CEN CWA 15748-6

WORKSHOP July 2008

AGREEMENT

ICS 35.240.50

English version

Extensions for Financial Services (XFS) interface specification -
Release 3.10 - Part 6: PIN Keypad Device Class Interface -
Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,

France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

. — |

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2008 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 15748-6:2008 D/E/F

Page 2
CWA 15748-6:2008

Table of Contents

oY (=Y, o o [5
1. 8T g0 Yo 11 o3 4 1o o 1 8
1.1 Background to Release 3.10.......cccciiiiiiiiiriririrrnrrssssssssss s s s ssssssss s s s s s s s s s s s s s s s ssssssssssssssssssssssssssnsns 8
1.2 XFS Service-Specific Programming..........ccccccccmimiiiiicssssmmresnisssssssssessssssssssssssssssessssssssssssssssssssas 8
2. T T 4 =7/ o = L 9
3. 2= = =1 0 Lod == 11
4, 0] 0 T 00T 0010 T= 1s U 1= 12
41 WFS _INF_PIN _STATUS ... s s s s s s e s n e e e e e e e e s 12
4.2 WFS_INF_PIN_CAPABILITIES ... s s s s s s s snsssnsnsssnsnsnsnnnas 15
4.3 WFS_INF_PIN_KEY_DETAILcsiuerercucusrssssessscssassssssssssssssssssssssnes 23
4.4 WFS_INF_PIN_FUNCKEY _DETAILcososuirrreeccrersssnes 25
4.5 WFS_INF_PIN_HSM _TDATAciititeicesssassssssssssssssassssssssnes 28
4.6 WFS_INF_PIN_KEY_DETAIL_EX...iceceeeirsurereresscssnes 29
4.7 WFS_INF_PIN_SECUREKEY DETAIL....csiueteiciierersses 31
4.8 WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAILcccciiiiiricccmmereesesssssssssssssessssssssssssssssnses 35
5. EXECULE COMMEANUSccuiiiiieiriiireerermrrnssesrenssassasrenssassnsssnssnssesssnssnssenssnssnssennen 36
5.1 NOIMAl PIN COMMEANAS ...ieuiiieiieniiimirenirensremsrenssrssssesssrensssassssssssessssessssnsssessssesssensssenssssnssenssrens 36
5.1.1 WES CMD PIN CRYPT ..ot 36
5.1.2 WES_CMD PIN IMPORT KEYcoooiiiiiiiiiiieeeeeeeeeeeeeeeeeee e nenanenes 39
5.1.3 WES_CMD PIN DERIVE KEYc.ooiiiiiiiiiieeeeeeeeeeeeeeeeeee e v s nenanas 42
5.1.4 WES CMD PIN GET PINoiiiiiiiiiiieeceeeeeeeeeee e n s n s senenaenan 44
5.1.5 WES _CMD PIN LOCAL DESooooiimiiiieeeeeeeeeeeeeeeeeee e sassene s 47
5.1.6 WEFS_CMD PIN CREATE OFFSETooiiiiiieeeeeeeeeeeeee et 49
5.1.7 WFS_CMD PIN LOCAL EUROCHEQUEcoooiiiiiieeeeeeeeeeeee e 51
5.1.8 WES_CMD PIN LOCAL VISA......omioiiiieieeeeeeeieeeeee e eeeeeee e 53
5.1.9 WES_CMD PIN PRESENT IDCoouoiiiiiiiieeieieeeeeeeieeeeeeeeee e 55
5.1.10 WFS_CMD _PIN GET PINBLOCKccceoiiimiieeieeeeeeeeeeeeeeee s eeeee e 57
51.11 WFS_CMD PIN GET DATAoooiiiioeeeeeeeeeeeeeeeee e 59
5.1.12 WFS_CMD_PIN INITIALIZATIONccooiiiiiieieeeeeeeeeeeeeeeeee e 62
5.1.13 WFS_CMD PIN LOCAL BANKSYS ..ottt 64
5.1.14 WFS_CMD PIN BANKSYS Ooiiiiioiieeeeeeeeeeeeeeeeeeee e 65
5.1.15 WEFS _CMD PIN RESETooiiiiiiiioieioeeeeeeeeeeeeeeeeeee e 66
5.1.16 WFS_CMD PIN HSM SET TDATAoooiiiieieeeeeeeeeeeeeeeeee e 67
5.1.17 WFS_CMD PIN SECURE _MSG SENDc.cceoiiuiiiiimeeeeeeeeeeeeeeeeeeeeeeeeeeeeese e seneen 69
5.1.18 WFS_CMD PIN SECURE MSG RECEIVEc..cccooiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 71
5.1.19 WFS_CMD PIN GET JOURNALcccoiiiiiiieeeeeeeieeeees e 73
5120 WFS_CMD PIN IMPORT KEY EX.....ccoooiiiiiiieiieeeeieeeeeeseeeeeeseeee s seeee e eeen 74
5121 WFS_CMD PIN ENC TO.....oooiiiiiiieeeeeeeeeeeeeeeeeeeee e eeas s 77
5122 WEFS_CMD PIN HSM INIT......cocoiiiiiiiieeieeeeeeeeeeeeee e eesee et nee s 79
5.123 WFS_CMD _PIN SECUREKEY ENTRYcccocoiiiiiiiiiieiieeeeeeeeeseeseeee s sneeen 80
5.1.24 WFS_CMD PIN GENERATE KCVocoiiiiiioiiiieeeeeeeeeeeeeeeee e 83
5.1.25 WFS_CMD PIN SET GUIDANCE LIGHTc.cccoovuiiiiieeeeeeeeeeeeeeeeeeeeeeese e 84
5.1.26 WFS_CMD PIN MAINTAIN PIN.......ccooiiiiiiiiiiiioeeeeeeeeeeeeeee e 85
5.1.27 WFS_CMD PIN KEYPRESS BEEPc.cocooiiiiiieieeeeeeeeeeeeeeee e 86
5.1.28 WFS_CMD PIN SET PINBLOCK DATAcoooviimieeeeeeeeeeeeeeeeeeeeeeeee e 87
5.1.29 WFS_CMD PIN SET LOGICAL HSMc.cocoiiiiioiiieeeeeeeeeeeeeeeeeeeee e 88
5.1.30 WFS_CMD_PIN IMPORT KEYBLOCKcceoiiiiiiueiieieeeeeieeeeeeeeee e aeen 90

Page 3
CWA 15748-06:2008

5.1.31 WFS_CMD _PIN POWER _SAVE CONTROLcoccotiiieiieiteie ettt 91
5.2 Common commands for Remote Key Loading Schemes..........ccccccimimiiiiiccccsecemnnennnsssssssnnnes 92
5.2.1 WES CMD PIN START KEY EXCHANGE........ccooiiiieietet et e 92
5.3 Remote Key Loading Using SIgNaturescccccciriiiicccinncmrnnnsnssssscssssessessssssssssssssssssssssssnssns 93
5.3.1 WES _CMD_PIN IMPORT_RSA PUBLIC KEY ...oooiiiiiiiiiiie ettt 93
53.2 WFS_CMD_PIN_EXPORT RSA ISSUER SIGNED ITEMccooiiiiiiiiiiieiieeseeeeeeeeee 96
533 WFS_CMD _PIN IMPORT RSA SIGNED DES KEY ...occoiiiiiiiiiiieieesee e 98
534 WFS _CMD_PIN _GENERATE RSA KEY PAIR ...oooiiiiiiiiit et 101
53.5 WFS_CMD_PIN_EXPORT RSA EPP_SIGNED ITEM.....cccooiiiiiiiieieiiieseee e 103
5.4 Remote Key Loading with Certificates ... s 105
5.4.1 WFS_CMD _PIN LOAD CERTIFICATE.....cciiiiiieiieieee ettt ettt 105
542 WES CMD _PIN GET _CERTIFICATEociiiieiieiet ettt e 106
543 WES CMD _PIN REPLACE CERTIFICATEc.oooieiieiieieeeeteeee ettt 107
544 WES CMD_PIN IMPORT _RSA ENCIPHERED PKCS7 KEY ...ccoosoiiiieiieiieeeie e 108
£ T 1 T 110
5.5.1 WES CMD_PIN EMV _IMPORT PUBLIC KEY ...ocoiiiiiiiiieieeieiieieeie ettt 110
552 WES CMD _PIN DIGEST ..ottt ettt ettt sttt et st essee st e seassesnsessaesseenseensennsenes 113
Y=Y o 114

6.1 WFS_EXEE_PIN_KEY ...t iimes s sne s ssme s s ssme s s same s s sams s s ssme s s s smme e s s smme s nsssmmn e s 114
6.2 WFS_SRVE_PIN_INITIALIZEDcccootiiireieranereressnre s s s ssssms s s sms s s ssms s sssssms s sssssmsssssssnes 115
6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS ..o sssms s sss s 116
6.4 WFS_SRVE_PIN_OPT_REQUIRED........cccoootitimrrrnmrr e sssssss s ssns s ssne s sms e s smna s smne s 117
6.5 WFS_SRVE_PIN_CERTIFICATE_CHANGE...........ccoooriirrirrn e s 118
6.6 WFS_SRVE_PIN_HSM_TDATA_CHANGED........ccoiiiiiiiiemrr s ssncsms s smmss e smnees 119
6.7 WFS_SRVE_PIN_HSM_CHANGED ...t ssssmss s ssssmss s s ssssssmsn e s s s s s s smnns 120
6.8 WFS_EXEE_PIN_ENTERDATA ... mms e s mms e s e s s mmmn e e e s nnan 121
6.9 WFS_SRVE_PIN_DEVICEPOSITION.......oiiiiiiimrie e ressmse s sssmsss s s s s sssms e s mnns 122
6.10 WFS_SRVE_PIN_POWER_SAVE_CHANGE e sms e 123
O o (=Y T (=T gl | - 124

N o] o =Y s Lo [140

8.1 Remote Key Loading Using Signatures ... e 141
8.1.1 RSA Data Authentication and Digital SigNaturesccoccveveerieriierienieniecee e 141
8.1.2 RSA Secure Key Exchange using Digital Signaturescccocvevieeierienieneeie e seeseeeeees 142
8.1.3 Initialization Phase — Signature Issuer and ATM PINccoociviiiiiiiiiierieeeeeeeee e 144
8.1.4 Initialization Phase — Signature Issuer and HOStccccoiciiiiiiieiiiieciecee e 145
8.1.5 Key Exchange — Host and ATM PINocouioiiiieiieiiee ettt s ens 146
8.1.6 Key Exchange (with random number) — Host and ATM PINcccooiiiiiiiiiinininnecicicccne 147
8.1.7 Enhanced RKL, Key Exchange (with random number) — Host and ATM PINcccocininenn. 148
8.1.8 Default Keys and Security Item loaded during manufacture...........c.cccocereeniiniiiiniencinceeeeee 149
8.2 Remote Key Loading Using Certificatescccoriiiiiiiiiiiciini s 150
8.2.1 Certificate Exchange and AuthentiCation.............ovierieriiiiiiiienierieeeeee e 150
8.2.2 Remote KeY EXCRANGEcoccviiiiieciiiciieee ettt ettt et sae et ssae e tae e saeenaeensaeennnes 151
8.2.3 REPIACE COItIfICALEeeuvieiiieiieiieii ettt ettt et ettt e e et e st e e bt ensesasessaesseenseensesnsesseeseenseans 152
8.2.4 Primary and Secondary CertifiCatesceiuirieririierierierie ettt e teste s e sseeaeeaesneesseeseenneens 153
8.3 German ZKA GeldKarte..........cccceriiiiriniiiirinsmes s smse e ne s s s 154
8.3.1 How to use the SECURE_MSG COMMANGS.......ccerirriieriieiiiieniieniieieeieeeesseesieesiesseesaesseesseeseennenns 154
8.3.2 Protocol WFS _PIN PROTISOAS ...ttt ettt sse s snnesneenseenseens 155
8.3.3 Protocol WFS _PIN PROTISOLZooouieiieiieie ettt sttt sae st e saeenseensesnsennnens 156

8.3.4 Protocol WES_PIN_PROTISOPS......cc.coiiiiiiiieieeet ettt st 157

Page 4

CWA 15748-6:2008

8.3.5 Protocol WFS PIN PROTCHIPZEKAccoooiiiririinieitetetetere ettt sttt 158
8.3.6 Protocol WFS PIN PROTRAWDATAootiiinineeeeteeterte ettt sttt 159
8.3.7 Protocol WES PIN PROTPBMcoiiiiiiiiiiiininesieneei ettt sttt 160
8.3.8 Protocol WEFS PIN PROTHSMLDIc..ooiiiiiiiiiiiieteieerereeeeee ettt 161
8.3.9 Protocol WEFS PIN PROTGENASooiiiiiiictet ettt st 162
8.3.10 Protocol WFS_PIN PROTCHIPPINCHG.......ccceiiiiitiiieiieieee sttt 165
8.3.11 Protocol WFS_PIN PROTPINCMP.......coooiiiiiiiitietiet ettt st 166
8.3.12 Protocol WFS_PIN PROTISOPINCHGcceiiiiiiiitiiieiieieieie sttt sttt 167
8.3.13 COMMANA SEQUETICEc.uveeeuvieiiiieeirieiiieeteesteeeteesteeeteesteesseessseeasseesssaeasseesssaessseesssesssseesssessseesnses 168
< T 1T Y ST 1T o o o N 175
8.4.1 KEYS TOAAING. ... eeeiiieeiie et ettt et e et e et e e tb e esaeestaeesaeessaeensseesseenssaenssaennseennses 175
8.4.2 PIN DIOCK MANAGEIMENLccuvieiiieiieiieiieii ettt ete st e e te st e te st e et esteesseessesseesseeseensesnsessnesseanseensenns 177
8.4.3 SHA-T DIZESE ..ttt ettt b ettt et e s bt sb e bt bt eb b et et sbeees et eae e 178
8.5 French Cartes BanCaires.........ccccuveriniuiminninnrsisr s s s s s 179
8.5.1 Data Structure for WFS CMD_PIN ENC O ..ccoooiiiiiiiiiiiiiiiinnectceceteree et 179
8.5.2 COMMANA SEQUETICEeeieiieiieiieieeteetestesteesteesteesteeseesseesseesseesseessesssesssesseesseaseensesnsesnsesseenseensenns 181
8.6 SeCUIe KEY ENLIY ... scsssrr e s s s s s e e e s s s s ssmn e e e e s s s sanmn e e e e ee s e s mmnne s e e e nannnns 183
8.6.1 KeYDOAIA LAYOUL....ccutiiiiieiiieeiieeiee ettt ettt ee e et e et e et e ebeeesteeasbeeenteeassaeensaeessaeenseesnsaeensseessseennses 183
8.6.2 CoMMANA USAZEeeuiiiieiieie ettt ettt ettt ettt e s bt e b e et ee bt eetesbeesbeesbeebeenaeenbeenteans 187
9. Appendix-B (Country Specific WFS_CMD_PIN_ENC_IO protocols)........... 188
9.1 Luxemburg ProtOCOLccuiiiiiiiiiiiiiececececnmecnmsssmssnssssssnssnssnsnnn 188
9.1.1 WFS CMD ENC 10 LUX LOAD APPKEY ...ccciiiiiiiiiieiiniineneneeieetetetee et 190
9.1.2 WFS CMD ENC 10 LUX GENERATE MAC ...cccociiiiiiiiiiiniintctcceie sttt 192
9.1.3 WFS_CMD_ENC 10 LUX CHECK MAC ...ttt ettt 193
9.14 WFS_CMD_ENC 10 LUX BUILD PINBLOCKccccttteiiriiiiiteiieieeieie et 194
9.1.5 WFS_CMD_ENC 10 LUX DECRYPT TDESccciiiiieeiiiieie et 195
9.1.6 WFS_CMD_ENC 10 LUX ENCRYPT TDEScoiiiiieeiieeie et 196
9.1.7 Luxemburg-specific Header File.........c.ooiiiiiiiiiii e 197
10. Appendix-C (Standardized IpszExtra fields).........ccccceoiiiiimmmmimscciiiiiinnnneennnes 200
10.1 WFS_INF_PIN_STATUS.t ssssr e s s s s e s s s s s e s sa e e e ea s mnnenans 200

10.2 WFS_INF_PIN_CAPABILITIES ... s s ane s 201

Page 5
CWA 15748-6:2008

Foreword

This CWA is revision 3.10 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2007-11-29. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.10.

The CWA is published as a multi-part document, consisting of’

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference
Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference
Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference
Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference
Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference
Parts 19 - 24: Reserved for future use.

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines
Parts 26 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class
Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class
Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Page 6
CWA 15748-6:2008

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions — Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class
Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class
Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 3.0
(CWA 14050) to Version 3.10 (this CWA) - Programmer's Reference

Part 62: Printer Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.03 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA)
- Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.01 (CWA 14050) to
Version 3.10 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version
3.10 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cen.eu/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

This CEN Workshop Agreement is publicly available as a reference document from the National Members of
CEN : AENOR, AFNOR, ASRO, BDS, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN, IPQ, IST, LVS, LST, MSA,
MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV, SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be addressed
to the CEN Management Centre.

Revision History:

Page 7
CWA 15748-6:2008

1.0 May 24, 1993 Initial release of API and SPI specification.

1.11 February 3, 1995 Separation of specification into separate documents for
API/SPI and service class definitions.

2.0 November 11, 1996 Update release encompassing the self-service environment.

3.0 October 18, 2000 Update release encompassing:
New commands to support the German ZKA chip card
standard.
Support of Banksys Security Control Module.
Added clarification note for Pin format 3624.
Added WFS_CMD_PIN_ENC IO, which is currently used
for the Swiss proprietary protocol only.
Double and triple zero clarification in
WFS _CMD_PIN_ GET DATA.
Key deletion in WFS_CMD PIN IMPORT KEY inserted.
For a detailed description see CWA 14050-20:2000 PIN
Migration from Version 2.0 to Version 3.0.

3.02 May 21, 2003 Update release encompassing:
New commands to support EMV, GIE-CB, Remote Key
Loading (Signature and Certificate), OPT, MAA MAC, and
Multiple-Part Key Loading.
Added clarification notes on
WFS_PIN_CRYPTTRIDESMAC to the
WFS_INF_CAPABILITES and WFS_CMD_PIN_CRYPT.
For a detailed description see CWA 14050-27:2003 PIN
Migration from Version 3.0 to Version 3.02.

3.03 September 24, 2004 Update release encompassing:
New command to support secure manual encryption key
entry.
New command to support the generation of a Key Check
Value for a previously loaded symmetric key.
Added support for the ZKA PROTGENAS.
Existing command descriptions were modified to describe
the way in which Signatures can be used to authenticate
public key deletion within the RKL Signature scheme.
For a detailed description see CWA 14050-42:2005 PIN
Migration from Version 3.02 to Version 3.03.

3.10 November 29, 2007 For a description of changes see CWA 15748-65:2007 PIN
Migration from Version 3.03 (see CWA 14050) to Version
3.10.

Page 8
CWA 15748-6:2008

1. Introduction

1.1 Background to Release 3.10

The CEN/ISSS XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor
software interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are
developed within the CEN/ISSS (European Committee for Standardization/Information Society Standardization
System) Workshop environment. CEN/ISSS Workshops aim to arrive at a European consensus on an issue that can
be published as a CEN Workshop Agreement (CWA).

The CEN/ISSS XFS Workshop encourages the participation of both banks and vendors in the deliberations required
to create an industry standard. The CEN/ISSS XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.10 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the XFS specification has been
prompted by a series of factors.

There has been a technical imperative to extend the scope of the existing specification to include new devices, such
as the Barcode Reader, Card Dispenser and Item Processing Module.

Similarly, there has also been pressure, through implementation experience and additional requirements, to extend
the functionality and capabilities of the existing devices covered by the specification.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the Service Provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS _ERR INVALID COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP COMMAND error
returns to make decisions as to how to use the service.

Page 9
CWA 15748-6:2008

2. Pin Keypad

This section describes the application program interface for personal identification number keypads (PIN pads) and
other encryption/decryption devices. This description includes definitions of the service-specific commands that
can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This section describes the general interface for the following functions:
e Administration of encryption devices
e Loading of encryption keys
e Encryption / decryption
e Entering Personal Identification Numbers (PINs)
e PIN verification
e PIN block generation (encrypted PIN)
e Clear text data handling
¢ Function key handling
e PIN presentation to chipcard
e Read and write safety critical Terminal Data from/to HSM
e HSM and Chipcard Authentication
e EMV 4.0 PIN blocks, EMV 4.0 public key loading, static and dynamic data verification

If the PIN Pad device has local display capability, display handling should be handled using the Text Terminal Unit
(TTU) interface.

The adoption of this specification does not imply the adoption of a specific security standard.
Important Notes:

e This revision of this specification does not define all key management procedures; some key management
is still vendor-specific.

e Key space management is customer-specific, and is therefore handled by vendor-specific mechanisms.
e Only numeric PIN pads are handled in this specification.

This specification also supports the Hardware Security Module (HSM), which is necessary for the German ZKA
Electronic Purse transactions. Furthermore the HSM stores terminal specific data.

This data will be compared against the message data fields (Sent and Received ISO8583 messages) prior to HSM-
MAC generation/verification. HSM-MACs are generated/verified only if the message fields match the data stored.

Keys used for cryptographic HSM functions are stored separate from other keys. This must be considered when
importing keys.

This version of PinPad complies to the current ZKA specification 3.0. It supports loading and unloading against
card account for both card types (Type 0 and Type 1) of the ZKA electronic purse. It also covers the necessary
functionality for ‘Loading against other legal tender’.

Key values are passed to the API as binary hexadecimal values, for example:
0123456789 ABCDEF = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF

When hex values are passed to the API within strings, the hex digits OxA to OxF can be represented by characters in
the ranges ‘a’ to ‘f” or ‘A’ to ‘F’.

The following commands and events were initially added to support the German ZKA standard, but may also be
used for other national standards:

e WFS_INF_PIN_HSM TDATA
e WFS_CMD PIN HSM SET TDATA
e WFS_CMD PIN SECURE _MSG_SEND

Page 10
CWA 15748-6:2008

e WFS_CMD PIN SECURE_MSG RECEIVE
e WFS_CMD PIN _GET JOURNAL

e WFS_SRVE PIN OPT REQUIRED

e WFS_CMD PIN _HSM_INIT

e WFS_SRVE PIN HSM TDATA CHANGED

Page 11
CWA 15748-6:2008

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.10

2. RSA Laboratories, PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993

3. SHA-1 Hash algorithm ANSI 9:30:2-1993: Public Key Cryptography for Financial Services Industry Part2

4. EMVCo, EMV2000 Integrated Circuit Card Specification for Payment Systems, Book 2 — Security and Key
Management, Version 4.0, December 2000

5. Europay International, EPI CA Module Technical — Interface specification Version 1.4

6. ZKA / Bank-Verlag, Kdln, Schnittstellenspezifikation fiir die ec-Karte mit Chip, Online-Personalisierung von
Terminal-HSMSs, Version 3.0, 2. 4. 1998

7. ZKA / Bank-Verlag, K6ln, Schnittstellenspezifikation fiir die ZKA-Chipkarte, Online-Vor-Initialisierung und
Online-Anzeige einer Aulerbetriebnahme von Terminal-HSMs, Version 1.0, 04.08.2000

8. 473x Programmers Reference Volume 1 - TP-820399-001A

9. 473x Programmers Reference Volume 2 - TP-820403-001A

10. 473x Programmers Reference Volume 3 - TP-820400-001 A

11. 473x Programmers Reference Volume 4 - TP-820404-001 A

12. 473x P-Model Programmers Reference - TP-820397-001A

13. 473x Log Reference Guide - TP-820398-001 A

14. Diebold‘s Specification for support of Online Preinitialization and Personalization of Terminal HSMs (OPT)
and support for the PAC/MAC standards for the 473x Protocol, Diebold USA, Revision 1.10, revised on May 2002

15. Groupement des Cartes Bancaires “CB”, Description du format et du contenu des données cryprographiques
échangées entre GAB et GDG, Version 1.3 / Octobre 2002

16. ITU-T Recommendation X.690 — ASN.1 encoding rules (also published as ISO/IEC International Standard
8825-1), 1997

17. German ZKA specification, published by: Bank-Verlag Koeln, Post Box 300191, 50771 Cologne, Germany;
Tel: +49 221 5490-0; Fax: +49 221 5490-120

18. Banksys document “SCM DKH Manual Rel 2.x”

19. Diebold‘s and IBM‘s Specification for support of Online Preinitialization and Personalization of Terminal
HSMs (OPT) and support for the PAC/MAC standards for th 473x Protocol, Diebold USA, Revision 1.8, revised
on Jan-03-2001

20. ANSI X3.92, American National Standard for Data Encryption Algorithm (DEA), American National
Standards Institute, 1983

21. ANSI X9.8-1995, Banking — Personal Identification Number Management and Security, Part 1 + 2, American
National Standards Institute

22.1SO 9564-1, Banking — Personal Identification Number management and security, Part 1, First Edition 1991-
12-15, International Organization for Standardization

23.ISO 9564-2, Banking — Personal Identification Number management and security, Part 2, First Edition 1991-
12-15, International Organization for Standardization

24. IBM, Common Cryptographic Architecture: Cryptographic Application Programming Interface, SC40-1675-1,
IBM Corp., Nov 1990

25. R:L: Rivest, A. Shamir, and L.M. Adleman, A Method for Onbtaining Digital Signatures and Public-Key
Cryptosystems, Communications of the ACM, v. 21, n.2, Feb 1978, pp. 120-126

26. Security for Computer Networks by Donald W. Davies & William L. Price, Second Edition, John Wiley &
Sons, 1989

27. Regelwerk fiir das deutsche ec-Geldautomaten-System, Stand: 22. Nov. 1999

28. Bank-Verlag, Koln, Autorisierungszentrale GA/POS der privaten Banken, Spezifikation fiir GA-Betreiber,
Version 3.12, 31. Mai 2000

29. dvg Hannover, Schnittstellenbeschreibung fiir Autorisierungsanfragen bei nationalen GA-Verfiigungen unter
Verwendung der Spur 3, Version 2.5, Stand: 15.03.2000

30. dvg Hannover, Schnittstellenbeschreibung fiir Autorisierungsanfragen bei internationalen Verfiigungen unter
Verwendung der Spur 2, Version 2.6, Stand: 30.03.2000

31. ZKA / Bank-Verlag, Koln,.Schnittstellenspezifikation fiir die ec-Karte mit Chip, Geldkarte Ladeterminals,
Version 3.0, 2. 4. 1998

32. ISO/IEC 9797-1: 1999

33. IS0 8731-2

34. ZKA / Bank-Verlag, K6In, Schnittstellenspezifikation fiir die ec-Karte mit Chip
PIN—Anderungsfunktion, Version 3.0, 12.05.1999

35. ANS X9 TR-31 2005, Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithms

Page 12
CWA 15748-6:2008

4. Info Commands

41 WFS_INF_PIN_STATUS

Description This command returns several kinds of status information.

Input Param None.
Output Param LPWFSPINSTATUS IpStatus;

typedef struct wfs pin status

WORD fwDevice;
WORD fwEncStat;
LPSTR lpszExtra;
DWORD dwGuidLights [WFS_PIN GUIDLIGHTS SIZE];
WORD fwAutoBeepMode;
DWORD dwCertificateState;
WORD wDevicePosition;
USHORT usPowerSaveRecoveryTime;
} WFSPINSTATUS, *LPWFSPINSTATUS;
fwDevice
Specifies the state of the PIN pad device as one of the following flags:
Value Meaning
WEFS _PIN DEVONLINE The device is online (i.e. powered on and
operable).

WFS_PIN_DEVOFFLINE

WFS_PIN_DEVPOWEROFF

WEFS _PIN DEVNODEVICE

WFS_PIN_ DEVHWERROR
WFS_PIN_DEVUSERERROR
WFS_PIN_DEVBUSY

WEFS PIN DEVFRAUDATTEMPT

JwEncStat

The device is offline (e.g. the operator has
taken the device offline by turning a switch
or pulling out the device).

The device is powered off or physically not
connected.

There is no device intended to be there; e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

The device is inoperable due to a hardware
error.

The device is present but a person is
preventing proper device operation.

The device is busy and unable to process an
execute command at this time.

The device is present but has detected a
fraud attempt.

Specifies the state of the encryption module as one of the following flags:

Value

Meaning

WEFS_PIN ENCREADY

WEFS_PIN_ ENCNOTREADY

WFS_PIN_ENCNOTINITIALIZED
WFS_PIN_ENCBUSY

WEFS_PIN _ENCUNDEFINED
WEFS_PIN_ENCINITIALIZED

The encryption module is initialized and
ready (at least one key is imported into the
encryption module).

The encryption module is not available or
not ready due to hardware error or
communication error.

The encryption module is not initialized (no
master key loaded).

The encryption module is busy (implies that
the device is busy).

