

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 16926-68:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-68 February 2020

ICS 35.200; 35.240.15; 35.240.40
English version Extensions for Financial Services (XFS) interface specification Release 3.40 - Part 68: Text Terminal Unit (TTU) Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

2

Table of Contents

European Foreword .. 4

1. Migration Information .. 8

2. Text Terminal Units ... 9

3. References ... 10

4. Info Commands ... 11

4.1 WFS_INF_TTU_STATUS .. 11

4.2 WFS_INF_TTU_CAPABILITIES.. 14

4.3 WFS_INF_TTU_FORM_LIST .. 17

4.4 WFS_INF_TTU_QUERY_FORM ... 18

4.5 WFS_INF_TTU_QUERY_FIELD ... 19

4.6 WFS_INF_TTU_KEY_DETAIL .. 21

5. Execute Commands .. 23

5.1 WFS_CMD_TTU_BEEP .. 23

5.2 WFS_CMD_TTU_CLEARSCREEN ... 24

5.3 WFS_CMD_TTU_DISPLIGHT ... 25

5.4 WFS_CMD_TTU_SET_LED .. 26

5.5 WFS_CMD_TTU_SET_RESOLUTION ... 27

5.6 WFS_CMD_TTU_WRITE_FORM ... 28

5.7 WFS_CMD_TTU_READ_FORM ... 29

5.8 WFS_CMD_TTU_WRITE .. 31

5.9 WFS_CMD_TTU_READ .. 33

5.10 WFS_CMD_TTU_RESET .. 36

5.11 WFS_CMD_TTU_DEFINE_KEYS ... 37

5.12 WFS_CMD_TTU_POWER_SAVE_CONTROL ... 39

5.13 WFS_CMD_TTU_SET_LED_EX ... 40

5.14 WFS_CMD_TTU_SYNCHRONIZE_COMMAND .. 41

6. Events ... 42

6.1 WFS_EXEE_TTU_FIELDERROR ... 42

6.2 WFS_EXEE_TTU_FIELDWARNING ... 43

6.3 WFS_EXEE_TTU_KEY ... 44

6.4 WFS_SRVE_TTU_DEVICEPOSITION .. 45

6.5 WFS_SRVE_TTU_POWER_SAVE_CHANGE .. 46

7. Form and Field Definitions ... 47

7.1 Definition Syntax .. 47

7.2 XFS form/media definition files in multi-vendor environments .. 48

This document is not an official CEN publication

CWA 16926-68:2020 (E)

3

7.3 Form Definition .. 49

7.4 Field Definition .. 50

8. C - Header file .. 52

This document is not an official CEN publication

CWA 16926-68:2020 (E)

4

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations – Part 2. It was approved by a Workshop of representatives of interested
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• ATM Japan LTD

• AURIGA SPA

• BANK OF AMERICA

• CASHWAY TECHNOLOGY

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO.

• CIMA SPA

• CLEAR2PAY SCOTLAND LIMITED

• DIEBOLD NIXDORF

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM

• FINANZ INFORMATIK

• FUJITSU FRONTECH LIMITED

• FUJITSU TECHNOLOGY

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HESS CASH SYSTEMS GMBH & CO. KG

• HITACHI OMRON TS CORP.

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA AG

• NCR FSG

• NEC CORPORATION

• OKI ELECTRIC INDUSTRY SHENZHEN

This document is not an official CEN publication

CWA 16926-68:2020 (E)

5

• OKI ELECTRONIC INDUSTRY CO

• PERTO S/A

• REINER GMBH & CO KG

• SALZBURGER BANKEN SOFTWARE

• SIGMA SPA

• TEB

• ZIJIN FULCRUM TECHNOLOGY CO

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-68, but this does not guarantee, either explicitly or implicitly, its correctness.
Users of CWA 16926-68 should be aware that neither the Workshop participants, nor CEN can be held liable for
damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-68 do so on
their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

6

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to
Version 3.40 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -

This document is not an official CEN publication

CWA 16926-68:2020 (E)

7

Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

This document is not an official CEN publication

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx

CWA 16926-68:2020 (E)

8

1. Migration Information

XFS 3.40 has been designed to minimize backwards compatibility issues. This document highlights the changes
made to the TTU device class between version 3.30 and 3.40, by highlighting the additions and deletions to the text.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

9

2. Text Terminal Units

This specification describes the functionality of the services provided by text terminal unit (TTU) services under
XFS, by defining the service-specific commands that can be issued, using the WFSGetInfo, WFSAsyncGetInfo,
WFSExecute and WFSAsyncExecute functions.

This section describes the functions provided by a generic Text Terminal Unit (TTU) service. A Text Terminal Unit
is a text i/o device, which applies both to ATM operator panels and to displays incorporated in devices such as PIN
pads and printers. This service allows for the following categories of functions:

• Forms oriented input and output

• Direct display output

• Keyboard input

• LED settings and control

All position indexes are zero based, where column zero, row zero is the top-leftmost position.

If the device has no shift key, the WFS_CMD_TTU_READ_FORM and WFS_CMD_TTU_READ commands will
return only upper case letters. If the device has a shift key, these commands return upper and lower case letters as
governed by the user's use of the shift key.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

10

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.3040

This document is not an official CEN publication

CWA 16926-68:2020 (E)

11

4. Info Commands

4.1 WFS_INF_TTU_STATUS

Description This command reports the full range of information available, including the information that is
provided by the Service Provider.

Input Param None.

Output Param LPWFSTTUSTATUS lpStatus;
typedef struct _wfs_ttu_status
 {
 WORD fwDevice;
 WORD wKeyboard;
 WORD wKeylock;
 WORD wLEDs[WFS_TTU_LEDS_MAX];
 WORD wDisplaySizeX;
 WORD wDisplaySizeY;
 LPSTR lpszExtra;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 LPWFSTTULEDEX lpLEDEx;
 WORD wAntiFraudModule;
 } WFSTTUSTATUS, *LPWFSTTUSTATUS;

fwDevice
Specifies the state of the text terminal unit as one of the following flags:

Value Meaning
WFS_TTU_DEVONLINE The device is online (i.e. powered on and

operable).
WFS_TTU_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).
WFS_TTU_DEVPOWEROFF The device is powered off or physically not

connected.
WFS_TTU_DEVBUSY The device is busy and unable to process an

execute command at this time.
WFS_TTU_DEVNODEVICE There is no device intended to be there; e.g.

this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_TTU_DEVHWERROR The device is inoperable due to a hardware
error.

WFS_TTU_DEVUSERERROR The device is inoperable because a person is
preventing proper device operation.

WFS_TTU_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_TTU_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

wKeyboard
Specifies the state of the keyboard in the text terminal unit as one of the following flags:

Value Meaning
WFS_TTU_KBDON The keyboard is activated.
WFS_TTU_KBDOFF The keyboard is not activated.
WFS_TTU_KBDNA The keyboard is not available.

wKeylock
Specifies the state of the keyboard lock of the text terminal unit as one of the following flags:

This document is not an official CEN publication

CWA 16926-68:2020 (E)

12

Value Meaning
WFS_TTU_KBDLOCKON The keyboard lock switch is activated.
WFS_TTU_KBDLOCKOFF The keyboard lock switch is not activated.
WFS_TTU_KBDLOCKNA The keyboard lock switch is not available.

wLEDs[WFS_TTU_LEDS_MAX]
Specifies the state of the LEDs. The maximum LED index is WFS_TTU_LEDS_MAX -1. The
number of available LEDs can be retrieved with the WFS_INF_TTU_CAPABILITIES info
command. This field is only provided for backwards compatibility; the lpLEDEx parameter should
instead be used to retrieve the LED status. All member elements in this array are specified as one
of the following flags:

Value Meaning
WFS_TTU_LEDNA The status is not available.
WFS_TTU_LEDOFF The LED is turned off.
WFS_TTU_LEDSLOWFLASH The LED is blinking slowly.
WFS_TTU_LEDMEDIUMFLASH The LED is blinking medium frequency.
WFS_TTU_LEDQUICKFLASH The LED is blinking quickly.
WFS_TTU_LEDCONTINUOUS The light is turned on continuous (steady).

wDisplaySizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that
can be displayed).

wDisplaySizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be
displayed).

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An empty
list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_TTU_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_TTU_DEVONLINE or
WFS_TTU_DEVOFFLINE). This value is one of the following values:

Value Meaning
WFS_TTU_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_TTU_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_TTU_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_TTU_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

lpLEDEx
Pointer to a WFSTTULEDEX structure that specifies the states of the LEDs. If there is no LED
available this will be a NULL pointer.

typedef struct _wfs_ttu_led_ex
 {
 USHORT usNumOfLEDs;
 LPDWORD lpdwLEDs;
 } WFSTTULEDEX, *LPWFSTTULEDEX;

This document is not an official CEN publication

CWA 16926-68:2020 (E)

13

usNumOfLEDs
This value specifies the number of LEDs, i.e. the size of the array returned in lpdwLEDs.

lpdwLEDs
Pointer to a DWORD array that specifies the state of each LED. Specifies the state of the LED
as WFS_TTU_LEDNA, WFS_TTU_LEDOFF or a combination of the following flags
consisting of one type B, and optionally one type C.

Value Meaning Type
WFS_TTU_LEDNA The status is not available. A
WFS_TTU_LEDOFF The LED is turned off. A
WFS_TTU_LEDSLOWFLASH The LED is blinking B

slowly.
WFS_TTU_LEDMEDIUMFLASH The LED is blinking B

medium frequency.
WFS_TTU_LEDQUICKFLASH The LED is blinking B

quickly.
WFS_TTU_LEDCONTINUOUS The LED is turned on B

continuous (steady).
WFS_TTU_LEDRED The LED is red. C
WFS_TTU_LEDGREEN The LED is green. C
WFS_TTU_LEDYELLOW The LED is yellow. C
WFS_TTU_LEDBLUE The LED is blue. C
WFS_TTU_LEDCYAN The LED is cyan. C
WFS_TTU_LEDMAGENTA The LED is magenta. C
WFS_TTU_LEDWHITE The LED is white. C

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_TTU_AFMNOTSUPP No anti-fraud module is available.
WFS_TTU_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_TTU_AFMINOP Anti-fraud module is inoperable.
WFS_TTU_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_TTU_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.
In the case where communications with the device has been lost, the fwDevice field will report
WFS_TTU_DEVPOWEROFF when the device has been removed or
WFS_TTU_DEVHWERROR if the communications are unexpectedly lost. All other fields should
contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

14

4.2 WFS_INF_TTU_CAPABILITIES

Description This command is used to retrieve the capabilities of the text terminal unit.

