEYOUT IpImportSM2PublicKeyOut;

typedef struct prot chn import sm2 public key out
{

WORD wCommand;

WORD wResult;

DWORD dwSM2KeyCheckMode;
LPWESXDATA lpxKeyCheckValue;

} PROTCHNIMPORTSM2PUBLICKEYOUT, *LPPROTCHNIMPORTSM2PUBLICKEYOUT;

wCommand
Is set to WFS_CMD_ENC I0_CHN_IMPORT SM2 PUBLIC KEY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes are possible:

Value Meaning

PROT CHN_ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

PROT CHN ERR PIN KEYNOTFOUND The key name supplied in IpsSigKey was not
found.

PROT CHN ERR PIN USEVIOLATION An invalid use was specified for the key
being imported.

PROT _CHN ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

PROT CHN ERR PIN INVALIDKEYLENGTH
The length of IpxValue is not supported.

PROT _CHN ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

PROT CHN ERR PIN SIG NOT SUPP The Service Provider does not support the
Signature Algorithm requested. The key was
discarded.

PROT_CHN PIN SIGNATUREINVALID The signature verification failed. The key
has not been stored or deleted.

dwSM2KeyCheckMode

Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be one of the
following flags:

Value Meaning
PROT _CHN_SM2 KCV_NONE No check value is returned in
IpxKeyCheckValue.
PROT _CHN_SM2 KCV_SM3 lpxKeyCheckValue contains a SM3 digest of
the public key.
IpxKeyCheckValue

Contains the public key check value as defined by the dwSM2KeyCheckMode flag.

None.

CWA 16926-65:2023 (E)

9.2.4 WFS_CMD_ENC_IO_CHN_SIGN

Description

Input Param

Output Param

This command is used to sign SM2 algorithm data.

LPPROTCHNSIGNIN IpSignln;

typedef struct prot chn sign in
{

WORD wCommand;

LPSTR lpsKey;

LPSTR 1lpSignerID;
LPWEFSXDATA lpxPlaintextData;

} PROTCHNSIGNIN, *LPPROTCHNSIGNIN;

wCommand
Is set to WFS_CMD_ENC 10 _CHN_SIGN.

IpsKey
Specifies the name of the stored key.

IpSignerID
Specifies the signer’s ID.

IpxPlaintextData
Pointer to the data that need to be signed.

LPPROTCHNSIGNOUT IpSignOut;

typedef struct prot chn sign out
{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxSignData;

} PROTCHNSIGNOUT, *LPPROTCHNSIGNOUT;

wCommand
Is set to WFS_CMD_ENC 10 _CHN_SIGN.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT _CHN ERR PIN KEYNOTFOUND The specified key was not found.

PROT_CHN ERR PIN MODENOTSUPPORTED
The specified mode is not supported.

PROT _CHN ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

PROT _CHN ERR PIN KEYNOVALUE The specified key name was found but the
corresponding key value has not been
loaded.

PROT _CHN ERR PIN USEVIOLATION The specified use is not supported by this
key.

PROT_CHN ERR PIN INVALIDKEYLENGTH
The length of lpxKeyEncKey or
IpxStartValue is not supported or the length
of an encryption key is not compatible with
the encryption operation required.

PROT_CHN ERR _PIN_ NOCHIPTRANSACTIVE
A chipcard key is used as encryption key and
there is no chip transaction active.

PROT_CHN ERR _PIN_ ALGORITHMNOTSUPP
The specified algorithm is not supported by
this key.

IpxSignData
Pointer to the signature.

303

CWA 16926-65:2023 (E)

Comments None.

304

9.2.5 WFS_

CWA 16926-65:2023 (E)

CMD_ENC_IO_CHN_VERIFY

Description

Input Param

Output Param

Comments

This command is used to verify SM2 algorithm signature data.

LPPROTCHNVERIFYIN IpVerifyln;

typedef struct prot chn verify in
{

WORD wCommand;

LPSTR lpsKey;
LPWESXDATA lpxPlaintextData;
LPWFSXDATA lpxSignData;

} PROTCHNVERIFYIN, *LPPROTCHNVERIFYIN;

wCommand
Is set to WFS_CMD_ENC 10 _CHN_VERIFY.

IpsKey
Specifies the name of the stored key.

IpxCipherData
User’s plain text data.

IpxSignData
Signature data signed by WFS_ CMD ENC 10 CHN_SIGN.

LPPROTCHNVERIFYOUT IpVerifyOut;

typedef struct prot chn verify out
{
WORD wCommand;
WORD wResult;
} PROTCHNVERIFYOUT, *LPPROTCHNVERIFYOUT;

wCommand
Is setto WFS_CMD_ENC 10 _CHN_VERIFY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT _CHN _ERR PIN SIGNATUREERROR Signature data is wrong.

None

305

CWA 16926-65:2023 (E)

9.2.6 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM

Description

Input Param

Output Param

306

This command is used to export data elements from the PIN device, which have been signed by
an offline Signature Issuer. This command is used when the default keys and Signature Issuer
signatures, installed during manufacture, are to be used for remote key loading.

This command allows the following data items are to be exported:

e The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

e The SM2 Public key component of a public/private key pair that exists within the PIN
device. These public/private key pairs are installed during manufacture. Typically, an
exported public key is used by the host to encipher the symmetric key.

LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMIN IpExportSM2IssuerSignedItem;

typedef struct prot chn export sm2 issuer signed item in

{

WORD wCommand;
WORD wExportItemType;
LPSTR lpsName;

} PROTCHNEXPORTSM2ISSUERSIGNEDITEMIN,
*LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMIN;

wCommand
Is set to WFS_CMD_ENC I0_CHN_EXPORT _SM2 ISSUER SIGNED ITEM.

wExportltemType

Defines the type of data item to be exported from the PIN. Contains one of the following values:
Value Meaning
PROT _CHN PIN EXPORT EPP ID The Unique ID for the PIN will be exported,

IpsName is ignored.
PROT CHN PIN EXPORT PUBLIC KEY The public key identified by [psName will be
exported.

IpsName

Specifies the name of the public key to be exported. The private/public key pair was installed
during manufacture. If [psName is NULL, then the default EPP public key that is used for
symmetric key encryption is exported.

LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT IpExportSM2IssuerSignedItemOut;

typedef struct prot chn export sm2 issuer signed item out

{

WORD wCommand;

WORD wResult;

LPWFSXDATA lpxValue;

DWORD dwSM2SignatureAlgorithm;
LPWFSXDATA lpxSignature;

} PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT,
*LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT;

wCommand
Is set to WFS_CMD_ENC I0_CHN_EXPORT SM2 ISSUER SIGNED ITEM.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT CHN_ERR PIN NOPRIVATEKEY The PIN device does not have a private key.

PROT CHN_ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

PROT CHN_ERR PIN KEYNOTFOUND The data item identified by [psName was not
found.

Comments

CWA 16926-65:2023 (E)

IpxValue

If a public key was requested then /pxValue contains the GM/T 2012 SM2 Public Key. If the
security item was requested then IpxValue contains the PIN’s Security Item, which may be vendor
specific.

dwSM?2SignatureAlgorithm
Specifies the algorithm used to generate the Signature returned in /pxSignature. Contains one of
the following values:

Value Meaning

PROT CHN PIN SIGN NA No signature algorithm used, no signature
will be provided in IpxSignature, the data
item may still be exported.

PROT _CHN_SIGN SM2 GM_T 2012 GM/T 2012 SM2 algorithm used.

IpxSignature
Specifies the SM2 signature of the data item exported. NULL can be returned when key
Signatures are not supported.

None.

307

CWA 16926-65:2023 (E)

9.2.7 WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR

Description This command will generate a new SM2 key pair. The public key generated as a result of this
command can subsequently be obtained by calling
WFS _CMD_PIN _EXPORT SM2 EPP_SIGNED ITEM.

The newly generated key pair can only be used for the use defined in the dwUse flag. This flag
defines the use of the private key; its public key can only be used for the inverse function.