The encryption module state is undefined.
The encryption module is initialized and
master key (where required) and any other
initial keys are loaded; ready to import other
keys.

Page 13
CWA 15748-6:2008

IpszExtra

Specifies a list of vendor-specific, or any other extended, information. The information is returned
as a series of “key=value” strings so that it is easily extendable by Service Providers. Each string
will be null-terminated, the whole list terminated with an additional null character. An empty list
may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

A number of IpszExtra key value pairs have been standardized during previous releases of the PIN
specification. These values have now been added to the main status structure but the standardized
key value pairs in IpszExtra must still be supported by the Service Provider when the functionality
is supported. Section 10 defines the standardized /pszExtra key value pairs.

dwGuidLights [...]

Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_PIN GUIDLIGHTS MAX.

Specifies the state of the guidance light indicator as
WFS PIN GUIDANCE NOT AVAILABLE, WFS PIN GUIDANCE OFF or a combination
of the following flags consisting of one type B, and optionally one type C.

Value Meaning Type
WFS PIN GUIDANCE NOT AVAILABLE The status is not available. A
WEFS _PIN GUIDANCE OFF The light is turned off. A
WEFS _PIN GUIDANCE SLOW_FLASH The light is blinking slowly. B
WEFS PIN GUIDANCE MEDIUM FLASH The light is blinking medium B
frequency.
WEFS _PIN GUIDANCE QUICK FLASH The light is blinking quickly. B
WEFS _PIN GUIDANCE CONTINUOUS The light is turned on continuous B
(steady).
WFS PIN GUIDANCE RED The light is red. C
WFS PIN GUIDANCE GREEN The light is green. C
WFS PIN GUIDANCE YELLOW The light is yellow. C
WFS PIN GUIDANCE BLUE The light is blue. C
WFS PIN GUIDANCE CYAN The light is cyan. C
WFS PIN GUIDANCE MAGENTA The light is magenta. C
WFS _PIN GUIDANCE WHITE The light is white. C

dwGuidLights [WFS PIN GUIDANCE PINPAD]
Specifies the state of the guidance light indicator on the PIN pad unit.

fwAutoBeepMode

Specifies whether automatic beep tone on key press is active or not. Active and in-active key
beeping is reported independently. fwAutoBeepMode can take a combination of the following
values, if the flag is not set auto beeping is not activated (or not supported) for that key type (i.e.
active or inactive keys):

Value Meaning

WFS PIN BEEP ON_ACTIVE An automatic tone will be generated for all
active keys.

WFS PIN BEEP ON INACTIVE An automatic tone will be generated for all

in-active keys.

dwCertificateState
Specifies the state of the public verification or encryption key in the PIN certificate modules as
one of the following flags:

Value Meaning

WEFS PIN CERT UNKNOWN The state of the certificate module is unknown
or the device dies not have this capability.

WEFS PIN CERT PRIMARY All pre-loaded certificates have been loaded

and that primary verification certificates will be
accepted for the commands

WFS _CMD_PIN LOAD CERTIFICATE or
WFS CMD PIN REPLACE_ CERTIFICATE.

Page 14
CWA 15748-6:2008

WEFS PIN CERT SECONDARY Primary verification certificates will not be
accepted and only secondary verification
certificates will be accepted. If primary
certificates have been compromised (which the
certificate authority or the host detects), then
secondary certificates should be used in any
transaction. This is done by calling the
WEFS_CMD_PIN LOAD_CERTIFICATE
command or the
WFS_CMD_PIN REPLACE CERTIFICATE.

WEFS PIN CERT NOTREADY The certificate module is not ready. (The
device is powered off or physically not
present).

wDevicePosition

Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS _PIN DEVICENOTINPOSITION, fiwDevice can
have any of the values defined above (including WFS_PIN _DEVONLINE or

WEFS PIN DEVOFFLINE). This value is one of the following values:

Value Meaning

WEFS _PIN DEVICEINPOSITION The device is in its normal operating
position, or is fixed in place and cannot be
moved.

WEFS PIN DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WEFS PIN DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS PIN DEVICEPOSNOTSUPP The physical device does not have the

capability of detecting the position.

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the IpszExtra parameter
may not be device or vendor-independent.

In the case where communications with the device have been lost, the fwDevice field will report
WFS PIN DEVPOWEROFF when the device has been removed or WFS PIN. DEVHWERROR
if the communications are unexpectedly lost. All other fields should contain a value based on the
following rules and priority:

1. Report the value as unknown.
2. Report the value as a general h/w error.

3. Report the value as the last known value.

Page 15
CWA 15748-6:2008

4.2 WFS_INF_PIN_CAPABILITIES

Description This command is used to retrieve the capabilities of the PIN pad.
Input Param None.

Output Param LPWFSPINCAPS IpCaps;

typedef struct _wfs pin caps

WORD wClass;
WORD fwType;
BOOL bCompound;
USHORT usKeyNum;
WORD fwAlgorithms;
WORD fwPinFormats;
WORD fwDerivationAlgorithms;
WORD fwPresentationAlgorithms;
WORD fwDisplay;
BOOL bIDConnect;
WORD fwIDKey;
WORD fwvalidationAlgorithms;
WORD fwKeyCheckModes;
LPSTR lpszExtra;
DWORD dwGuidLights [WFS_PIN GUIDLIGHTS SIZE];
BOOL bPINCanPersistAfterUse;
WORD fwAutoBeep;
LPSTR lpsHSMVendor;
BOOL bHSMJournaling;
DWORD dwRSAAuthenticationScheme;
DWORD dwRSASignatureAlgorithm;
DWORD dwRSACryptAlgorithm;
DWORD dwRSAKeyCheckMode;
DWORD dwSignatureScheme;
LPWORD lpwEMVImportSchemes;
WORD fwEMVHashAlgorithm;
BOOL bKeyImportThroughParts;
WORD fwENCIOProtocols;
BOOL bTypeCombined;
BOOL bSetPinblockDataRequired;
WORD fwKeyBlockImportFormats;
BOOL bPowerSaveControl;
} WESPINCAPS, *LPWFSPINCAPS;
wClass
Specifies the logical service class as WFS_SERVICE CLASS PIN.
SwIype

Specifies the type of the PIN pad security module as a combination of the following flags. PIN
entry is only possible when at least WFS_PIN_ TYPEEPP and WFS_PIN TYPEEDM are set. In
order to use the ZKA-Electronic purse, all flags must be set.

Value Meaning

WEFS _PIN TYPEEPP Electronic PIN pad (keyboard data entry
device).

WFS _PIN TYPEEDM Encryption/decryption module.

WEFS_PIN TYPEHSM Hardware security module (electronic PIN
pad and encryption module within the same
physical unit).

bCompound

Specifies whether the logical device is part of a compound physical device.
usKeyNum

Number of the keys which can be stored in the encryption/decryption module.
fwAlgorithms

Supported encryption modes; a combination of the following flags:

Page 16
CWA 15748-6:2008

Value Meaning

WEFS PIN CRYPTDESECB Electronic Code Book.
WEFS _PIN CRYPTDESCBC Cipher Block Chaining.
WFS PIN CRYPTDESCFB Cipher Feed Back.

WFS PIN CRYPTRSA RSA Encryption.

WFS PIN CRYPTECMA ECMA Encryption.

WEFS_PIN CRYPTDESMAC
WEFS _PIN CRYPTTRIDESECB
WFS_PIN_CRYPTTRIDESCBC
WFS_PIN_CRYPTTRIDESCFB
WFS_PIN_CRYPTTRIDESMAC

WEFS _PIN CRYPTMAAMAC

JwPinFormats

MAC calculation using CBC.

Triple DES with Electronic Code Book.
Triple DES with Cipher Block Chaining.
Triple DES with Cipher Feed Back.

Last Block Triple DES MAC as defined in
ISO/IEC 9797-1:1999 [Ref. 32], using: block
length n=64, Padding Method 1 (when
bPadding=0), MAC Algorithm 3, MAC
length m where 32<=m<=64.

MAC calculation using the Message
authenticator algorithm as defined in ISO
8731-2 [Ref. 33].

Supported PIN formats; a combination of the following flags:

Value

Meaning

WEFS _PIN FORM3624

WFS_PIN_FORMANSI

WFS_PIN_FORMISO0

WFS_PIN_FORMISOI1

WEFS_PIN FORMECI2

WEFS_PIN FORMECI3

WFS_PIN_FORMVISA

WEFS_PIN_ FORMDIEBOLD

PIN left justified, filled with padding
characters, PIN length 4-16 digits. The
padding character is a hexadecimal digit in
the range 0x00 to 0xOF.

PIN is preceded by 0x00 and the length of
the PIN (0x04 to 0x0C), filled with padding
character OxOF to the right, PIN length 4-12
digits, XORed with PAN (Primary Account
Number, minimum 12 digits without check
number).

PIN is preceded by 0x00 and the length of
the PIN (0x04 to 0x0C), filled with padding
character 0xOF to the right, PIN length 4-12
digits, XORed with PAN (Primary Account
Number without check number, no minimum
length specified, missing digits are filled
with 0x00).

PIN is preceded by 0x01 and the length of
the PIN (0x04 to 0x0C), padding characters
are taken from a transaction field (10 digits).
(similar to WFS_PIN FORM3624), PIN
only 4 digits.

PIN is preceded by the length (digit), PIN
length 4-6 digits, the padding character can
range from 0x0 through OxF.

PIN is preceded by the length (digit), PIN
length 4-6 digits. If the PIN length is less
than six digits the PIN is filled with 0x0 to
the length of six, the padding character can
range from 0x0 through 0x9 (This format is
also referred to as VISA2).

PIN is padded with the padding character
and may be not encrypted, single encrypted
or double encrypted.

WEFS_PIN FORMDIEBOLDCO

WFS_PIN_FORMVISA3

WEFS PIN FORMBANKSYS

WFS_PIN FORMEMV

WFS_PIN_FORMISO3

JfwDerivationAlgorithms

Page 17
CWA 15748-6:2008

PIN with the length of 4 to 12 digits, each
one with a value of 0x0 to 0x9, is preceded
by the one-digit coordination number with a
value from 0x0 to OxF, padded with the
padding character with a value from 0x0 to
0xF and may be not encrypted, single
encrypted or double encrypted.

PIN with the length of 4 to 12 digits, each
one with a value of 0x0 to 0x9, is followed
by a delimiter with the value of OxF and then
padded by the padding character with a value
between 0x0 to OxF.

PIN is encrypted and formatted according to
the Banksys Pin Block specifications.

The PIN block is constructed as follows: PIN
is preceded by 0x02 and the length of the
PIN (0x04 to 0x0C), filled with padding
character OxOF to the right, formatted up to
248 bytes of other data as defined within the
EMYV 4.0 specifications and finally
encrypted with an RSA key.

PIN is preceded by 0x03 and the length of
the PIN (0x04 to 0x0C), padding characters
sequentially or randomly chosen, XORed
with digits from PAN.

Supported derivation algorithms; a combination of the following flags:

Value

Meaning

WFS_PIN_CHIP_ZKA

fwPresentationAlgorithms

Algorithm for the derivation of a chip card
individual key as described by the German
ZKA.

Supported presentation algorithms; a combination of the following flags:

Value

Meaning

WFS_PIN_PRESENT CLEAR

fwDisplay

Algorithm for the presentation of a clear text
PIN to a chipcard. Each digit of the clear text
PIN is inserted as one nibble (=halfbyte) into
IpbChipData. See

WEFS _CMD_PIN PRESENT IDC for a
detailed description.

Specifies the type of the display used in the PIN pad module as one of the following flags:

Value

Meaning

WEFS_PIN DISPNONE
WEFS PIN DISPLEDTHROUGH
WEFS_PIN DISPDISPLAY

bIDConnect

No display unit.

Lights next to text guide user.

A real display is available (this doesn’t apply
for self-service).

Specifies whether the PIN pad is directly physically connected to the ID card unit. If the value is
TRUE, the PIN will be transported securely during the command

WFS CMD_PIN PRESENT IDC.
fwIDKey

Specifies if key owner identification (in commands referenced as /px/dent), which authorizes
access to the encryption module, is required. A zero value is returned if the encryption module
does not support this capability. Otherwise it will be a combination of the following flags:

Page 18

CWA 15748-6:2008

Value Meaning

WEFS_PIN IDKEYINITIALIZATION ID key is returned by the
WFS CMD PIN INITIALIZATION
command.

WES PIN IDKEYIMPORT ID key is required as input for the

WFS_CMD_PIN_IMPORT KEY and
WFS_CMD_PIN_DERIVE_KEY command.

fwValidationAlgorithms
Specifies the algorithms for PIN validation supported by the service; combination of the following
flags:

Value Meaning

WEFS PIN DES DES algorithm.

WFS_PIN EUROCHEQUE EUROCHEQUE algorithm.

WEFS PIN VISA VISA algorithm.

WEFS _PIN DES OFFSET DES offset generation algorithm.

WEFS PIN BANKSYS Banksys algorithm.
fwKeyCheckModes

Specifies the key check modes that are supported to check the correctness of an imported key
value; can be a combination of the following flags:

Value Meaning

WFS PIN KCVSELF The key check value is created by an
encryption of the key with itself. For a
double length key the KCV is generated
using 3DES encryption using the first half of
the key as the source data for the encryption.

WEFS PIN KCVZERO The key check value is created by encrypting
a zero value with the key.

IpszExtra

Points to a list of vendor-specific, or any other extended, information. The information is returned
as a series of “key=value” strings so that it is easily extendable by Service Providers. Each string
is null-terminated, the whole list terminated with an additional null character. An empty list may
be indicated by either a NULL pointer or a pointer to two consecutive null characters.

A number of IpszExtra key value pairs have been standardized during previous releases of the PIN
specification. These values have now been added to the main capabilities structure but the
standardized key value pairs in /pszExtra must still be supported by the Service Provider when the
functionality is supported. Section 10 defines the standardized IpszExtra key value pairs.

dwGuidLights [...]

Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_PIN_ GUIDLIGHTS MAX.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B) and colors (type C) that the guidance light indicator is capable of
handling. A value of WFS _PIN GUIDANCE NOT AVAILABLE indicates that the device has
no guidance light indicator or the device controls the light directly with no application control
possible.

Value Meaning Type

WFS PIN GUIDANCE NOT AVAILABLE There is no guidance light control A
available at this position.

WFS PIN GUIDANCE OFF The light can be off. B

WFS PIN GUIDANCE SLOW_FLASH The light can blink slowly. B

WFS PIN GUIDANCE MEDIUM FLASH The light can blink medium B
frequency.

WEFS PIN GUIDANCE QUICK FLASH The light can blink quickly. B

WEFS PIN GUIDANCE CONTINUOUS The light can be continuous B
(steady).

WEFS PIN GUIDANCE RED The light can be red. C

WEFS PIN GUIDANCE GREEN The light can be green. C

Page 19
CWA 15748-6:2008

WEFS _PIN GUIDANCE YELLOW The light can be yellow. C
WEFS PIN GUIDANCE BLUE The light can be blue. C
WEFS _PIN GUIDANCE CYAN The light can be cyan. C
WEFS PIN GUIDANCE MAGENTA The light can be magenta. C
WEFS _PIN GUIDANCE WHITE The light can be white. C
dwGuidLights [WFS PIN GUIDANCE PINPAD]
Specifies whether the guidance light indicator on the PIN pad unit is available.
bPINCanPersistAfterUse
Specifies whether the device can retain the PIN after a pin processing command, e.g.
WFS CMD _PIN_GET PINBLOCK, WFS CMD_PIN LOCAL DES,
WFS _CMD_PIN PRESENT IDC, etc:
Value Meaning
TRUE Applications may request, through the

WEFS_CMD_PIN MAINTAIN_PIN
command, that the PIN continues to be held
within the device after use by a PIN
processing command.

FALSE The PIN will always be cleared by the
device after processing. The
WEFS _CMD_PIN MAINTAIN PIN is not
supported.

fwAutoBeep
Specifies whether the PIN device will emit a key beep tone on key presses (of active keys or in-
active keys), and if so, which mode it supports. Specified as a combination of the following flags:

Value Meaning

WEFS PIN BEEP ACTIVE AVAILABLE Automatic beep tone on active key key-press
is supported. If this flag is not set then
automatic beeping for active keys is not
supported.

WFS PIN BEEP ACTIVE SELECTABLE Automatic beeping for active keys can be
controlled (i.e. turned on and off) by the
application. If this flag is not set then
automatic beeping for active keys cannot be
controlled by an application.

WEFS PIN BEEP INACTIVE AVAILABLE Automatic beep tone on in-active key key-
press is supported. If this flag is not set then
automatic beeping for in-active keys is not
supported.

WEFS PIN BEEP INACTIVE SELECTABLE Automatic beeping for in-active keys can be
controlled (i.e. turned on and off) by the
application. If this flag is not set then
automatic beeping for in-active keys cannot
be controlled by an application.

IpsHSMVendor
Identifies the HSM Vendor. [psHSMVendor is NULL when the HSM Vendor is unknown or the
HSM is not supported.

The following is a list of known vendors’ strings that [psHSMVendor can contain for the support
of German HSMs:

“KRONE”
“ASCOM”
“IBM”
“NCR”

bHSMJournaling

Specifies whether the HSM supports journaling by the WFS CMD_PIN GET JOURNAL
command. The value of this parameter is either TRUE or FALSE. TRUE means the HSM
supports journaling by WFS CMD GET JOURNAL.

Page 20

CWA 15748-6:2008

dwRSAAuthenticationScheme

Specifies which type(s) of Remote Key Loading/Authentication is supported as a combination of

the following flags:
Value

Meaning

WFS_PIN RSA_AUTH_2PARTY_SIG

WFS_PIN RSA_AUTH 3PARTY CERT

dwRSASignatureAlgorithm

Two-party Signature based authentication.
Three-party Certificate based authentication.

Specify which type(s) of RSA Signature Algorithm(s) is supported as a combination of the

following flags:
Value

Meaning

WFS_PIN_SIGN_RSASSA PKCSI VI 5

WFS PIN_SIGN RSASSA PSS
dwRSACryptAlgorithm

SSA PKCS V1 5 Signatures supported.
SSA_ PSS Signatures supported.

Specify which type(s) of RSA Encipherment Algorithm(s) is supported as a combination of the

following flags:
Value

Meaning

WFS_PIN_CRYPT RSAES_PKCSI V1 5

WFS_PIN_CRYPT RSAES OAEP
dwRSAKeyCheckMode

AES PKCS V1 5 algorithm supported.
AES OAEP algorithm supported.

Specifies which algorithm/method used to generate the public key check value/thumb print as a

combination of the following flags:

Value

Meaning

WFS_PIN_RSA_KCV_SHAI

dwSignatureScheme

SHA-1 is supported as defined in Ref. 3.

Specifies which capabilities are supported by the Signature scheme as a combination of the

following flags:
Value

Meaning

WFS_PIN_SIG_GEN RSA KEY PAIR

WFS_PIN_SIG_ RANDOM_NUMBER

WFS_PIN_SIG_EXPORT EPP_ID

WEFS _PIN SIG_ ENHANCED RKL

IpwEMVImportSchemes

Specifies if the Service Provider supports the
RSA Signature Scheme

WFS_CMD_PIN _GENERATE RSA KEY
_PAIR and

WFS _CMD_PIN _EXPORT RSA EPP_SIG
NED commands.

Specifies if the Service Provider returns a
random number from the

WFS _CMD _PIN START KEY EXCHAN
GE command within the RSA Signature
Scheme.

Specifies if the Service Provider supports
exporting the EPP Security Item within the
RSA Signature Scheme.

Specifies that the Service Provider supports
the Enhanced Signature Remote Key
Scheme. This scheme allows the customer to
manage their own public keys independently
of the Signature Issuer. When this mode is
supported then the key loaded signed with
the Signature Issuer key is the host root
public key PKroor, rather than PKyogsr. See
Section 8.1 for a full description.

Identifies the supported EMV Import Scheme(s) as a zero terminated array of modes.
IpwEMVImportSchemes is set to NULL if the Import Scheme(s) are unknown or not supported.
Otherwise [pwEMVImportSchemes lists all Import Scheme(s) supported by the PIN Service

Provider from the following possible values:

Page 21
CWA 15748-6:2008

Value Meaning

WFS PIN EMV _IMPORT PLAIN CA A plain text CA public key is imported with
no verification.

WEFS _PIN EMV_IMPORT CHKSUM CA A plain text CA public key is imported using
the EMV 2000 verification algorithm. See
[Ref. 4].

WFS PIN EMV IMPORT EPI CA A CA public key is imported using the self-
sign scheme defined in the Europay
International, EPI CA Module Technical -
Interface specification Version 1.4, [Ref. 5].

WFS PIN EMV_IMPORT ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, [Ref. 4].

WFS PIN EMV_IMPORT ICC An ICC public key is imported as defined in
EMYV 2000 Book II, [Ref. 4].

WFS PIN EMV IMPORT ICC PIN An ICC PIN public key is imported as

defined in EMV 2000 Book II, [Ref. 4].

WFS PIN EMV _IMPORT PKCSV1 5 CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

fwEMVHashAlgorithm
Specifies which hash algorithm is supported for the calculation of the HASH as a combination of
the following flags:

Value Meaning

WFS PIN HASH SHA1 DIGEST The SHA 1 digest algorithm is supported by
the WFS_CMD PIN DIGEST command.

bKeyImportThroughParts
Specifies whether the device is capable of importing keys in multiple parts. TRUE means the
device supports the key import in multiple parts.

JWENCIOProtocols
Specifies the ENC IO protocols supported to communicate with the encryption module as a
combination of the following flags:

Value Meaning

WFS PIN ENC PROT CH For Swiss specific protocols. The document
specification for Swiss specific protocols is
"CMD_ENC IO - CH Protocol.doc". This
document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management
Hertistrasse 27
CH-8304 Wallisellen

WFS PIN ENC PROT GIECB Protocol for “Groupement des Cartes
Bancaires” (France).
WFS PIN_ENC PROT LUX Protocol for Luxemburg commands. The

reference for this specific protocol is the
Authorization Center in Luxemburg
(CETREL))

Cryptography Management

Postal address:

CETREL Société Coopérative

Centre de Transferts Electroniques
L-2956 Luxembourg

bTypeCombined
Specifies whether the keypad used in the secure PIN pad module is integrated within a generic
Win32 keyboard.

Page 22

CWA 15748-6:2008

Error Codes

Comments

TRUE means the secure PIN keypad is integrated within a generic Win32 keyboard and standard
Win32 key events will be generated for any key when there is no ‘active’ GET _DATA or

GET PIN command. Note that XFS continues to support defined PIN keys only, and is not
extended to support new alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both
PIN and generic keyboards.

e When an application wishes to receive XFS-based key information then it can use the
WFS CMD PIN GET DATA and WFS_CMD_PIN GET PIN commands.

e No Win32 keystrokes are generated for any key (active or not) in a combined device
when WFS_ CMD_PIN GET DATA or WFS_CMD_PIN_ GET PIN are ‘active’.

e Whenno WFS CMD PIN GET DATA or WFS_CMD_ PIN GET PIN command is
‘active’ then any key press will result in a Win32 key event. These events can be ignored
by the application, if required.

Note that this does not compromise secure PIN entry — there will be no Win32 keyboard events
during PIN collection.

On terminals and kiosks with separate PIN and Win32 keyboards, the Win32 keyboard behaves
purely as a PC keyboard and the PIN device behaves only as an XFS device.

bSetPinblockDataRequired

Specifies whether the command WFS_CMD_PIN SET PINBLOCK DATA must be called
before the PIN is entered via WFS_CMD_PIN_ GET PIN and retrieved via

WFS CMD PIN GET PINBLOCK.

fwKeyBlockImportFormats
Supported key block formats; a combination of the following flags:

Value Meaning
WEFS PIN ANSTR31KEYBLOCK Supports ANS TR-31 Keyblock format key
import.
bPowerSaveControl

Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Applications which require or expect specific information to be present in the [pszExtra parameter
may not be device or vendor-independent.

Page 23
CWA 15748-6:2008

4.3 WFS_INF_PIN_KEY_DETAIL

Description

Input Param

Output Param

Error Codes

This command returns detailed information about the keys in the encryption module. This
command will also return information on symmetric keys loaded during manufacture that can be
used by applications. If a public or private key name is specified this command will return

WFS ERR PIN KEYNOTFOUND. If the application wants all keys returned, then all keys
except the public and private keys are returned.

Details relating to the keys loaded using OPT (via the ZKA WFS PIN PROTISOPS protocol) are
retrieved using the ZKA WFS PIN PROTHSMLDI protocol. These keys are not reported by this
command.

LPSTR IpsKeyName;

IpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

LPWFSPINKEYDETAIL *lppKeyDetail;
Pointer to a NULL-terminated array of pointers to WFSPINKEYDETAIL structures.

typedef struct _wfs pin key detail

{

LPSTR lpsKeyName;
WORD fwUse;
BOOL bLoaded;
LPWFSXDATA lpxKeyBlockHeader;
} WFSPINKEYDETAIL, *LPWFSPINKEYDETAIL;
IpsKeyName
Specifies the name of the key.
fwUse
Specifies the type of access for which the key is used as a combination of the following flags:
Value Meaning
WEFS _PIN USECRYPT Key can be used for encryption/decryption.
WFS PIN USEFUNCTION Key can be used for PIN functions.
WFS PIN USEMACING Key can be used for MACing.
WFS_PIN USEKEYENCKEY Key is used as key encryption key.
WEFS PIN USENODUPLICATE Key can be imported only once.
WEFS _PIN USESVENCKEY Key is used as CBC Start Value encryption
key.
WEFS _PIN USECONSTRUCT Key is under construction through the import

of multiple parts. This value can be returned
in combination with any of the other key
usage flags (other than
WFS PIN USESECURECONSTRUCT).
WEFS_PIN USESECURECONSTRUCT Key is under construction through the import
of multiple parts from a secure encryption
key entry buffer. This value can be returned
in combination with any of the other key
usage flags (other than
WFS_PIN_USECONSTRUCT).
WEFS PIN USEANSTR31MASTER Key is an ANS X9 TR-31 key block master
key (see reference 35).

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator).

IpxKeyBlockHeader

Contains the key block header of keys imported within an ANS TR-31 keyblock. This data is
encoded in the same format that it was imported in, and contains all mandatory and optional
header fields. lpxKeyBlockHeader is NULL if the key was not imported within a key block or has
not been loaded yet. The fiwUse field provides a summary of the key use.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

Page 24
CWA 15748-6:2008

generated by this command:

Value

Meaning

WEFS_ERR PIN KEYNOTFOUND

Comments None.

The specified key name is not found.

Page 25
CWA 15748-6:2008

4.4 WFS_INF_PIN_FUNCKEY_DETAIL

Description

Input Param

Output Param

This command returns information about the names of the Function Keys supported by the device.
Location information is also returned for the supported FDKs (Function Descriptor Keys). This
includes screen overlay FDKs.

This command should be issued before the first call to WFS_CMD_PIN_GET_PIN or

WFS CMD PIN GET DATA to determine which Function Keys (FKs) and Function Descriptor
Keys (FDKs) are available and where the FDKSs are located. Then, in these two commands, they
can then be specified as Active and Terminate keys and options on the customer screen can be
aligned with the active FDKs.

LPULONG IpulFDKMask;

IpulFDKMask

Mask for the FDKs for which additional information is requested.

I£ 0x00000000, only information about function keys is returned.

If OxFFFFFFFF, information about all the supported FDKs is returned.

LPWFSPINFUNCKEYDETAIL IpFuncKeyDetail;

typedef struct wfs pin func_key detail

ULONG ulFuncMasgk;

USHORT usNumberFDKs ;

LPWFSPINFDK *1ppFDKs;

} WFSPINFUNCKEYDETAIL, *LPWFSPINFUNCKEYDETAIL;
ulFuncMask

Specifies the function keys available for this physical device as a combination of the following
flags. The defines WFS_PIN FK 0 through WFS PIN FK 9 correspond to numeric digits:

WFS_PIN_FK_0
WFS_PIN FK_1
WFS_PIN_FK 2
WFS_PIN_FK_3
WFS_PIN_FK_4
WFS_PIN_FK_5
WFS_PIN_FK_6
WFS_PIN_FK_7
WFS_PIN FK_8
WFS_PIN_FK_9
WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR

WFS_PIN_FK_BACKSPACE

WFS_PIN_FK_HELP

WFS_PIN_FK_DECPOINT

WFS_PIN_FK_00
WFS_PIN_FK_000

WFS_PIN_FK_RESI
WFS_PIN_FK_RES2
WFS_PIN_FK_RES3
WFS_PIN_FK_RES4
WFS_PIN_FK_RES5
WFS_PIN_FK_RES6
WFS_PIN_FK_RES7
WFS_PIN_FK_RESS

(numeric digit 0)
(numeric digit 1)
(numeric digit 2)
(numeric digit 3)
(numeric digit 4)
(numeric digit 5)
(numeric digit 6)
(numeric digit 7)
(numeric digit 8)
(numeric digit 9)

(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)
(reserved for future use)

The remaining 6 bit masks may be used as vendor dependent keys.