Input Param None.

Output Param LPWFSTTUCAPS lpCaps;
typedef struct _wfs_ttu_caps
 {
 WORD wClass;
 WORD fwType;
 LPWFSTTURESOLUTION *lppResolutions;
 WORD wNumOfLEDs;
 BOOL bKeyLock;
 BOOL bDisplayLight;
 BOOL bCursor;
 BOOL bForms;
 WORD fwCharSupport;
 LPSTR lpszExtra;
 BOOL bPowerSaveControl;
 LPWFSTTULEDEX lpLEDEx;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
 } WFSTTUCAPS, *LPWFSTTUCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_TTU.

fwType
Specifies the type of the text terminal unit as one of the following flags:

Value Meaning
WFS_TTU_FIXED The text terminal unit is a fixed device.
WFS_TTU_REMOVABLE The text terminal unit is a removable device.

lppResolutions
Pointer to a NULL terminated array of pointers WFSTTURESOLUTION structures. Specifies the
resolutions supported by the physical display device. (For a definition of
WFSTTURESOLUTION see command WFS_CMD_TTU_SET_RESOLUTION). The resolution
indicated in the first position is the default resolution and the device will be placed in this
resolution when the Service Provider is initialized or reset through the WFS_CMD_TTU_RESET
command.

wNumOfLEDs
Specifies the number of LEDs available in this text terminal unit. This field is only provided for
backwards compatibility; the lpLEDEx parameter should instead be used to retrieve the LED
capabilities.

bKeyLock
Specifies whether the text terminal unit has a key lock switch. The value can be either FALSE (not
available) or TRUE (available).

bDisplayLight
Specifies whether the text terminal unit has a display light that can be switched ON and OFF with
the WFS_CMD_TTU_DISPLIGHT command. The value can be either FALSE (not available) or
TRUE (available).

bCursor
Specifies whether the text terminal unit display supports a cursor. The value can be either FALSE
(not available) or TRUE (available).

bForms
Specifies whether the text terminal unit service supports forms oriented input and output. The
value can be either FALSE (not available) or TRUE (available).

fwCharSupport
One or more flags specifying the Character Sets, in addition to single byte ASCII, supported by
the Service Provider:

This document is not an official CEN publication

CWA 16926-68:2020 (E)

15

Value Meaning
WFS_TTU_ASCII ASCII is supported for XFS forms.
WFS_TTU_UNICODE UNICODE is supported for XFS forms.

For fwCharSupport, a Service Provider can support ONLY ASCII forms or can support BOTH
ASCII and UNICODE forms. A Service Provider can not support UNICODE forms without also
supporting ASCII forms.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An empty
list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

lpLEDEx
Pointer to a WFSTTULEDEX structure that specifies the capabilities of the LEDs. If there is no
LED available this will be a NULL pointer.

typedef struct _wfs_ttu_ledex
 {
 USHORT usNumOfLEDs;
 LPDWORD lpdwLEDs;
 } WFSTTULEDEX, *LPWFSTTULEDEX;

usNumOfLEDs
This value specifies the number of available LEDs, i.e. the size of the array returned in
lpdwLEDs.

lpdwLEDs
Pointer to a DWORD array that specifies which LEDs are available.

The elements of this array are specified as a combination of the following flags and indicate all
of the possible flash rates (type B) and colors (type C) that the LED is capable of handling. If
the LED only supports one color then no value of type C is returned.

Value Meaning Type
WFS_TTU_LEDOFF The LED can be off. A
WFS_TTU_LEDSLOWFLASH The LED can blink B

slowly.
WFS_TTU_LEDMEDIUMFLASH The LED can blink B

medium frequency.
WFS_TTU_LEDQUICKFLASH The LED can blink B

quickly.
WFS_TTU_LEDCONTINUOUS The LED can be B

continuous (steady).
WFS_TTU_LEDRED The LED can be red. C
WFS_TTU_LEDGREEN The LED can be green. C
WFS_TTU_LEDYELLOW The LED can be yellow. C
WFS_TTU_LEDBLUE The LED can be blue. C
WFS_TTU_LEDCYAN The LED can be cyan. C
WFS_TTU_LEDMAGENTA The LED can be C

magenta.
WFS_TTU_LEDWHITE The LED can be white. C

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

lpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

16

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

17

4.3 WFS_INF_TTU_FORM_LIST

Description This command is used to retrieve the list of forms available on the device.

Input Param None.

Output Param LPSTR lpszFormList;

lpszFormList
Pointer to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

18

4.4 WFS_INF_TTU_QUERY_FORM

Description This command is used to retrieve details of the definition of a specified form.

Input Param LPSTR lpszFormName;

lpszFormName
Points to the null-terminated form name on which to retrieve details.

Output Param LPWFSTTUFRMHEADER lpFrmHeader;
typedef struct _wfs_ttu_frm_header
 {
 LPSTR lpszFormName;
 WORD wWidth;
 WORD wHeight;
 WORD wVersionMajor;
 WORD wVersionMinor;
 WORD fwCharSupport;
 LPSTR lpszFields;
 WORD wLanguageID;
 } WFSTTUFRMHEADER, *LPWFSTTUFRMHEADER;

lpszFormName
Specifies the null-terminated name of the form.

wWidth
Specifies the width of the form in columns.

wHeight
Specifies the height of the form in rows.

wVersionMajor
Specifies the major version. If the version is not specified in the form then zero is returned.

wVersionMinor
Specifies the minor version. If the version is not specified in the form then zero is returned.

fwCharSupport
A single flag indicating whether the form is encoded in ASCII or UNICODE:

Value Meaning
WFS_TTU_ASCII XFS form is encoded in ASCII.
WFS_TTU_UNICODE XFS form is encoded in UNICODE.

lpszFields
Pointer to a list of null-terminated field names, with the final name terminating with two null
characters.

wLanguageID
Specifies the language identifier for the form.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form is invalid.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

19

4.5 WFS_INF_TTU_QUERY_FIELD

Description This command is used to retrieve details of the definition of a single or all fields on a specified
form.

Input Param LPWFSTTUQUERYFIELD lpQueryField;
typedef struct _wfs_ttu_query_field
 {
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
 } WFSTTUQUERYFIELD, *LPWFSTTUQUERYFIELD;

lpszFormName
Pointer to the null-terminated form name.

lpszFieldName
Pointer to the null-terminated name of the field about which to retrieve details. If this value is a
NULL pointer, then retrieve details for all fields on the form.

Output Param LPWFSTTUFRMFIELD *lppFields;

lppFields
Pointer to a NULL terminated array of pointers to field definition structures:
typedef struct _wfs_ttu_frm_field
 {
 LPSTR lpszFieldName;
 WORD fwType;
 WORD fwClass;
 WORD fwAccess;
 WORD fwOverflow;
 LPSTR lpszFormat;
 WORD wLanguageID;
 } WFSTTUFRMFIELD, *LPWFSTTUFRMFIELD;

lpszFieldName
Pointer to the null-terminated field name.

fwType
Specifies the type of field and can be one of the following:

Value Meaning
WFS_TTU_FIELDTEXT A text field.
WFS_TTU_FIELDINVISIBLE An invisible text field.
WFS_TTU_FIELDPASSWORD A password field, input is echoed as ‘*’.

fwClass
Specifies the class of the field and can be one of the following:

Value Meaning
WFS_TTU_CLASSSTATIC The field data cannot be set by the

application.
WFS_TTU_CLASSOPTIONAL The field data can be set by the application.
WFS_TTU_CLASSREQUIRED The field data must be set by the application.

fwAccess
Specifies whether the field is to be used for input, output, or both and can be a combination of the
following bit-flags:

Value Meaning
WFS_TTU_ACCESSREAD The field is used for input from the physical

device.
WFS_TTU_ACCESSWRITE The field is used for output to the physical

device.

fwOverflow
Specifies how an overflow of field data should be handled and can be one of the following:

This document is not an official CEN publication

CWA 16926-68:2020 (E)

20

Value Meaning
WFS_TTU_OVFTERMINATE Return an error and terminate display of the

form.
WFS_TTU_OVFTRUNCATE Truncate the field data to fit in the field.
WFS_TTU_OVFOVERWRITE Print the field data beyond the extents of the

field boundary.

lpszFormat
Format string as defined in the form for this field.

wLanguageID
Specifies the language identifier for the field.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form is invalid.
WFS_ERR_TTU_FIELDNOTFOUND The specified field cannot be found.
WFS_ERR_TTU_FIELDINVALID The specified field is invalid.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

21

4.6 WFS_INF_TTU_KEY_DETAIL

Description This command returns information about the Keys (buttons) supported by the device.
This command should be issued to determine which Keys are available.

Input Param None.

Output Param LPWFSTTUKEYDETAIL lpKeyDetail;
typedef struct _wfs_ttu_key_detail
 {
 LPSTR lpszKeys;
 LPWSTR lpwszUNICODEKeys;
 LPWORD lpwCommandKeys;
 } WFSTTUKEYDETAIL, *LPWFSTTUKEYDETAIL;

lpszKeys
String which holds the printable characters (numeric and alphanumeric keys) on the Text Terminal
Unit, e.g. “0123456789ABCabcαβχ” if those text terminal input keys are present. This string is a
NULL pointer if no keys of this type are present on the device.

lpwszUNICODEKeys
String which holds the numeric and alphanumeric keys on the Text Terminal Unit like lpszKeys
but in UNICODE format. This string is a NULL pointer if capability fwCharSupport equals
WFS_TTU_ASCII or if no keys of this type are present on the device.

lpwCommandKeys
Array of command keys on the Text Terminal Unit. The array is terminated with a zero value.
This array is a NULL pointer if no keys of this type are present on the device.