Input Param LPPROTCHNGENERATESM2KEYPAIRIN IpGenerateSM2KeyPairln;

typedef struct prot chn generate sm2 keypair in

{

WORD wCommand;
LPSTR lpsKey;
DWORD dwUse;

} PROTCHNGENERATESM2KEYPAIRIN, *LPPROTCHNGENERATESM2KEYPAIRIN;

wCommand
Is set to WFS_CMD_ENC 10 _CHN_GENERATE SM2 KEY PAIR.

IpsKey
Specifies the name of the new key-pair to be generated. Details of the generated key-pair can be
obtained through the WFS_INF PIN KEY DETAIL EX command.

dwUse

Specifies what the private key component of the key pair can be used for. The public key part can
only be used for the inverse function. For example, if the
WES—PINPROT CHN USESM2PRIVATESIGN use is specified, then the private key can only
be used for signature generation and the partner public key can only be used for verification.
dwUse can take one of the following values:

Value Meaning

PROT_CHN_USESM2PRIVATE Key is used as a private key for SM2
decryption.

PROT CHN_USESM2PRIVATESIGN Key is used as a private key for SM2

Signature generation. Only data generated
within the device can be signed.

Output Param LPPROTCHNGENERATESM2KEYPAIROUT IpGenerateSM2KeyPairOut;

typedef struct = prot chn generate sm2 keypair out
{
WORD wCommand;
WORD wResult;

} PROTCHNGENERATESM2KEYPAIROUT, *LPPROTCHNGENERATESM2KEYPAIROUT;

wCommand
Is set to WFS_CMD_ENC 10 _CHN_GENERATE SM2 KEY PAIR.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT _CHN ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

PROT CHN ERR PIN INVALID MOD LEN
The modulus length specified is invalid.

PROT CHN ERR PIN USEVIOLATION The specified use is not supported by this
key.

PROT_CHN ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

PROT_CHN ERR PIN KEY GENERATION ERROR
The EPP is unable to generate a key pair.

Comments None.

308

CWA 16926-65:2023 (E)

309

CWA 16926-65:2023 (E)

9.2.8 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM

Description

Input Param

This command is used to export data elements from the PIN device that have been signed by a
private key within the EPP. This command is used in place of the

WEFS_CMD_ENC 10 CHN EXPORT SM2 ISSUER SIGNED ITEM command, when a
private key generated within the PIN device is to be used to generate the signature for the data
item. This command allows an application to define which of the following data items are to be
exported:

e The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

e The SM2 Public key component of a public/private key pair that exists within the PIN
device.

The public/private key pairs exported by this command are either installed during manufacture or
generated through the WFS_ CMD_ENC 10 _CHN_GENERATE SM2 KEY PAIR command.

The WFS_INF PIN KEY DETAIL EX command can be used to determine the valid uses for
the exported public key.

LPPROTCHNEXPORTSM2EPPSIGNEDITEMIN IpExportSM2EPPSignedItemIn;

typedef struct prot chn export sm2 epp signed item in

{

WORD wCommand;

WORD wExportItemType;
LPSTR lpsName;

LPSTR lpsSigKey;

DWORD dwSignatureAlgorithm;

} PROTCHNEXPORTSM2EPPSIGNEDITEMIN,
*LPPROTCHNEXPORTSM2EPPSIGNEDITEMIN

wCommand
Is set to WFS_CMD_ENC I0_CHN_EXPORT SM2 EPP SIGNED ITEM.

wExportlitemType

Defines the type of data item to be exported from the PIN. Contains one of the following values:
Value Meaning
PROT CHN PIN EXPORT EPP ID The Unique ID for the PIN will be exported,

IpsName is ignored.
PROT _CHN PIN EXPORT PUBLIC KEY The public key identified by IlpsName will be
exported.

IpsName

Specifies the name of the public key to be exported. This can either be the name of a key-pair
generated through WFS CMD_ENC 10 _CHN GENERATE SM2 KEY PAIR or the name of
one of the default key-pairs installed during manufacture.

IpsSigKey
Specifies the name of the private key to use to sign the exported item.
dwSignatureAlgorithm.

Specifies the algorithm to use to generate the Signature returned in both the [pxSelfSignature and
IpxSignature fields. Contains one of the following values:

Value Meaning

PROT CHN PIN SIGN NA No signature algorithm used, no signature
will be provided in IpxSelfSignature or
IpxSignature. The requested item may still
be exported.

PROT CHN_ SIGN SM2 GM_T 2012 GM/T 2012 SM2 algorithm used.

Output Param LPPROTCHNEXPORTSM2EPPSIGNEDITEMOUT IpExportSM2EPPSignedItemOut;

310

Comments

CWA 16926-65:2023 (E)

typedef struct prot chn export sm2 epp signed item output
{

WORD wCommand;

WORD wResult;
LPWESXDATA lpxValue;
LPWEFSXDATA lpxSelfSignature;
LPWFSXDATA lpxSignature;

} PROTCHNEXPORTSM2EPPSIGNEDITEMOUT,
*LPPROTCHNEXPORTSM2EPPSIGNEDITEMOUT;

wCommand
Is set to WFS_CMD_ENC I0_CHN_EXPORT SM2 EPP_SIGNED ITEM.

wResult

The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT CHN ERR PIN NOSM2KEYPAIR The PIN device does not have a private key.

PROT _CHN ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

PROT CHN ERR PIN KEYNOTFOUND The data item identified by [psName was not
found.

IpxValue
If a public key was requested then IpxValue contains the GM/T 2012 SM2 Public Key. If the

security item was requested then IpxValue contains the PIN’s Security Item, which may be vendor
specific.

IpxSelfSignature

If a public key was requested then /pxSelfSignature contains the SM2 signature of the public key
exported, generated with the key-pair’s private component. NULL can be returned when key Self-
Signatures are not supported/required.

IpxSignature

Specifies the SM2 signature of the data item exported. NULL can be returned when signatures are
not supported/required.

None.

311

CWA 16926-65:2023 (E)

9.2.9 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED SM4_KEY

Description

Input Param

312

This command is used to load a Symmetric Key that is a SM4 key into the encryptor. The key
passed by the application is loaded in the encryption module, the (optional) signature is used
during validation, the key is decrypted using the device’s SM2 Private Key, and is then stored.
The loaded key will be discarded at any stage if any of the above fails.

The dwUse parameter restricts the cryptographic functions that the imported key can be used for.

If a Signature algorithm is specified that is not supported by the PIN Service Provider, then the
message will not be decrypted and the command fails.

LPPROTCHNIMPORTSM2SIGNEDSM4KEY IpImportSM2SignedSM4Keyln;

typedef struct prot chn import sm2 signed smé4 key
{

WORD wCommand;

LPSTR lpsKey;

LPSTR lpsDecryptKey;

DWORD dwSM2EncipherAlgorithm;
LPWFSXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwSM2SignatureAlgorithm;
LPWFSXDATA lpxSignature;

} PROTCHNIMPORTSM2SIGNEDSM4KEY, *LPPROTCHNIMPORTMS2SIGNEDSM4KEY;

wCommand
Is set to WES_CMD_ENC 10 CHN _IMPORT SM2 SIGNED SM4 KEY./psKey
Specifies the name of key being loaded.

IpsDecryptKey

Specifies the name of the RSA private key used to decrypt the symmetric key. See section 8.1.8
(Default Keys and Security Item loaded during manufacture) for a description of the fixed name
defined for the default decryption private key. If [psDecryptKey is NULL then the default
decryption private key is used.

dwSM2EncipherAlgorithm
Specifies the RSA algorithm that is used, along with the private key, to decipher the imported key.
Contains one of the following values:

Value Meaning
PROT_CHN SIGN SM2 GM T 2012 GM/T 2012 SM2 algorithm used.
IpxValue

Specifies the enciphered value of the key to be loaded. IpxValue contains the concatenation of the
random number (when present) and enciphered key.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise, the parameter can be a combination of the following flags:

Value Meaning

WEFS PIN USECRYPT Key is used for encryption and decryption.
WEFS_PIN_ USEFUNCTION Key is used for PIN block creation.