WFS_PIN_FK_OEMI
WFS_PIN_FK_OEM2
WFS_PIN_FK_OEM3
WFS_PIN_FK_OEM4
WFS_PIN_FK_OEMS5
WFS_PIN_FK_OEM6

Page 26
CWA 15748-6:2008

usNumberFDKs
This value indicates the number of FDK structures returned. Only supported FDKs are returned.

IppFDKs

Pointer to an array of pointers to WFSPINFDK structures. It is the responsibility of the
application to identify the mapping between the FDK code and the physical location of the FDK.
IppFDKs is NULL if no FDKs are requested or supported.

typedef struct wfs pin fdk

ULONG ulFDK;
USHORT usXPosition;
USHORT usYPosition;
} WFSPINFDK, *LPWFSPINFDK;

ulFDK

Specifies the code returned by this FDK, defined as one of the following values:
WFS_PIN_FK FDKO1
WFS_PIN_FK FDKO02
WEFS _PIN_FK FDKO03
WEFS PIN FK FDKO04
WFS _PIN_FK FDKO5
WEFS _PIN_FK FDKO06
WEFS _PIN_FK FDKO07
WFS_PIN_FK FDKO08
WFS_PIN_FK FDKO09
WFS_PIN_FK FDKI10
WFS_PIN FK FDKI11
WFS_PIN FK FDKI12
WFS_PIN FK FDKI13
WEFS PIN FK FDK14
WFS _PIN FK FDKI15
WEFS PIN FK FDKI16
WEFS PIN FK FDK17
WFS PIN FK FDKI18
WEFS PIN FK FDKI19
WFS_PIN_FK FDK20
WFS_PIN FK FDK21
WFS_PIN _FK FDK22
WFS_PIN FK FDK23
WFS_PIN FK FDK24
WFS _PIN FK FDK25
WEFS PIN _FK FDK26
WEFS PIN FK FDK27
WFS PIN FK FDK28
WEFS _PIN FK FDK29
WEFS _PIN_FK FDK30
WFS_PIN FK FDK31
WFS_PIN FK FDK32

usXPosition

For FDKs, specifies the screen position the FDK relates to. This position is relative to the Left
Hand side of the screen expressed as a percentage of the width of the screen.

For FDKs along the side of the screen this will be 0 (left side) or 100 (right side, user’s view).

usYPosition

For FDKs, specifies the screen position the FDK relates to. This position is relative to the top
of the screen expressed as a percentage of the height of the screen.

For FDKs above or below the screen this will be 0 (above) or 100 (below).

Centre position
of FDK

Page 27
CWA 15748-6:2008

—
| I

FDK ouside the
screen.
usXPosition =0

15% of height of screen.
usYPostion =15

Diagram: Shows how usXPosition and usYPosition are set.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

Page 28
CWA 15748-6:2008

4.5 WFS_INF_PIN_HSM_TDATA

Description This function returns the current HSM terminal data. The data is returned as a series of
“tag/length/value” items.

Input Param None.
Output Param LPWFSXDATA IpxTData;

IpxTData
Contains the parameter settings as a series of “tag/length/value” items with no separators. See
command WFS_ CMD_PIN HSM SET TDATA for the tags supported.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

Page 29
CWA 15748-6:2008

4.6 WFS_INF_PIN_KEY_DETAIL_EX

This command returns extended detailed information about the keys in the encryption module,
including DES, private and public keys. This command will also return information on all keys
loaded during manufacture that can be used by applications.

Details relating to the keys loaded using OPT (via the ZKA WFS_PIN PROTISOPS protocol) are
retrieved using the ZKA WFS PIN PROTHSMLDI protocol. These keys are not reported by this
command.

LPSTR IpsKeyName;

Description

Input Param

IpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAILEX *IppKeyDetailEx;
Pointer to a null-terminated array of pointers to WFSPINKEYDETAILEX structures.

typedef struct _wfs pin key detail ex

{

LPSTR lpsKeyName;
DWORD dwUse;
BYTE bGeneration;
BYTE bVersion;
BYTE bActivatingDate [4] ;
BYTE bExpiryDate [4];
BOOL bLoaded;
LPWFSXDATA lpxKeyBlockHeader;
} WFSPINKEYDETAILEX, *LPWFSPINKEYDETAILEX;
IpsKeyName
Specifies the name of the key.
dwUse
Specifies the type of access for which the key is used as a combination of the following flags:
Value Meaning

WEFS PIN USECRYPT

WEFS _PIN USEFUNCTION
WEFS_PIN USEMACING

WEFS _PIN USEKEYENCKEY
WEFS _PIN USENODUPLICATE
WFS_PIN_USESVENCKEY
WFS_PIN_USEPINLOCAL
WFS_PIN_USERSAPUBLIC
WEFS PIN USERSAPRIVATE

WEFS _PIN USERSAPRIVATESIGN

WFS_PIN_USECHIPINFO
WFS_PIN_USECHIPPIN

WFS_PIN_USECHIPPS
WFS_PIN_USECHIPMAC

WEFS _PIN USECHIPLT

WEFS PIN USECHIPMACLZ

Key can be used for encryption/decryption.
Key can be used for PIN functions.

Key can be used for MACing.

Key is used as key encryption key.

Key can be imported only once.

Key is used as CBC Start Value encryption
key.

Key is used for local PIN check.

Key is used as a public key for RSA
encryption including EMV PIN block
creation.

Key is used as a private key for RSA
decryption.

Key is used as a private key for RSA
Signature generation. Only data generated
within the device can be signed.

Key is used as KGKnro key (only ZKA
standard).

Key is used as KGKpyy key (only ZKA
standard).

Key is used as Kpg key (only ZKA standard).
Key is used as Kyac key (only ZKA
standard).

Key is used as KGK; 1 key (only ZKA
standard).

Key is used as Kpacmac key (only ZKA
standard).

Page 30

CWA 15748-6:2008

Error Codes

Comments

WEFS PIN USECHIPMACAZ Key is used as Kyaster key (only ZKA
standard).

WEFS _PIN USERSAPUBLICVERIFY Key is used as a public key for RSA
signature verification and/or data decryption.

WEFS_PIN USECONSTRUCT Key is under construction through the import

of multiple parts. This value can be returned
in combination with any one of the other key
usage flags (other than
WFS_PIN_USESECURECONSTRUCT).
WEFS _PIN USESECURECONSTRUCT Key is under construction through the import
of multiple parts from a secure encryption
key entry buffer. This value can be returned
in combination with any of the other key
usage flags (other than
WFS PIN USECONSTRUCT).
WEFS _PIN USEANSTR31MASTER Key is an ANS X9 TR-31 key block master
key (see reference 35).

bGeneration

Specifies the generation of the key as BCD value. Different generations might correspond to
different environments (e.g. test or production environment). The content is vendor specific. This
value will be OxFF if no such information is available for the key.

bVersion
Specifies the version of the key (the year in which the key is valid, e.g. 01 for 2001) as BCD
value. This value will be OXFF if no such information is available for the key.

bActivatingDate
Specifies the date when the key is activated as BCD value in the format YYYYMMDD. This
value will be OXFFFFFFFF if no such information is available for the key.

bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. This value
will be OXFFFFFFFF if no such information is available for the key.

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator).

IpxKeyBlockHeader

Contains the key block header of keys imported within an ANS TR-31 keyblock. This data is
encoded in the same format that it was imported in, and contains all mandatory and optional
header fields. lpxKeyBlockHeader is NULL if the key was not imported within a key block or has
not been loaded yet. The dwUse field provides a summary of the key use.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR PIN KEYNOTFOUND The specified key name is not found.

When the encryption module contains a public/private key-pair, only the private part of the key
will be reported. Every private key in the encryption module will always have a corresponding
public key with the same name. The public key can be exported with

WFS _CMD PIN_EXPORT EPP_SIGNED ITEM.

Page 31
CWA 15748-6:2008

4.7 WFS_INF_PIN_SECUREKEY_ DETAIL

Description

Input Param

Output Param

This command reports the secure key entry method used by the device. This allows an application
to enable the relevant keys and inform the user how to enter the hex digits 'A' to 'F', e.g. by
displaying an image indicating which key pad locations correspond to the 16 hex digits and/or
shift key. It reports the following information:

e The secure key entry mode (uses a shift key to access the hex digit 'A' to 'F' or each hex
digit has a specific key assigned to it).

e The function keys and FDKs available during secure key entry.
e The FDKs that are configured as function keys (Enter, Cancel, Clear and Backspace).
e The physical keyboard layout.

The keys that are active during the secure key entry command are vendor specific but must be
sufficient to enter a secure encryption key. On some systems a unique key is assigned to each
encryption key digit. On some systems encryption key digits are entered by pressing a shift key
and then a numeric digit, e.g. to enter 'A' the shift key (WFS_PIN_FK_ SHIFT) is pressed
followed by the zero key (WFS PIN FK 0). On these systems WFS PIN FK SHIFT is not
returned to the application ina WFS_EXEE PIN KEY event. The exact behavior of the shift key
is vendor dependent, some devices will require the shift to be used before every key and some
may require the shift key to enter and exit shift mode.

There are many different styles of pinpads in operation. Most have a regular shape with all keys
having the same size and are laid out in a regular matrix. However, some devices have a layout
with keys of different sizes and different numbers of keys on some rows and columns. This
command returns information that allows an application to provide user instructions and an image
of the keyboard layout to assist with key entry.

None.

LPWFSPINSECUREKEYDETAIL IpSecureKeyDetail;

typedef struct _wfs pin secure key detail

WORD fwKeyEntryMode;

LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;

ULONG ulClearFDK;

ULONG ulCancelFDK;

ULONG ulBackspaceFDK;

ULONG ulEnterFDK;

WORD wColumns;

WORD wROWS ;

LPWFSPINHEXKEYS *]1ppHexKeys;

} WEFSPINSECUREKEYDETAIL, *LPWFSPINSECUREKEYDETAIL;
fwKeyEntryMode

Specifies the method to be used to enter the encryption key digits (including 'A' to 'F') during
secure key entry. The value can be one of the following.

Value Meaning

WEFS _PIN SECUREKEY NOTSUPP Secure key entry is not supported, all other
parameters are undefined.

WEFS PIN SECUREKEY REG SHIFT Secure key hex digits 'A' - 'F' are accessed

through the shift key. Digits 'A' - 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A" to 'F' are defined within
the lppHexKeys parameter. The keyboard
has a regular shaped key layout where all
rows have the same number of keys and all
columns have the same number of keys, e.g.
5x4. The IppHexKeys parameter must
contain one entry for each key on the pinpad
(i.e. the product of wRows by wColumns).

Page 32

CWA 15748-6:2008

WFS PIN SECUREKEY IRREG SHIFT Secure key hex digits 'A' - 'F' are accessed
through the shift key. Digits 'A' - 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A' to 'F' are defined within
the [ppHexKeys parameter. The keyboard
has an irregular shaped key layout, e.g. there
are more or less keys on one row or column
than on the others. The lppHexKeys
parameter must contain one entry for each
key on the pinpad.

WFS PIN SECUREKEY REG UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit. The
keyboard has a regular shaped key layout
where all rows have the same number of
keys and all columns have the same number
of keys, e.g. 5x4. The lppHexKeys parameter
must contain one entry for each key on the
pinpad (i.e. the product of wRows by
wColumns).

WEFS PIN SECUREKEY IRREG UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit. The
keyboard has an irregular shaped key layout,
e.g. there are more or less keys on one row
or column than on the others. The
IppHexKeys must contain one entry for each
key on the pinpad.

IpFuncKeyDetail

Contains information about the Function Keys and FDKs supported by the device while in secure
key entry mode. This structure is the same as the output structure of the

WEFS INF PIN FUNCKEY_ DETAIL command with information always returned for every
FDK valid during secure key entry. It describes the function keys that represent the hex digits and
shift key, but also reports any other keys that can be enabled while in secure key entry mode.

The double zero, triple zero and decimal point function keys are not valid during secure key entry
so0 are never reported.

On a pinpad where the physical Enter, Clear, Cancel and Backspace keys are used for hex digits
(e.g. WFS_PIN SECUREKEY REG UNIQUE mode), the logical function keys

WFS PIN FK ENTER, WFS PIN FK CLEAR, WFS PIN FK CANCEL and

WFS PIN FK BACKSPACE will not be reported by this command (unless there is another
physical key offering this functionality).

In addition to the existing definition for WFS_INF PIN FUNCKEY DETAIL, the following
definitions replace function keys WFS PIN FK RES1 to WFS PIN FK RES7:

WFS PIN FK A (hex digit A)
WFS PIN FK B (hex digit B)
WFS PIN FK C (hex digit C)
WEFS PIN FK D (hex digit D)
WEFS PIN FK E (hex digit E)
WEFS PIN FK F (hex digit F)
WEFS PIN FK SHIFT (Shift key used during hex entry)
ulClearFDK

The FDK code mask reporting any FDKs associated with Clear. If this field is zero then Clear
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Clear.

ulCancelFDK

The FDK code mask reporting any FDKs associated with Cancel. If this field is zero then Cancel
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Cancel.

Page 33
CWA 15748-6:2008

ulBackspaceFDK

The FDK code mask reporting any FDKs associated with Backspace. If this field is zero then
Backspace through an FDK is not supported, otherwise the bit mask reports which FDKs are
associated with Backspace.

ulEnterFDK

The FDK code mask reporting any FDKs associated with Enter. If this field is zero then Enter
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Enter.

wColumns

Specifies the maximum number of columns on the pinpad (the columns are defined by the x co-
ordinate values within the /[ppHexKeys structure below). When the fwKeyEntryMode parameter
represents an irregular shaped keyboard the wRows and wColumns parameters define the ratio of
the width to height, i.e. square if the parameters are the same or rectangular if wColumns is larger
than wRows, etc.

wRows

Specifies the maximum number of rows on the pinpad (the rows are defined by the y co-ordinate
values within the /[ppHexKeys structure below). When the fwKeyEntryMode parameter represents
an irregular shaped keyboard the wRows and wColumns parameters define the ratio of the width to
height, i.e. square if the parameters are the same or rectangular if wColumns is larger than wRows,
etc.

IppHexKeys
A NULL-terminated array of pointers to WFSPINHEXKEYS structures describing the physical
keys on the pinpad, it does not include FDKs.

typedef struct _wfs pin hex keys

USHORT usXPos;
USHORT usYPos;
USHORT usXSize;
USHORT usYSize;
ULONG ulFK;
ULONG ulShiftFK;

} WFSPINHEXKEYS, *LPWFSPINHEXKEYS;

This array defines the keys associated with the hex digits. Each structure entry describes the
position, size and function key associated with a key. This data must be returned by the
Service Provider. This array represents the pinpad keys ordered left to right and top to bottom.

usXPos

Specifies the position of the top left corner of the FK relative to the left hand side of the
keyboard expressed as a value between 0 and 999, where 0 is the left edge and 999 is the right
edge.

usYPos
Specifies the position of the top left corner of the FK relative to the top of the keyboard
expressed as a value between 0 and 999, where 0 is the top edge and 999 is the bottom edge.

usXSize
Specifies the FK width expressed as a value between 1 and 1000, where 1 is the smallest
possible size and 1000 is the full width of the keyboard.

usYSize
Specifies the FK height expressed as a value between land 1000, where 1 is the smallest
possible size and 1000 is the full height of the keyboard.

ulFK
Specifies the FK code associated with the physical key in non shifted mode,
WFS PIN FK UNUSED if the key is not used.

ulShiftFK

Specifies the FK code associated with the physical key in shifted mode,

WEFS _PIN FK UNUSED if the key is not used in shifted mode. This field will always be
WEFS PIN FK UNUSED when the fwKeyEntryMode parameter indicates that keyboard does
not use a shift mode.

Page 34
CWA 15748-6:2008

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Examples keyboard layouts are provided in section 8.6 to explain the use of the [ppHexKeys
parameter. In addition section 8.6 also provides an example of a command flow required to enter
encryption keys securely.

Page 35
CWA 15748-6:2008

4.8 WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL

Description

Input Param

Output Param

Error Codes

Comments

This command reports the ZKA logical HSMs available within the EPP. It also reports which
logical HSM is currently active.

None.

LPWFSPINHSMDETAIL IpHSMDetail;

typedef struct wfs pin hsm detail

WORD wActiveLogicalHSM;
LPWFSPINHSMINFO *1ppHSMInfo;
} WFSPINHSMDETAIL, *LPWFSPINHSMDETAIL;
wActiveLogical HSM

Specifies the serial number of the logical HSM that is currently active. This values is the HSM
serial number (tag CB in the HSM TDATA) encoded as a normal binary value (i.e. it is not a
BCD). If no logical HSMs are present or logical HSMs are not supported then this value is zero.

IppHSMInfo
Pointer to a NULL terminated array of pointers to WFSPINHSMINFO structures (one for each
logical HSM). A NULL pointer is returned if no logical HSMs are supported/present.

typedef struct wfs pin hsm info

WORD wHSMSerialNumber;
LPSTR 1psZKAID;
} WFSPINHSMINFO, *LPWFSPINHSMINFO;
wHSMSerialNumber

Specifies the Serial Number of the Logical HSM (tag CB in the HSM TDATA). This value is
encoded as a normal binary value (i.e. it is not a BCD).

IpsZKAID
A null-terminated string containing the ZKA ID of the logical HSM (defined by tag CC in the
HSM TDATA). The characters in the string are EBCIDIC characters.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

None.

Page 36

CWA 15748-6:2008
5. Execute Commands

5.1 Normal PIN Commands

The following commands are those commands that are used in a normal transaction with the encryptor.

5.1 WFS_CMD_PIN_CRYPT

Description

Input Param

The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the WFS_INF _PIN CAPABILITIES command.

This command can also be used for random number generation.

Furthermore it can be used for Message Authentication Code generation (i.e. MACing). The input
data is padded to the necessary length mandated by the encryption algorithm using the bPadding
parameter. Applications can generate a MAC using an alternative padding method by pre-
formatting the data passed and combining this with the standard padding method.

The Start Value (or Initialization Vector) should be able to be passed encrypted like the specified
encryption/decryption key. It would therefore need to be decrypted with a loaded key so the name
of this key must also be passed. However, both these parameters are optional.

LPWFSPINCRYPT IpCrypt;

typedef struct wfs pin crypt

WORD wMode ;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
WORD wAlgorithm;
LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;
BYTE bCompression;
LPWFSXDATA lpxCryptData;
} WEFSPINCRYPT, *LPWFSPINCRYPT;
wMode
Specifies whether to encrypt or decrypt, values are one of the following:
Value Meaning
WFS_PIN_MODEENCRYPT Encrypt with key.
WFS PIN MODEDECRYPT Decrypt with key.
WFS_PIN. MODERANDOM An 8 byte random value shall be returned (in
this case all the other input parameters are
ignored).

This parameter does not apply to MACing.

IpsKey
Specifies the name of the stored key. This value is ignored, if wMode equals
WFS_PIN._ MODERANDOM.

IpxKeyEncKey

If NULL, IpsKey is used directly for encryption/decryption. Otherwise, IpsKey is used to decrypt
(in ECB mode) the encrypted key passed in [pxKeyEncKey and the result is used for
encryption/decryption. Users of this specification must adhere to local regulations when using
Triple DES. This value is ignored, if wMode equals WFS_ PIN. MODERANDOM.

wAlgorithm

Specifies the encryption algorithm. Possible values are those described in
WFS INF PIN CAPABILITIES. This value is ignored, if wMode equals
WFS _PIN MODERANDOM.

Output Param

Error Codes

Events

Comments

Page 37
CWA 15748-6:2008

IpsStartValueKey

Specifies the name of the stored key used to decrypt the [pxStartValue to obtain the Initialization
Vector. If this parameter is NULL, IpxStartValue is used as the Initialization Vector. This value is
ignored, if wMode equals WFS PIN. MODERANDOM.

IpxStartValue

DES and Triple DES initialization vector for CBC / CFB encryption and MACing. If this
parameter is NULL the default value for CBC / CFB / MAC is 16 hex digits 0x0. This value is
ignored, if wMode equals WFS_PIN_ MODERANDOM.

bPadding
Specifies the padding character. The padding character is a full byte, e.g. OXFF. This value is
ignored, if wMode equals WFS_PIN. MODERANDOM. The valid range is 0x00 to OxFF.

bCompression

Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character (e.g. 0x20 in ASCII or 0x40 in EBCDIC). This value is
ignored, if wMode equals WFS PIN. MODERANDOM.

IpxCryptData
Pointer to the data to be encrypted, decrypted, or MACed. This value is ignored, if wMode equals
WFS_PIN. MODERANDOM.

LPWFSXDATA IpxCryptData;

IpxCryptData
Pointer to the encrypted or decrypted data, MAC value or 8 byte random value.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value

Meaning

WEFS_ERR PIN KEYNOTFOUND
WFS_ERR PIN MODENOTSUPPORTED
WFS_ERR PIN ACCESSDENIED

WEFS_ERR PIN KEYNOVALUE

WFS_ERR_PIN_USEVIOLATION

WFS_ERR PIN INVALIDKEYLENGTH

WFS_ERR PIN NOCHIPTRANSACTIVE

WFS_ERR PIN ALGORITHMNOTSUPP

The specified key was not found.

The specified mode is not supported.

The encryption module is either not
initialized or not ready for any vendor
specific reason.

The specified key name was found but the
corresponding key value has not been
loaded.

The specified use is not supported by this
key.

The length of [pxKeyEncKey or
IpxStartValue is not supported or the length
of an encryption key is not compatible with
the encryption operation required.

A chipcard key is used as encryption key and
there is no chip transaction active.

The specified algorithm is not supported by
this key.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

The key used for encryption/decryption must be a double length key when used for Triple DES
encryption/decryption. If a double-length key is used when a DES encryption algorithm is
specified, or a single-length key is used when Triple DES is specified, the

WFS ERR PIN INVALIDKEYLENGTH error is returned. Users of this specification must
adhere to local regulations when using Triple DES.

The data type LPWFSXDATA is used to pass hexadecimal data and is defined as follows:

Page 38
CWA 15748-6:2008

typedef struct _wfs_ hex data

USHORT usLength;
LPBYTE lpbData;
} WFSXDATA, *LPWFSXDATA;
usLength
Length of the byte stream pointed to by lpbData.
IpbData

Pointer to the binary data stream.

Page 39
CWA 15748-6:2008

5.1.2 WFS_CMD_PIN_IMPORT_KEY

Description

Input Param

The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
“key encryption key”. A key can be loaded in multiple unencrypted parts by combining the

WEFS PIN _USECONSTRUCT or WFS_PIN USESECURECONSTRUCT value with the final
usage flags within the fwUse field.

If the WFS_PIN _USECONSTRUCT flag is used then the application must provide the key data
through the IpxValue parameter, If WFS PIN USESECURECONSTRUCT is used then the
encryption key part in the secure key buffer previously populated with the

WFS CMD PIN SECUREKEY ENTRY command is used and /pxValue is ignored. Key parts
loaded with the WFS PIN USESECURECONSTRUCT flag can only be stored once as the
encryption key in the secure key buffer is no longer available after this command has been
executed. The WFS PIN USECONSTRUCT and WFS PIN USESECURECONSTRUCT
construction flags cannot be used in combination.

LPWFSPINIMPORT IpImport;

typedef struct wfs pin import

{

LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxIdent;
LPWFSXDATA lpxValue;
WORD fwUse;

} WFSPINIMPORT, *LPWFSPINIMPORT;

IpsKey
Specifies the name of key being loaded.

IpsEncKey

IpsEncKey specifies a key name or a format name which was used to encrypt (in ECB mode) the
key passed in I[pxValue. If IpsEncKey is NULL the key is loaded directly into the encryption
module. /psEncKey must be NULL if fwUse contains WFS_PIN_ USECONSTRUCT or

WFS PIN USESECURECONSTRUCT.

IpxIdent

Specifies the key owner identification. It is a handle to the encryption module and is returned to
the application in the WFS_CMD_PIN INITIALIZATION command. See fw/DKey in

WFS INF PIN CAPABILITIES for whether this value is required. If not required IpxIdent
should be NULL. The use of this parameter is vendor dependent.

IpxValue

Specifies the value of key to be loaded.

fwUse

Specifies the type of access for which the key can be used as a combination of the following flags:
Value Meaning
WEFS PIN USECRYPT Key can be used for encryption/decryption.
WEFS _PIN USEFUNCTION Key can be used for PIN functions.
WEFS_PIN USEMACING Key can be used for MACing.
WFS_PIN USEKEYENCKEY Key is used as key encryption key.
WEFS_PIN USENODUPLICATE Key can be imported only once.
WFS PIN USESVENCKEY Key is used as CBC Start Value encryption

key.

WEFS_PIN USECONSTRUCT Key is under construction through the import

of multiple parts. This value is used in
combination with the actual usage flags for
the key.

Page 40

CWA 15748-6:2008

Output Param

Error Codes

Events

Comments

WEFS_PIN USESECURECONSTRUCT Key is under construction through the import
of multiple parts. This value is used in
combination with the actual usage flags for
the key. IpxValue is ignored as the
encryption key part is taken from the secure
key buffer.

WEFS _PIN USEANSTR31MASTER Key can be used for importing keys
packaged within an ANS TR-31 key block.
This key usage can only be combined with
WEFS _PIN USECONSTRUCT and
WEFS_PIN USESECURECONSTRUCT.

If fwUse equals zero the specified key is deleted. In that case all parameters but psKey are
ignored.

LPWFSXDATA IpxKVC;

IpxKVC
Contains the key verification code data that can be used for verification of the loaded key, NULL
if device does not have that capability.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN KEYNOTFOUND The specified key encryption key was not
found or attempting to delete a non-existent
key.

WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS _ERR PIN INVALIDID The ID passed was not valid.

WEFS_ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WEFS_ERR PIN KEYNOVALUE The specified key encryption key is not
loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN INVALIDKEYLENGTH The length of [pxValue is not supported or
the encryption key in the secure key buffer is
invalid (or has not been entered) or the
length of an encryption key is not compatible
with the encryption operation required.

WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

When keys are loaded in multiple parts, all parts of the key loaded must set the relevant
construction value in the fwUse field along with any usages needed for the final key use. The
usage flags must be consistent for all parts of the key. Activation of the key entered in multiple
parts is indicated through an additional final call to this command, where the construction flag is
removed from fiwUse but those other usage’s defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A

WFS_ERR PIN_ ACCESSDENIED error will be returned if the key cannot be activated, e.g. if
only one key part has been entered.

The optional KCV is only returned during the final activation step. Applications wishing to verify
the KCV for each key part (and passing keys as a parameter to this command) will need to load
each key part into a temporary location inside the encryptor. If the application determines the
KCV of the key part is valid, then the application calls the WFS CMD PIN IMPORT KEY

Page 41
CWA 15748-6:2008

again to load the key part into the device. The application should delete the temporary key part as
soon as the KCV for that key part has been verified. It is not possible to verify a key part being
loaded from a secure key buffer with this command. This is achieved through the

WFS CMD PIN SECUREKEY ENTRY command.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a fiwUse value that indicates it is under construction, it
cannot be used for cryptographic functions.

Page 42

CWA 15748-6:2008

5.1.3 WFS_CMD_PIN_DERIVE_KEY

Description

Input Param

Output Param

Error Codes

A key is derived from input data using a key generating key and an initialization vector. The input
data can be expanded with a fill-character to the necessary length (mandated by the encryption
algorithm being used). The derived key is imported into the encryption module and can then be
used for further operations.

LPWFSPINDERIVE IpDerive;

typedef struct wfs pin derive

WORD wDerivationAlgorithm;
LPSTR lpsKey;

LPSTR lpsKeyGenKey;

LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;

BYTE bPadding;

LPWFSXDATA lpxInputData;
LPWFSXDATA lpxIdent;

} WFSPINDERIVE, *LPWFSPINDERIVE;

wDerivationAlgorithm
Specifies the algorithm that is used for derivation. Possible values are:
(see command WFS INF PIN CAPABILITIES)

IpsKey
Specifies the name where the derived key will be stored.

IpsKeyGenKey
Specifies the name of the key generating key that is used for the derivation.

IpsStartValueKey
Specifies the name of the stored key used to decrypt the [pxStartValue to obtain the Initialization
Vector. If this parameter is NULL, IpxStartValue is used as the Initialization Vector.

IpxStartValue
DES initialization vector for the encryption step within the derivation.

bPadding
Specifies the padding character for the encryption step within the derivation. The valid range is
0x00 to OxFF.

IpxInputData
Pointer to the data to be used for key derivation.