WFS_TTU_CK_ENTER

WFS_TTU_CK_CANCEL

WFS_TTU_CK_CLEAR

WFS_TTU_CK_BACKSPACE

WFS_TTU_CK_HELP

WFS_TTU_CK_00

WFS_TTU_CK_000

WFS_TTU_CK_ARROWUP

WFS_TTU_CK_ARROWDOWN

WFS_TTU_CK_ARROWLEFT

WFS_TTU_CK_ARROWRIGHT

The following values may be used as vendor dependent keys.

WFS_TTU_CK_OEM1

WFS_TTU_CK_OEM2

WFS_TTU_CK_OEM3

WFS_TTU_CK_OEM4

WFS_TTU_CK_OEM5

WFS_TTU_CK_OEM6

WFS_TTU_CK_OEM7

WFS_TTU_CK_OEM8

WFS_TTU_CK_OEM9

WFS_TTU_CK_OEM10

WFS_TTU_CK_OEM11

This document is not an official CEN publication

CWA 16926-68:2020 (E)

22

WFS_TTU_CK_OEM12

The following keys are used for Function Descriptor Keys.

WFS_TTU_CK_FDK01

WFS_TTU_CK_FDK02

WFS_TTU_CK_FDK03

WFS_TTU_CK_FDK04

WFS_TTU_CK_FDK05

WFS_TTU_CK_FDK06

WFS_TTU_CK_FDK07

WFS_TTU_CK_FDK08

WFS_TTU_CK_FDK09

WFS_TTU_CK_FDK10

WFS_TTU_CK_FDK11

WFS_TTU_CK_FDK12

WFS_TTU_CK_FDK13

WFS_TTU_CK_FDK14

WFS_TTU_CK_FDK15

WFS_TTU_CK_FDK16

WFS_TTU_CK_FDK17

WFS_TTU_CK_FDK18

WFS_TTU_CK_FDK19

WFS_TTU_CK_FDK20

WFS_TTU_CK_FDK21

WFS_TTU_CK_FDK22

WFS_TTU_CK_FDK23

WFS_TTU_CK_FDK24

WFS_TTU_CK_FDK25

WFS_TTU_CK_FDK26

WFS_TTU_CK_FDK27

WFS_TTU_CK_FDK28

WFS_TTU_CK_FDK29

WFS_TTU_CK_FDK30

WFS_TTU_CK_FDK31

WFS_TTU_CK_FDK32

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

23

5. Execute Commands

5.1 WFS_CMD_TTU_BEEP

Description This command is used to beep at the text terminal unit.

Input Param LPWORD lpwBeep;

lpwBeep
Specifies whether the beeper should be turned on or off. Specified as one or more of the following
flags of type A, or B, or as WFS_TTU_BEEPCONTINUOUS in combination with one of the
flags of type B:

Value Meaning Type
WFS_TTU_BEEPOFF The beeper is turned off. A
WFS_TTU_BEEPKEYPRESS The beeper sounds a key click B

signal.
WFS_TTU_BEEPEXCLAMATION The beeper sounds an B

exclamation signal.
WFS_TTU_BEEPWARNING The beeper sounds a warning B

signal.
WFS_TTU_BEEPERROR The beeper sounds an error B

signal.
WFS_TTU_BEEPCRITICAL The beeper sounds a critical B

error signal.
WFS_TTU_BEEPCONTINUOUS The beeper sound is turned C

on continuously.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

24

5.2 WFS_CMD_TTU_CLEARSCREEN

Description This command clears the specified area of the text terminal unit screen. The cursor is positioned to
the upper left corner of the cleared area.

Input Param LPWFSTTUCLEARSCREEN lpClearScreen;
struct _wfs_ttu_clear_screen
 {
 WORD wPositionX;
 WORD wPositionY;
 WORD wWidth;
 WORD wHeight;
 } WFSTTUCLEARSCREEN, *LPWFSTTUCLEARSCREEN;

wPositionX
Specifies the horizontal position of the area to be cleared.

wPositionY
Specifies the vertical position of the area to be cleared.

wWidth
Specifies the width of the area to be cleared. This value must be positive.

wHeight
Specifies the height of the area to be cleared. This value must be positive.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments If the input parameter is a NULL pointer, the whole screen will be cleared.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

25

5.3 WFS_CMD_TTU_DISPLIGHT

Description This command is used to switch the lighting of the text terminal unit on or off.

Input Param LPWFSTTUDISPLIGHT lpDispLight;
typedef struct _wfs_ttu_disp_light
 {
 BOOL bMode;
 } WFSTTUDISPLIGHT, *LPWFSTTUDISPLIGHT;

bMode
Specifies whether the lighting of the text terminal unit is switched on (TRUE) or off (FALSE).

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

26

5.4 WFS_CMD_TTU_SET_LED

Description This command is used to set the status of the LEDs.

Input Param LPWFSTTUSETLEDS lpSetLEDs;
typedef struct _wfs_ttu_set_leds
 {
 WORD wLED;
 WORD fwCommand;
 } WFSTTUSETLEDS, *LPWFSTTUSETLEDS;

wLED
Specifies the index of the LED to set.

fwCommand
Specifies the state of the LED, as one of the following flags:

Value Meaning
WFS_TTU_LEDOFF The LED is turned off.
WFS_TTU_LEDSLOWFLASH The LED is set to flash slowly.
WFS_TTU_LEDMEDIUMFLASH The LED is blinking medium frequency.
WFS_TTU_LEDQUICKFLASH The LED is set to flash quickly.
WFS_TTU_LEDCONTINUOUS The LED is turned on continuously (steady).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_INVALIDLED An attempt to set a LED to a new value was

invalid because the LED does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

27

5.5 WFS_CMD_TTU_SET_RESOLUTION

Description This command is used to set the resolution of the display. The screen is cleared and the cursor is
positioned at the upper left position.

Input Param LPWFSTTURESOLUTION lpResolution;
typedef struct _wfs_ttu_resolution
 {
 WORD wSizeX;
 WORD wSizeY;
 } WFSTTURESOLUTION, *LPWFSTTURESOLUTION;

wSizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that
can be displayed).

wSizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be
displayed).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_RESNOTSUPP The specified resolution is not supported by

the display.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

28

5.6 WFS_CMD_TTU_WRITE_FORM

Description This command is used to display a form by merging the supplied variable field data with the
defined form and field data specified in the form.

Input Param LPWFSTTUWRITEFORM lpWriteform;
typedef struct _wfs_ttu_write_form
 {
 LPSTR lpszFormName;
 BOOL bClearScreen;
 LPSTR lpszFields;
 LPWSTR lpszUNICODEFields;
 } WFSTTUWRITEFORM, *LPWFSTTUWRITEFORM;

lpszFormName
Pointer to the null-terminated form name.

bClearScreen
Specifies whether the screen is cleared before displaying the form (TRUE) or not (FALSE).

lpszFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the entire field string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0.
The <FieldValue> stands for a string containing all the printable characters (numeric and
alphanumeric) to display on the text terminal unit key pad for this field.

lpszUNICODEFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) to display on the text terminal
unit key pad for this field.

Note: The lpszUNICODEFields field should only be used if the form is encoded in UNICODE
representation. This can be determined with the WFS_ INF_TTU_QUERY_FORM command.
The use of lpszFields and lpszUNICODEFields fields is mutually exclusive.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form definition cannot be

found.
WFS_ERR_TTU_FORMINVALID The specified form definition is invalid.
WFS_ERR_TTU_MEDIAOVERFLOW The form overflowed the media.
WFS_ERR_TTU_FIELDSPECFAILURE The syntax of the lpszFields member is

invalid.
WFS_ERR_TTU_CHARSETDATA Character set(s) supported by Service

Provider is inconsistent with use of
lpszFields or lpszUNICODEFields fields.

WFS_ERR_TTU_FIELDERROR An error occurred while processing a field,
causing termination of the display request.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_TTU_FIELDERROR A fatal error occurred while processing a

field.
WFS_EXEE_TTU_FIELDWARNING A non-fatal error occurred while processing a

field.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

29

5.7 WFS_CMD_TTU_READ_FORM

Description This command is used to read data from input fields on the specified form.

Input Param LPWFSTTUREADFORM lpReadForm;
typedef struct _wfs_ttu_read_form
 {
 LPSTR lpszFormName;
 LPSTR lpszFieldNames;
 } WFSTTUREADFORM, *LPWFSTTUREADFORM;

lpszFormName
Pointer to the null-terminated name of the form.

lpszFieldNames
Pointer to a list of null-terminated field names from which to read input data, with the final name
terminating with two null characters. The fields are edited by the user in the order that the fields
are specified within this parameter. If lpszFieldNames value is a NULL pointer, then data is read
from all input fields on the form in the order they appear in the form file (independent of the field
screen position).

Output Param LPWFSTTUREADFORMOUT lpReadFormOut;
typedef struct _wfs_ttu_read_form_out
 {
 LPSTR lpszFields;
 LPWSTR lpszUNICODEFields;
 } WFSTTUREADFORMOUT, *LPWFSTTUREADFORMOUT;

lpszFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the final string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0. The
<FieldValue> stands for a string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad for this field. This parameter is a NULL
pointer if form is encoded in UNICODE.

lpszUNICODEFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) read from the text terminal unit
key pad for this field. This parameter is a NULL pointer if the form is encoded in ASCII.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form definition is invalid.
WFS_ERR_TTU_FIELDSPECFAILURE The syntax of the lpszFieldNames member is

invalid.
WFS_ERR_TTU_KEYCANCELED The read operation was terminated by

pressing the <CANCEL> key.
WFS_ERR_TTU_FIELDERROR An error occurred while processing a field,

causing termination of the read request.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_TTU_FIELDERROR A fatal error occurred while processing a

field.
WFS_EXEE_TTU_FIELDWARNING A non-fatal error occurred while processing a

field.