WFS PIN USEMACING Key is used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN USEPINLOCAL Key is used only for local PIN check.

If dwUse equals zero the specified key is deleted. In that case all parameters but /psKey are
ignored. WFS_CMD_ENC_IO_CHN_IMPORT SM2 PUBLIC_KEY and

WFS CMD ENC 10 CHN IMPORT SM2 SIGNED SM4 KEY can be used to delete a key
that has been imported with this command. The equivalent commands in the certificate scheme
must not be used to delete a key imported through the signature scheme.

IpsSigKey

If IpsSigKey is NULL then the key signature will not be used for validation and /pxSignature is
ignored. Otherwise /psSigKey specifies the name of an Asymmetric Key (i.e. an SM2 Public Key)
previously loaded which will be used to verify the signature passed in I[pxSignature.

Output Param

CWA 16926-65:2023 (E)

dwSM?2SignatureAlgorithm
Specifies the algorithm used to generate the Signature specified in /pxSignature. Contains one of
the following values:

Value Meaning

PROT CHN PIN SIGN NA No signature algorithm specified. No
signature verification will take place and the
content of IpxSignature is ignored.

PROT CHN_SIGN SM2 GM_T 2012 GM/T 2012 SM2 algorithm used.

IpxSignature

Contains the Signature associated with the key being imported. The Signature is used to validate
the key has been received from a trusted sender. The signature is generated over the contents of
the lpxValue. The IpxSignature signature contains NULL when no key validation is required.

LPPROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT IpImportSM2SignedSM4KeyOutput;

typedef struct prot chn import sm2 signed sm4 key output
{

WORD wCommand;

WORD wResult;

WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;

} PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT,
*LPPROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT;

wCommand
Is set to WFS_CMD_ENC I0_CHN_IMPORT SM2 SIGNED SM4 KEY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

The encryption module is either not
initialized or not ready for any vendor
specific reason.

PROT_CHN_ERR_PIN_ACCESSDENIED

PROT CHN_ERR PIN DUPLICATEKEY

PROT_CHN_ERR_PIN_KEYNOTFOUND
PROT_CHN_ERR_PIN_KEYNOVALUE

PROT_CHN_ERR_PIN_USEVIOLATION

A key exists with that name and cannot be
overwritten.

One of the keys specified were not found.
The specified key encryption key is not
loaded.

The specified use is not supported by this
key.

PROT_CHN_ERR PIN INVALIDKEYLENGTH

PROT_CHN_ERR_PIN NOKEYRAM

PROT_CHN_ERR_PIN_SIG NOT_SUPP

The length of IpxValue is not supported.
There is no space left in the key RAM for a
key of the specified type.

The Service Provider does not support the
Signature Algorithm requested. The key was
discarded.

PROT CHN_ERR PIN SIGNATUREINVALID

PROT CHN_ERR PIN RANDOMINVALID

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value

The signature in the input data is invalid.
The key is not stored in the PIN.

The encrypted random number in the input
data does not match the one previously
provided by the EPP. The key is not stored
in the PIN.

Meaning

WEFS_PIN KCVNONE

There is no key check value provided.

313

CWA 16926-65:2023 (E)

Comments

314

WEFS PIN KCVSELF The key check value is calculated by an
encryption of the key with itself. Fora

oo dopethgr sl Lo Lo the 1000
'1.5‘ geHeF’i{ed Hf‘iﬂg SP44 eﬂefflﬁtieﬂ Hf‘iﬂg {h%

WFS PIN KCVZERO The key check value is calculated by an
encryption of a zero value with the key.

For descriptions of these flags refer to the fwKeyCheckModes capability value.

IpxKeyCheckValue
peinterPointer to the key verification data that can be used for verification of the loaded key,

NULL if device does not have that capability.

None.

CWA 16926-65:2023 (E)

9.2.10 China-specific Header File

This header section is to be created into a separate file from the standard xfspin.h and identifies the definitions for
the China Protocol only.

/**
*

*xfspinchn.h XFS - Personal Identification Number Keypad (PIN) China

*Protocol definitions
*

*
*
*
* *
* *
**/

#ifndef INC XFSPINCHN H
#define INC XFSPINCHN H

#ifdef cplusplus

extern "C" {

#endif

/* be aware of alignment */

#pragma pack (push,1)

/* values of PROTCHNIN.wCommand */

#define WFS_CMD ENC IO CHN DIGEST 0x0001
#define WFS_CMD ENC IO CHN SET SM2 PARAM 0x0002
#define WFS_CMD ENC IO CHN IMPORT SM2 PUBLIC_ KEY 0x0003
#define WFS_CMD ENC IO CHN SIGN 0x0004

()
()
()
()
#define WFS_CMD ENC IO CHN VERIFY (0x0005)
()
()
()
()

#define WFS_CMD ENC IO CHN EXPORT SM2 ISSUER SIGNED ITEM 0x0006
#define WFS_CMD ENC_ IO CHN GENERATE SM2 KEY PAIR 0x0007
#define WFS_CMD ENC IO CHN EXPORT SM2 EPP SIGNED ITEM 0x0008
#define WFS_CMD ENC_ IO CHN IMPORT SM2 SIGNED SM4 KEY 0x0009

#define PROT CHN RESULT OFFSET (0)

/* values of PROTCHNOUT.wResult */

(@]

#define PROT CHN_ SUCCESS

#define PROT CHN ERR_INVALID CMD
#define PROT CHN ERR_INVALID DATA
#define PROT CHN ERR_INVALID KEY

(0)

(- (PROT_CHN RESULT OFFSET + 1))
(- (PROT_CHN RESULT OFFSET + 2))
(- (PROT_CHN RESULT OFFSET + 3))
/* values of PROTCHNDIGESTOUTPUT.wResult, PROTCHNIMPORTSM2PUBLICKEYOUT.wResult,
PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT .wResult, PROTCHNEXPORTSM2EPPSIGNEDITEMOUT.wResult
and PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT CHN ERR _PIN ACCESSDENIED (- (PROT_CHN RESULT OFFSET + 4))
/* values of PROTCHNIMPORTSM2PUBLICKEYOUT.wResult, PROTCHNDIGESTOUT.wResult,
PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT.wResult, PROTCHNEXPORTSM2EPPSIGNEDITEMOUT.wResult
and PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT CHN ERR _PIN KEYNOTFOUND (- (PROT_CHN RESULT OFFSET + 5))

/* values of PROTCHNIMPORTSM2PUBLICKEYOUT.wResult, PROTCHNDIGESTOUT.wResult and
PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT CHN ERR _PIN USEVIOLATION (- (PROT_CHN_RESULT OFFSET + 6))
#define PROT CHN ERR_PIN INVALIDKEYLENGTH (- (PROT_CHN_RESULT OFFSET + 7))

/* additional values of PROTCHNIMPORTSM2PUBLICKEYOUT.wResult and
PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT .wResult */

#define PROT CHN ERR PIN DUPLICATEKEY (- (PROT_CHN RESULT OFFSET + 8))
#define PROT CHN ERR PIN SIG NOT SUPP (- (PROT_CHN RESULT OFFSET + 9))
#define PROT CHN ERR PIN SIGNATUREINVALID (- (PROT_CHN RESULT OFFSET + 10))

CWA 16926-65:2023 (E)

/* additional values of PROTCHNSIGNOUT.wResult and
PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT .wResult */

#define PROT CHN ERR PIN MODENOTSUPPORTED

#define PROT CHN ERR PIN NOCHIPTRANSACTIVE
#define PROT CHN ERR PIN ALGORITHMNOTSUPP

/* values of PROTCHNVERIFYOUT.wResult */
#define PROT CHN ERR PIN SIGNATUREERROR
/* values of PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT.wResult */
#define PROT CHN ERR PIN NOPRIVATEKEY