IpxIdent

Specifies the key owner identification. It is a handle to the encryption module and is returned to
the application in the WFS_CMD_PIN INITIALIZATION command. See fwIDKey in

WFS INF PIN CAPABILITIES for whether this value is required. If not required IpxIdent
should be NULL. The use of this parameter is vendor dependent.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN_ ACCESSDENIED The encryption module is either not

initialized (or not ready for some vendor
specific reason).

WFS _ERR PIN INVALIDID The ID passed was not valid.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS _ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this

key.

Page 43
CWA 15748-6:2008

WFS_ERR PIN INVALIDKEYLENGTH The length of lpxStartValue is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

WFS ERR PIN ALGORITHMNOTSUPP The specified algorithm is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

Comments None.

Page 44

CWA 15748-6:2008

5.1.4 WFS_CMD_PIN_GET_PIN

Description

Input Param

This function stores the PIN entry via the PIN pad. From the point this function is invoked, PIN
digit entries are not passed to the application. For each PIN digit, or any other active key entered,
an execute notification event WFS_EXEE PIN KEY is sent in order to allow an application to
perform the appropriate display action (i.e. when the PIN pad has no integrated display). The
application is not informed of the value entered. The execute notification only informs that a key
has been depressed.

The WFS_EXEE PIN ENTERDATA event will be generated when the pin pad is ready for the
user to start entering data.

Some PIN pad devices do not inform the application as each PIN digit is entered, but locally
process the PIN entry based upon minimum PIN length and maximum PIN length input
parameters.

When the maximum number of PIN digits is entered and the flag b4utoEnd is true, or a
terminating key is pressed after the minimum number of PIN digits is entered, the command
completes. If the <Cancel> key is a terminator key and is pressed, then the command will
complete successfully even if the minimum number of PIN digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has
been reached) or <Cancel> (can terminate before minimum length is reached). The configuration
of this functionality is vendor specific.

If usMaxLen is zero, the Service Provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateF'DKs. In the event that u/TerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

If active the WFS_PIN FK CANCEL and WFS_PIN FK CLEAR keys will cause the PIN
buffer to be cleared. The WFS PIN FK BACKSPACE key will cause the last key in the PIN
buffer to be removed.

Terminating keys have to be active keys to operate.

If this command is cancelled by a WFSCancelAsyncRequest or a WFSCancelBlockingCall the
PIN buffer is not cleared.

If usMaxLen has been met and bAutoEnd is set to False, then all numeric keys will automatically
be disabled. If the CLEAR or BACKSPACE key is pressed to reduce the number of entered keys,
the numeric keys will be re-enabled.

If the ENTER key (or FDK representing the ENTER key — note that the association of an FDK to
ENTER functionality is vendor specific) is pressed prior to usMinLen being met, then the ENTER
key or FDK is ignored. In some cases the pinpad device can not ignore the ENTER key then the
command will complete normally. To handle these types of devices the application should use the
output parameter usDigits field to check that sufficient digits have been entered. The application
should then get the user to re-enter their PIN with the correct number of digits.

If the application makes a call to WFS CMD_ PIN GET PINBLOCK or a local verification
command without the minimum pin digits having been entered, either the command will fail or
the pin verification will fail.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

LPWFSPINGETPIN IpGetPin;

Output Param

Page 45
CWA 15748-6:2008

typedef struct wfs pin getpin

USHORT usMinLen;

USHORT usMaxLen;

BOOL bAutoEnd;

CHAR cEcho;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;

} WEFSPINGETPIN, *LPWFSPINGETPIN;

usMinLen
Specifies the minimum number of digits which must be entered for the PIN. A value of zero
indicates no minimum PIN length verification.

usMaxLen
Specifies the maximum number of digits which can be entered for the PIN. A value of zero
indicates no maximum PIN length verification.

bAutoEnd

If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. bAutoEnd is ignored when usMaxLen is set to zero.

cEcho
Specifies the replace character to be echoed on a local display for the PIN digit.

ulActiveFDKs
Specifies a mask of those FDKs which are active during the execution of the command (see
WES_INF_PIN FUNCKEY_ DETAIL).

ulActiveKeys
Specifies a mask of those (other) Function Keys which are active during the execution of the
command (see WFS_INF PIN FUNCKEY DETAIL).

ulTerminateF DKs
Specifies a mask of those FDKs which must terminate the execution of the command (see
WES_INF PIN FUNCKEY_ DETAIL).

ulTerminateKeys
Specifies a mask of those (other) Function Keys which must terminate the execution of the
command (see WFS_INF_PIN FUNCKEY DETAIL).

LPWFSPINENTRY IpEntry;

typedef struct wfs pin entry

USHORT usDigits;
WORD wCompletion;
} WFSPINENTRY, *LPWFSPINENTRY;

usDigits
Specifies the number of PIN digits entered.

wCompletion

Specifies the reason for completion of the entry. Unless otherwise specified the following values
must not be used in the execute event WFS_EXEE PIN KEY or in the array of keys in the
completion of WFS PIN CMD_ GET DATA. Possible values are:

Value Meaning

WFS PIN COMPAUTO The command terminated automatically,
because maximum length was reached.

WEFS_PIN COMPENTER The ENTER Function Key was pressed as
terminating key.

WEFS_PIN_ COMPCANCEL The CANCEL Function Key was pressed as

terminating key.

Page 46

CWA 15748-6:2008

Error Codes

Events

Comments

WES _PIN_ COMPCONTINUE

WFS_PIN_COMPCLEAR

WFS_PIN_COMPBACKSPACE
WFS_PIN_COMPFDK
WFS_PIN_COMPHELP

WFS_PIN_ COMPFK

WFS_PIN._COMPCONTFDK

A function key was pressed and input may
continue unless the command completes
(this value is only used in the execute event
WFS EXEE PIN KEY and in the array of
keys in the completion of

WFS _PIN_ CMD_GET DATA).

The CLEAR Function Key was pressed as
terminating key and the previous input is
cleared.

The last input digit was cleared and the key
was pressed as terminating key.

Indicates input is terminated only if the FDK
pressed was set to be a terminating FDK.
The HELP Function Key was pressed as
terminating key.

A Function Key (FK) other than ENTER,
CLEAR, CANCEL, BACKSPACE, HELP
was pressed as terminating key.

An FDK was pressed and input may
continue unless the command completes
(this value is only used in the execute event
WFS EXEE PIN KEY and in the array of
keys in the completion of

WFS PIN CMD_ GET DATA).

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value

Meaning

WEFS_ERR PIN KEYINVALID

WEFS_ERR PIN KEYNOTSUPPORTED

WFS_ERR_PIN_NOACTIVEKEYS
WFS_ERR_PIN_NOTERMINATEKEYS

WFS_ERR PIN_ MINIMUMLENGTH

At least one of the specified function keys or
FDKs is invalid.

At least one of the specified function keys or
FDKs is not supported by the Service
Provider.

There are no active function keys specified.
There are no terminate keys specified and
usMaxLen is not set to zero and bAutoEnd is
FALSE.

The minimum PIN length field is invalid or
greater than the maximum PIN length field
when the maximum PIN length is not zero.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WFS_EXEE_PIN_KEY
WFS_EXEE_PIN_ENTERDATA

None.

A key has been pressed at the PIN pad.
The pin pad is ready for the user to start
entering data.

Page 47
CWA 15748-6:2008

5.1.5 WFS_CMD_PIN_LOCAL_DES

Description

Input Param

Output Param

Error Codes

The PIN, which was entered with the WFS PIN GET PIN command, is combined with the
requisite data specified by the DES validation algorithm and locally verified for correctness The
result of the verification is returned to the application. This command will clear the PIN unless the
application has requested that the PIN be maintained through the

WEFS_CMD_PIN MAINTAIN_PIN command.

LPWFSPINLOCALDES lpLocalDES;

typedef struct wfs pin local des

LPSTR lpsValidationData;
LPSTR lpsOffset;

BYTE bPadding;

USHORT usMaxPIN;

USHORT usValDigits;

BOOL bNoLeadingZero;
LPSTR lpsKey;

LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WFSPINLOCALDES, *LPWFSPINLOCALDES;

IpsValidationData
Customer specific data (normally obtained from card track data) used to validate the correctness
of the PIN. The validation data should be an ASCII string.

IpsOffset
ASCII string defining the offset data for the PIN block as an ASCII string; if NULL then no offset
is used. The character must be in the ranges ‘0’ to ‘9°, ‘a’ to ‘f” and ‘A’ to ‘F’.

bPadding

Specifies the padding character for the validation data. If the validation data is less than 16
characters long then it will be padded with this character. If bPadding is in the range 0x00 to
0x0f, padding is applied after the validation data has been compressed. If the bPadding character
is in the range ‘0’ to ‘9°, ‘a’ to ‘f*, or ‘A’ to ‘F’, padding is applied before the validation data is
compressed.

usMaxPIN
Maximum number of PIN digits to be used for validation. This parameter corresponds to
PINMINL in the IBM 3624 specification.

usValDigits
Number of Validation digits from the validation data to be used for validation. This is the length
of the IpsValidationData string.

bNoLeadingZero

If set to TRUE and the first digit of result of the modulo 10 addition is a 0x0, it is replaced with
0x1 before performing the verification against the entered PIN. If set to FALSE, a leading zero is
allowed in entered PINs.

IpsKey
Name of the key to be used for validation.
IpxKeyEncKey

If NULL, IpsKey is used directly for PIN validation. Otherwise, /psKey is used to decrypt the
encrypted key passed in [pxKeyEncKey and the result is used for PIN validation.

IpsDecTable

ASCII decimalization table (16 character string containing characters ‘0’ to ‘9°). This table is used
to convert the hexadecimal digits (0x0 to OxF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

LPBOOL IpbResult;

IpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

Page 48

CWA 15748-6:2008

Events

Comments

generated by this command:

Value

Meaning

WEFS_ERR PIN KEYNOTFOUND
WFS_ERR PIN ACCESSDENIED

WFS_ERR_PIN_ KEYNOVALUE
WFS_ERR_PIN_USEVIOLATION
WFS_ERR_PIN_NOPIN

WFS_ERR PIN INVALIDKEYLENGTH

The specified key was not found.

The encryption module is either not
initialized or not ready for any vendor
specific reason.

The specified key is not loaded.

The specified use is not supported by this
key.

PIN has not been entered or has been
cleared.

The length of [pxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption

key.

The PINMAXL value as defined in the IBM 3624 specification is the length of the PIN entered

during the WFS_ CMD PIN GET PIN command.

Page 49
CWA 15748-6:2008

5.1.6 WFS_CMD_PIN_CREATE_OFFSET

Description

Input Param

Output Param

Error Codes

This function is used to generate a PIN Offset that is typically written to a card and later used to
verify the PIN with the WFS CMD PIN LOCAL DES command. The PIN offset is computed
by combining validation data with the keypad entered PIN. This command will clear the PIN
unless the application has requested that the PIN be maintained through the

WEFS_CMD_PIN MAINTAIN_PIN command.

LPWFSPINCREATEOFFSET IpPINOffset;

typedef struct wfs pin create offset

LPSTR lpsValidationData;
BYTE bPadding;
USHORT usMaxPIN;
USHORT usValDigits;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WEFSPINCREATEOFFSET, *LPWFSPINCREATEOFFSET;
IpsValidationData
Validation data. The validation data should be an ASCII string.
bPadding

Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0xFF,
padding is applied after the validation data has been compressed. If the bPadding character is in
the range ‘0’ to ‘9, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is
compressed.

usMaxPIN
Maximum number of PIN digits to be used for PIN Offset creation. This parameter corresponds to
PINMINL in the IBM 3624 specification.

usValDigits
Number of Validation Data digits to be used for PIN Offset creation. This is the length of the
IpsValidationData string.

IpsKey
Name of the validation key.

IpxKeyEncKey
If NULL, IpsKey is used directly in PIN Offset creation. Otherwise, /psKey is used to decrypt the
encrypted key passed in [pxKeyEncKey and the result is used in PIN Offset creation.

IpsDecTable

ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

LPSTR IpsOffset;

IpsOffset
Computed PIN Offset.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN_ ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.

WFS ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS _ERR PIN NOPIN PIN has not been entered or has been

cleared.

Page 50

CWA 15748-6:2008

Events

Comments

WFS ERR PIN NOTALLOWED PIN entered by the user is not allowed.

WFS_ERR PIN INVALIDKEYLENGTH The length of lpxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

The list of ‘forbidden’ PINs (values that cannot be chosen as a PIN, e.g. 1111) is configured in the
device in a vendor dependent way during the configuration of the system. The PINMAXL value
as defined in the IBM 3624 specification is the length of the PIN entered during the

WFS CMD PIN GET_PIN command.

Page 51
CWA 15748-6:2008

5.1.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE

Description The PIN, which was entered with the WFS PIN GET PIN command, is combined with the
requisite data specified by the Eurocheque validation algorithm and locally verified for
correctness. The result of the verification is returned to the application. This command will clear
the PIN unless the application has requested that the PIN be maintained through the
WEFS_CMD_PIN MAINTAIN_PIN command.

Input Param LPWFSPINLOCALEUROCHEQUE IpLocalEurocheque;

typedef struct wfs pin local eurocheque

LPSTR lpsEurochequeData;
LPSTR 1lpsPVV;
WORD wFirstEncDigits;
WORD wFirstEncOffset;
WORD wPVVDigits;
WORD wPVVOffset;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WEFSPINLOCALEUROCHEQUE, *LPWFSPINLOCALEUROCHEQUE;

IpsEurochequeData

Track-3 Eurocheque data.

IpsPVV

PIN Validation Value from track data.

wFirstEncDigits

Number of digits to extract after first encryption.

wFirstEncOffset

Offset of digits to extract after first encryption.

wPVVDigits

Number of digits to extract for PVV.

wPVVOffset

Offset of digits to extract for PVV.

IpsKey
Name of the validation key.

IpxKeyEncKey

If NULL, IpsKey is used directly for PIN validation. Otherwise, /psKey is used to decrypt the
encrypted key passed in [pxKeyEncKey and the result is used for PIN validation.

IpsDecTable

ASCII decimalization table (16 character string containing characters ‘0’ to 9’). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPBOOL IpbResult;

IpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN_ ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

Page 52

CWA 15748-6:2008

Events

Comments

WFS ERR PIN NOPIN PIN has not been entered or has been
cleared.

WFS_ERR PIN INVALIDKEYLENGTH The length of lpxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

None.

Page 53
CWA 15748-6:2008

5.1.8 WFS_CMD_PIN_LOCAL_VISA

Description

Input Param

Output Param

Error Codes

Events

The PIN, which was entered with the WFS PIN GET PIN command, is combined with the
requisite data specified by the VISA validation algorithm and locally verified for correctness. The
result of the verification is returned to the application. This command will clear the PIN unless the
application has requested that the PIN be maintained through the

WEFS_CMD_PIN MAINTAIN_PIN command.

LPWFSPINLOCALVISA IpLocalVISA;

typedef struct wfs pin local visa

LPSTR 1lpsPAN;

LPSTR lpsPVV;

WORD wPVVDigits;

LPSTR lpsKey;

LPWFSXDATA lpxKeyEncKey;

} WFSPINLOCALVISA, *LPWFSPINLOCALVISA;
IpsPAN

Primary Account Number from track data, as an ASCII string. /psPAN should contain the eleven
rightmost digits of the PAN (excluding the check digit), followed by the PVKI indicator in the
12" byte.

IpsPVV
PIN Validation Value from track data, as an ASCII string with characters in the range ‘0’ to ‘9’.
This string should contain 4 digits.

wPVVDigits
Number of digits of PVV.

IpsKey
Name of the validation key.

IpxKeyEncKey
If NULL, IpsKey is used directly for PIN validation. Otherwise, IpsKey is used to decrypt the
encrypted key passed in [pxKeyEncKey and the result is used for PIN validation.

LPBOOL IpbResult;

IpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN_ ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS _ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS _ERR PIN NOPIN PIN has not been entered or has been
cleared.

WFS_ERR PIN INVALIDKEYLENGTH The length of lpxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

Page 54
CWA 15748-6:2008

Comments None.

51.9 WFS_

Page 55
CWA 15748-6:2008

CMD_PIN_PRESENT _IDC

Description

Input Param

Output Param

Error Codes

The PIN, which was entered with the WFS PIN GET PIN command, is combined with the
requisite data specified by the IDC presentation algorithm and presented to the smartcard
contained in the ID card unit. The result of the presentation is returned to the application. This

command will clear the PIN unless the application has requested that the PIN be maintained
through the WFS_ CMD_PIN_ MAINTAIN_PIN command.

LPWFSPINPRESENTIDC IpPresentIDC;

typedef struct wfs pin presentidc

WORD wPresentAlgorithm;
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
LPVOID lpAlgorithmbData;

} WEFSPINPRESENTIDC, *LPWFSPINPRESENTIDC;

wPresentAlgorithm
Specifies the algorithm that is used for presentation. Possible values are: (see command
WEFS_INF _PIN CAPABILITIES).

wChipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are: (see
command WFS INF IDC CAPABILITIES in the Identification Card Device Class Interface).

ulChipDataLength
Specifies the length of the byte stream pointed to by /lphChipData.

IpbChipData
Points to the data to be sent to the chip.

IpAlgorithmData
Pointer to a structure that contains the data required for the specified presentation algorithm.
For the WFS_PIN PRESENT CLEAR algorithm, this structure is defined as:

typedef struct wfs pin presentclear
ULONG ulPINPointer;

USHORT usPINOffset;
} WFSPINPRESENTCLEAR, *LPWFSPINPRESENTCLEAR;

ulPINPointer
The byte offset where to start inserting the PIN into /pbChipData. The leftmost byte is
numbered zero. See below for an example.

usPINOffset
The bit offset within the byte specified by ulPINPointer where to start inserting the PIN. The
leftmost bit numbered zero. See below for an example.

LPWFSPINPRESENTRESULT IpPresentResult;

typedef struct _wfs pin present_ result

WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;

} WFSPINPRESENTRESULT, *LPWFSPINPRESENTRESULT;

wChipProtocol
Identifies the protocol that was used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure.

ulChipDataLength
Specifies the length of the byte stream pointed to by lpbChipData.

IpbChipData
Points to the data responded from the chip.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

Page 56

CWA 15748-6:2008

Events

Comments

generated by this command:

Value

Meaning

WEFS_ERR PIN ACCESSDENIED

WFS_ERR_PIN_NOPIN
WFS_ERR_PIN._ PROTOCOLNOTSUPP

WFS_ERR_PIN_INVALIDDATA

The ID card unit is not ready for PIN
presentation or for any vendor specific
reason. The ID card Service Provider, if any,
may have generated a service event that
further describes the reason for that error
code.

PIN has not been entered or has been
cleared.

The specified protocol is not supported by
the Service Provider.

An error occurred while communicating with
the chip.

Only the generic events defined in [Ref. 1] can be generated by this command.
Example for the use of the algorithm WFS PIN PRESENT CLEAR:
The structure of a VERIFY command for a French BO chip is:

Bytes 0 to 4 Bytes 5 to 8
CLA |INS | Al | A2 Lc | PIN-Block
0xBC | 0x20 | 0x00 | 0x00 | 0x04 |0xXX 0xXX 0xXX 0xXX

Where the 4 byte PIN block consists of 2 bits that are always zero, 16 bits for the 4 PIN digits
(each digit being coded in 4 bits) and 14 bits that are always one:

Byte 5 Byte 6 Byte 7 Byte 8
o[o[plplplplplplplplplplplplplp [t [AL e A 1[I 1 1]L
Digit | | Digit 2 | Digit3 | Digit 4

In order to insert the PIN into such a command, the application calls

WFS_CDM_PIN_PRESENT IDC with:

ulChipDataLength 9
IpbChipData 0xBC2000000400003FFF
ulPINPointer 5
usPINOffset 2
For a sample PIN “1234” the PIN block is:
Byte 5 Byte 6 Byte 7 Byte 8
olololofo[1]ofo]t[ofofolt]t]o[t]ofo[a]t[a]aft]a]t]a]t]t]t]1]1]1
Digit 1 | Digit 2 | Digit3 | Digit4
Resulting in a chip card command of:
Bytes 0 to 4 Bytes 5 to 8
CLA |INS | Al | A2 Le | PIN-Block
0xBC | 0x20 | 0x00 | 0x00 | 0x04 |0x04 0x8D O0x3F OxFF

Page 57
CWA 15748-6:2008

5.1.10 WFS_CMD_PIN_GET_PINBLOCK

Description

Input Param

Output Param

This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the formats
specified in the WFS_INF PIN CAPABILITIES command. This command will clear the PIN
unless the application has requested that the PIN be maintained through the

WFS_CMD_PIN MAINTAIN_PIN command.

LPWFSPINBLOCK IpPinBlock;
typedef struct wfs pin block

LPSTR lpsCustomerData;
LPSTR lpsXORData;

BYTE bPadding;

WORD wFormat;

LPSTR lpsKey;

LPSTR lpsKeyEncKey;

} WFSPINBLOCK, *LPWFSPINBLOCK;

IpsCustomerData

The customer data should be an ASCII string. Used for ANSI, ISO-0 and ISO-1 algorithm to
build the formatted PIN. For ANSI and ISO-0 the PAN (Primary Account Number, without the
check number) is supplied, for ISO-1 a ten digit transaction field is required. If not used a NULL
is required.

Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed
as unpacked string, for example: 0123456789 ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

IpsXORData

If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation. This parameter is a string of
hexadecimal data that must be converted by the application, e.g. 0x0123456789 ABCDEF must be
converted to 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45
0x46 and terminated with 0x00. In other words the application would set [psXORData to
“0123456789ABCDEF\0”. The hex digits 0xA to OxF can be represented by characters in the
ranges ‘a’ to ‘f” or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed.

If the formatted PIN is not encrypted twice (i.e. if [psKeyEncKey is NULL) this parameter is
ignored.

bPadding
Specifies the padding character. The valid range is 0x00 to 0xOF. Only the least significant nibble
is used.

wFormat
Specifies the format of the PIN block. Possible values are:
(see command WFS_INF PIN CAPABILITIES)

IpsKey

Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is
required. If this specifies a double length key, triple DES encryption will be performed. The key
referenced by [psKey must have the WFS PIN USEFUNCTION attribute. If this specifies an
RSA key, RSA encryption will be performed.

IpsKeyEncKey

Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required. The key referenced by I[psKeyEncKey must have the

WFS PIN USEFUNCTION attribute. If this specifies a double-length key, triple DES encryption
will be performed.

LPWFSXDATA IpxPinBlock;

IpxPinBlock
Pointer to the encrypted PIN block.

Page 58
CWA 15748-6:2008

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN_ ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS ERR PIN KEYNOVALUE The specified key is not loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN NOPIN The PIN has not been entered was not long
enough or has been cleared.

WFS_ERR PIN FORMATNOTSUPP The specified format is not supported.

WFS_ERR PIN INVALIDKEYLENGTH The length of IpsKeyEncKey or IpsKey is not
supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

Comments None.

Page 59
CWA 15748-6:2008

5.1.11 WFS_CMD_PIN_GET_DATA

Description

Input Param

This function is used to return keystrokes entered by the user. It will automatically set the PIN pad
to echo characters on the display if there is a display. For each keystroke an execute notification
event WFS EXEE PIN KEY is sent in order to allow an application to perform the appropriate
display action (i.e. when the PIN pad has no integrated display).

The WFS_EXEE PIN ENTERDATA event will be generated when the pin pad is ready for the
user to start entering data.

When the maximum number of digits is entered and the flag bAutoEnd is true, or a terminate key
is pressed after the minimum number of digits is entered, the command completes. If the
<Cancel> key is a terminator key and is pressed, the command will complete successfully even if
the minimum number of digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has
been reached) or <Cancel> (can terminate before minimum length is reached). The configuration
of this functionality is vendor specific.

If usMaxLen is zero, the Service Provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateF'DKs. In the event that u/TerminateKeys or
ulTerminateF DKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

If usMaxLen has been met and bAutoEnd is set to False, then all keys or FDKs that add data to the
contents of the WFSPINDATA output parameter will automatically be disabled. If the CLEAR or
BACKSPACE key is pressed to reduce the number of entered keys below usMaxLen, the same
keys will be re-enabled.

Where applications want direct control of the data entry and the key interpretation, usMaxLen can
be set to zero allowing the application to provide tracking and counting of key presses until a
terminate key or terminate FDK is pressed or WFSCancel has been issued.

The following keys may affect the contents of the WFSPINDATA output parameter but are not
returned in it:

WFS_PIN FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE

The WFS_PIN FK CANCEL and WFS PIN FK CLEAR keys will cause the output buffer to
be cleared. The WFS_PIN FK BACKSPACE key will cause the last key in the buffer to be
removed.

Terminating keys have to be active keys to operate.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

LPWFSPINGETDATA IpPinGetData;

typedef struct wfs pin getdata

USHORT usMaxLen;

BOOL bAutoEnd;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;

} WFSPINGETDATA, *LPWFSPINGETDATA;

usMaxLen
Specifies the maximum number of digits which can be returned to the application in the output
parameter.

Page 60

CWA 15748-6:2008

Output Param

Error Codes

Events

Comments

bAutoEnd

If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. bAutoEnd is ignored when usMaxLen is set to zero.

ulActiveFDKs
Specifies a mask of those FDKs which are active during the execution of the command (see
WFS_INF_PIN FUNCKEY DETAIL).

ulActiveKeys
Specifies a mask of those (other) Function Keys which are active during the execution of the
command (see WFS_INF PIN FUNCKEY DETAIL).

ulTerminateFDKs
Specifies a mask of those FDKs which must terminate the execution of the command (see
WFS INF PIN FUNCKEY DETAIL).

ulTerminateKeys
Specifies a mask of those (other) Function Keys which must terminate the execution of the
command (see WFS_INF_PIN _FUNCKEY DETAIL).

LPWFSPINDATA IpPinData;

typedef struct wfs pin data

USHORT usKeys;
LPWFSPINKEY *1pPinKeys;
WORD wCompletion;

} WFSPINDATA, *LPWFSPINDATA;

usKeys
Number of keys entered by the user (i.e. number of following WFSPINKEY structures).

IpPinKeys

Pointer to an array of pointers to WFSPINKEY structures that contain the keys entered by the
user (for a description of the WFSPINKEY structure see the definition of the

WFS _EXEE PIN KEY event).

wCompletion
Specifies the reason for completion of the entry. Possible values are:
(see command WFS CMD PIN GET PIN)

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR PIN KEYINVALID At least one of the specified function keys or
FDKs is invalid.

WFS_ERR PIN KEYNOTSUPPORTED At least one of the specified function keys or
FDKs is not supported by the Service
Provider.

WFS_ERR PIN NOACTIVEKEYS There are no active keys specified.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS _EXEE PIN KEY A key has been pressed at the PIN pad.
WFS _EXEE PIN ENTERDATA The pin pad is ready for the user to start

entering data.

If the triple zero key is pressed one WFS_EXEE PIN KEY event is sent that contains the
WFS PIN FK 000 code and three WFS PIN FK 0 elements are added to the output buffer.

If the triple zero key is pressed when 3 keys are already inserted and usMaxLen equals 4 the key is
not accepted and no event is sent to the application.

If the backspace key is pressed after the triple zero key only one zero is deleted out of the output
buffer.

Page 61
CWA 15748-6:2008

If the double zero key is pressed one WFS_EXEE PIN KEY event is sent that contains the
WFS PIN FK 00 code and two WFS_PIN_FK 0 elements are added to the output buffer.

If the double zero key is pressed when 3 keys are already inserted and usMaxLen equals 4 the key
is not accepted and no event is sent to the application.

If the backspace key is pressed after the double zero key only one zero is deleted out of the output
buffer.

Page 62

CWA 15748-6:2008

5.1.12 WFS_CMD_PIN_INITIALIZATION

Description

Input Param

Output Param

Error Codes

The encryption module must be initialized before any encryption function can be used. Every call
to WFS_CMD PIN INITIALIZATION destroys all application keys that have been loaded or
imported; it does not affect those keys loaded during manufacturing or public keys imported
under the RSA Signature based remote key loading scheme when public key deletion
authentication is required. Usually this command is called by an operator task and not by the
application program.

Initialization also involves loading “initial” application keys and local vendor dependent keys.
These can be supplied, for example, by an operator through a keyboard, a local configuration file,
remote RSA key management or possibly by means of some secure hardware that can be attached
to the device. The application “initial” keys would normally get updated by the application during
a WFS CMD PIN IMPORT KEY command as soon as possible. Local vendor dependent static
keys (e.g. storage, firmware and offset keys) would normally be transparent to the application and
by definition can not be dynamically changed.

Where initial keys are not available immediately when this command is issued (i.e. when operator
intervention is required), the Service Provider returns WFS_ERR _PIN ACCESS_DENIED and
the application must await the WFS SRVE PIN INITIALIZED event.