Comments The WFS_TTU_CK_ENTER key only acts as terminate key when it is pressed in the last read
field. When the WFS_TTU_CK_ENTER key is pressed in an intermediate field, the cursor moves

This document is not an official CEN publication

CWA 16926-68:2020 (E)

30

to the next field and the data entry finishes for the current field. Any other key that terminates
input (except cancel), will cause all the fields to be returned in their present state. If cancel
terminates input then the command will return the WFS_ERR_TTU_KEYCANCELED error.

The following keys will not be returned in the output parameter lpszFields or
lpszUNICODEFields, but they may affect the field content (note in the following the term field
content is used to refer to the data buffer and the display field):

Value Meaning
WFS_TTU_CK_CLEAR Will clear the field content.
WFS_TTU_CK_BACKSPACE Will cause the character before the Current

Edit Position to be removed from the field
content. If WFS_TTU_CK_BACKSPACE is
the first key pressed after a field is activated
(for any reason other than when the
WFS_TTU_CK_BACKSPACE key causes
the field to be activated), then the last
character in the field content is deleted. If
WFS_TTU_CK_BACKSPACE is pressed
when the Current Edit Position is at the start
of a field, then the previous field is activated.
If WFS_TTU_CK_BACKSPACE is the first
key pressed after the field is activated as a
result of an earlier
WFS_TTU_CK_BACKSPACE then no
characters are deleted from the field content
and the previous field will be activated. It is
not possible to navigate backwards past the
first field; in this case
WFS_TTU_CK_BACKSPACE will have no
effect.

WFS_TTU_CK_00 Will add a double zero ‘00’ string to the field
content. If there is not enough space for all
the digits to be added to the field content
when the field’s OVERFLOW definition is
TERMINATE or TRUNCATE then the
excess ‘0’s will be ignored. If the field’s
OVERFLOW definition is OVERWRITE
then all the ‘0’s are added to the field
content.

WFS_TTU_CK_000 Will add a triple zero ‘000’ string to the field
content. If there is not enough space for all
the digits to be added to the field content
when the field’s OVERFLOW definition is
TERMINATE or TRUNCATE then the
excess ‘0’s will be ignored. If the field’s
OVERFLOW definition is OVERWRITE
then all the ‘0’s are added to the field
content.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

31

5.8 WFS_CMD_TTU_WRITE

Description This command displays the specified text on the display of the text terminal unit. The specified
text may include the control characters CR (Carriage Return) and LF (Line Feed). The control
characters can be included in the text as CR, or LF, or CR LF, or LF CR and all combinations will
perform the function of relocating the cursor position to the left hand side of the display on the
next line down. If the text will overwrite the display area then the display will scroll.

Input Param LPWFSTTUWRITE lpWrite;
typedef struct _wfs_ttu_write
 {
 WORD fwMode;
 SHORT wPosX;
 SHORT wPosY;
 WORD fwTextAttr;
 LPSTR lpsText;
 LPWSTR lpsUNICODEText;
 } WFSTTUWRITE, *LPWFSTTUWRITE;

fwMode
Specifies whether the position of the output is absolute or relative to the current cursor position.
Possible values are:

Value Meaning
WFS_TTU_POSRELATIVE The output is positioned relative to the

current cursor position.
WFS_TTU_POSABSOLUTE The output is positioned absolute at the

position specified in wPosX and wPosY.

wPosX
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a horizontal offset relative to the
current cursor position as a zero (0) based value.

wPosY
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a vertical offset relative to the current
cursor position as a zero (0) based value.

fwTextAttr
Specifies the text attributes used for displaying the text as a combination of the following flags. If
none of the following attribute flags are selected then the text will be displayed as
TEXTNORMAL.

Value Meaning
WFS_TTU_TEXTUNDERLINE The displayed text will be underlined.
WFS_TTU_TEXTINVERTED The displayed text will be inverted.
WFS_TTU_TEXTFLASH The displayed text will be flashing.

lpsText
Specifies the text that will be displayed.

lpsUNICODEText
Specifies the UNICODE text that will be displayed.

Note: lpsText and lpsUNICODEText are mutually exclusive.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_CHARSETDATA Character set(s) supported by Service

Provider is inconsistent with use of lpsText
or lpsUNICODEText fields.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

32

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

33

5.9 WFS_CMD_TTU_READ

Description This command activates the keyboard of the text terminal unit for input of the specified number of
characters. Depending on the specified flush mode the input buffer is cleared. During this
command, pressing an active key results in a WFS_EXEE_TTU_KEY event containing the key
details. On completion of the command (when the maximum number of keys have been pressed or
a terminator key is pressed), the entered string, as interpreted by the Service Provider, is returned.
The Service Provider takes command keys into account when interpreting the data.

Input Param LPWFSTTUREAD lpRead;
typedef struct _wfs_ttu_read
 {
 WORD wNumOfChars;
 WORD fwMode;
 SHORT wPosX;
 SHORT wPosY;
 WORD fwEchoMode;
 WORD fwEchoAttr;
 BOOL bCursor;
 BOOL bFlush;
 BOOL bAutoEnd;
 LPSTR lpszActiveKeys;
 LPWSTR lpwszActiveUNICODEKeys;
 LPWORD lpwActiveCommandKeys;
 LPWORD lpwTerminateCommandKeys;
 } WFSTTUREAD, *LPWFSTTUREAD;

wNumOfChars
Specifies the number of printable characters (numeric and alphanumeric keys) that will be read
from the text terminal unit key pad. All command keys like WFS_TTU_CK_ENTER,
WFS_TTU_CK_FDK01 will not be counted.

fwMode
Specifies where the cursor is positioned for the read operation. Possible values are:

Value Meaning
WFS_TTU_POSRELATIVE The cursor is positioned relative to the

current cursor position.
WFS_TTU_POSABSOLUTE The cursor is positioned absolute at the

position specified in wPosX and wPosY.

wPosX
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a horizontal offset relative to the
current cursor position as a zero (0) based value.

wPosY
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a vertical offset relative to the current
cursor position as a zero (0) based value.

fwEchoMode
Specifies how the user input is echoed to the screen as one of the following flags:

Value Meaning
WFS_TTU_ECHOTEXT The user input is echoed to the screen.
WFS_TTU_ECHOINVISIBLE The user input is not echoed to the screen.
WFS_TTU_ECHOPASSWORD The keys entered by the user are echoed as

the replace character on the screen.

fwEchoAttr
Specifies the text attributes with which the user input is echoed to the screen as a combination of
the following flags. If none of the following attribute flags are selected then the text will be
displayed as TEXTNORMAL.

Value Meaning
WFS_TTU_TEXTUNDERLINE The displayed text will be underlined.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

34

WFS_TTU_TEXTINVERTED The displayed text will be inverted.
WFS_TTU_TEXTFLASH The displayed text will be flashing.

bCursor
Specifies whether the cursor is visible (TRUE) or invisible (FALSE).

bFlush
Specifies whether the keyboard input buffer is cleared before allowing for user input (TRUE) or
not (FALSE).

bAutoEnd
Specifies whether the command input is automatically ended by the Service Provider if the
maximum number of printable characters as specified with wNumOfChars is entered.

lpszActiveKeys
String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.g.
“12ABab”, to be active during the execution of the command. Devices having a shift key interpret
this parameter differently from those that do not have a shift key. For devices having a shift key,
specifying only the upper case of a particular letter enables both upper and lower case of that key,
but the device converts lower case letters to upper case in the output parameter. To enable both
upper and lower case keys, and have both upper and lower case letters returned, specify both the
upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift key, specifying
either the upper case only (e.g. "12AB"), or specifying both the upper and lower case of a
particular letter (e.g. "12AaBb"), enables that key and causes the device to return the upper case of
the letter in the output parameter. For both types of device, specifying only lower case letters (e.g.
"12ab") produces a key invalid error. This parameter is a NULL pointer if no keys of this type are
active keys. lpszActiveKeys and lpwszActiveUNICODEKeys are mutually exclusive, so
lpszActiveKeys must be a NULL pointer if lpwszActiveUNICODEKeys is not a NULL pointer.

lpwszActiveUNICODEKeys
String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.g.
“12ABab” (UNICODE), to be active during the execution of the command. Devices having a shift
key interpret this parameter differently from those that do not have a shift key. For devices having
a shift key, specifying only the upper case of a particular letter enables both upper and lower case
of that key, but the device converts lower case letters to upper case in the output parameter. To
enable both upper and lower case keys, and have both upper and lower case letters returned,
specify both the upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift
key, specifying either the upper case only (e.g. "12AB"), or specifying both the upper and lower
case of a particular letter (e.g. "12AaBb"), enables that key and causes the device to return the
upper case of the letter in the output parameter. For both types of device, specifying only lower
case letters (e.g. "12ab") produces a key invalid error. This parameter is a NULL pointer if
capability fwCharSupport equals WFS_TTU_ASCII or if no keys of this type are active keys.
lpszActiveKeys and lpwszActiveUNICODEKeys are mutually exclusive, so
lpwszActiveUNICODEKeys must be a NULL pointer if lpszActiveKeys is not a NULL pointer.

lpwActiveCommandKeys
Array specifying the command keys which are active during the execution of the command. The
array is terminated with a zero value and this array is a NULL pointer if no keys of this type are
active keys.

lpwTerminateCommandKeys
Array specifying the command keys which must terminate the execution of the command. The
array is terminated with a zero value and this array is a NULL pointer if no keys of this type are
terminate keys.

Output Param LPWFSTTUREADIN lpReadIn;
typedef struct _wfs_ttu_read_in
 {
 LPSTR lpszInput;
 LPWSTR lpszUNICODEInput;
} WFSTTUREADIN, *LPWFSTTUREADIN;

lpszInput
Specifies a zero terminated string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

35

lpszUNICODEInput
Specifies a zero terminated string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad.

Note 1: lpszInput and lpszUNICODEInput are mutually exclusive, so if lpszInput is not a NULL
pointer then lpszUNICODEInput must be a NULL pointer, and vice versa.

Note 2: The following keys will not be returned in the output parameter lpszInput or
lpszUNICODEInput, but they may affect the buffer if active:

Value Meaning
WFS_TTU_CK_CLEAR Will clear the buffer. The number of

printable characters pressed will be set to
zero.