/* values of PROTCHNGENERATESM2KEYOUT.wResult */

#define PROT CHN ERR PIN INVALID MOD LEN

/* values of PROTCHNEXPORTSM2EPPSIGNEDITEMOUT.wResult */
#define PROT CHN ERR PIN NOSM2KEYPAIR
/* values of PROTCHNIMPORTSM2SIGNEDSMA4KEYOUTPUT.wResult */

#define PROT CHN ERR PIN NOKEYRAM
#define PROT CHN_ERR_PIN_ RANDOMINVALID

/* values of PROTCHNDIGESTIN.wHashAlgorithm */
#define PROT CHN HASH SM3 DIGEST (0x0001)
/* values for PROTCHNIMPORTSM2PUBLICKEYIN.dwUse */

#define PROT_CHN USESM2PUBLIC (0x00000001)
#define PROT_ CHN USESM2PUBLICVERIFY (0x00000002)

/* values of PROTCHNIMPORTSM2PUBLICKEYIN.dwSM2SignatureAlgorithm,
PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT.dwSM2SignatureAlgorithm,
PROTCHNEXPORTSM2EPPSIGNEDITEMIN.dwSignatureAlgorithm and
PROTCHNIMPORTSM2SIGNEDSM4KEY .dwSM2SignatureAlgorithm */

#define PROT CHN PIN SIGN NA (0)
#define PROT CHN SIGN SM2 GM T 2012 (0x00000001)

/* values for PROTCHNIMPORTSM2PUBLICKEYOUT.dwSM2KeyCheckMode */
#define PROT CHN SM2 KCV_NONE (0x00000001)
#define PROT CHN SM2 KCV SM3 (0x00000002)

/* values for PROTCHNEXPORTSM2ISSUERSIGNEDITEMIN.wExportItemType,
PROTCHNEXPORTSM2EPPSIGNEDITEMIN.wExportItemType */

#define PROT CHN PIN EXPORT EPP_ID (0x0001)
#define PROT CHN PIN EXPORT PUBLIC KEY (0x0002)

/* values for PROTCHNGENERATESM2KEYOUT.dwUse */
#define PROT CHN USESM2PRIVATE (0x00000001)
#define PROT CHN USESM2PRIVATESIGN (0x00000002)

// Used to type-cast specific command to access common fields
typedef struct prot chn in
{
WORD wCommand;
} PROTCHNIN, *LPPROTCHNIN;

// Used to type-cast specific response to access common fields

typedef struct prot chn out
{

316

(- (PROT_CHN RESULT OFFSET
#define PROT CHN ERR _PIN KEYNOVALUE (- (PROT_CHN RESULT OFFSET
(- (PROT_CHN RESULT OFFSET
(- (PROT_CHN RESULT OFFSET

(- (PROT_CHN RESULT OFFSET
(- (PROT_CHN_RESULT OFFSET

(- (PROT_CHN RESULT OFFSET
#define PROT CHN ERR PIN KEY GENERATION ERROR (- (PROT_CHN RESULT OFFSET

(- (PROT_CHN RESULT OFFSET

(- (PROT_CHN RESULT OFFSET
(- (PROT_CHN_RESULT_OFFSET

+ + + +

15))

16))

19))

WORD wCommand;
WORD wResult;
} PROTCHNOUT, *LPPROTCHNOUT;

typedef struct prot chn digest in
{

WORD wCommand;
WORD wHashAlgorithm;
LPWFSXDATA lpxDigestInput;

} PROTCHNDIGESTIN, *LPPROTCHNDIGESTIN;

typedef struct prot chn digest out
{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxDigestOutput;

} PROTCHNDIGESTOUT, *LPPROTCHNDIGESTOUT;

typedef struct prot chn sm2 algorithm param in

{

WORD wCommand;
LPWESXDATA 1pxP;
LPWEFSXDATA lpxA;
LPWEFSXDATA 1pxB;
LPWEFSXDATA lpxN;
LPWFSXDATA lpxXg;
LPWFSXDATA lpxYg;

} PROTCHNSM2ALGORITHMPARAMIN, *LPPROTCHNSM2ALGORITHMPARAMIN;

typedef struct prot chn sm2 algorithm param out
{
WORD wCommand;
WORD wResult;
} PROTCHNSM2ALGORITHMPARAMOUT, *LPPROTCHNSM2ALGORITHMPARAMOUT;

typedef struct prot chn import sm2 public key in
{

WORD wCommand;

LPSTR lpsKey;

LPWESXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwSM2SignatureAlgorithm;
LPWFSXDATA lpxSignature;

} PROTCHNIMPORTSM2PUBLICKEYIN, *LPPROTCHNIMPORTSM2PUBLICKEYIN;

typedef struct prot chn import sm2 public key out
{

WORD wCommand;

WORD wResult;

DWORD dwSM2KeyCheckMode ;
LPWESXDATA lpxKeyCheckValue;

} PROTCHNIMPORTSM2PUBLICKEYOUT, *LPPROTCHNIMPORTSM2PUBLICKEYOUT;

typedef struct prot chn sign in
{

WORD wCommand;

LPSTR lpsKey;

LPSTR lpSignerID;
LPWFSXDATA lpxPlaintextData;

} PROTCHNSIGNIN, *LPPROTCHNSIGNIN;

typedef struct prot chn sign out
{

WORD wCommand;
WORD wResult;
LPWFSXDATA lpxSignData;

} PROTCHNSIGNOUT, *LPPROTCHNSIGNOUT;

typedef struct prot chn verify in

CWA 16926-65:2023 (E)

317

CWA 16926-65:2023 (E)

WORD wCommand;

LPSTR lpsKey;
LPWESXDATA lpxPlaintextData;
LPWESXDATA lpxSignData;

} PROTCHNVERIFYIN, *LPPROTCHNVERIFYIN;

typedef struct prot chn verify out

{
WORD wCommand;
WORD wResult;

} PROTCHNVERIFYOUT, *LPPROTCHNVERIFYOUT;

typedef struct prot chn export sm2 issuer signed item in

{

WORD wCommand;
WORD wExportItemType;
LPSTR lpsName;

} PROTCHNEXPORTSM2ISSUERSIGNEDITEMIN, *LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMIN;

typedef struct prot chn export sm2 issuer signed item out

{

WORD wCommand;

WORD wResult;

LPWESXDATA lpxValue;

WORD dwSM2SignatureAlgorithm;
LPWESXDATA lpxSignature;

} PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT, *LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT;

typedef struct prot chn generate sm2 keypair in

{

WORD wCommand;
LPSTR lpsKey;
DWORD dwUse;

} PROTCHNGENERATESM2KEYPAIRIN, *LPPROTCHNGENERATESM2KEYPAIRIN;

typedef struct prot chn generate sm2 keypair out
{
WORD wCommand;
WORD wResult;
} PROTCHNGENERATESM2KEYPAIROUT, *LPPROTCHNGENERATESMZ2KEYPAIROUT;

typedef struct prot chn export sm2 epp signed item in

{

WORD wCommand;
WORD wExportItemType;
LPSTR lpsName;

} PROTCHNEXPORTSM2EPPSIGNEDITEMIN, *LPPROTCHNEXPORTSM2EPPSIGNEDITEMIN;

typedef struct prot chn export sm2 epp signed item out
{

WORD wCommand;

WORD wResult;

LPWESXDATA lpxValue;

WORD dwSM2SignatureAlgorithm;
LPWESXDATA lpxSignature;

} PROTCHNEXPORTSM2EPPSIGNEDITEMOUT, *LPPROTCHNEXPORTSM2EPPSIGNEDITEMOUT;

typedef struct prot chn import sm2 signed smé4 key
{

LPSTR lpsKey;

LPSTR lpsDecryptKey;

DWORD dwSM2EncipherAlgorithm;
LPWESXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwSM2SignatureAlgorithm;
LPWFSXDATA lpxSignature;

} PROTCHNIMPORTSM2SIGNEDSM4KEY, *LPPROTCHNIMPORTSM2SIGNEDSM4KEY;

318

CWA 16926-65:2023 (E)

typedef struct prot chn import sm2 signed sm4 key output
{

WORD wCommand;

WORD wResult;

WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;

} PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT, *LPPROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT;

/* restore alignment */
#pragma pack (pop)

#ifdef cplusplus

} /*extern "C"*/
#endif
#endif /* __INC XFSPINCHN H */

319

CWA 16926-65:2023 (E)

10. Appendix—C (Standardized IpszExtra fields)

This section contains the values that have been standardized for the IpszExtra fields within previous releases of the
PIN specification. These values are still applicable to this version of the standard and must be supported if the
functionality is supported.