During initialization an optional encrypted ID key can be stored in the HW module. The ID key
and the corresponding encryption key can be passed as parameters; if not, they are generated
automatically by the encryption module. The encrypted ID is returned to the application and
serves as authorization for the key import function. The WFS INF PIN CAPABILITIES
command indicates whether or not the device will support this feature.

This function also resets the HSM terminal data, except session key index and trace number.

This function resets all certificate data and authentication public/private keys back to their initial
states at the time of production (except for those public keys imported under the RSA Signature
based remote key loading scheme when public key deletion authentication is required). Key-pairs
created with WFS CMD_PIN GENERATE RSA KEY PAIR are deleted. Any keys installed
during production, which have been permanently replaced, will not be reset. Any Verification
certificates that may have been loaded must be reloaded. The Certificate state will remain the
same, but the WFS_CMD_PIN_LOAD_CERTIFICATE or

WFS CMD REPLACE CERTIFICATE commands must be called again.

When multiple ZKA HSMs are present, this command deletes all keys loaded within all ZKA
logical HSMs.

LPWEFSPININIT Iplnit;

typedef struct _wfs pin init

{

LPWFSXDATA lpxIdent;
LPWFSXDATA lpxKey;
} WFSPININIT, *LPWFSPININIT;

IpxIdent
Pointer to the value of the ID key. NULL if not required.

IpxKey
Pointer to the value of the encryption key. NULL if not required.

LPWFSXDATA IpxIdentification;

IpxIdentification

Pointer to the value of the ID key encrypted by the encryption key. This value can be used as
authorization for the WFS CMD_PIN IMPORT KEY command, but can be NULL if no
authorization required.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Page 63
CWA 15748-6:2008

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized (or not ready for some vendor
specific reason).

WFS _ERR PIN INVALIDID The ID passed was not valid.
Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS_SRVE PIN INITIALIZED The encryption module is now initialized.
WFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

Comments None.

Page 64

CWA 15748-6:2008

5.1.13WFS_CMD_PIN_LOCAL_BANKSYS

Description

Input Param

Output Param

Error Codes

Events

Comments

The PIN Block previously built by the WFS CMD PIN GET PINBLOCK command is sent to
the BANKSY'S security control module using the WFS_CMD_PIN BANKSYS 10 command.
The BANKSYS security control module will return an ATMVAC code, which is then used in this
command to locally validate the PIN. The key referenced by /psKey within the most recent
successful WFS CMD PIN GET PINBLOCK command is reused by the

WFS CMD PIN LOCAL BANKSYS command for the local validation.

LPWFSPINLOCALBANKSYS IpLocalBanksys;

typedef struct wfs pin local banksys

LPWFSXDATA 1pxATMVAC;

} WFSPINLOCALBANKSYS, *LPWFSPINLOCALBANKSYS;
IpxATMVAC
The ATMVAC code calculated by the BANKSYS Security Control Module.
LPBOOL IpbResult;
IpbResult

Pointer to a boolean value which specifies whether the PIN is correct or not.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS_ERR PIN NOPIN PIN has not been entered or has been cleared
without building the Banksys PIN Block.

WFS_ERR PIN INVALIDKEYLENGTH The length of [pxATMVAC is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

5.1.14 WFS_

Page 65
CWA 15748-6:2008

CMD_PIN_BANKSYS_IO

Description

Input Param

Output Param

Error Codes

Events

Comments

This command sends a single command to the Banksys Security Control Module.

LPWFSPINBANKSYSIO IpBANKSY Sloln;

typedef struct _wfs_ pin BANKSYS io

{

ULONG ulLength;

LPBYTE lpbData;

} WEFSPINBANKSYSIO, *LPWFSPINBANKSYSIO;
ulLength
Specifies the length of the following field [pbData.
IpbData

Points to the data sent to the BANKSYS Security Control Module.
LPWFSPINBANKSYSIO IpBANKSY SIoOut;

typedef struct _wfs_ pin BANKSYS io

{

ULONG ulLength;

LPBYTE lpbData;

} WEFSPINBANKSYSIO, *LPWFSPINBANKSYSIO;
ulLength
Specifies the length of the following field [pbData.
IpbData

Points to the data responded by the BANKSYS Security Control Module.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN INVALIDDATA An error occurred while communicating with
the device.

Only the generic events defined in [Ref. 1] can be generated by this command.

The Banksys command and response message data are defined in [Ref. 18].

Page 66
CWA 15748-6:2008

5.1.15WFS_CMD_PIN_RESET

Description Sends a service reset to the Service Provider.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.
Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a
known good condition. It does not delete any keys.

Page 67
CWA 15748-6:2008

5.1.16 WFS_CMD_PIN_HSM_SET_TDATA

Description

Input Param

This function allows the application to set the HSM terminal data (except keys, trace number and
session key index). The data must be provided as a series of “tag/length/value” items.

Terminal data that are set but are not supported by the hardware will be ignored.
LPWFSXDATA IpxTData;

IpxTData
Specifies which parameter(s) is(are) to be set. [pxTData is a series of “tag/length/value” items
where each item consists of:

e One byte tag (see the list of tags below).
e One byte specifying the length of the following data as an unsigned binary number.
e N bytes data (see the list below for formatting) with no separators.

The following tags are supported:

Tag Format Length Meaning Read/ EPP/

(hexl) (bytes) Write HSM

C2 BCD 4 Terminal ID R/W EPP
ISO BMP 41

C3 BCD 4 Bank code R/W EPP
ISO BMP 42 (rightmost 4 bytes)

C4 BCD 9 Account data for terminal account R/W EPP
ISO BMP 60 (load against other card)

(05} BCD 9 Account data for fee account R/W EPP

ISO BMP 60 ("Laden vom
Kartenkonto")

Cé6 EBCDIC 40 Terminal location R/W EPP
ISO BMP 43

C7 ASCII 3 Terminal currency R/W EPP

C8 BCD 7 Online date and time R/W HSM
YYYYMMDDHHMMSS)
ISO BMP 61

C9 BCD 4 Minimum load fee in units of 1/100 of R/W EPP

terminal currency, checked against
leftmost 4 Bytes of ISO BMP42

CA BCD 4 Maximum load fee in units of 1/100 of R/W EPP
terminal currency, checked against
leftmost 4 Bytes of ISO BMP42

CB BIN 3 logical HSM binary coded serial R HSM
number (starts with 1; 0 means that
there are no logical HSMs)

CC EBCDIC 16 ZKA 1D (is filled during the pre- R HSM
initialization of the HSM)
CD BIN 1 HSM status R HSM

1 =irreversibly out of order
2 = out of order, K_UR is not loaded
3 = not pre-initialized, K UR is loaded
4 = pre-initialized, K_INIT is loaded
5 = initialized/personalized, K PERS is
loaded
CE EBCDIC variable, HSM-ID (6 byte Manufacturer- ID + R EPP
min. 16 min. 10 Byte serial number), as needed
for ISO BMP57 of a pre-initialization

In the table above, the fifth column indicates if the variable is read only or both read and write.
The sixth column indicates if the variable is unique per logical HSM or common across all logical
HSMs within an EPP.

Output Param None.

Page 68

CWA 15748-6:2008

Error Codes

Events

Comments

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WEFS_ERR PIN HSMSTATEINVALID The HSM is not in a correct state to handle
this command.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS _SRVE PIN HSM TDATA CHANGED The terminal data has changed.

None.

Page 69
CWA 15748-6:2008

5.1.17 WFS_CMD_PIN_SECURE_MSG_SEND

Description

Input Param

Output Param

Error Codes

This command handles all messages that should be sent through a secure messaging to an
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module adds the security relevant fields to the message and returns the modified message in the
output structure. All messages must be presented to the encryptor via this command even if they
do not contain security fields in order to keep track of the transaction status in the internal state
machine.

LPWFSPINSECMSG IpSecMsgln;

typedef struct wfs pin secure message

WORD wProtocol;
ULONG ulLength;
LPBYTE lpbMsg;

} WFSPINSECMSG, *LPWFSPINSECMSG;

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning

WEFS_PIN PROTISOAS ISO 8583 protocol for the authorization
system.

WFS PIN PROTISOLZ ISO 8583 protocol for the German
"Ladezentrale".

WEFS_PIN_PROTISOPS ISO 8583 protocol for the personalization
system.

WEFS_PIN PROTCHIPZKA ZKA chip protocol.

WFS PIN PROTRAWDATA raw data protocol.

WFS _PIN PROTPBM PBM protocol (see [Ref. 8] —[Ref. 13])

WFS_PIN PROTHSMLDI HSM LDI protocol.

WEFS_PIN PROTGENAS Generic PAC/MAC for non-ISO8583
message formats.

WEFS PIN PROTCHIPPINCHG ZKA chip protocol for changing the PIN on
a GeldKarte.

WES_PIN PROTPINCMP Protocol for comparing PIN numbers entered
in the PinPad during a Pin Change
transaction.

WEFS PINPROTISOPINCHG ISO8583 authorization system protocol for

changing the PIN on a GeldKarte.

ulLength
Specifies the length in bytes of the message in [pbMsg. This parameter is ignored for the
WEFS_PIN PROTHSMLDI protocol.

IpbMsg
Specifies the message that should be send. This parameter is ignored for the
WEFS_PIN _PROTHSMLDI protocol.

LPWFSPINSECMSG IpSecMsgOut;

IpSecMsgOut
pointer to a WFSPINSECMSG structure that contains the modified message that can now be send
to a authorization system, German "Ladezentrale", personalization system or the chip.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN HSMSTATEINVALID The HSM is not in a correct state to handle
this message.

WFS ERR PIN PROTINVALID The specified protocol is invalid.

Page 70
CWA 15748-6:2008

WFS_ERR PIN FORMATINVALID The format of the message is invalid.

WFS _ERR PIN CONTENTINVALID The contents of one of the security relevant
fields are invalid.

WEFS_ERR PIN KEYNOTFOUND No key was found for PAC/MAC
generation.

WFS _ERR PIN NOPIN No PIN or insufficient PIN-digits have been
entered.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

Page 71
CWA 15748-6:2008

5.1.18 WFS_CMD_PIN_SECURE_MSG_RECEIVE

Description

Input Param

Output Param

Error Codes

This command handles all messages that are received through a secure messaging from an
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module checks the security relevant fields. All messages must be presented to the encryptor via
this command even if they do not contain security relevant fields in order to keep track of the
transaction status in the internal state machine.

LPWFSPINSECMSG lpSecMsgln;

typedef struct wfs pin secure message

WORD wProtocol;
ULONG ulLength;
LPBYTE lpbMsg;

} WFSPINSECMSG, *LPWFSPINSECMSG;

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning

WEFS_PIN PROTISOAS ISO 8583 protocol for the authorization
system.

WFS PIN PROTISOLZ ISO 8583 protocol for the German
"Ladezentrale".

WEFS_PIN_PROTISOPS ISO 8583 protocol for the personalization
system.

WEFS_PIN PROTCHIPZKA ZKA chip protocol.

WEFS _PIN PROTRAWDATA Raw data protocol.

WFS_PIN PROTPBM PBM protocol (see [Ref. 8] — [Ref. 13]).

WEFS_PIN PROTGENAS Generic PAC/MAC for non-ISO8583
message formats.

WEFS PIN PROTCHIPPINCHG ZKA chip protocol for changing the PIN on
a GeldKarte.

WEFS _PIN PROTPINCMP Protocol for comparing PIN numbers entered
in the PinPad during a Pin Change
transaction.

WEFS PINPROTISOPINCHG ISO8583 authorization system protocol for
changing the PIN on a GeldKarte.

ulLength
Specifies the length in bytes of the message in [phbMsg.
IpbMsg

Specifies the message that was received. This value can be NULL if during a specified time
period no response was received from the communication partner (necessary to set the internal
state machine to the correct state).

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WEFS_ERR PIN HSMSTATEINVALID The HSM is not in a correct state to handle
this message.

WEFS _ERR PIN MACINVALID The MAC of the message is not correct.

WFS _ERR PIN PROTINVALID The specified protocol is invalid.

WFS_ERR PIN FORMATINVALID The format of the message is invalid.

WFS _ERR PIN CONTENTINVALID The contents of one of the security relevant

fields are invalid.
WFS _ERR PIN KEYNOTFOUND No key was found for MAC verification.

Page 72
CWA 15748-6:2008

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning

WFS SRVE PIN HSM TDATA CHANGED The terminal data has changed.

Comments None.

5.1.19 WFS_

Page 73
CWA 15748-6:2008

CMD_PIN_GET_JOURNAL

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to get journal data from the encryption module. It retrieves
cryptographically secured information about the result of the last transaction that was done with
the indicated protocol. When the Service Provider supports journaling (see Capabilities) then it is
impossible to do any WFS CMD_ PIN SECURE MSG SEND/RECEIVE with this protocol,
unless the journal data is retrieved. It is possible - especially after restarting a system - to get the
same journal data again.

LPWORD IpwProtocol;

IpwProtocol

Specifies the protocol the journal data belong to. Specified as one of the following flags:
Value Meaning
WEFS _PIN PROTISOAS Get authorization system journal data.
WEFS _PIN PROTISOLZ Get German "Ladezentrale" journal data.
WEFS _PIN PROTISOPS Get personalization system journal data.
WFS _PIN PROTPBM Get PBM protocol data.

LPWFSXDATA IpxJournalData;

IpxJournalData
Pointer to the journal data.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN HSMSTATEINVALID The HSM is not in a correct state to return
journal data.
WFS _ERR PIN PROTINVALID The specified protocol is invalid.

Only the generic events defined in [Ref. 1] can be generated by this command.

None.

Page 74
CWA 15748-6:2008

5.1.20 WFS_CMD_PIN_IMPORT_KEY_EX

Description The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
"key encryption key". The dwUse parameter is needed to separate the keys in several parts of the
encryption module to avoid the manipulation of a key. A key can be loaded in multiple
unencrypted parts by combining the WFS PIN USECONSTRUCT or
WEFS PIN USESECURECONSTRUCT value with the final usage flag within the dwUse field.

If the WFS_PIN _USECONSTRUCT flag is used then the application must provide the key data
through the IpxValue parameter, [f WFS_PIN USESECURECONSTRUCT is used then the
encryption key part in the secure key buffer previously populated with the

WFS CMD PIN SECUREKEY ENTRY command is used and /pxValue is ignored. Key parts
loaded with the WFS PIN USESECURECONSTRUCT flag can only be stored once as the
encryption key in the secure key buffer is no longer available after this command has been
executed. The WFS PIN USECONSTRUCT and WFS PIN USESECURECONSTRUCT
construction flags cannot be used in combination.

Input Param LPWFSPINIMPORTKEYEX IpImportKeyEx;

typedef struct _wfs pin import key ex

LPSTR lpsKey;

LPSTR lpsEncKey;
LPWFSXDATA lpxValue;
LPWFSXDATA lpxControlVector;
DWORD dwUse;

WORD wKeyCheckMode ;
LPWFSXDATA lpxKeyCheckValue;

} WEFSPINIMPORTKEYEX, *LPWFSPINIMPORTKEYEX;

IpsKey
Specifies the name of key being loaded.

IpsEncKey

IpsEncKey specifies a key name which was used to encrypt (in ECB mode) the key string passed
in lpxValue. If IpsEncKey is NULL the key is loaded directly into the encryption module.
IpsEncKey must be NULL if dwUse contains WFS PIN_ USECONSTRUCT or

WFS PIN USESECURECONSTRUCT.

IpxValue
Specifies the value of key to be loaded. If it is an RSA key the first 4 bytes contain the exponent
and the following 128 the modulus.

IpxControlVector
Specifies the control vector of the key to be loaded. It contains the attributes of the key. If this
parameter is NULL the keys is only specified by dwUse. See also [Ref. 26].

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be a combination of the following flags:

Value Meaning

WEFS PIN USECRYPT Key is used for encryption and decryption.

WFS_PIN USEFUNCTION Key is used for PIN block creation.

WEFS_PIN USEMACING Key is used for MACing.

WFS_PIN USEKEYENCKEY Key is used as key encryption key.

WEFS _PIN _USEPINLOCAL Key is used for local PIN check.

WFS PIN USERSAPUBLIC Key is used as a public key for RSA
encryption including EMV PIN block
creation.

WEFS PIN USERSAPRIVATE Key is used as a private key for RSA

decryption (it is not recommend that private
keys are imported with this function).

Output Param

Error Codes

Events

WFS_PIN_USECONSTRUCT

WFS_PIN_USESECURECONSTRUCT

WFS_PIN_USEANSTR31MASTER

Page 75
CWA 15748-6:2008

Key is under construction through the import
of multiple parts. This value is used in
combination with one of the other key usage
flags.

Key is under construction through the import
of multiple parts. This value is used in
combination with one of the other key usage
flags. IpxValue is ignored as the encryption
key part is taken from the secure key buffer.
Key can be used for importing keys
packaged within an ANS TR-31 key block.
This key usage can only be combined with
WFS PIN USECONSTRUCT and

WFS PIN USESECURECONSTRUCT.

If dwUse equals zero the specified key is deleted. In that case all parameters but /psKey are

ignored.

wKeyCheckMode

Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value

Meaning

WEFS _PIN KCVNONE

WFS_PIN_KCVSELF

WEFS _PIN KCVZERO

IpxKeyCheckValue

There is no key check value verification
required.

The key check value is created by an
encryption of the key with itself. For a
double length key the KCV is generated
using 3DES encryption using the first half of
the key as the source data for the encryption.
The key check value is created by an
encryption of a zero value with the key.

Specifies a check value to verify that the value of the imported key is correct. It can be NULL, if
no key check value verification is required and wKeyCheckMode equals WFS PIN KCVNONE.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value

Meaning

WFS_ERR_PIN_KEYNOTFOUND

WFS_ERR_PIN_ACCESSDENIED

WFS_ERR_PIN_DUPLICATEKEY
WFS_ERR_PIN_KEYNOVALUE
WFS_ERR_PIN_USEVIOLATION

WFS_ERR PIN INVALIDKEYLENGTH

WEFS_ERR PIN KEYINVALID

WFS_ERR_PIN. NOKEYRAM

The specified key encryption key was not
found or attempting to delete a non-existent
key.

The encryption module is either not
initialized or not ready for any vendor
specific reason.

A key exists with that name and cannot be
overwritten.

The specified key encryption key is not
loaded.

The specified use conflicts with a previously
for the same key specified one.

The length of [pxValue is not supported or
the encryption key in the secure key buffer is
invalid (or has not been entered) or the
length of an encryption key is not compatible
with the encryption operation required.

The key value is invalid. The key check
value verification failed.

There is no space left in the key RAM for a
key of the specified type.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Page 76

CWA 15748-6:2008

Comments

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

When keys are loaded in multiple parts, all parts of the key loaded must set the relevant
construction value in the dwUse field along with any usages needed for the final key use. The
usage flag must be consistent for all parts of the key. Activation of a key entered in multiple parts
is indicated through an additional final call to this command, where the construction flag is
removed from dwUse but those other usages defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A
WEFS_ERR PIN ACCESSDENIED error will be returned if the key cannot be activated, e.g. if
only one key part has been entered.

When a construction flag is set, the optional KCV applies to the key part being imported. If the
KVC provided for a key part fails verification, the key part will not be accepted. When the key is
being activated, the optional KCV applies to the complete key already stored. If the KVC
provided during activation fails verification, the key will not be activated.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a dwUse value that indicates it is under construction,
it cannot be used for cryptographic functions.

5.1.21 WFS_

Page 77
CWA 15748-6:2008

CMD_PIN_ENC_IO

Description

Input Param

Output Param

This command is used to communicate with the encryption module. Transparent data is sent from
the application to the encryption module and the response is returned transparently to the
application.

This command is used to add support for country-specific protocols.

LPWFSPINENCIO IpEncloln;

typedef struct wfs pin enc io

WORD wProtocol;
ULONG ulDatalength;
LPVOID lpvData;

} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module. The following
protocol numbers are defined:

Value Meaning

WEFS _PIN ENC PROT CH For Swiss specific protocols. The document
specification for Swiss specific protocols is
"CMD_ENC IO - CH Protocol.doc". This
document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management

Hertistrasse 27
CH-8304 Wallisellen

WEFS PIN ENC PROT GIECB Protocol for “Groupement des Cartes
Bancaires” (France).

WEFS PIN ENC PROT LUX Protocol for Luxemburg commands. The

reference for this specific protocol is the
Authorization Center in Luxemburg
(CETREL))

Cryptography Management

Postal address:

CETREL Société Coopérative

Centre de Transferts Electroniques
L-2956 Luxembourg

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field [pvData.

IpvData
Points to a structure containing the data to be sent to the encryption module. This structure
depends on the wProtocol field where each protocol may contain a different structure.

LPWFSPINENCIO IpEncloOut;

typedef struct _wfs pin enc_io

WORD wProtocol;
ULONG ulDatalength;
LPVOID lpvData;

} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module. This field
contains the same value as the corresponding field in the input structure.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field [pvData.

IpvData
Points to a structure containing the data responded by the encryption module.

Page 78
CWA 15748-6:2008

Error Codes

generated by this command:

Events

Comments

Value

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

Meaning

WFS_ERR PIN PROTOCOLNOTSUPP

WFS_ERR_INVALID DATA
WFS_ERR_PIN_RANDOMINVALID
WFS_ERR_PIN_SIGNATUREINVALID
WFS_ERR_PIN_SNSCDINVALID
WFS_ERR_PIN_HSMSTATEINVALID
WFS_ERR_PIN. NOKEYRAM

WEFS_ERR PIN KEYINVALID

The specified protocol is not supported by
the Service Provider. For wProtocol=
WFS_PIN_ENC _PROT_GIECB.

The input data is not valid for the specified
protocol, e.g. inconsistent TLV encoding.
The encrypted random number in the input
data does not decrypt to the one previously
provided by the EPP.

The signature in the input data is invalid.
The SCD serial number in the input data is
invalid.

The HSM is not in a correct state to handle
this command.

There is no space left in the key RAM for a
key of the specified type.

The key value is invalid.

WEFS_ERR PIN KEY GENERATION ERROR

None.

For the WFS_PIN_ENC PROT CH and the WFS PIN ENC PROT LUX protocols, the

The EPP is unable to generate a key pair.

WFS CMD_ PIN _ENC IO command only returns generic error codes. Protocol specific error
codes will be returned by the AResult within the output data.

5.1.22 WFS_

Page 79
CWA 15748-6:2008

CMD_PIN_HSM_INIT

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to set the HSM out of order. If multiple logical HSMs are configured then
the command sets the currently active logical HSM out of order. At the same time the online time
can be set to control when the OPT online dialog (see WFS PIN_ PROTISOPS protocol) shall be
started to initialize the HSM again. When this time is reached a

WEFS _SRVE PIN OPT REQUIRED event will be sent.

LPWFSPINHSMINIT lpHsmlnit;

typedef struct wfs pin hsm init

WORD wInitMode;
LPWFSXDATA lpxOnlineTime;
} WESPINHSMINIT, *LPWFSPINHSMINIT
winitMode
Specifies the init mode as one of the following flags:
Value Meaning
WEFS_PIN_INITTEMP Initialize the HSM temporarily (K _UR
remains loaded).
WEFS_PIN_INITDEFINITE Initialize the HSM definitely (K_UR is
deleted).
WEFS PIN INITIRREVERSIBLE Initialize the HSM irreversibly (can only be

restored by the vendor).

IpxOnlineTime

Specifies the Online date and time in the format YYYYMMDDHHMMSS like in ISO BMP 61 as
BCD packed characters. This parameter is ignored when the init mode equals

WFS PIN INITDEFINITE or WFS PIN INITIRREVERSIBLE. If this parameter is NULL,
ulLength is zero or the value is 0x00 0x00 0x00 0x00 0x00 0x00 0x00 the online time will be set
to a value in the past.

None.

The following additional error codes can be generated by this command:

Value Meaning
WFS ERR PIN. MODENOTSUPPORTED The specified init mode is not supported.
WEFS_ERR PIN HSMSTATEINVALID The HSM is not in a correct state to handle

this command.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS _SRVE PIN HSM TDATA CHANGED The terminal data has changed.

None.

Page 80

CWA 15748-6:2008

5.1.23 WFS_CMD_PIN_SECUREKEY_ENTRY

Description

Input Param

This command allows a full length symmetric encryption key part to be entered directly into the
pinpad without being exposed outside of the pinpad. From the point this function is invoked,
encryption key digits (WFS_PIN FK 0 to WFS PIN FK 9 and WFS PIN FK A to

WEFS PIN FK F) are not passed to the application. For each encryption key digit, or any other
active key entered (except for shift), an execute notification event WFS_EXEE PIN KEY is sent
in order to allow an application to perform the appropriate display action (i.e. when the pinpad has
no integrated display). When an encryption key digit is entered the application is not informed of
the value entered, instead zero is returned.

The WFS_EXEE PIN ENTERDATA event will be generated when the pin pad is ready for the
user to start entering data.

The keys that can be enabled by this command are defined by the /pFuncKeyDetail parameter of
the WFS _INF PIN SECUREKEY DETAIL command. Function keys which are not associated
with an encryption key digit may be enabled but will not contribute to the secure entry buffer
(unless they are Cancel, Clear or Backspace) and will not count towards the length of the key
entry. The Cancel and Clear keys will cause the encryption key buffer to be cleared. The
Backspace key will cause the last encryption key digit in the encryption key buffer to be removed.

If bAutoEnd is TRUE the command will automatically complete when the required number of
encryption key digits have been added to the buffer.

If bAutoEnd is FALSE then the command will not automatically complete and Enter, Cancel or
any terminating key must be pressed. When usKeyLen hex encryption key digits have been
entered then all encryption key digits keys are disabled. If the Clear or Backspace key is pressed
to reduce the number of entered encryption key digits below usKeyLen, the same keys will be re-
enabled.

Terminating keys have to be active keys to operate.

If an FDK is associated with Enter, Cancel, Clear or Backspace then the FDK must be activated to
operate. The Enter and Cancel FDKs must also be marked as a terminator if they are to terminate
entry. These FDKs are reported as normal FDKs within the WFS EXEE PIN KEY event,
applications must be aware of those FDKSs associated with Cancel, Clear, Backspace and Enter
and handle any user interaction as required. For example, if the WFS_PIN FK FDKO1 is
associated with Clear, then the application must include the WFS_PIN FK FDKOI FDK code in
the uldctiveFDK parameter (if the clear functionality is required). In addition when this FDK is
pressed the WFS_EXEE PIN KEY event will contain the WFS_PIN_FK FDKO01 mask value in
the ulDigit field. The application must update the user interface to reflect the effect of the clear on
the encryption key digits entered so far.

On some devices that are configured as either WFS PIN SECUREKEY REG UNIQUE or

WFS PIN SECUREKEY IRREG UNIQUE all the function keys on the pinpad will be
associated with hex digits and there may be no FDKs available either. On these devices there may
be no way to correct mistakes or cancel the key encryption entry before all the encryption key
digits are entered, so the application must set the b4utoEnd flag to TRUE and wait for the
command to auto-complete. Applications should check the KCV to avoid storing an incorrect key
component.

Encryption key parts entered with this command are stored through either the
WFS CMD PIN IMPORT KEY or WFS CMD_PIN IMPORT KEY_ EX. Each key part can
only be stored once after which the secure key buffer will be cleared automatically.

LPWFSPINSECUREKEYENTRY IpSecureKeyEntry;

typedef struct _wfs_pin secure key entry

USHORT usKeyLen;

BOOL bAutoEnd;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
WORD wVerificationType;

} WFSPINSECUREKEYENTRY, *LPWFSPINSECUREKEYENTRY ;

Output Param

Error Codes

Page 81
CWA 15748-6:2008

usKeyLen
Specifies the number of digits which must be entered for the encryption key, 16 for a single length
key and 32 for a double length key. The only valid values are 16 and 32.

bAutoEnd

If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of encryption key digits are entered. Otherwise, the input is terminated by the user using
Enter, Cancel or any terminating key. When usKeyLen is reached, the Service Provider will
disable all keys associated with an encryption key digit.

ulActiveFDKs
Specifies those FDKs which are active during the execution of the command. This parameter
should include those FDKs mapped to edit functions.

ulActiveKeys

Specifies all Function Keys(not FDKs) which are active during the execution of the command.
This should be the complete set or a subset of the keys returned in the lpFuncKeyDetail parameter
of the WFS_INF PIN SECUREKEY DETAIL command. This should include WFS PIN FK 0
to WFS_PIN FK 9 and WFS PIN FK A to WFS PIN FK F for all modes of secure key entry,
but should also include WFS_PIN FK_ SHIFT on shift based systems. The WFS_PIN_FK 00,
WEFS PIN_FK 000 and WFS_PIN_FK DECPOINT function keys must not be included in the
list of active or terminate keys.

ulTerminateFFDKs
Specifies those FDKs which must terminate the execution of the command. This should include
the FDKs associated with Cancel and Enter.

ulTerminateKeys
Specifies those all Function Keys (not FDKs) which must terminate the execution of the
command. This does not include the FDKs associated with Enter or Cancel.

wVerificationType

Specifies the type of verification to be done on the entered key. Possible values are as follows:
Value Meaning
WFS PIN KCVSELF The key check value is created by an

encryption of the key with itself. For a
double length key the KCV is generated
using 3DES encryption using the first half of
the key as the source data for the encryption.
WEFS PIN KCVZERO The key check value is created by an
encryption of a zero value with the key.