WFS_TTU_CK_BACKSPACE Will cause the last printable character in the
buffer to be removed. The number of
printable characters pressed will be reduced
by one, unless the number of printable
characters pressed was zero.

WFS_TTU_CK_00 Will add a double zero ‘00’ string to the
buffer. If the WFS_TTU_CK_00 key is
pressed, and there is not enough space for all
the digits to be added to the buffer, then the
key press will be ignored, no digits will be
added to the buffer and no
WFS_EXEE_TTU_KEY event will be
generated.

WFS_TTU_CK_000 Will add a triple zero ‘000’ string to the
buffer. If the WFS_TTU_CK_000 key is
pressed, and there is not enough space for all
the digits to be added to the buffer, then the
key press will be ignored, no digits will be
added to the buffer and no
WFS_EXEE_TTU_KEY event will be
generated.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_KEYINVALID At least one of the specified keys is invalid.
WFS_ERR_TTU_KEYNOTSUPPORTED At least one of the specified keys is not

supported by the Service Provider.
WFS_ERR_TTU_NOACTIVEKEYS There are no active keys specified.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_TTU_KEY An active key on the Text Terminal Unit has

been pressed. Note: A command key press
will not result in a character being displayed.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

36

5.10 WFS_CMD_TTU_RESET

Description Sends a service reset to the Service Provider. This command clears the screen, clears the keyboard
buffer, sets the default resolution and sets the cursor position to the upper left.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a
known good condition.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

37

5.11 WFS_CMD_TTU_DEFINE_KEYS

Description This command defines the keys that will be active during the next
WFS_CMD_TTU_READ_FORM command. The configured set will be active until the next
WFS_CMD_TTU_READ_FORM command ends, at which point the default values are restored.

Input Param LPWFSTTUDEFKEYS lpDefKeys;
typedef struct _wfs_ttu_def_keys
 {
 LPSTR lpszActiveKeys;
 LPWSTR lpwszActiveUNICODEKeys;
 LPWORD lpwActiveCommandKeys;
 LPWORD lpwTerminateCommandKeys;
 } WFSTTUDEFKEYS, *LPWFSTTUDEFKEYS;

lpszActiveKeys
String which specifies the alphanumeric keys on the Text Terminal Unit, e.g. “12ABab”, to be
active during the execution of the next WFS_CMD_TTU_READ_FORM command. Devices
having a shift key interpret this parameter differently from those that do not have a shift key. For
devices having a shift key, specifying only the upper case of a particular letter enables both upper
and lower case of that key, but the device converts lower case letters to upper case in the output
parameter. To enable both upper and lower case keys, and have both upper and lower case letters
returned, specify both the upper and lower case of the letter (e.g. "12AaBb"). For devices not
having a shift key, specifying either the upper case only (e.g. "12AB"), or specifying both the
upper and lower case of a particular letter (e.g. "12AaBb"), enables that key and causes the device
to return the upper case of the letter in the output parameter. For both types of device, specifying
only lower case letters (e.g. "12ab") produces a key invalid error. This parameter is a NULL
pointer if no keys of this type are active keys. lpszActiveKeys and lpwszActiveUNICODEKeys are
mutually exclusive, so lpszActiveKeys must be a NULL pointer if lpwszActiveUNICODEKeys is
not a NULL pointer.

lpwszActiveUNICODEKeys
String which specifies the alphanumeric keys on the Text Terminal Unit, e.g. “12ABab”
(UNICODE), to be active during the execution of the next WFS_CMD_TTU_READ_FORM
command. Devices having a shift key interpret this parameter differently from those that do not
have a shift key. For devices having a shift key, specifying only the upper case of a particular
letter enables both upper and lower case of that key, but the device converts lower case letters to
upper case in the output parameter. To enable both upper and lower case keys, and have both
upper and lower case letters returned, specify both the upper and lower case of the letter (e.g.
"12AaBb"). For devices not having a shift key, specifying either the upper case only (e.g.
"12AB"), or specifying both the upper and lower case of a particular letter (e.g. "12AaBb"),
enables that key and causes the device to return the upper case of the letter in the output
parameter. For both types of device, specifying only lower case letters (e.g. "12ab") produces a
key invalid error. lpszActiveKeys and lpwszActiveUNICODEKeys are mutually exclusive, so
lpwszUNICODEActiveKeys must be a NULL pointer if lpszActiveKeys is not a NULL pointer.

lpwActiveCommandKeys
Array specifying the command keys which are active during the execution of the next
WFS_CMD_TTU_READ_FORM command. The array is terminated with a zero value and this
array is a NULL pointer if no keys of this type are active keys.

lpwTerminateCommandKeys
Array specifying the command keys which must terminate the execution of the next
WFS_CMD_TTU_READ_FORM command. The array is terminated with a zero value and this
array is a NULL pointer if no keys of this type are terminate keys.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_KEYINVALID At least one of the specified keys is invalid.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

38

WFS_ERR_TTU_KEYNOTSUPPORTED At least one of the specified keys is not
supported by the Service Provider.

WFS_ERR_TTU_NOACTIVEKEYS There are no active keys specified.

Events Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

39

5.12 WFS_CMD_TTU_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.
If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSTTUPOWERSAVECONTROL lpPowerSaveControl;
typedef struct _wfs_ttu_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSTTUPOWERSAVECONTROL, *LPWFSTTUPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its normal
operating state when exiting power save mode. The device will be set to the highest possible
power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero then the
device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_TTU_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

40

5.13 WFS_CMD_TTU_SET_LED_EX

Description This command is used to set the status of the LEDs.

For backwards compatibility the WFS_CMD_TTU_SET_LED command is provided.

Input Param LPWFSTTUSETLEDSEX lpSetLEDs;
typedef struct _wfs_ttu_set_leds_ex
 {
 USHORT usLED;
 DWORD dwCommand;
 } WFSTTUSETLEDSEX, *LPWFSTTUSETLEDSEX;

usLED
Specifies the index (zero to usNumOfLEDs-1 as reported in WFS_INF_TTU_CAPABILITIES) of
the LED to set as one of the values defined within the capabilities section.

dwCommand
Specifies the state of the LED as WFS_TTU_LEDOFF or a combination of the following flags
consisting of one type B, and optionally one type C. If no value of type C is specified then the
default color is used. The Service Provider determines which color is used as the default color.

Value Meaning Type
WFS_TTU_LEDOFF The LED is turned off. A
WFS_TTU_LEDSLOWFLASH The LED is set to flash B

slowly.
WFS_TTU_LEDMEDIUMFLASH The LED is set to flash B

medium frequency.
WFS_TTU_LEDQUICKFLASH The LED is set to flash B

quickly.
WFS_TTU_LEDCONTINUOUS The LED is turned on B

continuously (steady).
WFS_TTU_LEDRED The LED color is set C

to red.
WFS_TTU_LEDGREEN The LED color is set C

to green.
WFS_TTU_LEDYELLOW The LED color is set C

to yellow.
WFS_TTU_LEDBLUE The LED color is set C

to blue.
WFS_TTU_LEDCYAN The LED color is set C

to cyan.
WFS_TTU_LEDMAGENTA The LED color is set C

to magenta.
WFS_TTU_LEDWHITE The LED color is set C

to white.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_INVALIDLED An attempt to set an LED to a new value was

invalid because the LED does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

41

5.14 WFS_CMD_TTU_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in the
lpdwSynchronizableCommands parameter of the WFS_INF_TTU_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other subsequent
command. However, any subsequent execute command other than the one that was specified in the
dwCommand input parameter will execute normally and may invalidate the pending
synchronization. In this case the application should call the
WFS_CMD_TTU_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSTTUSYNCHRONIZECOMMAND lpSynchronizeCommand;
typedef struct _wfs_ttu_synchronize_command
 {
 DWORD dwCommand;
 LPVOID lpCmdData;
 } WFSTTUSYNCHRONIZECOMMAND, *LPWFSTTUSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

lpCmdData
Pointer to data or a data structure that represents the parameter that is normally associated with the
command that is specified in dwCommand. For example, if dwCommand is
WFS_CMD_TTU_READ then lpCmdData will point to a WFSTTUREAD structure. This
parameter can be NULL if no command input parameter is needed or if this detail is not needed to
synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should not
result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_TTU_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service
Provider.

WFS_ERR_TTU_SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the lpCmdData is not supported
by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

42

6. Events

6.1 WFS_EXEE_TTU_FIELDERROR

Description This event specifies that a fatal error has occurred while processing a field.

Event Param LPWFSTTUFIELDFAIL lpFieldFail;
typedef struct _wfs_ttu_field_failure
 {
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
 WORD wFailure;
 } WFSTTUFIELDFAIL, *LPWFSTTUFIELDFAIL;

lpszFormName
Points to the null-terminated form name.

lpszFieldName
Points to the null-terminated field name.

wFailure
Specifies the type of failure and can be one of the following:

Value Meaning
WFS_TTU_FIELDREQUIRED The specified field must be supplied by the

application.
WFS_TTU_FIELDSTATICOVWR The specified field is static and thus cannot

be overwritten by the application.
WFS_TTU_FIELDOVERFLOW The value supplied for the specified fields is

too long.
WFS_TTU_FIELDNOTFOUND The specified field does not exist.
WFS_TTU_FIELDNOTREAD The specified field is not an input field.
WFS_TTU_FIELDNOTWRITE An attempt was made to write to an input

field.
WFS_TTU_FIELDTYPENOTSUPPORTED The form field type is not supported with

device.
WFS_TTU_CHARSETFORM Service Provider does not support character

set specified in form.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

43

6.2 WFS_EXEE_TTU_FIELDWARNING

Description This event is used to specify that a non-fatal error has occurred while processing a field.

Event Param LPWFSTTUFIELDFAIL lpFieldFail;

As defined in the section describing WFS_EXEE_TTU_FIELDERROR.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

44

6.3 WFS_EXEE_TTU_KEY

Description This event specifies that any active key has been pressed at the TTU during the
WFS_CMD_TTU_READ command. In addition to giving the application more details about
individual key presses this information may also be used if the device has no internal display unit
and the application has to manage the display of the entered digits.