10.1 WFS_INF_PIN_STATUS

The following standardized IpszExtra values have been defined for the WFS _INF PIN STATUS command.

For Remote Key Loading using Certificates, the following key/value pairs indicate the level of support of the
Service Provider. If these pairs are not returned then this indicates the Service Provider does not support the
corresponding feature:

CERTIFICATESTATE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a hexadecimal value. This
state determines which public verification or encryption key should be read out of the device. For example
CERTIFICATESTATE =0x00000001 indicates that the state of the Encryptor is Primary. The possible values are
the following:

Value Meaning

WEFS PIN CERT PRIMARY The encryption module indicates that all pre-
loaded certificates have been loaded and that
primary verification certificates will be
accepted for the commands
WFS CMD_PIN LOAD_CERTIFICATE
or
WFS CMD_ PIN REPLACE_CERTIFICA
TE

WEFS PIN CERT _SECONDARY The encryption module indicates that
primary verification certificates will not be
accepted and only secondary verification
certificates will be accepted. If primary
certificates have been compromised (which
the certificate authority or the host detects),
then secondary certificates should be used in
any transaction. This is done by calling the
WFS CMD_PIN _LOAD CERTIFICATE
command or the
WFS CMD_PIN REPLACE CERTIFICA
TE.

WEFS PIN CERT NOTREADY The certificate module is not ready. (The
device is powered off or physically not
present).

320

CWA 16926-65:2023 (E)

10.2 WFS_INF_PIN_CAPABILITIES

The following standardized IpszExtra values have been defined for the WFS INF PIN CAPABILITIES command.
For German HSMs this parameter will contain the following information:
e HSM=<HSM vendor> - (can contain the values KRONE,ASCOM,IBM or NCR)

e JOURNAL=<0/1> - (0 means that the HSM does not support journaling by the
WFS CMD PIN GET JOURNAL command, 1 means it supports journaling)

For Remote Key Loading the following key/value pairs indicate the level of support of the Service Provider. If
these pairs are not returned then this indicates the Service Provider does not support the corresponding feature:

REMOTE _KEY_ SCHEME=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. REMOTE_KEY SCHEME will specify to the user which type(s) of Remote
Key Loading/Authentication is supported. For example,

“REMOTE_KEY SCHEME=0x00000002" indicates that three-party certificates are supported.
The support level is defined as a combination of the following flags:

Value Meaning

WEFS PIN RSA AUTH 2PARTY_SIG Two-party Signature based authentication.
WEFS PIN RSA AUTH 3PARTY_ CERT Three-party Certificate based authentication.

RSA SIGN ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA SIGN ALGORITHM will specify what type(s) of RSA Signature
Algorithms is supported. For example, “RSA_SIGN ALGORITHM=0x00000001" indicates that
RSASSA PKCS1 V1 5 is supported. The support level is defined as a combination of the

following flags:
Value Meaning
WFS PIN SIGN RSASSA PKCS1 V1 5 SSA PKCS V1 5 Signatures supported.
WFS PIN SIGN RSASSA PSS SSA PSS Signatures supported.

RSA CRYPT ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA CRYPT ALGORITHM will specify what type(s) of RSA encipherment
algorithms is supported. For example, “RSA CRYPT ALGORITHM=0x00000002" indicates
that RSAES OAE-P is supported. The support level is defined as a combination of the following

flags:
Value Meaning
WEFS PIN CRYPT RSAES PKCS1 V1 5 AES PKCS V1 5 algorithm supported.
WEFS PIN CRYPT RSAES OAEP AES OAEP algorithm supported.

RSA KEY CHECK MODE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA KEY CHECK MODE will specify what type of key check value can
be returned from a RSA key import function. For example,
“RSA_KEY CHECK MODE=0x00000001" indicates that SHA1 is supported. The support level
is defined as a combination of the following flags:

Value Meaning

WFS PIN RSA KCV_SHAI1 The key check value contains a SHA 1 of the
public key as defined in [Ref. 3:].

WEFS PIN RSA KCV_SHA256 The key check value contains a SHA256 of

the public key, as defined in ISO/IEC 10118-
3:2004 [Ref. 40] and FIPS 180-2 [Ref. 41].

SIGNATURE CAPABILITIES=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of
a hexadecimal value. SIGNATURE CAPABILITIES will specify which capabilities are
supported by the Signature scheme. The signature capabilities are defined as a combination of the
following flags:

321

CWA 16926-65:2023 (E)

Value Meaning

WEFS PIN SIG GEN RSA KEY PAIR Specifies if the Service Provider supports the
RSA Signature Scheme
WFS_CMD_PIN_ _GENERATE RSA KEY
_PAIR and
WFS CMD_PIN EXPORT RSA EPP SIG
NED commands.

WFS PIN SIG RANDOM NUMBER Specifies if the Service Provider returns a
random number from the
WFS_CMD_PIN_START KEY_ EXCHAN
GE command within the RSA Signature
Scheme.

WFS PIN SIG EXPORT EPP_ID Specifies if the Service Provider supports
exporting the EPP Security Item within the
RSA Signature Scheme.

For EMV support the following key/value pairs indicate the level of support of the Service Provider. Note that a
series of this key/value pairs may occur that lists all import schemes supported by the PIN Service Provider. If these
pairs are not returned then this indicates that the Service Provider does not support the corresponding feature.

EMV_IMPORT SCHEME=<0xnnnn>, this field will specify to the user how the specified key
will be imported. nnnn is the ASCII representation of a single hexadecimal value which defines
the import scheme. A series of these pairs may be returned to support multiple import schemes.

The specific values that are used for nnnn are defined within the ‘C’ include file see section “C —
Header File”. The following descriptions use the ‘C’ constant name.

Value Meaning

WEFS_PIN EMV_IMPORT PLAIN CA A plain text CA public key is imported with
no verification.

WEFS _PIN EMV_IMPORT CHKSUM CA A plain text CA public key is imported using
the EMV 2000 verification algorithm. See
[Ref. 4].

WFS PIN EMV _IMPORT EPI CA A CA public key is imported using the self-
sign scheme defined in the Europay
International, EPI CA Module Technical —
Interface specification Version 1.4, [Ref. 5]

WFS PIN EMV_IMPORT ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, [Ref. 4].

WFS PIN EMV_IMPORT ICC An ICC public key is imported as defined in
EMYV 2000 Book II, [Ref. 4].

WFS PIN EMV_IMPORT ICC PIN An ICC PIN public key is imported as

defined in EMV 2000 Book II, [Ref. 4].

WFS PIN EMV_IMPORT PKCSV1 5 CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

EMV_HASH=<0xnnnn>, this field will specify to the user which type of Hash Algorithm is
supported by the Service Provider. nnnn is the ASCII representation of the combination of hash
algorithms supported by the Service Provider.

Value Meaning

WEFS PIN HASH SHA1 DIGEST The SHA 1 digest algorithm is supported by
the WFS_ CMD_PIN DIGEST command.

The capabilities associated with key loading in multiple parts are defined by the following:

PIN_IMPORT KEY PARTS=<0/1> - (0 means the device does not support key import in
multiple parts, 1 means the device supports key import in multiple parts)

A Service Provider that supports the WFS CMD PIN ENCIO command shall add information about what
protocols it supports as:

ENCIOPROTOCOLS=0xnnnn where nnnn is the ASCII representation of the combination of
the values supported for the wProtocol parameter.