LPWFSPINSECUREKEYENTRYOUT IpSecureKeyEntryOut;

typedef struct wfs pin secure key entry out

USHORT usDigits;
WORD wCompletion;
LPWFSXDATA 1pxKCV;

} WFSPINSECUREKEYENTRYOUT, *LPWFSPINSECUREKEYENTRYOUT;

usDigits
Specifies the number of key digits entered. Applications must ensure all required digits have been
entered before trying to store the key.

wCompletion
Specifies the reason for completion of the entry. Possible values are described in
WFS_CMD _PIN GET PIN.

IpxKCV

Contains the key check value data that can be used for verification of the entered key. This
parameter is NULL if device does not have this capability, or the key entry was not fully entered,
e.g. the entry was terminated by Enter before the required number of digits was entered.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Page 82
CWA 15748-6:2008

Events

Value

Meaning

WFS_ERR_PIN_ACCESSDENIED

WFS_ERR_PIN_KEYINVALID
WFS_ERR_PIN_KEYNOTSUPPORTED
WFS_ERR_PIN_ NOACTIVEKEYS
WFS_ERR_PIN_NOTERMINATEKEYS

WFS_ERR PIN INVALIDKEYLENGTH
WFS_ERR PIN_MODENOTSUPPORTED

command:

Comments

Value

The encryption module is either not
initialized or not ready for any vendor
specific reason.

At least one of the specified function keys or
FDKs is invalid.

At least one of the specified function keys or
FDKs is not supported by the Service
Provider.

There are no active function keys specified.
There are no terminate keys specified and
bAutoEnd is FALSE.

The usKeyLen key length is not supported.
The KCV mode is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

Meaning

WFS_EXEE_PIN_KEY

WFS_EXEE_PIN_ENTERDATA

None.

A key has been pressed at the pinpad.
Applications must be aware of the
association between FDKs and the edit
functions reported within the

WFS_INF PIN SECUREKEY DETAIL
command.

The pin pad is ready for the user to start
entering data.

Page 83
CWA 15748-6:2008

5.1.24 WFS_CMD_PIN_GENERATE_KCV

Description

Input Param

Output Param

Error Codes

Events

Comments

This command returns the Key Check Value (KCV) for the specified key.
LPWFSPINGENERATEKCYV IpGenerateKCV;

typedef struct _wfs pin generate KCV

{

LPSTR lpsKey;
WORD wKeyCheckMode ;
} WFSPINGENERATEKCV, *LPWFSPINGENERATEKCV;
IpsKey
Specifies the name of key that should be used to generate the KCV.
wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:
Value Meaning
WFS PIN KCVSELF The key check value is created by an

encryption of the key with itself. For a
double length key the KCV is generated
using 3DES encryption using the first half of
the key as the source data for the encryption.
WEFS PIN KCVZERO The key check value is created by an
encryption of a zero value with this key.

LPWFSPINKCYV IpKCV;

typedef struct wfs pin kcv

LPWFSXDATA 1pxKCV;
} WEFSPINKCV, *LPWFSPINKCV;

IpxKCV
Contains the key check value data that can be used for verification of the key.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN KEYNOTFOUND The specified key encryption key was not
found.

WFS ERR PIN KEYNOVALUE The specified key exists but has no value
loaded.

WFS_ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.
WFS _ERR PIN MODENOTSUPPORTED The KCV mode is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

Page 84

CWA 15748-6:2008

5.1.25WFS_CMD_PIN_SET_GUIDANCE_LIGHT

Description

Input Param

This command is used to set the status of the PIN guidance lights. This includes defining the flash
rate and the color. When an application tries to use a color that is not supported then the Service
Provider will return the generic error WFS_ ERR_UNSUPP DATA.

LPWFSPINSETGUIDLIGHT IpSetGuidLight;
typedef struct wfs pin set guidlight

WORD wGuidLight;
DWORD dwCommand ;
} WFSPINSETGUIDLIGHT, *LPWFSPINSETGUIDLIGHT;
wGuidLight

Specifies the index of the guidance light to set as one of the values defined within the capabilities
section:

dwCommand

Specifies the state of the guidance light indicator as WFS PIN_ GUIDANCE OFF or a
combination of the following flags consisting of one type B, and optionally one type C. If no
value of type C is specified then the default color is used. The Service Provider determines which
color is used as the default color.

Value Meaning Type

WEFS PIN GUIDANCE_OFF The light indicator is turned off. A

WEFS PIN GUIDANCE SLOW_FLASH The light indicator is set to flash B
slowly.

WEFS PIN GUIDANCE MEDIUM FLASH The light is blinking medium B
frequency.

WEFS _PIN GUIDANCE QUICK FLASH The light indicator is set to flash B
quickly.

WFS_PIN GUIDANCE CONTINUOUS The light indicator is turned on B
continuously (steady).

WEFS PIN GUIDANCE RED The light indicator color is set C
to red.

WEFS PIN GUIDANCE GREEN The light indicator color is setto C
green.

WFS PIN GUIDANCE YELLOW The light indicator color is setto C
yellow.

WEFS PIN GUIDANCE BLUE The light indicator color is setto C
blue.

WEFS _PIN GUIDANCE CYAN The light indicator coloris setto C
cyan.

WEFS PIN GUIDANCE MAGENTA The light indicator coloris setto C
magenta.

WEFS _PIN GUIDANCE WHITE The light indicator coloris setto C
white.

Output Param None.

Error Codes

Events

Comments

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN INVALID PORT An attempt to set a guidance light to a new
value was invalid because the guidance light
does not exist.

Only the generic events defined in [Ref. 1] can be generated by this command.

Guidance light support was added into the PIN primarily to support guidance lights for
workstations where more than one instance of a PIN is present. The original SIU guidance light
mechanism was not able to manage guidance lights for workstations with multiple PINs. This
command can also be used to set the status of the PIN guidance lights when only one instance of a
PIN is present.

Page 85
CWA 15748-6:2008

5.1.26 WFS_CMD_PIN_MAINTAIN_PIN

Description

Input Param

Output Param
Error Codes
Events

Comments

This command is used to control if the PIN is maintained after a PIN processing command for
subsequent use by other PIN processing commands. This command is also used to clear the PIN
buffer when the PIN is no longer required.

LPWFSPINMAINTAINPIN IpMaintainPinIn;

typedef struct wfs pin maintain pin

BOOL bMaintainPIN;
} WFSPINMAINTAINPIN, *LPWFSPINMAINTAINPIN;
bMaintainPIN

Specifies if the PIN should be maintained after a PIN processing command. Once set, this setting
applies until changed through another call to this command. This value is not persistent across
reboots.

Value Meaning
TRUE The PIN should be maintained after PIN
processing commands for multiple uses.
FALSE The PIN will be cleared and subsequent
PINs will not be maintained for multiple
uses.
None.

Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

When using this command to maintain a PIN for multiple transactions/PIN processing commands,
applications should ensure that a customer’s PIN is cleared after they have completed all their
transactions. The PIN is cleared by calling this command with bMaintainPIN set to FALSE.

Page 86

CWA 15748-6:2008

5.1.27 WFS_

CMD_PIN_KEYPRESS_BEEP

Description

Input Param

Output Param
Error Codes
Events

Comments

This command is used to enable or disable the PIN device from emitting a beep tone on
subsequent key presses of active or in-active keys. This command is valid only on devices which
have the capability to support application control of automatic beeping. See

WFS INF PIN CAPABILITIES structure for information.

LPWORD IpwMode;

IpwMode

Specifies whether automatic generation of key press beep tones should be activated for any active
or in-active key subsequently pressed on the PIN. [pwMode selectively turns beeping on and off
for active, in-active or both types of keys. [pwMode contains a combination of the following flags:

Value Meaning

WEFS PIN BEEP ON ACTIVE Specifies that beeping should be enabled for
active keys. If this flag is not present then
beeping is disabled for active keys.

WFS PIN BEEP ON _INACTIVE Specifies that beeping should be enabled for
in-active keys. If this flag is not present then
beeping is disabled for in-active keys.

None.
Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

None.

5.1.28 WFS_

Page 87
CWA 15748-6:2008

CMD_PIN_SET_PINBLOCK_DATA

Description

Input Param

Output Param

Error Codes

Events

Comments

This function should be used for devices which need to know the data for the PIN block before
the PIN is entered by the user. WFS CMD PIN GET PIN and

WFS CMD PIN GET PINBLOCK should be called after this command. For all other devices
WFS_ERR UNSUPP_COMMAND will be returned here.

If this command is required and it is not called, the WFS CMD PIN GET_PIN command will
fail with the generic error WFS_ERR _INVALID DATA.

If the input parameters passed to this command and WFS_CMD_PIN GET PINBLOCK are not
identical, the WFS_ CMD_PIN GET PINBLOCK command will fail with the generic error
WFS_ERR INVALID DATA.

The data associated with this command will be cleared on a WFS_CMD_PIN GET PINBLOCK
command.

LPWFSPINBLOCK IpPinSetBlockData;
See WFS CMD_PIN GET PINBLOCK for details.
None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not found.
WFS _ERR PIN_ ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS _ERR PIN KEYNOVALUE The specified key is not loaded.

WFS ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS ERR PIN FORMATNOTSUPP The specified format is not supported.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

Page 88

CWA 15748-6:2008

5.1.29 WFS_CMD_PIN_SET_LOGICAL_HSM

Description

Input Param

Output Param

Error Codes

Events

This command allows an application select the logical HSM that should be active. If the device
does not support multiple logical HSMs this command returns

WFS_ERR UNSUPP_COMMAND. The WFS INF PIN QUERY LOGICAL HSM command
can be called to determine the current active logical HSM.

Once the active logical HSM is set with this command, that logical HSM remains active until this
command is used to change the logical HSM or the system is re-started.

The selected HSM is not persistent across re-boots, when applications want to address a specific
logical HSM they must ensure that the correct logical HSM is set as the active logical HSM.

The commands affected by this command are as follows:
e WFS INF PIN HSM TDATA
e WFS INF PIN KEY DETAIL EX
e WFS CMD PIN HSM SET TDATA

e WFS CMD PIN SECURE MSG SEND(only affected for the protocols
WFS PIN PROTHSM LDI and WFS PIN PROTISOPS)

e WFS CMD PIN SECURE MSG RECEIVE(only affected for the protocols
WEFS_PIN PROTHSM _LDI and WFS_PIN_PROTISOPS)

e WFS_CMD _PIN _HSM_INIT

e WFS CMD PIN GET JOURNAL(only affected for the protocol
WFS_PIN PROTISOPS))

If there are multiple XFS applications that manipulate the current logical HSM then applications
must co-operate or use the XFS locking facilities to synchronize access to the logical HSMs. The
current logical HSM is the same for all clients.

LPWFSPINHSMIDENTIFIER IpSetHSM;

typedef struct wfs pin hsm identifier

{

WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;
wHSMSerial Number

Specifies the serial number of the HSM that should be set as the active HSM. The value passed in
this field corresponds to the wSerialNumber field reported in the
WEFS_INF_PIN QUERY LOGICAL HSM command output structure (and hence corresponds to
the CB tag in the HSM TDATA). The wHSMSerialNumber value is encoded as a standard binary
value (i.e. it is not BCD).

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS ERR PIN INVALIDHSM The logical HSM serial number specified is
not valid.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN HSM_ CHANGED Indicates that the current logical HSM has
changed to the HSM identified within the
event.

Page 89
CWA 15748-6:2008

Comments None.

Page 90

CWA 15748-6:2008

5.1.30 WFS_CMD_PIN_IMPORT_KEYBLOCK

Description

Input Param

Output Param

Error Codes

Events

Comments

The command imports an encryption key that has been passed by the application within an ANSI
X9 TR-31 key block (see reference 35).

LPWFSPINIMPORTKEYBLOCK IpImportKeyBlock;

typedef struct _wfs pin import key block

{

LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxKeyBlock;

} WEFSPINIMPORTKEYBLOCK, *LPWFSPINIMPORTKEYBLOCK;

IpsKey
Specifies the name of key being loaded.

IpsEncKey
IpsEncKey specifies a key name which will be used to verify and decrypt the key block passed in
IpxKeyBlock. This key must have a key usage defined as WFS_PIN USEANSTR31MASTER.

IpxKeyBlock
Specifies the complete key block for the key being imported.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WEFS_ERR PIN KEYNOTFOUND The specified key encryption key was not
found.

WEFS_ERR PIN KEYNOVALUE The specified key encryption key is not
loaded.

WFS _ERR PIN FORMATINVALID The format of the key block is invalid.

WFS _ERR PIN CONTENTINVALID The content of the key block is invalid.

WFS _ERR PIN FORMATNOTSUPP The key block version or content is not
supported.

WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WEFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.
WEFS _ERR PIN USEVIOLATION The key control flags specified within the

key block are inconsistent, are not supported
by the hardware, or the /psEncKey is not
defined as a
WFS_PIN_USEANSTR31MASTER key.
WFS_ERR PIN INVALIDKEYLENGTH The length of the actual encryption key
within I[pxKeyBlockValue is not supported.

WFS _ERR PIN KEYINVALID The key block failed its authentication
check.
WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a

key of the specified type.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

Page 91
CWA 15748-6:2008

5.1.31 WFS_CMD_PIN_POWER_SAVE_CONTROL

Description

Input Param

Output Param

Error Codes

Events

Comments

This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

LPWFSPINPOWERSAVECONTROL IpPowerSaveControl,;

typedef struct wfs pin power save control

USHORT usMaxPowerSaveRecoveryTime;
} WFSPINPOWERSAVECONTROL, *LPWFSPINPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime

Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR PIN POWERSAVETOOSHORT The power saving mode has not been
activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN POWER SAVE CHANGE The power save recovery time has changed.

None.

Page 92

CWA 15748-6:2008

5.2 Common commands for Remote Key Loading Schemes

This section describes those commands that are common between the two Remote Key Loading Schemes. The
commands defined within this section can be used for both the Remote Key Loading Scheme using Signatures and
the Remote Key Loading Scheme using Certificates. Section 8 provides additional explanation on how these
commands are used.

5.21 WFS_CMD_PIN_START _KEY_EXCHANGE

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to start the transfer of the host's Key Transport Key.

This output value is returned to the host and is used in the

WFS _CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY and

WFS _CMD PIN IMPORT RSA SIGNED DES KEY commands to verify that the encryptor is
talking to the proper host.

The WFS_CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEY and
WFS CMD PIN IMPORT RSA SIGNED DES KEY commands end the key exchange
process.

None.

LPWFSPINSTARTKEYEXCHANGE IpStartKeyExchange;

typedef struct _wfs pin start key exchange

LPWFSXDATA lpxRandomItem;
} WFSPINSTARTKEYEXCHANGE, *LPWFSPINSTARTKEYEXCHANGE;

IpxRandomlItem

Pointer to a randomly generated number created by the encryptor, which will be used to verify the
Key Transport message sent from the host. If the PIN device does not support random number
generation and verification, a zero length random number is returned and a NULL /pbData
pointer is returned.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

None.

None.

Page 93
CWA 15748-6:2008

5.3 Remote Key Loading Using Signatures

This section contains commands that are used for Remote Key Loading with Signatures. Applications wishing to
use such functionality must use these commands. Section 8.1 provides additional explanation on how these
commands are used. Section 8.1.7 defines the fixed names for the Security Item and RSA keys that must be loaded
during manufacture.

5.3.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

Description

Input Param

The Public RSA key passed by the application is loaded in the encryption module. The dwUse
parameter restricts the cryptographic functions that the imported key can be used for.

This command provides similar public key import functionality to that provided with

WFS CMD_PIN IMPORT KEY EX. The primary advantage gained through using this function
is that the imported key can be verified as having come from a trusted source. If a Signature
algorithm is specified that is not supported by the PIN Service Provider, then the request will not
be accepted and the command fails.

LPWFSPINIMPORTRSAPUBLICKEY IpImportRSAPublicKey;

typedef struct _wfs pin import rsa public key

LPSTR lpsKey;

LPWFSXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WFSPINIMPORTRSAPUBLICKEY, *LPWFSPINIMPORTRSAPUBLICKEY ;

IpsKey
Specifies the name of key being loaded.

IpxValue
Contains the PKCS #1 formatted RSA Public Key to be loaded, represented in DER encoded
ASN.1.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning

WEFS _PIN USERSAPUBLIC Key is used as a public key for RSA
Encryption including EMV PIN block
creation.

WEFS PIN USERSAPUBLICVERIFY Key is used as a public key for RSA

signature verification and/or data decryption.
If dwUse equals zero the specified key is deleted.

When no signature is required to authenticate the deletion of a public key, all parameters but
IpsKey are ignored. In addition, WFS CMD PIN IMPORT KEY,

WFS CMD PIN IMPORT KEY EX, WFS CMD PIN IMPORT RSA PUBLIC KEY and
WFS _CMD PIN IMPORT RSA SIGNED DES KEY can be used to delete a key that has been
imported with this command.

When a signature is required to authenticate the deletion of the public key, all parameters in the
command are used. /pxValue must contain the concatenation of the Security Item which uniquely
identifies the PIN device (see the command

WFS CMD_PIN EXPORT RSA ISSUER_SIGNED ITEM) and the PKCS #1 formatted RSA
public key to be deleted, i.e. Ulatm|| PKro peLeTe- [pxSignature contains the signature generated
from IpxValue using the private key component of the public key being deleted.

The equivalent commands in the certificate scheme must not be used to delete a key imported
through the signature scheme.

Page 94

CWA 15748-6:2008

Output Param

Error Codes

IpsSigKey

IpsSigKey specifies the name of a previously loaded asymmetric key (i.e. an RSA Public Key)
which will be used to verify the signature passed in IpxSignature. The default Signature Issuer
public key (installed in a secure environment during manufacture) will be used, if /psSigKey is
either NULL or contains the name of the default Signature issuer as defined in section 8.1.7.

dwRSASignatureAlgorithm
Defines the algorithm used to generate the Signature specified in IpxSignature. Contains one of
the following values:

Value Meaning

WEFS PIN SIGN NA No signature algorithm specified. No
signature verification will take place and the
contents of [psSigKey and IpxSignature are
ignored.

Use the RSASSA-PKCS1-v1.5 algorithm.

Use the RSASSA-PSS algorithm.

WFS_PIN_SIGN_RSASSA PKCS1 V1 5
WFS_PIN_SIGN_RSASSA_PSS

IpxSignature

Contains the Signature associated with the key being imported or deleted. The Signature is used to
validate the key request has been received from a trusted sender. This value contains NULL when
no key validation is required.

LPWFSPINIMPORTRSAPUBLICKEYOUTPUT IpImportRSAPublicKeyOutput;

typedef struct wfs pin import rsa public key output

DWORD dwRSAKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAPUBLICKEYOUTPUT,
*LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

dwRSAKeyCheckMode

Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be one of the
following flags:

Value Meaning

WEFS PIN RSA KCV_NONE No check value is returned in
IpxKeyCheckValue.

WEFS PIN RSA KCV_SHAI IpxKeyCheckValue contains a SHA-1 digest
of the public key.

IpxKeyCheckValue
Contains the public key check value as defined by the dwRSAKeyCheckMode flag.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN KEYNOTFOUND The key name supplied in /psSigKey was not

found.

WFS _ERR PIN USEVIOLATION An invalid use was specified for the key
being imported.

WEFS_ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_INVALIDKEYLENGTH
WFS_ERR_PIN_NOKEYRAM

WFS_ERR_PIN_SIG NOT_SUPP

WFS_ERR PIN SIGNATUREINVALID

The length of lpxValue is not supported.
There is no space left in the key RAM for a
key of the specified type.

The Service Provider does not support the
Signature Algorithm requested. The key was
discarded.

The signature verification failed. The key
has not been stored or deleted.

Page 95
CWA 15748-6:2008

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

Comments None.

Page 96

CWA 15748-6:2008

5.3.2 WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM

Description

Input Param

Output Param

This command is used to export data elements from the PIN device, which have been signed by
an offline Signature Issuer. This command is used when the default keys and Signature Issuer
signatures, installed during manufacture, are to be used for remote key loading.

This command allows the following data items are to be exported:

e The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

e The RSA Public key component of a public/private key pair that exists within the PIN
device. These public/private key pairs are installed during manufacture. Typically, an
exported public key is used by the host to encipher the symmetric key.

See section 8.1.7 (Default Keys and Security Item loaded during manufacture) for the default
names and the description of the keys installed during manufacture. These names are defined to
ensure multi-vendor applications can be developed.

The WFS_INF PIN KEY DETAIL EX command can be used to determine the valid uses for
the exported public key.

LPWFSPINEXPORTRSAISSUERSIGNEDITEM IpExportRSAlssuerSignedltem;
typedef struct wfs pin export rsa issuer signed item

WORD wExportItemType;

LPSTR lpsName;

} WFSPINEXPORTRSAISSUERSIGNEDITEM,
*LPWFSPINEXPORTRSAISSUERSIGNEDITEM;

wExportltemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:
Value Meaning
WEFS PIN EXPORT EPP ID The Unique ID for the PIN will be exported,
IpsName is ignored.
WEFS PIN EXPORT PUBLIC KEY The public key identified by /psName will be
exported.
IpsName

Specifies the name of the public key to be exported. The private/public key pair was installed
during manufacture; see section 8.1.7 (Default Keys and Security Item loaded during
manufacture) for a definition of these default keys. If [psName is NULL, then the default EPP
public key that is used for symmetric key encryption is exported.

LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT IpExportRSAlssuerSignedItemOutput;

typedef struct wfs pin export rsa issuer signed item output

LPWFSXDATA lpxValue;
DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WEFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT,
*LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

IpxValue

If a public key was requested then /pxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then IpxValue
contains the PIN’s Security Item, which may be vendor specific.

dwRSASignatureAlgorithm.
Specifies the algorithm used to generate the Signature returned in /pxSignature. Contains one of
the following values:

Error Codes

Events

Comments

Page 97
CWA 15748-6:2008

Value Meaning

WEFS PIN SIGN_NA No signature algorithm used, no signature
will be provided in IpxSignature, the data
item may still be exported.

WFS PIN SIGN RSASSA PKCS1 VI 5 RSASSA-PKCS1-v1.5 algorithm used.

WFS PIN SIGN RSASSA PSS RSASSA-PSS algorithm used.

IpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when key
Signatures are not supported.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR PIN NORSAKEYPAIR The PIN device does not have a private key.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS _ERR PIN KEYNOTFOUND The data item identified by [psName was not
found.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

Page 98

CWA 15748-6:2008

5.3.3 WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

Description

Input Param

This command is used to load a Symmetric Key that is either a single or double DES length key
into the encryptor. The key passed by the application is loaded in the encryption module, the
(optional) signature is used during validation, the key is decrypted using the device’s RSA Private
Key, and is then stored. The loaded key will be discarded at any stage if any of the above fails.

The random number previously obtained from the

WFS CMD PIN START KEY EXCHANGE command and sent to the host is included in the
signed data. This random number (when present) is verified during the load process. This
command ends the Key Exchange process.

The dwUse parameter restricts the cryptographic functions that the imported key can be used for.

If a Signature algorithm is specified that is not supported by the PIN Service Provider, then the
message will not be decrypted and the command fails.

LPWFSPINIMPORTRSASIGNEDDESKEY IpImportRSASignedDESKey;

typedef struct _wfs pin import rsa signed_des_key

LPSTR lpsKey;

LPSTR lpsDecryptKey;

DWORD dwRSAEncipherAlgorithm;
LPWFSXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WFSPINIMPORTRSASIGNEDDESKEY, *LPWFSPINIMPORTRSASIGNEDDESKEY ;

IpsKey
Specifies the name of key being loaded.

IpsDecryptKey

Specifies the name of the RSA private key used to decrypt the symmetric key. See section 8.1.7
(Default Keys and Security Item loaded during manufacture) for a description of the fixed name
defined for the default decryption private key. If [psDecryptKey is NULL then the default
decryption private key is used.

dwRSAEncipherAlgorithm
Specifies the RSA algorithm that is used, along with the private key, to decipher the imported key.
Contains one of the following values:

Value Meaning

WFS_PIN CRYPT RSAES PKCS1 VI 5 Use the RSAAES PKCS1-v1.5 algorithm.

WEFS PIN CRYPT RSAES OAEP Use the RSAAES OAEP algorithm.
IpxValue

Specifies the enciphered value of the key to be loaded. IpxValue contains the concatenation of the
random number (when present) and enciphered key.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise, the parameter can be a combination of the following flags:

Value Meaning

WEFS _PIN USECRYPT Key is used for encryption and decryption.

WEFS_PIN USEFUNCTION Key is used for PIN block creation.

WFS PIN USEMACING Key is used for MACing.

WFS_PIN USEKEYENCKEY Key is used as key encryption key.

WEFS PIN USEPINLOCAL Key is used for local PIN check.

WEFS PIN USENODUPLICATE Key can be imported only once.

WEFS _PIN USESVENCKEY Key is used as CBC Start Value encryption
key.

WFS _PIN USEANSTR31MASTER Key can be used for importing keys

packaged within an ANS TR-31 key block.

Output Param

Error Codes

Page 99
CWA 15748-6:2008

If dwUse equals zero the specified key is deleted. In that case all parameters but /psKey are
ignored. WFS CMD_PIN IMPORT KEY, WFS CMD_PIN IMPORT KEY EX,

WFS CMD_PIN IMPORT RSA PUBLIC KEY and

WFS _CMD PIN IMPORT RSA SIGNED DES KEY can be used to delete a key that has been
imported with this command. The equivalent commands in the certificate scheme must not be
used to delete a key imported through the signature scheme.

IpsSigKey

If IpsSigKey is NULL then the key signature will not be used for validation and lpxSignature is
ignored. Otherwise /psSigKey specifies the name of an Asymmetric Key (i.e. an RSA Public Key)
previously loaded which will be used to verify the signature passed in lpxSignature.

dwRSASignatureAlgorithm
Specifies the algorithm used to generate the Signature specified in [pxSignature. Contains one of
the following values:

Value Meaning

WEFS PIN SIGN NA No signature algorithm specified. No
signature verification will take place and the
content of IpxSignature is ignored.

WFS PIN SIGN RSASSA PKCS1 V1 5 Use the RSASSA-PKCS1-v1.5 algorithm.

WFS PIN SIGN RSASSA PSS Use the RSASSA-PSS algorithm.

IpxSignature

Contains the Signature associated with the key being imported. The Signature is used to validate
the key has been received from a trusted sender. The signature is generated over the contents of
the IpxValue. The IpxSignature signature contains NULL when no key validation is required.

LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT IpImportRSASignedDESKeyOutput;

typedef struct wfs pin import rsa signed des key output

WORD wKeyLength;
WORD wKeyCheckMode ;
LPWFSXDATA lpxKeyCheckValue;

} WFSPINIMPORTRSASIGNEDDESKEYOUTPUT,
*LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:
Value Meaning
WEFS PIN KEYSINGLE The imported key is single length.
WEFS PIN KEYDOUBLE The imported key is double length.
wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:
Value Meaning
WEFS PIN KCVNONE There is no key check value provided.
WEFS PIN KCVSELF The key check value is calculated by an

encryption of the key with itself. For a
double length key the KCV is generated
using 3DES encryption using the first half of
the key as the source data for the encryption.
WEFS _PIN KCVZERO The key check value is calculated by an
encryption of a zero value with the key.

IpxKeyCheckValue
pointer to the key verification data that can be used for verification of the loaded key, NULL if
device does not have that capability.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN KEYNOTFOUND The specified key encryption key was not
found.

Page 100
CWA 15748-6:2008

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WEFS_ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS _ERR PIN KEYNOTFOUND One of the keys specified were not found.

WFS _ERR PIN KEYNOVALUE The specified key encryption key is not
loaded.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS_ERR PIN INVALIDKEYLENGTH The length of [pxValue is not supported.

WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

WFS ERR PIN SIG NOT _SUPP The Service Provider does not support the
Signature Algorithm requested. The key was
discarded.

WEFS_ERR PIN SIGNATUREINVALID The signature in the input data is invalid.
The key is not stored in the PIN.

WFS _ERR PIN RANDOMINVALID The encrypted random number in the input

data does not match the one previously
provided by the EPP. The key is not stored
in the PIN.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

Comments None.

Page 101
CWA 15748-6:2008

5.3.4 WFS_CMD_PIN_GENERATE_RSA KEY_PAIR

Description

Input Param

Output Param

Error Codes

Events

This command will generate a new RSA key pair. The public key generated as a result of this
command can subsequently be obtained by calling
WFS CMD_PIN EXPORT RSA EPP SIGNED ITEM.