Event Param LPWFSTTUKEY lpKey;
typedef struct _wfs_ttu_key
 {
 CHAR cKey;
 WORD wUNICODEKey;
 WORD wCommandKey;
 } WFSTTUKEY, *LPWFSTTUKEY;

cKey
On a numeric or alphanumeric key press this parameter holds the value of the key pressed. This
value is WFS_TTU_NOKEY if no numeric or alphanumeric key was pressed or if capability
fwCharSupport equals WFS_TTU_UNICODE.

wUNICODEKey
On a numeric or alphanumeric key press this parameter holds the value of the key pressed in
UNICODE format. This value is WFS_TTU_NOKEY if no numeric or alphanumeric key was
pressed or if capability fwCharSupport equals WFS_TTU_ASCII.

wCommandKey
On a Command key press this parameter holds the value of the Command key pressed, e.g.
WFS_TTU_CK_ENTER. This value is WFS_TTU_NOKEY when no command key was pressed.

Note: Only one of the parameters cKey, wUNICODEKey, wCommandKey can have the value of a
valid key, the others must be set to WFS_TTU_NOKEY.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

45

6.4 WFS_SRVE_TTU_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSTTUDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_ttu_device_position
 {
 WORD wPosition;
 } WFSTTUDEVICEPOSITION, *LPWFSTTUDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_TTU_DEVICEINPOSITION The device is in its normal operating

position.
WFS_TTU_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_TTU_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

46

6.5 WFS_SRVE_TTU_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSTTUPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_ttu_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSTTUPOWERSAVECHANGE, *LPWFSTTUPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode, this device
will automatically enter into the same power saving mode and this event will be generated.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

47

7. Form and Field Definitions

This section outlines the format of the definitions of forms, the fields within them, and the media on which they are
printed.

7.1 Definition Syntax

The syntactic rules for form, field and media definitions are as follows:
White space space, tab.
Line continuation backslash (\).
Line termination CR, LF, CR/LF; line termination ends a

“keyword section” (a keyword and its
value[s]).

Keywords must be all upper case.
Names (field/media/font names) any case; case is

preserved; Service Providers are case
sensitive.

Strings all strings must be enclosed in double quote
characters ("); standard C escape sequences
are allowed.

Comments start with two forward slashes (//); end at line
termination.

Other notes:

• If a keyword is present, all its values must be specified; default values are used only if the keyword is
absent.

• Values that are character strings are marked with asterisks in the definitions below, and must be quoted as
specified above.

• Fields are processed in the sequence they are defined in the form.

• The order of attributes within a form is not mandatory; the attributes may be defined in any order.

• All forms can be represented using either ISO 646 (ANSI) or UNICODE character encoding. If the
UNICODE representation is used then all Names and Strings are restricted to an internal representation of
ISO 646 (ANSI) characters. Only the INITIALVALUE keyword values can have double byte values
outside of the ISO 646 (ANSI) character set.

• If forms character encoding is UNICODE then, consistent with the UNICODE standard, the file prefix
must be in Little Endian (xFFFE) or Big Endian (xFEFF) notation, such that UNICODE encoding is
recognized.

• In the form definition file, where characters are expressed using standard C hexadecimal escape sequences,
the high order byte is defined first. For example, “\x0041” would represent the character 'A'. This is
independent of the encoding format of the form definition file.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

48

7.2 XFS form/media definition files in multi-vendor environments

Although for most Service Providers directory location and extension of XFS form/media definition files are
configurable through the registry, the capabilities of Service Providers and or actual hardware may vary. Therefore
the following considerations should be taken into account when applications use XFS form definition files with the
purpose of running in a multi-vendor environment:

• Physical display area dimensions may vary from one text terminal to another.

• Just-in-time form loading may not be supported by all Service Providers, which makes it impossible to
create dynamic form files just before displaying them (which in return means that only the display data of
the forms can be changed, not the -layout data such as field positions).

• Some form/media definition keywords may not be supported due to limitations of the hardware or software.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

49

7.3 Form Definition 1

XFSFORM formname*
BEGIN
(required) SIZE width, Width of form
 height Height of form
 VERSION major, Major version number (default 0)
 minor, Minor version number (default 0)
 date*, Creation/modification date
 author* Author of form
(required) LANGUAGE languageID Language used in this form - a 16 bit value (LANGID) which is

a combination of a primary (10 bits) and a secondary (6 bits)
language ID (This is the standard language ID in the Win32
API; standard macros support construction and decomposition
of this composite ID)

 COPYRIGHT copyright* Copyright entry
 TITLE title* Title of form
 COMMENT comment* Comment section
 [XFSFIELD fieldname* One field definition (as defined in the next section) for each

field in the form
 BEGIN

 . . .
 END]

END

1 Attributes are not required in any mandatory order within a Form Definition.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

50

7.4 Field Definition 2

XFSFIELD fieldname*
BEGIN
 LANGUAGE languageID Language used for this field.

See Form definition for detailed description.
If unspecified defaults to form definition LANGUAGE
specification.

(required) POSITION x, Horizontal position (relative to left side of form)
 y Vertical position (relative to top of form)

The initial left upper position is referenced as (0,0)
(required) SIZE width, Field width
 height Field height
 TYPE fieldtype Type of field:

 TEXT (default)
 INVISIBLE
 PASSWORD (contents is echoed with ‘*’)
GRAPHIC (ignored for WFS_CMD_TTU_READ_FORM
commands)

 SCALING scalingtype Information on how to size the GRAPHIC within the field:
BESTFIT (default) scale to size indicated
ASIS render at native size
MAINTAINASPECT scale as close as possible to size
indicated while maintaining the aspect ratio and not losing
graphic information.
SCALING is only relevant for GRAPHICS field types

 CLASS class Field class:
 OPTIONAL (default)
 STATIC
 REQUIRED

 KEYS keys Accepted input key types:
 NUMERIC
 HEXADECIMAL
 ALPHANUMERIC
This is an optional field where the default value is vendor
dependent.

 ACCESS access Access rights of field:
 WRITE (default)
 READ
 READWRITE

 OVERFLOW overflow Action on field overflow:
 TERMINATE (default)
 TRUNCATE
 OVERWRITE

 STYLE style Display attributes as a combination of the following, ORed
together using the "|" operator:
 NORMAL (default)
 UNDER (single underline)
 INVERTED
 FLASHING

 HORIZONTAL justify Horizontal alignment of field contents:
 LEFT (default)
 RIGHT
 CENTER

2 Attributes are not required in any mandatory order within a Field Definition.

This document is not an official CEN publication

CWA 16926-68:2020 (E)

51

 FORMAT formatstring
*

This is an application defined input field describing how
the application should format the data. This may be
interpreted by the Service Provider.

 INITIALVALUE value* Initial value. For GRAPHIC type fields, this value will
contain the filename of the graphic image. The type of this
graphic will be determined by the file extension (e.g. BMP
for Windows Bitmap). The graphic file name must contain
the full path.
For example “C:\XFS\BSVCLOGO.BMP” illustrates the
use of the full path name

END

This document is not an official CEN publication

CWA 16926-68:2020 (E)

52

8. C - Header file

/**
* *
* xfsttu.h XFS - Text Terminal Unit (TTU) definitions *
* *
* Version 3.30 (March 19 2015) 40 (December 6 2019)
*
* *
**/

#ifndef __INC_XFSTTU__H
#define __INC_XFSTTU__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSTTUCAPS.wClass */

#define WFS_SERVICE_CLASS_TTU (7)
#define WFS_SERVICE_CLASS_NAME_TTU "TTU"
#define WFS_SERVICE_CLASS_VERSION_TTU (0x1E030x2803) /* Version 3.3040 */

#define TTU_SERVICE_OFFSET (WFS_SERVICE_CLASS_TTU * 100)

/* TTU Info Commands */

#define WFS_INF_TTU_STATUS (TTU_SERVICE_OFFSET + 1)
#define WFS_INF_TTU_CAPABILITIES (TTU_SERVICE_OFFSET + 2)
#define WFS_INF_TTU_FORM_LIST (TTU_SERVICE_OFFSET + 3)
#define WFS_INF_TTU_QUERY_FORM (TTU_SERVICE_OFFSET + 4)
#define WFS_INF_TTU_QUERY_FIELD (TTU_SERVICE_OFFSET + 5)
#define WFS_INF_TTU_KEY_DETAIL (TTU_SERVICE_OFFSET + 6)

/* TTU Command Verbs */

#define WFS_CMD_TTU_BEEP (TTU_SERVICE_OFFSET + 1)
#define WFS_CMD_TTU_CLEARSCREEN (TTU_SERVICE_OFFSET + 2)
#define WFS_CMD_TTU_DISPLIGHT (TTU_SERVICE_OFFSET + 3)
#define WFS_CMD_TTU_SET_LED (TTU_SERVICE_OFFSET + 4)
#define WFS_CMD_TTU_SET_RESOLUTION (TTU_SERVICE_OFFSET + 5)
#define WFS_CMD_TTU_WRITE_FORM (TTU_SERVICE_OFFSET + 6)
#define WFS_CMD_TTU_READ_FORM (TTU_SERVICE_OFFSET + 7)
#define WFS_CMD_TTU_WRITE (TTU_SERVICE_OFFSET + 8)
#define WFS_CMD_TTU_READ (TTU_SERVICE_OFFSET + 9)
#define WFS_CMD_TTU_RESET (TTU_SERVICE_OFFSET + 10)
#define WFS_CMD_TTU_DEFINE_KEYS (TTU_SERVICE_OFFSET + 11)
#define WFS_CMD_TTU_POWER_SAVE_CONTROL (TTU_SERVICE_OFFSET + 12)
#define WFS_CMD_TTU_SET_LED_EX (TTU_SERVICE_OFFSET + 13)
#define WFS_CMD_TTU_SYNCHRONIZE_COMMAND (TTU_SERVICE_OFFSET + 14)