322

CWA 16926-65:2023 (E)

A Service Provider may automatically generate a beep on key presses, this is reported by the following key=value
pair:

AUTOBEEP=<0/1> - (0 means no beeps are generated automatically, 1 means beeps are
generated automatically)

For devices where the secure PIN keypad is integrated within a generic Win32 keyboard then, if the following pair
is present:

“KYBD=COMBINED WIN32” - then standard Win32 key events will be generated for any key
when there is no ‘active’ GET DATA or GET PIN command.

Note that XFS continues to support PIN keys define only, and is not extended to support new
alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both
PIN and generic keyboards.

When an application wishes to receive XFS-based key information then he can use the XFS
GET _DATA and GET_PIN functions.

No Win32 keystrokes are generated for any key (active or not) in a combined device when
GET_DATA or GET_PIN are ‘active’.

When no GET DATA or GET PIN function is ‘active’ then any key press will result in a
Win32 key event. These events can be ignored by the application, if required.

Note that this does not compromise secure PIN entry — there will be no Win32 keyboard events
during PIN collection.

On terminals and kiosks with separate PIN and Win32 keyboards, the Win32 keyboard behaves
purely as a PC keyboard and the PIN device behaves only as an XFS device.

323

CWA 16926-65:2023 (E)

11. Appendix—D (TR-31X9.143 Key Use)

This section contains a mapping of key usages as defined for TR-31 (see ANSANSI X9-FR-31-2010.143 [Ref. 35])
to the XFS use values defined in this document. The XFS use values are those defined for the fwUse or dwUse
input/output fields of a number of different PIN commands.

Keys imported within an ANS-TR-3+ANSI X9.143 key block have a usage encoded into the key block header
(represented by IpxKeyBlockHeader in the WFS_INF PIN KEY DETAIL and

WFS INF PIN KEY DETAIL EX commands), This usage specified in the key block header may be more
specific than the fwUse/dwUse values defined in this document. For consistency, the following table defines the
corresponding fwUse/dwUse value for each TR—31X9.143 key usage:

TR- TR-31X9.143 Definition XFS Use (fiwUseldwUse)
31X9.143 | Mode(s) of Use
Value
“B0” “X” BBK-Base Derivation Key WEFS PIN USEKEYDERKEY
(BDK)
“B1” “X” DUKPT Initial Key-(also-knewn | WES PIN USEKEYDERKEY **
el WEFS _PIN USEPINREMOTE

WFS_PIN_USEFUNCTION*
WFS_PIN_USECRYPT
WFS_PIN_USEMACING

“B2” “Y” Base Key Variant Key WES PIN_USEKEYDERKEY
(deprecated)

“B3” “X” Key Derivation Key (Non ANSI | WES_PIN_USEKEYDERKEY
X9.24)

“Cco” “C”, “Gq”, “vV” EVACard Verification Key NA
(CVK)

“D0” “B”., “D”, “E” Symmetric Key for Data WES PIN_USECRYPT
Encryption

“D1” “B”,. “D”, “E” Asymmetric Key for Data WES PIN_USERSAPUBLIC
Encryption WFS_PIN_USERSAPRIVATE

“D2” “B”, “D”, “E” Data Encryption Key for WFS_PIN_USECRYPT
Decimalization Table

“PoD3” | “B”, “D”, “E” Data Encryption using ECB; WEFS PIN USECRYPT
CTRKey for Sensitive Data

“E0” “X” EMV/ehipChip Issuer Master | WFS_PIN_USERSAPUBLICVERIFY
Key: Application
eryptogramsCryptograms

“El1” “X” EMV/ehipChip Issuer Master [WFS PIN USERSAPUBLICVERIFY
Key: Secure Messaging for
Confidentiality

“E2” “X” EMV/ehipChip Issuer Master [WFS PIN USERSAPUBLICVERIFY
Key: Secure Messaging for
Integrity

“E3” “X” EMV/ehipChip Issuer Master | WFS_PIN_USERSAPUBLICVERIFY
Key: Data Authentication Code

“E4” “X” EMV/ehipChip Issuer Master | WFS_PIN_ USERSAPUBLICVERIFY
Key: Dynamic Numbers

324

CWA 16926-65:2023 (E)

FR- TFR-31X9.143 Definition XFS Use (fiwUse/dwUse)
31X9.143 | Mode(s) of Use
Value
“ES” “X” EMV/ehipChip Issuer Master [WFS PIN USERSAPUBLICVERIFY
Key: Card Personalization
“E6” “X” EMV/ehipChip Issuer Master [WFS PIN USERSAPUBLICVERIFY
Key: Other
“E7” “B”, “D”, “E” EMV / Chip Asymmetric Key [WFS PIN USERSAPUBLIC

Pair for EMV/Smart Card based
PIN/PIN Block Encryption

“F0” “X» EMV/Chip Card Key: WES_PIN _USERSAPUBLICVERIFY
Application Cryptograms
“F1” “X” EMV/Chip Card Key: Secure WES_PIN _USERSAPUBLICVERIFY
Messaging for Confidentiality
“F2” “X» EMV/Chip Card Key: Secure | WES_PIN_USERSAPUBLICVERIFY
Messaging for Integrity
“F3” “X” EMV/Chip Card Key: Data WES_PIN _USERSAPUBLICVERIFY
Authentication Code
“F4” “X” EMV/Chip Card Key: Dynamic | WFS_PIN _USERSAPUBLICVERIFY
Numbers
“F5” . EMV/Chip Card Key: Card WES_PIN_USERSAPUBLICVERIFY
“F6” “X” EMV/Chip Card Key: Other WES_PIN_USERSAPUBLICVERIFY
“10” “N” Initialization Vector (IV) NA
“K0” “B”, “D”, “E” Key Encryption Key or WFS_PIN USEKEYENCKEY
wrappineKey Wrapping Key | WFS_PIN_USESVENCKEY
“K1” “B”, “D”, “E” | FR-31-Key Block Protection Key, | WFS_PIN_USEANSTR31MASTER
ANSI X9.143/TR-31
“K2” “B”, “D”, “E” Asymmetric Key Pair (KRD) WES_PIN_USERSAPUBLIC
ANSLX9.139/TR-34 WFS_PIN_USERSAPRIVATE
“K3” “B”, “D”, “E”, Asymmetric Key Pair for Key [WFS_PIN USERSAPUBLIC
X Wrapping/Key Agreement | pg ppy USERSAPRIVATE
“K4” “B”, “D”, “E” | Key Block Protection Key, ISO [WFS_PIN USEANSTR31MASTER
20038
“M0” “C”, “G”, “V” MAC Key. ISO 16609 MAC | WFS_PIN_USEMACING
algorithm 1 (using TDEA)
“M1” “C”,“G”, “V” MAC Key., ISO 9797-1 MAC | WFS_PIN_USEMACING
Algorithm 1
“M2” “C”,“G”, “V” MAC Key., ISO 9797-1 MAC | WFS_PIN_USEMACING
Algorithm 2
“M3” “C”,“G”, “V” MAC Key., ISO9797-1 MAC | WFS_PIN_USEMACING
Algorithm 3
“M4” “C”,“G”, “V” MAC Key., ISO9797-1 MAC | WFS_PIN USEMACING
Algorithm 4
“MS5” “C”,“G”, “V” MAC Key, ISO 9797-1:1999 | WFS_PIN USEMACING
MAC Algorithm 5

325

CWA 16926-65:2023 (E)