The newly generated key pair can only be used for the use defined in the dwUse flag. This flag
defines the use of the private key; its public key can only be used for the inverse function.

LPWFSPINGENERATERSAKEYPAIR IpGenerateRSAKeyPair;

typedef struct wfs pin generate rsa key

LPSTR lpsKey;

DWORD dwUse;

WORD wModulusLength;
WORD wExponentValue;

} WFSPINGENERATERSAKEYPAIR, *LPWFSPINGENERATERSAKEYPAIR;

IpsKey
Specifies the name of the new key-pair to be generated. Details of the generated key-pair can be
obtained through the WFS_INF PIN KEY DETAIL EX command.

dwUse

Specifies what the private key component of the key pair can be used for. The public key part can
only be used for the inverse function. For example, if the WFS PIN USERSAPRIVATESIGN
use is specified, then the private key can only be used for signature generation and the partner
public key can only be used for verification. dwUse can take one of the following values:

Value Meaning

WEFS PIN USERSAPRIVATE Key is used as a private key for RSA
decryption.

WEFS PIN USERSAPRIVATESIGN Key is used as a private key for RSA

Signature generation. Only data generated
within the device can be signed.

wModulusLength
Specifies the number of bits for the modulus of the RSA key pair to be generated. When zero is
specified then the PIN device will be responsible for defining the length.

wExponentValue
Specifies the value of the exponent of the RSA key pair to be generated. The following defines
valid values the exponent:

Value Meaning
WFS PIN DEFAULT The device will decide the exponent.
WEFS_PIN EXPONENT 1 Exponent of 2'+1 (3).
WEFS_PIN EXPONENT 4 Exponent of 2*+1 (17).
WFS_PIN_EXPONENT 16 Exponent of 2'°+1 (65537).

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS ERR PIN INVALID MOD LEN The modulus length specified is invalid.

WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS _ERR PIN KEY GENERATION_ ERROR
The EPP is unable to generate a key pair.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

Page 102
CWA 15748-6:2008

command:
Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption

key.

Comments None.

Page 103
CWA 15748-6:2008

5.3.5 WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM

Description

Input Param

This command is used to export data elements from the PIN device that have been signed by a
private key within the EPP. This command is used in place of the

WFS CMD PIN EXPORT RSA ISSUER SIGNED ITEM command, when a private key
generated within the PIN device is to be used to generate the signature for the data item. This
command allows an application to define which of the following data items are to be exported:

e The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

e The RSA Public key component of a public/private key pair that exists within the PIN
device.

See section 8.1.7 (Default Keys and Security Item loaded during manufacture) for the default
names and the description of the keys installed during manufacture. These names are defined to
ensure multi-vendor applications can be developed.

The public/private key pairs exported by this command are either installed during manufacture or
generated through the WFS CMD PIN GENERATE RSA KEY PAIR command.

The WFS_INF PIN KEY DETAIL EX command can be used to determine the valid uses for
the exported public key.

LPWFSPINEXPORTRSAEPPSIGNEDITEM IpExportRSAEPPSignedItem;

typedef struct wfs pin export rsa epp signed item

WORD wExportItemType;
LPSTR lpsName;
LPSTR lpsSigKey;
DWORD dwSignatureAlgorithm;
} WESPINEXPORTRSAEPPSIGNEDITEM, *LPWFSPINEXPORTRSAEPPSIGNEDITEM
wExportlitemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:
Value Meaning
WEFS_PIN _EXPORT EPP ID The Unique ID for the PIN will be exported,
IpsName is ignored.
WEFS PIN EXPORT PUBLIC KEY The public key identified by /psName will be
exported.
IpsName

Specifies the name of the public key to be exported. This can either be the name of a key-pair
generated through WFS CMD_PIN_ GENERATE RSA KEY PAIR or the name of one of the
default key-pairs installed during manufacture.

IpsSigKey
Specifies the name of the private key to use to sign the exported item.
dwSignatureAlgorithm.

Specifies the algorithm to use to generate the Signature returned in both the [pxSelfSignature and
IpxSignature fields. Contains one of the following values:

Value Meaning

WEFS PIN SIGN NA No signature algorithm used, no signature
will be provided in IpxSelfSignature or
IpxSignature. The requested item may still
be exported.

WFS_PIN SIGN RSASSA PKCS1 V1 5 RSASSA-PKCS1-v1.5 algorithm used.

WFS PIN_SIGN RSASSA PSS RSASSA-PSS algorithm used.

Output Param LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT IpExportRSAEPPSignedItemOutput;

Page 104

CWA 15748-6:2008

Error Codes

Events

Comments

typedef struct wfs pin export rsa epp_signed_item output

LPWFSXDATA lpxValue;
LPWFSXDATA lpxSelfSignature;
LPWFSXDATA lpxSignature;

} WFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT,
*LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

IpxValue

If a public key was requested then IpxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then lpxValue
contains the PIN’s Security [tem, which may be vendor specific.

IpxSelfSignature

If a public key was requested then lpxSelfSignature contains the RSA signature of the public key
exported, generated with the key-pair’s private component. NULL can be returned when key Self-
Signatures are not supported/required.

IpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when signatures are
not supported/required.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR PIN NORSAKEYPAIR The PIN device does not have a private key.
WFS _ERR PIN ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR PIN KEYNOTFOUND The data item identified by /psName was not
found.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.
None.

Page 105
CWA 15748-6:2008

5.4 Remote Key Loading with Certificates

This section contains commands that are used for Remote Key Loading with Certificates. Applications wishing to
use such functionality must use these commands.

5.4.1 WFS_CMD_PIN_LOAD_CERTIFICATE

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to load a host certificate or to load a new encryptor certificate from a
Certificate Authority to make remote key loading possible. This command can be called only once
if there are no plans for a new CA to take over the duties. If a new CA does take over the duties,
then this command should be called after the WFS_ CMD_REPLACE_ CERTIFICATE command.
The type of certificate (Primary or Secondary) to be loaded will be embedded within the actual
certificate structure.

LPWFSPINLOADCERTIFICATE IpLoadCertificate;
typedef struct wfs pin load certificate

LPWFSXDATA lpxLoadCertificate;
} WESPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE

IpxLoadCertificate

Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 using the degenerate
certificate only case of the signed-data content type in which the inner content’s data file is
omitted and there are no signers.

LPWFSPINLOADCERTIFICATEOUTPUT IpLoadCertificateOutput;

typedef struct wfs pin load certificate output

LPWFSXDATA lpxCertificateData;
} WFSPINLOADCERTIFICATEOUTPUT, *LPWFSPINLOADCERTIFICATEOUTPUT;

IpxCertificateData
Pointer to a PKCS #7 structure using a Digested-data content type. The digest parameter should
contain the thumb print value.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WEFS_ERR PIN FORMATINVALID The format of the message is invalid.

WEFS_ERR PIN INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS SRVE PIN CERTIFICATE CHANGE The certificate module state has changed.

None.

Page 106

CWA 15748-6:2008

5.4.2 WFS_CMD_PIN_GET_CERTIFICATE

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to read out the encryptor’s certificate, which has been signed by the trusted
Certificate Authority and is sent to the host. This command only needs to be called once if no new
Certificate Authority has taken over. The output of this command will specify in the PKCS #7
message the resulting Primary or Secondary certificate.

LPWFSPINGETCERTIFICATE IpGetCertificate;

typedef struct wfs pin get certificate

WORD wGetCertificate;
} WFSPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

wGetCertificate

Specifies which public key certificate is requested. If the WFS_INF _PIN STATUS command
indicates Primary Certificates are accepted, then the Primary Public Encryption Key or the
Primary Public Verification Key will be read out. If the WFS_INF PIN STATUS command
indicates Secondary Certificates are accepted, then the Secondary Public Encryption Key or the
Secondary Public Verification Key will be read out.

Value Meaning

WFS _PIN PUBLICENCKEY The corresponding encryption key is to be
returned.

WFS PIN PUBLICVERIFICATIONKEY The corresponding verification key is to be
returned.

LPWFSPINGETCERTIFICATEOUPUT IpGetCertificateOutput;

typedef struct wfs pin get certificate_output

LPWFSXDATA lpxCertificate;
} WFSPINGETCERTIFICATEOUTPUT, *LPWFSPINGETCERTIFICATEOUTPUT;

IpxCertificate

Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 using the degenerate
certificate only case of the signed-data content type in which the inner content’s data file is
omitted and there are no signers.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS _ERR PIN INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.

None.

None.

Page 107
CWA 15748-6:2008

5.4.3 WFS_CMD_PIN_REPLACE_CERTIFICATE

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to replace the existing primary or secondary Certificate Authority
certificate already loaded into the encryptor. This operation must be done by an Initial Certificate
Authority or by a Sub-Certificate Authority. These operations will replace either the primary or
secondary Certificate Authority public verification key inside of the encryptor. After this
command is complete, the application should send the WFS CMD PIN LOAD_ CERTIFICATE
and WFS _CMD_GET_CERTIFICATE commands to ensure that the new HOST and the
encryptor have all the information required to perform the remote key loading process.

LPWFSPINREPLACECERTIFICATE IpReplaceCertificate;

typedef struct wfs pin replace certificate

LPWFSXDATA lpxReplaceCertificate;
} WEFSPINREPLACECERTIFICATE, *LPWFSPINREPLACECERTIFICATE;

IpxReplaceCertificate

Pointer to the PKCS # 7 message that will replace the current Certificate Authority. The outer
content uses the Signed-data content type, the inner content is a degenerate certificate only
content containing the new CA certificate and Inner Signed Data type The certificate should be in
a format represented in DER encoded ASN.1 notation.

LPWFSPINREPLACECERTIFICATEOUTPUT IpReplaceCertificateOuput

typedef struct _wfs pin replace certificate_ output

LPWFSXDATA lpxNewCertificateData;
} WFSPINREPLACECERTIFICATEOUTPUT,
*LPWFSPINREPLACECERTIFICATEOUTPUT;

IpxNewCertificateData
Pointer to a PKCS #7 structure using a Digested-data content type. The digest parameter should
contain the thumb print value.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN_ ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS_ERR PIN FORMATINVALID The format of the message is invalid.

WFS _ERR PIN INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS SRVE PIN CERTIFICATE CHANGE The certificate module state has changed.

None.

Page 108

CWA 15748-6:2008

5.4.4 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED PKCS7_KEY

Description

Input Param

Output Param

This command is used to load a Key Transport Key that is either a single or double DES length
key into the encryptor. The Key Transport Key should be destroyed if the entire process is not
completed. In addition, a new Key Transport Key should be generated each time this protocol is
executed. This method ends the Key Exchange process.

LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY IpImportRSAEncipheredPKCS7Key;

typedef struct wfs pin import rsa enciphered pkcs7 key

LPWFSXDATA lpxImportRSAKeyIn;
LPSTR lpsKey;
DWORD dwUse;

}WFSPINIMPORTRSAENCIPHEREDPKCS7KEY,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY ;

IpxImportRSKeyln

Pointer to a binary encoded PKCS #7 represented in DER encoded ASN.1 notation. This allows
the Host to verify that key was imported correctly and to the correct encryptor. The message has
an outer Signed-data content type with the SignerInfo encryptedDigest field containing the
HOST’s signature. The random numbers are included as authenticated Attributes within the
SignerInfo. The inner content is an Enveloped-data content type. The ATM identifier is included
as the issuerAndSerialNumber within the RecipientInfo. The enciphered KTK is included within
RecipientInfo. The encryptedContent is omitted.

IpsKey
Specifies the name of the key to be stored.
dwUse
Specifies the type of access for which the key can be used as a combination of the following flags:
Value Meaning
WEFS _PIN USECRYPT Key can be used for encryption/decryption.
WFS PIN USEFUNCTION Key can be used for PIN functions.
WFS PIN USEMACING Key can be used for MACing.
WFS_PIN USEKEYENCKEY Key is used as key encryption key.
WEFS _PIN _USENODUPLICATE Key can be imported only once.
WEFS _PIN USESVENCKEY Key is used as CBC Start Value encryption
key.
WEFS PIN USEANSTR31MASTER Key can be used for importing keys

packaged within an ANS TR-31 key block.

If dwUse equals zero the specified key is deleted. In that case all parameters but /psKey are
ignored. WFS CMD_PIN IMPORT KEY, WFS CMD_PIN IMPORT KEY EX,

WFS CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEY can be used to delete a key that
has been imported with this command. The equivalent commands in the signature scheme must
not be used to delete a key imported through the certificate scheme.

LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT
IpImportRSAEncipheredKeyOut;

typedef struct wfs pin import rsa enciphered pkcs7 key output

WORD wKeyLength;
LPWFSXDATA lpxRSAData;
}WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:
Value Meaning
WEFS PIN KEYSINGLE The imported key is single length.

WFS PIN KEYDOUBLE The imported key is double length.

Error Codes

Events

Comments

Page 109
CWA 15748-6:2008

IpxRSAData

Pointer to a binary encoded PKCS #7, represented in DER encoded ASN.1 notation. The message
has an outer Signed-data content type with the SignerInfo encryptedDigest field containing the
ATM’s signature. The random numbers are included as authenticated Attributes within the
SignerInfo. The inner content is a data content type, which contains the HOST identifier as an
issuerAndSerialNumber sequence.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS_ERR PIN FORMATINVALID The format of the message is invalid.

WFS _ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS ERR PIN INVALIDKEYLENGTH The length of lpxValue is not supported.

WFS _ERR PIN INVALIDID The ID passed was not valid.

WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

WFS_ERR PIN FORMATINVALID The format of the message is invalid.

WFS _ERR PIN USEVIOLATION The specified use conflicts with a previously

for the same key specified one.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

The following is a generic structure of how the /pxImportRSAIn field is structured regarding the
outer signed data content type and the inner content as an Envelope-data content type:

ContentInfo ::= SEQUENCE
contentType ContentType = signedData
content
SignedData ::= SEQUENCE
version Version,
DigestAlgorithms DigestAlgorithmIdentifiers,
contentInfo ContentInfo ::= SEQUENCE,
contentType ContentType = EnvelopedData
content

Page 110
CWA 15748-6:2008

5.5 EMV

This section defines the commands needed to import the EMV RSA keys provided either by a Certification
Authority (for example VISA or MASTERCARD EUROPE) or by the chip card itself ISSUER KEY, ICC KEY
and ICC PIN KEY).

5.51 WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY

Description The Certification Authority and the Chip Card RSA public keys needed for EMV are loaded or
deleted in/from the encryption module. This command is similar to the
WFS CMD PIN IMPORT KEY EX command, but it is specifically designed to address the
key formats and security features defined by EMV. Mainly the extensive use of “signed
certificate” or “EMYV certificate” (which is a compromise between signature and a pure
certificate) to provide the public key is taken in account. The Service Provider is responsible for
all EMV public key import validation. Once loaded, the Service Provider is not responsible for
key/certificate expiry, this is an application responsibility.

Input Param LPWFSPINEMVIMPORTPUBLICKEY IpEMVImportPublicKey;

typedef struct wfs pin emv_import public key

LPSTR lpsKey;

DWORD dwUse;

WORD wImportScheme;

LPWFSXDATA lpxImportData;

LPSTR lpsSigKey;

} WESPINEMVIMPORTPUBLICKEY, *LPWFSPINEMVIMPORTPUBLICKEY ;
IpsKey
Specifies the name of key being loaded.
dwUse

Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning

WEFS _PIN USERSAPUBLIC Key is used as a public key for RSA
encryption including EMV PIN block
creation.

WEFS _PIN USERSAPUBLICVERIFY Key is used as a public key for RSA

signature verification and/or data decryption.
If dwUse equals zero the specified key is
deleted. In that case all parameters but
IpsKey are ignored.

wlmportScheme
Defines the import scheme used. Contains one of the following values:

Value Meaning

WFS PIN EMV_IMPORT_ PLAIN_CA This scheme is used by VISA. A plain text
CA public key is imported with no
verification. The two parts of the key
(modulus and exponent) are passed in clear
mode as a DER encoded PKCS#1 public
key. The key is loaded directly in the
security module.

WFS PIN EMV_IMPORT CHKSUM CA This scheme is used by VISA. A plain text
CA public key is imported using the EMV
2000 Book II verification algorithm and it is
verified before being loaded in the security
module. (See [Ref. 4] under references
section for this document).

WFS PIN EMV_IMPORT_EPI CA This scheme is used by MasterCard Europe.
A CA public key is imported using the self-
signed scheme defined in [Ref. 5].

Page 111
CWA 15748-6:2008

WFS PIN EMV_IMPORT ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, reference 4. (See
[Ref. 4] under references section for this
document).

WFS PIN EMV_IMPORT _ ICC An ICC public key is imported as defined in
EMYV 2000 Book II, reference 4. (See [Ref.
4] under references section for this
document).

WFS PIN EMV_IMPORT ICC PIN An ICC PIN public key is imported as
defined in EMV 2000 Book II, reference 4.
(See [Ref. 4] under references section for
this document).

WFS PIN EMV _IMPORT PKCSVI 5 CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

IpxImportData
The IpxImportData parameter contains all the necessary data to complete the import using the
scheme specified within wimportScheme.

If wimportScheme is WFS_PIN_EMV_IMPORT PLAIN CA then /[pxImportData contains a
DER encoded PKCS#1 public key. No verification is possible. IpsSigKey is ignored.

If wimportScheme is WFS_PIN_EMV_IMPORT CHKSUM CA then I[pxImportData contains
table 23 data, as specified in EMV 2000 Book 2 (See Ref. [4] under the reference section for this
document). The plain text key is verified as defined within EMV 2000 Book 2, page 73.
IpsSigKey is ignored (See Ref. [4] under the reference section for this document).

If wimportScheme is WES PIN_ EMV_IMPORT EPI CA then IpxImportData contains the
concatenation of tables 4 and 13, as specified in reference 5, Europay International, EPI CA
Module Technical — Interface specification Version 1.4. These tables are also described in the
EMYV Support Appendix. The self-signed public key is verified as defined by the reference
document. IpsSigKey is ignored.

If wimportScheme is WFS_PIN_EMV_IMPORT _ISSUER then /pxImportData contains the EMV
public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length —
EMV Tag value: ‘9F32’), the EMV certificate length (1 byte), the EMV certificate value (variable
length — EMV Tag value: ‘90”), the remainder length (1 byte). The remainder value (variable
length — EMV Tag value: ‘92”), the PAN length (1 byte) and the PAN value (variable length —
EMYV Tag value: ‘5A”). The Service Provider will compare the leftmost three-eight digits of the
PAN to the Issuer Identification Number retrieved from the certificate. For more explanations, the
reader can refer to EMVco, Book2 — Security & Key Management Version 4.0, Table 4 (See [Ref.
4] under the reference section for this document). IpsSigKey defines the previously loaded key
used to verify the signature.

If wimportScheme is WFS_PIN_EMV_IMPORT ICC then /lpxImportData contains the EMV
public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length—- EMV
Tag value: ‘OF47’), the EMV certificate length (1 byte), the EMV certificate value (variable
length — EMV Tag value:’9F46’), the remainder length (1 byte), the remainder value (variable
length — EMV Tag value: ‘OF48°), the SDA length (1 byte), the SDA value (variable length), the
PAN length (1 byte) and the PAN value (variable length — EMV Tag value: ‘5A’). The Service
Provider will compare the PAN to the PAN retrieved from the certificate. For more explanations,
the reader can refer to EMVco, Book2 — Security & Key Management Version 4.0, Table 9 (See
[Ref. 4] under the reference section for this document). IpsSigKey defines the previously loaded
key used to verify the signature.

Page 112

CWA 15748-6:2008

Output Param

Error Codes

Events

Comments

If wimportScheme is WFS_PIN_ EMV_IMPORT ICC PIN then IpxImportData contains the
EMYV public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length —
EMV Tag value: ‘9F2E’), the EMV certificate length (1 byte), the EMV certificate value (variable
length — EMV Tag value:’9F2D’), the remainder length (1 byte), the remainder value (variable
length — EMV Tag value: ‘OF2F), the SDA length (1 byte), the SDA value (variable length), the
PAN length (1 byte) and the PAN value (variable length — EMV Tag value: ‘SA’). The Service
Provider will compare the PAN to the PAN retrieved from the certificate. For more explanations,
the reader can refer to EMVco, Book2 — Security & Key Management Version 4.0, Table 9 (See
[Ref. 4] under the reference section for this document). IpsSigKey defines the previously loaded
key used to verify the signature.

If wimportScheme is WFS_PIN_ EMV_IMPORT PKCSV1 5 CA then lpxImportData contains
the CA public key signed with the previously loaded public key specified in lpsSigKey.
IpxImportData consists of the concatenation of EMV 2000 Book II Table 23(reference 4) + 8 byte
random number + Signature (See Ref. [4] under the reference section for this document). The 8-
byte random number is not used for validation; it is used to ensure the signature is unique. The
Signature consists of all the bytes in the lpxImportData buffer after table 23 and the 8-byte
random number.

IpsSigKey
This field specifies the name of the previously loaded key used to verify the signature, as detailed
in the descriptions above.

LPWFSPINEMVIMPORTPUBLICKEYOUTPUT IpEM VImportPublicKeyOutput;

typedef struct wfs pin emv_import public key output

LPSTR lpsExpiryDate;
} WEFSPINEMVIMPORTPUBLICKEYOUTPUT,
*LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

IpsExpiryDate
Contains the expiry date of the certificate in the following format MMY'Y. If no expiry date
applies then IpsExpiryDate is NULL.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WEFS_ERR PIN DUPLICATEKEY A key exists with that name and cannot be
overwritten.
WFS ERR PIN NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
WFS ERR PIN EMV_VERIFY FAILED The verification of the imported key failed
and the key was discarded.

WFS _ERR PIN KEYNOTFOUND The specified key name is not found.
WFS _ERR PIN USEVIOLATION The specified use is not supported by this
key.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WEFS _SRVE PIN ILLEGAL KEY ACCESS An error occurred accessing an encryption
key.

This command only imports one key per use. If the same key value has to be imported for two
different uses, this command must be called twice and different key names must be specified.

552 WFS_

Page 113
CWA 15748-6:2008

CMD_PIN_DIGEST

Description:

Input Param

Output Param

Error Codes

Events

Comments

This command is used to compute a hash code on a stream of data using the specified hash
algorithm. This command can be used to verify EMV static and dynamic data.

LPWFSPINDIGEST IpDigest;

typedef struct wfs pin digest

{

WORD wHashAlgorithm;
LPWFSXDATA lpxDigestInput
} WFSPINDIGEST, *LPWFSPINDIGEST;

wHashAlgorithm
Specifies which hash algorithm should be used to calculate the hash. See the Capabilities section
for valid algorithms.

IpxDigestinput
Pointer to the structure that contains the length and the data to be hashed.

LPWFSPINDIGESTOUPUT IpDigestOutput;

typedef struct wfs pin digest output

LPWFSXDATA lpxDigestOutput
} WFSPINDIGESTOUTPUT, *LPWFSPINDIGESTOUTPUT;

IpxDigestOuput
Pointer to the structure that contains the length and the data containing the calculated hash.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR PIN ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

None.

None.

Page 114

CWA 15748-6:2008

6. Events

6.1 WFS_EXEE_PIN_KEY

Description

Event Param

Comments

This event specifies that any active key has been pressed at the PIN pad. It is used if the device
has no internal display unit and the application has to manage the display of the entered digits. It
is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

LPWFSPINKEY IpKey;
typedef struct wfs pin key

WORD wCompletion;
ULONG ulDigit;
} WEFSPINKEY, *LPWFSPINKEY;

wCompletion
Specifies the reason for completion or continuation of the entry. Possible values are:
(see command WFS_CMD_PIN GET PIN)

ulDigit

Specifies the digit entered by the user. When working in encryption mode or secure key entry
mode (WFS_CMD_PIN_GET PIN and WFS_CMD_PIN _SECUREKEY ENTRY), the value of
this field is 0x00 for the function keys 0-9 and A-F. Otherwise, for each key pressed, the
corresponding FK or FDK mask value is stored in this field.

None.

Page 115
CWA 15748-6:2008

6.2 WFS_SRVE_PIN_INITIALIZED

Description This event specifies that, as a result of a WFS_CMD_PIN INITIALIZATION, the encryption
module is now initialized and the master key (where required) and any other initial keys are
loaded; ready to import other keys.

Event Param LPWFSPININIT IpInit;

IpInit
For a definition of the WFSPININIT structure see command
WFS_CMD _ PIN_INITIALIZATION.

Comments None.

Page 116

CWA 15748-6:2008

6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS

Description

Event Param

Comments

This event specifies that an error occurred accessing an encryption key. Possible situations for
generating this event are listed in the description of /ErrorCode.

LPWFSPINACCESS IpAccess;

typedef struct _wfs pin access

{

LPSTR lpsKeyName;
LONG lErrorCode;
} WFSPINACCESS, *LPWFSPINACCESS;
IpsKeyName
Specifies the name of the key that caused the error.
[ErrorCode
Specifies the type of illegal key access that occurred. Possible values are:
Value Meaning
WFS ERR PIN KEYNOTFOUND The specified key was not loaded or
attempting to delete a non-existent key.
WFS ERR PIN KEYNOVALUE The specified key is not loaded.
WFS_ERR PIN USEVIOLATION The specified use is not supported by this
key.
WFS _ERR PIN ALGORITHMNOTSUPP The specified algorithm is not supported by
this key.

None.

Page 117
CWA 15748-6:2008

6.4 WFS_SRVE_PIN_OPT_REQUIRED

Description

Event Param

Comments

This event indicates that the online date/time stored in a HSM has been reached.

LPWFSPINHSMIDENTIFIER 1IpOPTRequired;

typedef struct wfs pin hsm identifier

{

WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;
wHSMSerial Number

Specifies the serial number of the logical HSM where the online time has been reached. If logical
HSMs are not supported then [pOPTRequired is NULL. The wHSMSerialNumber value is
encoded as a standard binary value (i.e. it is not BCD).

This event may be triggered by the clock reaching a previously stored online time or by the online
time being set to a time that lies in the past.

The online time may be set by the command WFS_CMD PIN HSM_SET TDATA or by a
command WFS CMD PIN SECURE MSG RECEIVE that contains a message from a host
system containing a new online date/time.

The event does not mean that any keys or other data in the HSM is out of date now. It just
indicates that the terminal should communicate with a "Personalisierungsstelle” as soon as
possible using the commands WFS CMD_PIN SECURE MSG SEND/ RECEIVE and
wProtocol=WFS_PIN PROTISOPS.

Page 118

CWA 15748-6:2008

6.5 WFS_SRVE_PIN_CERTIFICATE_CHANGE

Description

Event Param

Comments

This event indicates that the certificate module state has changed from Primary to Secondary.

LPWORD IpwCertificateChange

IpwCertificateChange
Specifies change of the certificate state inside of the encryptor as one of the following:
Value Meaning
WEFS PIN CERT SECONDARY The certificate state of the encryptor is now

Secondary and Primary Certificates will no
longer be accepted.

None.

Page 119
CWA 15748-6:2008

6.6 WFS_SRVE_PIN_HSM_TDATA_CHANGED

Description

Event Param

Comments

This event indicates that one of the values of the terminal data has changed (these are the data that
can be set using WFS_CMD _PIN _SET _HSM_TDATA). Le. this event will be sent especially
when the online time or the HSM status is changed because of a WFS_ CMD PIN HSM_INIT
command or an OPT online dialog (WFS_CMD_ PIN SECURE MSG SEND/ RECEIVE with
WEFS_PIN PROTPS).

On configurations with multiple logical HSMs, the serial number tag must be included within the
data so that the logical HSM that has changed can be identified.

LPWFSXDATA IpxTData;

IpxTData
Contains the parameter settings as a series of “tag/length/value” items. See command
WFS CMD_PIN HSM SET TDATA for the tags supported.

None.

Page 120

CWA 15748-6:2008

6.7 WFS_SRVE_PIN_HSM_CHANGED

Description

Event Param

Comments

This event indicates that the currently active logical HSM has been changed. This event will be
triggered when an application changes the current HSM through the WFS_ CMD PIN SET HSM
command. This event is not generated if the HSM is not changed.

LPWFSPINHSMIDENTIFIER IpHSMChanged;

typedef struct wfs pin hsm identifier

WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;
wHSMSerialNumber

Specifies the serial number of the logical HSM that has been made active. The
wHSMSerialNumber value is encoded as a standard binary value (i.e. it is not BCD).

None.

Page 121
CWA 15748-6:2008

6.8 WFS_EXEE_PIN_ENTERDATA

Description This mandatory event notifies the application when the device is ready for the user to start
entering data.

Event Param None.

Comments None.

Page 122
CWA 15748-6:2008

6.9 WFS_SRVE_PIN_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSPINDEVICEPOSITION IpDevicePosition;

typedef struct _wfs pin device position

{

WORD wPosition;
} WFSPINDEVICEPOSITION, *LPWFSPINDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning

WEFS _PIN DEVICEINPOSITION The device is in its normal operating
position.