/* TTU Messages */

#define WFS_EXEE_TTU_FIELDERROR (TTU_SERVICE_OFFSET + 1)
#define WFS_EXEE_TTU_FIELDWARNING (TTU_SERVICE_OFFSET + 2)
#define WFS_EXEE_TTU_KEY (TTU_SERVICE_OFFSET + 3)
#define WFS_SRVE_TTU_DEVICEPOSITION (TTU_SERVICE_OFFSET + 4)
#define WFS_SRVE_TTU_POWER_SAVE_CHANGE (TTU_SERVICE_OFFSET + 5)

/* Values of WFSTTUSTATUS.fwDevice */

#define WFS_TTU_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_TTU_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_TTU_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_TTU_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_TTU_DEVNODEVICE WFS_STAT_DEVNODEVICE

This document is not an official CEN publication

CWA 16926-68:2020 (E)

53

#define WFS_TTU_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_TTU_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_TTU_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_TTU_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* Values of WFSTTUSTATUS.wKeyboard */

#define WFS_TTU_KBDNA (0)
#define WFS_TTU_KBDON (1)
#define WFS_TTU_KBDOFF (2)

/* Values of WFSTTUSTATUS.wKeyLock */

#define WFS_TTU_KBDLOCKNA (0)
#define WFS_TTU_KBDLOCKON (1)
#define WFS_TTU_KBDLOCKOFF (2)

#define WFS_TTU_LEDS_MAX (8)

/* Values of WFSTTUSTATUS.fwLEDs
 WFSTTUSTATUS.lpLEDEx.lpdwLEDs
 WFSTTUCAPS.lpLEDEx.lpdwLEDs
 WFSTTUSETLEDS.fwCommand */

#define WFS_TTU_LEDNA (0x0000)
#define WFS_TTU_LEDOFF (0x0001)
#define WFS_TTU_LEDSLOWFLASH (0x0002)
#define WFS_TTU_LEDMEDIUMFLASH (0x0004)
#define WFS_TTU_LEDQUICKFLASH (0x0008)
#define WFS_TTU_LEDCONTINUOUS (0x0080)

/* Values of WFSTTUSTATUS.lpLEDEx.lpdwLEDs
 WFSTTUCAPS.lpLEDEx.lpdwLEDs
 WFSTTUSETLEDSEX.dwCommand */

#define WFS_TTU_LEDRED (0x00000100)
#define WFS_TTU_LEDGREEN (0x00000200)
#define WFS_TTU_LEDYELLOW (0x00000400)
#define WFS_TTU_LEDBLUE (0x00000800)
#define WFS_TTU_LEDCYAN (0x00001000)
#define WFS_TTU_LEDMAGENTA (0x00002000)
#define WFS_TTU_LEDWHITE (0x00004000)

/* Values of WFSTTUSTATUS.wDevicePosition
 WFSTTUDEVICEPOSITION.wPosition */

#define WFS_TTU_DEVICEINPOSITION (0)
#define WFS_TTU_DEVICENOTINPOSITION (1)
#define WFS_TTU_DEVICEPOSUNKNOWN (2)
#define WFS_TTU_DEVICEPOSNOTSUPP (3)

/* values of WFSTTUSTATUS.wAntiFraudModule */

#define WFS_TTU_AFMNOTSUPP (0)
#define WFS_TTU_AFMOK (1)
#define WFS_TTU_AFMINOP (2)
#define WFS_TTU_AFMDEVICEDETECTED (3)
#define WFS_TTU_AFMUNKNOWN (4)

/* Values of WFSTTUCAPS.fwType */

#define WFS_TTU_FIXED (0x0001)
#define WFS_TTU_REMOVABLE (0x0002)

/* Values of WFSTTUCAPS.fwCharSupport
 WFSTTUWRITE.fwCharSupport */

#define WFS_TTU_ASCII (0x0001)
#define WFS_TTU_UNICODE (0x0002)

/* Values of WFSTTUFRMFIELD.fwType */

#define WFS_TTU_FIELDTEXT (0)
#define WFS_TTU_FIELDINVISIBLE (1)

This document is not an official CEN publication

CWA 16926-68:2020 (E)

54

#define WFS_TTU_FIELDPASSWORD (2)

/* Values of WFSTTUFRMFIELD.fwClass */

#define WFS_TTU_CLASSOPTIONAL (0)
#define WFS_TTU_CLASSSTATIC (1)
#define WFS_TTU_CLASSREQUIRED (2)

/* Values of WFSTTUFRMFIELD.fwAccess */

#define WFS_TTU_ACCESSREAD (0x0001)
#define WFS_TTU_ACCESSWRITE (0x0002)

/* Values of WFSTTUFRMFIELD.fwOverflow */

#define WFS_TTU_OVFTERMINATE (0)
#define WFS_TTU_OVFTRUNCATE (1)
#define WFS_TTU_OVFOVERWRITE (2)

/* Values of WFSTTUWRITE.fwMode */

#define WFS_TTU_POSRELATIVE (0)
#define WFS_TTU_POSABSOLUTE (1)

/* Values of WFSTTUWRITE.fwTextAttr */

#define WFS_TTU_TEXTUNDERLINE (0x0001)
#define WFS_TTU_TEXTINVERTED (0x0002)
#define WFS_TTU_TEXTFLASH (0x0004)

/* Values of WFSTTUFRMREAD.fwEchoMode */

#define WFS_TTU_ECHOTEXT (0)
#define WFS_TTU_ECHOINVISIBLE (1)
#define WFS_TTU_ECHOPASSWORD (2)

#define WFS_TTU_BEEPOFF (0x0001)
#define WFS_TTU_BEEPKEYPRESS (0x0002)
#define WFS_TTU_BEEPEXCLAMATION (0x0004)
#define WFS_TTU_BEEPWARNING (0x0008)
#define WFS_TTU_BEEPERROR (0x0010)
#define WFS_TTU_BEEPCRITICAL (0x0020)
#define WFS_TTU_BEEPCONTINUOUS (0x0080)

/* values of WFSTTUFIELDFAIL.wFailure */

#define WFS_TTU_FIELDREQUIRED (0)
#define WFS_TTU_FIELDSTATICOVWR (1)
#define WFS_TTU_FIELDOVERFLOW (2)
#define WFS_TTU_FIELDNOTFOUND (3)
#define WFS_TTU_FIELDNOTREAD (4)
#define WFS_TTU_FIELDNOTWRITE (5)
#define WFS_TTU_FIELDTYPENOTSUPPORTED (6)
#define WFS_TTU_CHARSETFORM (7)

/* values of WFSTTUKEYDETAIL.lpwCommandKeys */

#define WFS_TTU_NOKEY (0)
#define WFS_TTU_CK_ENTER (1)
#define WFS_TTU_CK_CANCEL (2)
#define WFS_TTU_CK_CLEAR (3)
#define WFS_TTU_CK_BACKSPACE (4)
#define WFS_TTU_CK_HELP (5)
#define WFS_TTU_CK_00 (6)
#define WFS_TTU_CK_000 (7)
#define WFS_TTU_CK_ARROWUP (8)
#define WFS_TTU_CK_ARROWDOWN (9)
#define WFS_TTU_CK_ARROWLEFT (10)
#define WFS_TTU_CK_ARROWRIGHT (11)
#define WFS_TTU_CK_OEM1 (12)
#define WFS_TTU_CK_OEM2 (13)
#define WFS_TTU_CK_OEM3 (14)
#define WFS_TTU_CK_OEM4 (15)
#define WFS_TTU_CK_OEM5 (16)

This document is not an official CEN publication

CWA 16926-68:2020 (E)

55

#define WFS_TTU_CK_OEM6 (17)
#define WFS_TTU_CK_OEM7 (18)
#define WFS_TTU_CK_OEM8 (19)
#define WFS_TTU_CK_OEM9 (20)
#define WFS_TTU_CK_OEM10 (21)
#define WFS_TTU_CK_OEM11 (22)
#define WFS_TTU_CK_OEM12 (23)
#define WFS_TTU_CK_FDK01 (24)
#define WFS_TTU_CK_FDK02 (25)
#define WFS_TTU_CK_FDK03 (26)
#define WFS_TTU_CK_FDK04 (27)
#define WFS_TTU_CK_FDK05 (28)
#define WFS_TTU_CK_FDK06 (29)
#define WFS_TTU_CK_FDK07 (30)
#define WFS_TTU_CK_FDK08 (31)
#define WFS_TTU_CK_FDK09 (32)
#define WFS_TTU_CK_FDK10 (33)
#define WFS_TTU_CK_FDK11 (34)
#define WFS_TTU_CK_FDK12 (35)
#define WFS_TTU_CK_FDK13 (36)
#define WFS_TTU_CK_FDK14 (37)
#define WFS_TTU_CK_FDK15 (38)
#define WFS_TTU_CK_FDK16 (39)
#define WFS_TTU_CK_FDK17 (40)
#define WFS_TTU_CK_FDK18 (41)
#define WFS_TTU_CK_FDK19 (42)
#define WFS_TTU_CK_FDK20 (43)
#define WFS_TTU_CK_FDK21 (44)
#define WFS_TTU_CK_FDK22 (45)
#define WFS_TTU_CK_FDK23 (46)
#define WFS_TTU_CK_FDK24 (47)
#define WFS_TTU_CK_FDK25 (48)
#define WFS_TTU_CK_FDK26 (49)
#define WFS_TTU_CK_FDK27 (50)
#define WFS_TTU_CK_FDK28 (51)
#define WFS_TTU_CK_FDK29 (52)
#define WFS_TTU_CK_FDK30 (53)
#define WFS_TTU_CK_FDK31 (54)
#define WFS_TTU_CK_FDK32 (55)