TR- TR-31X9.143 Definition XFS Use (fiwUse/dwUse)
31X9.143 | Mode(s) of Use
Value
“M6” “C” “G”, N MAC Key, ISO 9797-1:2011 WES_PIN _USEMACING
MAC Algorithm 5/CMAC
“M7” “C” “G”, N HMAC Key WES_PIN _USEMACING
“MS” “C” “G”, N MAC Key, ISO 9797-1:2011 WES_PIN _USEMACING
MAC Algorithm 6
“P0” “B”, “D”, “E” PIN Encryption Key WEFS PIN USEPINREMOTE
WEFS _PIN USEFUNCTION*
“P1” “G” PIN Generation Key (reserved for | WES_PIN_USEPINLOCAL
ANSI X9.132-202x) WFES_PIN _USEFUNCTION*
“p2”» “G” PIN Generation Key, other WES_PIN _USEPINLOCAL
algorithm WFES_PIN _USEFUNCTION*
“S0” “S”. “v” Asymmetric Key Pair for Digital | WES_PIN_USERSAPUBLICVERIFY
Signature WFS_PIN_USERSAPRIVATESIGN
“S1” “S”, v Asymmetric Key Pair, CA Key | WES _PIN_USERSAPUBLICVERIFY
WES_PIN _USERSAPRIVATESIGN
“S2” “S”, v Asymmetric Key Pair, non-ANSI | WFES_PIN_USERSAPUBLICVERIFY
X9.24 Ke WES_PIN _USERSAPRIVATESIGN
“V0” “C”, “G”, “V” PIN werification; WEFS PIN USEPINLOCAL
KPPV Verification Key, PVK, WEFS PIN USEFUNCTION*
other algorithm
“V1” “C”, “G”, “V” | PIN werificationVerification Key, | WFS_PIN USEPINLOCAL
IBM 3624 WEFS PIN USEFUNCTION*
“V2”» “C”, “G”, “V” | PIN Verification Key, VISA PVV | WFS PIN USEPINLOCAL
WEFS PIN USEFUNCTION*
“V3” “C”,“G”, “V” | PIN Verification Key, ANSI X9- | WES_PIN_USEPINLOCAL
132 algorithm 1 WFS PIN_USEFUNCTION*
“V4” “C”,“G”, “V” | PIN Verification Key, ANSI X9- | WES_PIN_USEPINLOCAL
132 algorithm 2 WFS PIN_USEFUNCTION*
“V5” “C”, “G”, “\V” PIN Verification Key, ANSI WES PIN_USEPINLOCAL
X9.132 algorithm 3 WFS PIN_USEFUNCTION*

* Note that WFS PIN_ USEFUNCTION is listed here for backward compatibility, but
WEFS PIN USEPINLOCAL/WFS PIN USEPINREMOTE is the more accurate single-use value.

** The Base Derivation Key is used to derive the IPEK. When a DUKPT IPEK is loaded, derived future keys are
stored and the IPEK deleted. Therefore, while the IPEK is no longer loaded, future keys directly related to it are.

WEFS PIN USEPINREMOTE and optionally WFS_PIN USEFUNCTION are included as the primary use of an
IPEK future key is to create a variant for PIN encryption. If the optional variant data encryption and MAC keys are
supported, WFS PIN USECRYPT and WFS_PIN USEMACING must be included. To use the optional data or
MAC keys ina WFS CMD PIN-€MD CRYPT command, /psKey must be the name of the IPEK and wAlgorithm
must be WFS_PIN_ CRYPTTRIDESCBC or WFS_PIN CRYPTTRIDESMAC. If the optional data encryption key
is being used, wMode must be WFS PIN. MODEENCRYPT. The optional variant response data encryption and
MAC keys are not supported.

326

CWA 16926-65:2023 (E)

12. Appendix-E (DUKPT)

Definitions and Abbreviations

DUKPT Derived Unique Key Per Transaction
BDK Base Derivation Key

IPEK Initial PIN Encryption Key

KSN Key Serial Number.

TRSM Tamper Resistant Security Module.

For additional information see referenee[Ref. 45-].

12.1 Default Key Name

The DUKPT IPEK key is given a fixed name so multi-vendor applications can be developed without the need for
vendor specific configuration tools.

If DUKPT is supported, this key must be included in the WFS INF PIN KEY DETAIL EX output.

Item Name Description

“ DUKPTIPEK” This key represents the IPEK, the derived future keys stored during import of the
IPEK and the variant per transaction keys (PIN and optionally data and MAC).

327

CWA 16926-65:2023 (E)

13. Appendix-F Diagram Source

Attached http://plantuml.com source for sequence diagrams from section 8.9. These can be loaded into various
editors (e.g. VSCode, Atom) with an appropriate PlantUML extension installed, or online (e.g. www.planttext.com)
or from the command line using the plantuml.jar file.

efﬁ]
ab, |
UMLSource zip

328

http://plantuml.com/
http://www.planttext.com/

	1. Introduction
	1.1 Background to Release 3.50
	1.2 XFS Service-Specific Programming

	2. PIN Keypad
	2.1 Encrypting Touch Screen (ETS)

	3. References
	4. Info Commands
	4.1 WFS_INF_PIN_STATUS
	4.2 WFS_INF_PIN_CAPABILITIES
	4.3 WFS_INF_PIN_KEY_DETAIL
	4.4 WFS_INF_PIN_FUNCKEY_DETAIL
	4.5 WFS_INF_PIN_HSM_TDATA
	4.6 WFS_INF_PIN_KEY_DETAIL_EX
	4.7 WFS_INF_PIN_SECUREKEY_DETAIL
	4.8 WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL
	4.9 WFS_INF_PIN_QUERY_PCIPTS_DEVICE_ID
	4.10 WFS_INF_PIN_GET_LAYOUT
	4.11 WFS_INF_PIN_KEY_DETAIL_340

	5. Execute Commands
	5.1 Normal PIN Commands
	5.1.1 WFS_CMD_PIN_CRYPT
	5.1.2 WFS_CMD_PIN_IMPORT_KEY
	5.1.3 WFS_CMD_PIN_DERIVE_KEY
	5.1.4 WFS_CMD_PIN_GET_PIN
	5.1.5 WFS_CMD_PIN_LOCAL_DES
	5.1.6 WFS_CMD_PIN_CREATE_OFFSET
	5.1.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE
	5.1.8 WFS_CMD_PIN_LOCAL_VISA
	5.1.9 WFS_CMD_PIN_PRESENT_IDC
	5.1.10 WFS_CMD_PIN_GET_PINBLOCK
	5.1.11 WFS_CMD_PIN_GET_DATA
	5.1.12 WFS_CMD_PIN_INITIALIZATION
	5.1.13 WFS_CMD_PIN_LOCAL_BANKSYS
	5.1.14 WFS_CMD_PIN_BANKSYS_IO
	5.1.15 WFS_CMD_PIN_RESET
	5.1.16 WFS_CMD_PIN_HSM_SET_TDATA
	5.1.17 WFS_CMD_PIN_SECURE_MSG_SEND
	5.1.18 WFS_CMD_PIN_SECURE_MSG_RECEIVE
	5.1.19 WFS_CMD_PIN_GET_JOURNAL
	5.1.20 WFS_CMD_PIN_IMPORT_KEY_EX
	5.1.21 WFS_CMD_PIN_ENC_IO
	5.1.22 WFS_CMD_PIN_HSM_INIT
	5.1.23 WFS_CMD_PIN_SECUREKEY_ENTRY
	5.1.24 WFS_CMD_PIN_GENERATE_KCV
	5.1.25 WFS_CMD_PIN_SET_GUIDANCE_LIGHT
	5.1.26 WFS_CMD_PIN_MAINTAIN_PIN
	5.1.27 WFS_CMD_PIN_KEYPRESS_BEEP
	5.1.28 WFS_CMD_PIN_SET_PINBLOCK_DATA
	5.1.29 WFS_CMD_PIN_SET_LOGICAL_HSM
	5.1.30 WFS_CMD_PIN_IMPORT_KEYBLOCK
	5.1.31 WFS_CMD_PIN_POWER_SAVE_CONTROL
	5.1.32 WFS_CMD_PIN_DEFINE_LAYOUT
	5.1.33 WFS_CMD_PIN_START_AUTHENTICATE
	5.1.34 WFS_CMD_PIN_AUTHENTICATE
	5.1.35 WFS_CMD_PIN_GET_PINBLOCK_EX
	5.1.36 WFS_CMD_PIN_SYNCHRONIZE_COMMAND
	5.1.37 WFS_CMD_PIN_CRYPT_340
	5.1.38 WFS_CMD_PIN_GET_PINBLOCK_340
	5.1.39 WFS_CMD_PIN_IMPORT_KEY_340