/* XFS TTU Errors */

#define WFS_ERR_TTU_FIELDERROR (-(TTU_SERVICE_OFFSET + 1))
#define WFS_ERR_TTU_FIELDINVALID (-(TTU_SERVICE_OFFSET + 2))
#define WFS_ERR_TTU_FIELDNOTFOUND (-(TTU_SERVICE_OFFSET + 3))
#define WFS_ERR_TTU_FIELDSPECFAILURE (-(TTU_SERVICE_OFFSET + 4))
#define WFS_ERR_TTU_FORMINVALID (-(TTU_SERVICE_OFFSET + 5))
#define WFS_ERR_TTU_FORMNOTFOUND (-(TTU_SERVICE_OFFSET + 6))
#define WFS_ERR_TTU_INVALIDLED (-(TTU_SERVICE_OFFSET + 7))
#define WFS_ERR_TTU_KEYCANCELED (-(TTU_SERVICE_OFFSET + 8))
#define WFS_ERR_TTU_MEDIAOVERFLOW (-(TTU_SERVICE_OFFSET + 9))
#define WFS_ERR_TTU_RESNOTSUPP (-(TTU_SERVICE_OFFSET + 10))
#define WFS_ERR_TTU_CHARSETDATA (-(TTU_SERVICE_OFFSET + 11))
#define WFS_ERR_TTU_KEYINVALID (-(TTU_SERVICE_OFFSET + 12))
#define WFS_ERR_TTU_KEYNOTSUPPORTED (-(TTU_SERVICE_OFFSET + 13))
#define WFS_ERR_TTU_NOACTIVEKEYS (-(TTU_SERVICE_OFFSET + 14))
#define WFS_ERR_TTU_POWERSAVETOOSHORT (-(TTU_SERVICE_OFFSET + 15))
#define WFS_ERR_TTU_COMMANDUNSUPP (-(TTU_SERVICE_OFFSET + 16))
#define WFS_ERR_TTU_SYNCHRONIZEUNSUPP (-(TTU_SERVICE_OFFSET + 17))

/*===*/
/* TTU Info Command Structures */
/*===*/

typedef struct _wfs_ttu_led_ex
{
 USHORT usNumOfLEDs;
 LPDWORD lpdwLEDs;
} WFSTTULEDEX, *LPWFSTTULEDEX;

typedef struct _wfs_ttu_status
{
 WORD fwDevice;
 WORD wKeyboard;

This document is not an official CEN publication

CWA 16926-68:2020 (E)

56

 WORD wKeylock;
 WORD wLEDs[WFS_TTU_LEDS_MAX];
 WORD wDisplaySizeX;
 WORD wDisplaySizeY;
 LPSTR lpszExtra;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 LPWFSTTULEDEX lpLEDEx;
 WORD wAntiFraudModule;
} WFSTTUSTATUS, *LPWFSTTUSTATUS;

typedef struct _wfs_ttu_resolution
{
 WORD wSizeX;
 WORD wSizeY;
} WFSTTURESOLUTION, *LPWFSTTURESOLUTION;

typedef struct _wfs_ttu_caps
{
 WORD wClass;
 WORD fwType;
 LPWFSTTURESOLUTION *lppResolutions;
 WORD wNumOfLEDs;
 BOOL bKeyLock;
 BOOL bDisplayLight;
 BOOL bCursor;
 BOOL bForms;
 WORD fwCharSupport;
 LPSTR lpszExtra;
 BOOL bPowerSaveControl;
 LPWFSTTULEDEX lpLEDEx;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
} WFSTTUCAPS, *LPWFSTTUCAPS;

typedef struct _wfs_ttu_frm_header
{
 LPSTR lpszFormName;
 WORD wWidth;
 WORD wHeight;
 WORD wVersionMajor;
 WORD wVersionMinor;
 WORD fwCharSupport;
 LPSTR lpszFields;
 WORD wLanguageID;
} WFSTTUFRMHEADER, *LPWFSTTUFRMHEADER;

typedef struct _wfs_ttu_query_field
{
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
} WFSTTUQUERYFIELD, *LPWFSTTUQUERYFIELD;

typedef struct _wfs_ttu_frm_field
{
 LPSTR lpszFieldName;
 WORD fwType;
 WORD fwClass;
 WORD fwAccess;
 WORD fwOverflow;
 LPSTR lpszFormat;
 WORD wLanguageID;
} WFSTTUFRMFIELD, *LPWFSTTUFRMFIELD;

typedef struct _wfs_ttu_key_detail
{
 LPSTR lpszKeys;
 LPWSTR lpwszUNICODEKeys;
 LPWORD lpwCommandKeys;
} WFSTTUKEYDETAIL, *LPWFSTTUKEYDETAIL;

typedef struct _wfs_ttu_clear_screen
{
 WORD wPositionX;

This document is not an official CEN publication

CWA 16926-68:2020 (E)

57

 WORD wPositionY;
 WORD wWidth;
 WORD wHeight;
} WFSTTUCLEARSCREEN, *LPWFSTTUCLEARSCREEN;

typedef struct _wfs_ttu_disp_light
{
 BOOL bMode;
} WFSTTUDISPLIGHT, * LPWFSTTUDISPLIGHT;

typedef struct _wfs_ttu_set_leds
{
 WORD wLED;
 WORD fwCommand;
} WFSTTUSETLEDS, *LPWFSTTUSETLEDS;

typedef struct _wfs_ttu_write_form
{
 LPSTR lpszFormName;
 BOOL bClearScreen;
 LPSTR lpszFields;
 LPWSTR lpszUNICODEFields;
} WFSTTUWRITEFORM, *LPWFSTTUWRITEFORM;

typedef struct _wfs_ttu_read_form
{
 LPSTR lpszFormName;
 LPSTR lpszFieldNames;
} WFSTTUREADFORM, *LPWFSTTUREADFORM;

typedef struct _wfs_ttu_read_form_out
{
 LPSTR lpszFields;
 LPWSTR lpszUNICODEFields;
} WFSTTUREADFORMOUT, *LPWFSTTUREADFORMOUT;

typedef struct _wfs_ttu_def_keys
{
 LPSTR lpszActiveKeys;
 LPWSTR lpwszActiveUNICODEKeys;
 LPWORD lpwActiveCommandKeys;
 LPWORD lpwTerminateCommandKeys;
} WFSTTUDEFKEYS, *LPWFSTTUDEFKEYS;

typedef struct _wfs_ttu_write
{
 WORD fwMode;
 SHORT wPosX;
 SHORT wPosY;
 WORD fwTextAttr;
 LPSTR lpsText;
 LPWSTR lpsUNICODEText;
} WFSTTUWRITE, *LPWFSTTUWRITE;

typedef struct _wfs_ttu_read
{
 WORD wNumOfChars;
 WORD fwMode;
 SHORT wPosX;
 SHORT wPosY;
 WORD fwEchoMode;
 WORD fwEchoAttr;
 BOOL bCursor;
 BOOL bFlush;
 BOOL bAutoEnd;
 LPSTR lpszActiveKeys;
 LPWSTR lpwszActiveUNICODEKeys;
 LPWORD lpwActiveCommandKeys;
 LPWORD lpwTerminateCommandKeys;
} WFSTTUREAD, *LPWFSTTUREAD;

typedef struct _wfs_ttu_read_in
{
 LPSTR lpszInput;

This document is not an official CEN publication

CWA 16926-68:2020 (E)

58

 LPWSTR lpszUNICODEInput;
} WFSTTUREADIN, *LPWFSTTUREADIN;

typedef struct _wfs_ttu_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSTTUPOWERSAVECONTROL, *LPWFSTTUPOWERSAVECONTROL;

typedef struct _wfs_ttu_set_leds_ex
{
 USHORT usLED;
 DWORD dwCommand;
} WFSTTUSETLEDSEX, *LPWFSTTUSETLEDSEX;

typedef struct _wfs_ttu_synchronize_command
{
 DWORD dwCommand;
 LPVOID lpCmdData;
} WFSTTUSYNCHRONIZECOMMAND, *LPWFSTTUSYNCHRONIZECOMMAND;

/*===*/
/* TTU Message Structures */
/*===*/

typedef struct _wfs_ttu_field_failure
{
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
 WORD wFailure;
} WFSTTUFIELDFAIL, *LPWFSTTUFIELDFAIL;

typedef struct _wfs_ttu_key
{
 CHAR cKey;
 WORD wUNICODEKey;
 WORD wCommandKey;
} WFSTTUKEY, *LPWFSTTUKEY;

typedef struct _wfs_ttu_device_position
{
 WORD wPosition;
} WFSTTUDEVICEPOSITION, *LPWFSTTUDEVICEPOSITION;

typedef struct _wfs_ttu_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSTTUPOWERSAVECHANGE, *LPWFSTTUPOWERSAVECHANGE;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSTTU__H */

This document is not an official CEN publication

	1. Migration Information
	2. Text Terminal Units
	3. References
	4. Info Commands
	4.1 WFS_INF_TTU_STATUS
	4.2 WFS_INF_TTU_CAPABILITIES
	4.3 WFS_INF_TTU_FORM_LIST
	4.4 WFS_INF_TTU_QUERY_FORM
	4.5 WFS_INF_TTU_QUERY_FIELD
	4.6 WFS_INF_TTU_KEY_DETAIL

	5. Execute Commands
	5.1 WFS_CMD_TTU_BEEP
	5.2 WFS_CMD_TTU_CLEARSCREEN
	5.3 WFS_CMD_TTU_DISPLIGHT
	5.4 WFS_CMD_TTU_SET_LED
	5.5 WFS_CMD_TTU_SET_RESOLUTION
	5.6 WFS_CMD_TTU_WRITE_FORM
	5.7 WFS_CMD_TTU_READ_FORM
	5.8 WFS_CMD_TTU_WRITE
	5.9 WFS_CMD_TTU_READ
	5.10 WFS_CMD_TTU_RESET
	5.11 WFS_CMD_TTU_DEFINE_KEYS
	5.12 WFS_CMD_TTU_POWER_SAVE_CONTROL
	5.13 WFS_CMD_TTU_SET_LED_EX
	5.14 WFS_CMD_TTU_SYNCHRONIZE_COMMAND

	6. Events
	6.1 WFS_EXEE_TTU_FIELDERROR
	6.2 WFS_EXEE_TTU_FIELDWARNING
	6.3 WFS_EXEE_TTU_KEY
	6.4 WFS_SRVE_TTU_DEVICEPOSITION
	6.5 WFS_SRVE_TTU_POWER_SAVE_CHANGE

	7. Form and Field Definitions
	7.1 Definition Syntax
	7.2 XFS form/media definition files in multi-vendor environments
	7.3 Form Definition
	7.4 Field Definition

	8. C - Header file