	5.2 Common commands for Remote Key Loading Schemes
	5.2.1 WFS_CMD_PIN_START_KEY_EXCHANGE

	5.3 Remote Key Loading Using Signatures
	5.3.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY
	5.3.2 WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM
	5.3.3 WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY
	5.3.4 WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR
	5.3.5 WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM

	5.4 Remote Key Loading with Certificates
	5.4.1 WFS_CMD_PIN_LOAD_CERTIFICATE
	5.4.2 WFS_CMD_PIN_GET_CERTIFICATE
	5.4.3 WFS_CMD_PIN_REPLACE_CERTIFICATE
	5.4.4 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY
	5.4.5 WFS_CMD_PIN_LOAD_CERTIFICATE_EX
	5.4.6 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX

	5.5 EMV
	5.5.1 WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY
	5.5.2 WFS_CMD_PIN_DIGEST

	5.6 Entering and Changing a Password
	5.6.1 WFS_CMD_PIN_PASSWORD_ENTRY

	6. Events
	6.1 WFS_EXEE_PIN_KEY
	6.2 WFS_SRVE_PIN_INITIALIZED
	6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS
	6.4 WFS_SRVE_PIN_OPT_REQUIRED
	6.5 WFS_SRVE_PIN_CERTIFICATE_CHANGE
	6.6 WFS_SRVE_PIN_HSM_TDATA_CHANGED
	6.7 WFS_SRVE_PIN_HSM_CHANGED
	6.8 WFS_EXEE_PIN_ENTERDATA
	6.9 WFS_SRVE_PIN_DEVICEPOSITION
	6.10 WFS_SRVE_PIN_POWER_SAVE_CHANGE
	6.11 WFS_EXEE_PIN_LAYOUT
	6.12 WFS_EXEE_PIN_DUKPT_KSN
	6.13 WFS_SRVE_PIN_PASSWORD_CLEARED

	7. C - Header File
	8. Appendix-A
	8.1 Remote Key Loading Using Signatures
	8.1.1 RSA Data Authentication and Digital Signatures
	8.1.2 RSA Secure Key Exchange using Digital Signatures
	8.1.3 Initialization Phase – Signature Issuer and ATM PIN
	8.1.4 Initialization Phase – Signature Issuer and Host
	8.1.5 Key Exchange – Host and ATM PIN
	8.1.6 Key Exchange (with random number) – Host and ATM PIN
	8.1.7 Enhanced RKL, Key Exchange (with random number) – Host and ATM PIN
	8.1.8 Default Keys and Security Item loaded during manufacture

	8.2 Remote Key Loading Using Certificates
	8.2.1 Certificate Exchange and Authentication
	8.2.2 Remote Key Exchange
	8.2.3 Replace Certificate
	8.2.4 Primary and Secondary Certificates
	8.2.5 TR34 BIND To Host
	8.2.6 TR34 Key Transport
	8.2.6.1 One Pass
	8.2.6.2 Two Pass
	/

	8.2.7 TR34 REBIND To New Host
	8.2.8 TR34 Force REBIND To New Host
	8.2.9 TR34 UNBIND From Host
	8.2.10 TR34 Force UNBIND From Host

	8.3 German ZKA GeldKarte (Deutsche Kreditwirtschaft)
	8.3.1 How to use the SECURE_MSG commands
	8.3.2 Protocol WFS_PIN_PROTISOAS
	8.3.3 Protocol WFS_PIN_PROTISOLZ
	8.3.4 Protocol WFS_PIN_PROTISOPS
	8.3.5 Protocol WFS_PIN_PROTCHIPZKA
	8.3.6 Protocol WFS_PIN_PROTRAWDATA
	8.3.7 Protocol WFS_PIN_PROTPBM
	8.3.8 Protocol WFS_PIN_PROTHSMLDI
	8.3.9 Protocol WFS_PIN_PROTGENAS
	8.3.10 Protocol WFS_PIN_PROTCHIPINCHG
	8.3.11 Protocol WFS_PIN_PROTPINCMP
	8.3.11.1 Use172BUse of WFS_PIN_PROTPINCMP with non-GeldKarte ZKA PIN Management

	8.3.12 Protocol WFS_PIN_PROTISOPINCHG
	8.3.13 Command Sequence

	8.4 EMV Support
	8.4.1 Keys loading
	8.4.2 PIN Block Management
	8.4.3 SHA-1 Digest

	8.5 French Cartes Bancaires
	8.5.1 Data Structure for WFS_CMD_PIN_ENC_IO
	8.5.2 Command Sequence

	8.6 Secure Key Entry
	8.6.1 Keyboard Layout
	8.6.1.1 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_UNIQUE
	8.6.1.2 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_SHIFT
	8.6.1.3 fwKeyEntryMode175BfwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_SHIFT
	8.6.1.4 fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_UNIQUE

	8.6.2 Command Usage - WFS_CMD_PIN_SECUREKEY_DETAIL and WFS_CMD_PIN_IMPORT_KEY
	8.6.3 Command Usage - WFS_INF_PIN_GET_LAYOUT and WFS_CMD_PIN_IMPORT_KEY_340

	8.7 WFS_PIN_USERESTRICTEDKEYENCKEY key usage
	8.7.1 Command Usage

	8.8 WFS_CMD_PIN_IMPORT_KEY_340 command Input/Output Parameters
	8.8.1 Importing a 3DES 16-byte terminal master key using signature-based remote key loading (SRKL):
	8.8.2 Importing a 16-byte DES key for PIN encryption with a key check value in the input
	8.8.3 Importing a 16-byte DES key for MACing (MAC Algorithm 3)
	8.8.4 Importing a 2048-bit Host RSA public key
	8.8.5 Importing a 24-byte DES symmetric data encryption key via TR-31X9.143 keyblock

	8.9 Entering passwords using the WFS_CMD_PIN_PASSWORD_ENTRY command.
	8.9.1 Entering passwords individually to allow secure key parts to be loaded
	8.9.2 Entering and changing a password

	9. Appendix-B (Country Specific WFS_CMD_PIN_ENC_IO protocols)
	9.1 Luxemburg Protocol
	9.1.1 WFS_CMD_ENC_IO_LUX_LOAD_APPKEY
	9.1.2 WFS_CMD_ENC_IO_LUX_GENERATE_MAC
	9.1.3 WFS_CMD_ENC_IO_LUX_CHECK_MAC
	9.1.4 WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK
	9.1.5 WFS_CMD_ENC_IO_LUX_DECRYPT_TDES
	9.1.6 WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES
	9.1.7 Luxemburg-specific Header File

	9.2 China Protocol
	9.2.1 WFS_CMD_ENC_IO_CHN_DIGEST
	9.2.2 WFS_CMD_ENC_IO_CHN_SET_SM2_PARAM
	9.2.3 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY
	9.2.4 WFS_CMD_ENC_IO_CHN_SIGN
	9.2.5 WFS_CMD_ENC_IO_CHN_VERIFY
	9.2.6 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM
	9.2.7 WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR
	9.2.8 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM
	9.2.9 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY
	9.2.10 China-specific Header File

	10. Appendix–C (Standardized lpszExtra fields)
	10.1 WFS_INF_PIN_STATUS
	10.2 WFS_INF_PIN_CAPABILITIES

	11. Appendix–D (TR-31X9.143 Key Use)
	12. Appendix-E (DUKPT)
	12.1 Default Key Name

	13. Appendix-F Diagram Source