WEFS PIN DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WEFS PIN DEVICEPOSUNKNOWN The position of the device cannot be
determined.

Comments None.

Page 123
CWA 15748-6:2008

6.10 WFS_SRVE_PIN_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSPINPOWERSAVECHANGE IpPowerSaveChange;

typedef struct _wfs pin power save change

{

USHORT usPowerSaveRecoveryTime;
} WFSPINPOWERSAVECHANGE, *LPWFSPINPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments None.

Page 124
CWA 15748-6:2008

7. C - Header File

/**

xfspin.h XFS - Personal Identification Number Keypad

*

*

* Version 3.10 (29/11/2007)
*

*

LR R R SRS R R R R R R SR R R R R R R RS E R SRS E RS EEEEREEEEEEEEEEEEES]

#ifndef INC XFSPIN H
#define _ INC _XFSPIN H

#ifdef cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSPINCAPS.wClass */
#define

#define
#define

WFS_SERVICE_CLASS PIN
WFS_SERVICE CLASS VERSION PIN
WFS_SERVICE_CLASS NAME_PIN

#define PIN SERVICE OFFSET

/* PIN Info Commands */

#define
#define
#define
#define
#define
#define
#define
#define

WFS_INF_PIN_STATUS
WFS_INF_PIN CAPABILITIES
WFS_INF_PIN_KEY DETATL

WFS_INF_PIN FUNCKEY DETAIL
WFS_INF_PIN HSM_TDATA
WFS_INF_PIN KEY DETAIL EX
WFS_INF_PIN SECUREKEY DETATL
WFS_INF_PIN QUERY LOGICAL HSM DETAIL

/* PIN Command Verbs */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_CMD_PIN CRYPT
WFS_CMD_PTIN_TMPORT_ KEY
WFS_CMD_PIN GET PIN
WFS_CMD_PIN GET PINBLOCK
WFS_CMD_PIN GET DATA
WFS_CMD_PIN TINITIALIZATION
WFS_CMD_PIN LOCAL DES
WFS_CMD_PIN_LOCAI,_ EUROCHEQUE
WFS_CMD_PIN LOCAL VISA
WFS_CMD_PIN_ CREATE_OFFSET
WFS_CMD_PIN DERIVE KEY
WFS_CMD_PIN PRESENT IDC
WFS_CMD_PTIN_LOCAI,_ BANKSYS
WFS_CMD PIN BANKSYS IO
WFS_CMD_PIN_ RESET
WFS_CMD_PIN HSM SET TDATA
WFS_CMD_PIN_SECURE_MSG_SEND
WFS_CMD PIN SECURE MSG RECEIVE
WFS_CMD_PIN_GET JOURNAL
WFS_CMD_PIN IMPORT KEY EX
WFS_CMD_PIN_ENC_TO
WFS_CMD_PIN HSM INIT
WFS_CMD_PIN_ TMPORT RSA PUBLIC KEY
WFS_CMD PIN EXPORT RSA ISSUER SIGNED ITEM

(PIN)

(4)
(0x0R03)
n PINI!

(WFS_SERVICE CLASS PIN * 100)

(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET

(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET

definitions

+ 4+ + + + o+ o+ o+

+ 4+t + o+ o+ +

*
*
*
*
/

/* Version 3.10 */

1)
2)
4)
5)
6)
7)
8)
9)

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_CMD_PIN_ TMPORT RSA SIGNED DES_KEY
WFS_CMD_PIN GENERATE RSA KEY PAIR
WFS_CMD_PIN EXPORT RSA EPP_SIGNED ITEM
WFS_CMD_PIN LOAD CERTIFICATE
WFS_CMD_PIN GET CERTIFICATE
WFS_CMD_PIN REPLACE CERTIFICATE
WFS_CMD_PIN START KEY EXCHANGE
WFS_CMD_PIN IMPORT RSA ENCIPHERED PKCS7 KEY
WFS_CMD_PIN_EMV_TMPORT PUBLIC KEY
WFS_CMD_PIN DIGEST

WFS_CMD_PIN_ SECUREKEY_ ENTRY

WFS_CMD_PIN GENERATE KCV
WFS_CMD_PIN SET GUIDANCE_LIGHT

WFS_CMD_PIN MAINTAIN PIN

WFS_CMD_PIN KEYPRESS BEEP
WFS_CMD_PIN SET PINBLOCK DATA
WFS_CMD_PIN_ SET LOGICAI,_HSM
WFS_CMD_PIN IMPORT KEYBLOCK

WFS_CMD_PIN_ POWER_SAVE_CONTROL

/* PIN Messages */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_EXEE_PIN KEY
WFS_SRVE_PIN INITIALIZED
WFS_SRVE_PIN ILLEGAL KEY ACCESS
WFS_SRVE_PIN OPT REQUIRED
WFS_SRVE_PIN HSM TDATA CHANGED
WFS_SRVE_PIN CERTIFICATE CHANGE
WFS_SRVE_PIN HSM CHANGED
WFS_EXEE_PIN ENTERDATA
WFS_SRVE_PIN DEVICEPOSITION
WFS_SRVE_PIN POWER_SAVE_CHANGE

/* values of WFSPINSTATUS.fwDevice */

#define
#define
#define
#define
#define
#define
#define
#define

WFS_ PIN DEVONLINE
WFS_PIN DEVOFFLINE
WFS_PIN DEVPOWEROFF
WFS_PIN DEVNODEVICE
WFS_ PIN DEVHWERROR
WFS_PIN DEVUSERERROR
WFS_ PIN DEVBUSY
WFS_PIN DEVFRAUDATTEMPT

/* values of WFSPINSTATUS.fwEncStat */

#define
#define
#define
#define
#define
#define
#define

/* Size

#define
#define

WFS_PIN ENCREADY

WFS_PIN ENCNOTREADY
WFS_PIN_ENCNOTINITIALIZED
WFS_PIN ENCBUSY
WFS_PIN_ENCUNDEFINED
WFS_PIN ENCINITIALIZED
WFS_PIN_ENCPINTAMPERED

and max index of dwGuidLights array */

WFS PIN GUIDLIGHTS SIZE
WFS_ PIN GUIDLIGHTS MAX

/* Indices of WFSPINSTATUS.dwGuidLights [...]

*/

#define

WFSPINCAPS.dwGuidLights [...]

WFS_PIN GUIDANCE PINPAD

/* Values of WFSPINSTATUS.dwGuidLights [...]

*/

#define

WFSPINCAPS.dwGuidLights [...]

WFS_PIN GUIDANCE NOT_ AVAILABLE

Page 125

CWA 15748-6:2008

(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET

(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET
(PIN_SERVICE OFFSET
(PIN_SERVICE_OFFSET

WFS_ STAT DEVONLINE

WFS_STAT DEVOFFLINE
WFS_ STAT DEVPOWEROFF
WFS_STAT DEVNODEVICE
WFS_STAT DEVHWERROR

WFS_STAT DEVUSERERROR

WFS_ STAT DEVBUSY

I S T T T T T T S S S S S S

+ 4+ + o+ o+ o+ + o+

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

WFS_STAT DEVFRAUDATTEMPT

~ o~~~ o~~~
O Ul WN KO

(32)

(WFS_PIN GUIDLIGHTS SIZE - 1)

(0x00000000)

Page 126

CWA 15748-6:2008

#define WFS_PIN_GUIDANCE_OFF

#define WFS_PIN GUIDANCE ON

#define WFS_PIN_GUIDANCE SLOW_FLASH
#define WFS_PIN GUIDANCE MEDIUM FLASH
#define WFS_PIN_GUIDANCE_ QUICK FLASH
#define WFS_PIN GUIDANCE CONTINUOUS
#define WFS_PIN_GUIDANCE_RED

#define WFS_PIN GUIDANCE GREEN
#define WFS_PIN_GUIDANCE_YELLOW
#define WFS_PIN GUIDANCE BLUE
#define WFS_PTIN_GUIDANCE_CYAN
#define WFS_PIN GUIDANCE MAGENTA
#define WFS_PIN_GUIDANCE WHITE

/* values for WFSPINSTATUS.fwAutoBeepMode and
WFS_PIN CMD KEYPRESS BEEP lpwMode parameter */

#define WFS PIN BEEP ON ACTIVE
#define WFS_PIN BEEP_ON INACTIVE

/* values of WFSPINSTATUS.wDevicePosition

WFSPINDEVICEPOSITION.wPosition */

#define WFS PIN DEVICEINPOSITION
#define WFS_PIN DEVICENOTINPOSITION
#define WEFS PIN DEVICEPOSUNKNOWN
#define WFS_PIN DEVICEPOSNOTSUPP

/* values of WFSPINCAPS.wType */

#define WFS PIN TYPEEPP
#define WFS PIN TYPEEDM
#define WFS PIN TYPEHSM

(0x00000001
(0x00000002
(0x00000004
(0x00000008
(0x00000010
(0x00000080
(0x00000100
(0x00000200
(0x00000400
(0x00000800
(0x00001000)
(0x00002000)
(0x00004000)

)
)
)
)
)
)
)
)
)
)

(0x0001)
(0x0002)

—~ e~~~
w N - o

(0x0001)
(0x0002)
(0x0004)

/* values of WFSPINCAPS.fwAlgorithms, WFSPINCRYPT.wAlgorithm */

#define WFS PIN CRYPTDESECB
#define WFS_PIN_CRYPTDESCBC
#define WFS_PIN CRYPTDESCFB
#define WFS_PIN_CRYPTRSA
#define WFS PIN CRYPTECMA
#define WFS_PIN_CRYPTDESMAC
#define WFS_PIN CRYPTTRIDESECB
#define WFS_PIN_CRYPTTRIDESCBC
#define WFS_PIN CRYPTTRIDESCFB
#define WFS_PIN_CRYPTTRIDESMAC
#define WFS_PIN CRYPTMAAMAC

/* values of WFSPINCAPS.fwPinFormats */

#define WFS_PIN FORM3624
#define WFS_PIN_FORMANSI
#define WFS_PIN_ FORMISOO
#define WFS PIN FORMISO1
#define WFS_PIN FORMECI2
#define WFS PIN FORMECI3
#define WFS_PIN FORMVISA
#define WFS_PIN FORMDIEBOLD
#define WFS_PIN FORMDIEBOLDCO
#define WFS_PIN FORMVISA3
#define WFS_PIN FORMBANKSYS
#define WFS_PIN_ FORMEMV
#define WFS_PIN FORMISO3

/* values of WFSPINCAPS.fwDerivationAlgorithms */

#define WFS_PIN_CHIP_ ZKA

/* values of WFSPINCAPS.fwPresentationAlgorithms */

(0x0001)
(0x0002)
(0x0004)
(0x0008)
(0x0010)
(0x0020)
(0x0040)
(0x0080)
(0x0100)
(0x0200)
(0x0400)

(0x0001)
(0x0002)
(0x0004)
(0x0008)
(0x0010)
(0x0020)
(0x0040)
(0x0080)
(0x0100)
(0x0200)
(0x0400)
(0x0800)
(0x2000)

(0x0001)

Page 127
CWA 15748-6:2008

#define WFS PIN PRESENT CLEAR (0x0001)

/* values of WFSPINCAPS.fwDisplay */

#define WFS_PIN DISPNONE (1)
#define WFS_PIN_DISPLEDTHROUGH (2)
#define WFS_PIN DISPDISPLAY (3)

/* values of WFSPINCAPS.fwIDKey */

#define WFS PIN IDKEYINITIALIZATION (0x0001)
#define WFS_ PIN IDKEYIMPORT (0x0002)

/* values of WFSPINCAPS.fwValidationAlgorithms */

#define WFS_PIN DES (0x0001)
#define WFS_ PIN EUROCHEQUE (0x0002)
#define WFS_PIN VISA (0x0004)
#define WFS PIN DES OFFSET (0x0008)
#define WFS_PIN_BANKSYS (0x0010)

/* values of WFSPINCAPS.fwKeyCheckModes and
WFSPINIMPORTKEYEX.wKeyCheckMode */

#define WFS_PIN KCVNONE (0x0000)
#define WFS PIN KCVSELF (0x0001)
#define WFS_ PIN KCVZERO (0x0002)

/* values of WFSPINCAPS.fwAutoBeep */

#define WFS_PIN BEEP ACTIVE AVAILABLE (0x0001)
#define WFS PIN BEEP ACTIVE SELECTABLE (0x0002)
#define WFS_ PIN BEEP INACTIVE AVAILABLE (0x0004)
#define WFS PIN BEEP INACTIVE SELECTABLE (0x0008)

/* values of WFSPINCAPS.fwKeyBlockImportFormats */
#define WFS PIN ANSTR31KEYBLOCK (0x0001)

/* values of WFSPINKEYDETAIL.fwUse and values of WFSPINKEYDETAILEX.dwUse */

#define WFS PIN USECRYPT (0x0001)
#define WFS PIN USEFUNCTION (0x0002)
#define WFS PIN USEMACING (0x0004)
#define WFS_ PIN USEKEYENCKEY (0x0020)
#define WFS PIN USENODUPLICATE (0x0040)
#define WFS PIN USESVENCKEY (0x0080)
#define WFS_ PIN USECONSTRUCT (0x0100)
#define WFS PIN USESECURECONSTRUCT (0x0200)
#define WFS_ PIN USEANSTR31MASTER (0x0400)

/* additional values for WFSPINKEYDETAILEX.dwUse */

#define WFS_PIN USEPINLOCAL (0x00010000)
#define WFS_PIN USERSAPUBLIC (0x00020000)
#define WFS_PIN USERSAPRIVATE (0x00040000)
#define WFS_PIN USECHIPINFO (0x00100000)
#define WFS_PIN USECHIPPIN (0x00200000)
#define WFS_PIN USECHIPPS (0x00400000)
#define WFS_PIN USECHIPMAC (0x00800000)
#define WFS_PIN USECHIPLT (0x01000000)
#define WFS_PIN USECHIPMACLZ (0x02000000)
#define WFS PIN USECHIPMACAZ (0x04000000)
#define WFS_PIN USERSAPUBLICVERIFY (0x08000000)
#define WFS_PIN USERSAPRIVATESIGN (0x10000000)

/* values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS PIN FK O (0x00000001)

Page 128

CWA 15748-6:2008

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_PIN_FK 1
WFS_PIN FK 2
WFS_PIN FK_3
WFS_PIN FK 4
WFS_PIN_FK 5
WFS_PIN FK 6
WFS_PIN_FK 7
WFS_PIN FK 8
WFS_PIN_FK 9
WFS_PIN FK ENTER

WFS_PIN_FK_CANCEL

WFS_PIN FK CLEAR

WFS_PIN_FK_BACKSPACE

WFS_PIN FK HELP

WFS_PIN_FK_DECPOINT

WFS_PIN FK 00
WFS_PIN_FK_000

WFS_PIN FK RES1
WFS_PIN_FK_RES2
WFS_PIN FK RES3
WFS_PIN_FK_RES4
WFS_PIN FK RES5
WFS_PIN FK RES6
WFS_PIN_FK_RES7
WFS_PIN FK RESS
WFS_PIN_FK_OEM1
WFS_PIN FK OEM2
WFS_PIN_FK_OEM3
WFS_PIN FK OEM4
WFS_PIN_FK_OEMS5
WFS_PIN FK OEM6

(0x00000002
(0x00000004
(0x00000008
(0x00000010
(0x00000020
(0x00000040
(0x00000080
(0x00000100
(0x00000200
(0x00000400
(0x00000800)
(0x00001000)
(0x00002000)
(0x00004000)
(0x00008000)
(0x00010000)
(0x00020000)
(0x00040000)
(0x00080000)
(0x00100000)
(0x00200000)
(0x00400000)
(0x00800000)
(0x01000000)
(0x02000000)
(0x04000000)
(0x08000000)
(0x10000000)
(0x20000000)
(0x40000000)
(0x80000000)

)
)
)
)
)
)
)
)
)
)

/* additional values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS PIN FK UNUSED

#define
#define
#define
#define
#define
#define
#define

/* values of WFSPINFUNCKEY.ulFDK */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_PIN FK A
WFS_PIN_FK_B
WFS_PIN FK C
WFS_PIN_FK D
WFS_PIN FK E
WFS_PIN FK_F
WFS_PIN FK SHIFT

WFS_PIN FK FDKO1
WFS_PIN FK FDKO02
WFS_PIN_FK_FDKO03
WFS_PIN FK FDKO04
WFS_PIN_FK_FDKO5
WFS_PIN FK FDKO06
WFS_PIN_FK_FDKO7
WFS_PIN FK_FDKOS8
WFS_PIN_FK_FDKO09
WFS_PIN FK_FDK10
WFS_PIN_FK_FDK11
WFS_PIN FK FDK12
WFS_PIN_FK_FDK13
WFS_PIN FK FDK14
WFS_PIN_FK_FDK15
WFS_PIN FK FDK16
WFS_PIN_FK_FDK17
WFS_PIN FK FDK18
WFS_PIN_FK_FDK19
WFS_PIN FK_FDK20
WFS_PIN_FK_FDK21
WFS_PIN FK FDK22
WFS_PIN_FK_FDK23
WFS_PIN FK FDK24

(0x00000000)

WFS_PIN FK RES1
WFS_PIN_FK_RES2
WFS_PIN FK RES3
WFS_PIN_FK_RES4
WFS_PIN FK RES5
WFS_PIN_FK_RES6
WFS_PIN FK RES7

(0x00000001)
(0x00000002)
(0x00000004)
(0x00000008)
(0x00000010)
(0x00000020)
(0x00000040)
(0x00000080)
(0x00000100)
(0x00000200)
(0x00000400)
(0x00000800)
(0x00001000)
(0x00002000)
(0x00004000)
(0x00008000)
(0x00010000)
(0x00020000)
(0x00040000)
(0x00080000)
(0x00100000)
(0x00200000)
(0x00400000)
(0x00800000)

Page 129
CWA 15748-6:2008

#define WFS_PIN FK FDK25 (0x01000000)
#define WFS_ PIN FK FDK26 (0x02000000)
#define WFS_PIN FK FDK27 (0x04000000)
#define WFS_PIN FK FDK28 (0x08000000)
#define WFS_PIN FK FDK29 (0x10000000)
#define WFS_ PIN FK FDK30 (0x20000000)
#define WFS_PIN FK FDK31 (0x40000000)
#define WFS_ PIN FK FDK32 (0x80000000)

/* values of WFSPINCRYPT.wMode */

#define WFS_PIN MODEENCRYPT (1)
#define WFS_PIN_MODEDECRYPT (2)
#define WFS_PIN MODERANDOM (3)

/* values of WFSPINENTRY.wCompletion */

#define WFS_PIN_ COMPAUTO (0)
#define WFS_PIN COMPENTER (1)
#define WFS_PIN COMPCANCEL (2)
#define WFS PIN COMPCONTINUE (6)
#define WFS_PIN COMPCLEAR (7)
#define WFS PIN COMPBACKSPACE (8)
#define WFS PIN COMPFDK (9)
#define WFS PIN COMPHELP (10)
#define WFS PIN COMPFK (11)
#define WFS_PIN COMPCONTFDK (12)
/* values of WFSPINSECMSG.wProtocol */

#define WFS_PIN PROTISOAS (1)
#define WFS_PIN PROTISOLZ (2)
#define WFS_PIN PROTISOPS (3)
#define WFS PIN PROTCHIPZKA (4)
#define WFS_PIN PROTRAWDATA (5)
#define WFS_ PIN PROTPBM (6)
#define WFS PIN PROTHSMLDI (7)
#define WFS_PIN PROTGENAS (8)
#define WFS PIN PROTCHIPINCHG (9)
#define WFS PIN PROTPINCMP (10)
#define WFS PIN PROTISOPINCHG (11)
/* values of WFSPINHSMINIT.wInitMode. */

#define WFS PIN INITTEMP (1)
#define WEFS PIN INITDEFINITE (2)
#define WFS_ PIN INITIRREVERSIBLE (3)

/* values of WFSPINENCIO.wProtocol and WFSPINCAPS.fwPINENCIOProtocols */

#define WFS_PIN_ENC_PROT CH (0x0001)
#define WFS_PIN ENC_PROT GIECB (0x0002)
#define WFS_PIN_ENC_PROT LUX (0x0004)

/* values for WFS_SRVE PIN CERTIFICATE CHANGE and WFSPINSTATUS.dwCertificateState */
#define WFS_PIN CERT_ SECONDARY (0x00000002)

/* values for WFSPINSTATUS.dwCertificateState*/

#define WFS_PIN CERT UNKNOWN (0x00000000)
#define WFS PIN CERT PRIMARY (0x00000001)
#define WFS_PIN CERT NOTREADY (0x00000004)

/* Values for WFSPINCAPS.dwRSAAuthenticationScheme and the fast-track Capabilities
lpszExtra parameter, REMOTE KEY SCHEME. */

#define WFS_PIN RSA AUTH 2PARTY SIG (0x00000001)
#define WFS_PIN RSA AUTH 3PARTY CERT (0x00000002)

Page 130
CWA 15748-6:2008

/* Values for WFSPINCAPS.dwSignatureScheme and the fast-track Capabilities lpzExtra
parameter, SIGNATURE CAPABILITIES. */

#define WFS PIN SIG GEN RSA KEY PAIR (0x00000001)
#define WFS_PIN_STG_RANDOM NUMBER (0x00000002)
#define WFS PIN SIG EXPORT EPP ID (0x00000004)
#define WFS_PIN_STG_ENHANCED RKL (0x00000008)

/* values of WFSPINIMPORTRSAPUBLICKEY.dwRSASignatureAlgorithm and
WFSPINCAPS.dwRSASignatureAlgorithm */

#define WFS_PIN SIGN_NA (0)
#define WFS_PIN SIGN RSASSA PKCS1 V1 5 (0x00000001)
#define WFS_PIN SIGN_ RSASSA PSS (0x00000002)

/* values of WFSPINIMPORTRSAPUBLICKEYOUTPUT.dwRSAKeyCheckMode */

#define WFS PIN RSA KCV_NONE (0x00000000)
#define WFS_PIN RSA KCV_SHA1 (0x00000001)

/* values of WFSPINEXPORTRSAISSUERSIGNEDITEM.wExportItemType and */

/* WFSPINEXPORTRSAEPPSIGNEDITEM. wExportItemType */
#define WFS_PIN_EXPORT_ EPP_TID (0x0001)
#define WFS PIN EXPORT PUBLIC KEY (0x0002)

/* values of WFSPINIMPORTRSASIGNEDDESKEY.dwRSAEncipherAlgorithm and
WFSPINCAPS.dwRSACryptAlgorithm */

#define WFS_PIN_CRYPT RSAES PKCS1 V1 _5 (0x00000001)
#define WFS PIN CRYPT RSAES OAEP (0x00000002)

/* values of WFSPINGENERATERSAKEYPAIR.wExponentValue */

#define WFS_PIN DEFAULT
#define WFS_PIN_ EXPONENT 1
#define WFS PIN EXPONENT 4
#define WFS_PIN_EXPONENT 16

—~ e~~~

0
1
2
3

/* values of WFSPINIMPORTRSASIGNEDDESKEYOUTPUT.wKeyLength and */

/* WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT .wKeyLength */
#define WFS PIN KEYSINGLE (0x0001)
#define WFS_ PIN KEYDOUBLE (0x0002)

/* values of WFSPINGETCERTIFICATE.wGetCertificate */

#define WFS_PIN PUBLICENCKEY (1)
#define WFS_PIN_ PUBLICVERIFICATIONKEY (2)

/* values for WFSPINEMVIMPORTPUBLICKEY.wImportScheme and
WFSPINCAPS.lpwEMVImportSchemes */

#define WFS PIN EMV_IMPORT PLAIN CA
#define WFS_PIN_EMV_IMPORT CHKSUM CA
#define WFS PIN EMV_IMPORT EPI CA
#define WFS_PIN_EMV_IMPORT ISSUER
#define WFS_PIN EMV_IMPORT ICC
#define WFS_PIN EMV_TIMPORT ICC_PIN

1
2
3
4
5
6
#define WFS PIN EMV_IMPORT PKCSV1 5 CA 7

/* values for WFSPINDIGEST.wHashAlgorithm and WFSPINCAPS.fwEMVHashAlgorithm */
#define WFS_PIN HASH SHA1l DIGEST (0x0001)

/* values of WFSPINSECUREKEYDETAIL.fwKeyEntryMode */

#define WFS_PIN SECUREKEY NOTSUPP (0x0000)

#define WFS_ PIN SECUREKEY REG SHIFT (0x0001)
#define WFS PIN SECUREKEY REG UNIQUE (0x0002)

#define WFS_PIN_SECUREKEY IRREG_SHIFT

#define WFS PIN SECUREKEY IRREG UNIQUE

/* XFS PIN Errors */

#define WFS ERR_PIN KEYNOTFOUND
#define WFS_ERR_PTN MODENOTSUPPORTED
#define WFS_ERR PIN ACCESSDENIED
#define WFS_ERR_PIN_ INVALIDID
#define WFS_ERR_PIN DUPLICATEKEY
#define WFS_ERR_PIN KEYNOVALUE
#define WFS _ERR_PIN USEVIOLATION
#define WFS_ERR_PIN NOPIN

#define WFS ERR_PIN INVALIDKEYLENGTH
#define WFS_ERR_PIN KEYINVALID
#define WFS_ERR PIN KEYNOTSUPPORTED
#define WFS_ERR_PIN NOACTIVEKEYS
#define WFS ERR_PIN NOTERMINATEKEYS
#define WFS_ERR_PTN MINIMUMLENGTH
#define WFS_ERR PIN PROTOCOLNOTSUPP
#define WFS_ERR_PIN_ INVALTDDATA
#define WFS_ERR PIN NOTALLOWED
#define WFS_ERR PIN NOKEYRAM

#define WFS_ERR_PTN NOCHTPTRANSACTIVE
#define WFS ERR_PIN ALGORITHMNOTSUPP
#define WFS_ERR_PIN FORMATNOTSUPP
#define WFS ERR PIN HSMSTATEINVALID
#define WFS_ERR_PIN MACINVALID
#define WFS ERR PIN PROTINVALID
#define WFS_ERR_PTIN FORMATINVALID
#define WFS ERR PIN CONTENTINVALID
#define WFS_ERR_PIN SIG NOT SUPP
#define WFS ERR PIN INVALID MOD LEN
#define WFS_ERR_PIN INVALIDCERTSTATE

#define WFS ERR PIN KEY GENERATION ERROR

#define WFS_ERR_PIN EMV_VERIFY FATLED
#define WFS ERR PIN RANDOMINVALID
#define WFS_ERR_PIN STGNATUREINVALID
#define WFS ERR PIN SNSCDINVALID
#define WFS_ERR_PTN NORSAKEYPATR
#define WFS ERR PIN INVALID PORT
#define WFS_ERR_PIN POWERSAVETOOSHORT

typedef struct wfs hex data
USHORT usLength;
LPBYTE lpbData;
} WEFSXDATA, *LPWFSXDATA;

typedef struct wfs pin status

(0x0004)
(0x0008)

(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET
(- (PIN_SERVICE_OFFSET
(- (PIN_SERVICE OFFSET

B S T S S S T T T T T i S e T S S S S S S S SR T S S

Page 131
CWA 15748-6:2008

WORD fwDevice;

WORD fwEncStat;

LPSTR lpszExtra;

DWORD deuidLights[WFS_PIN_GUIDLIGHTS_SIZE];
WORD fwAutoBeepMode;

DWORD dwCertificateState;

WORD wDevicePosition;

USHORT usPowerSaveRecoveryTime;

} WFSPINSTATUS, *LPWFSPINSTATUS;
typedef struct wfs pin caps

WORD wClass;
WORD fwType;

Page 132
CWA 15748-6:2008

BOOL bCompound ;

USHORT usKeyNum;

WORD fwAlgorithms;

WORD fwPinFormats;

WORD fwDerivationAlgorithms;
WORD fwPresentationAlgorithms;
WORD fwDisplay;

BOOL bIDConnect;

WORD fwIDKey;

WORD fwvalidationAlgorithms;
WORD fwKeyCheckModes;

LPSTR lpszExtra;

DWORD dwGuidLights [WFS_PIN GUIDLIGHTS SIZE];
BOOL bPINCanPersistAfterUse;
WORD fwAutoBeep;

LPSTR lpsHSMVendor;

BOOL bHSMJournaling;

DWORD dwRSAAuthenticationScheme;
DWORD dwRSASignatureAlgorithm;
DWORD dwRSACryptAlgorithm;
DWORD dwRSAKeyCheckMode;

DWORD dwSignatureScheme;

LPWORD lpwEMVImportSchemes;

WORD fwEMVHashAlgorithm;

BOOL bKeyImportThroughParts;
WORD fwENCIOProtocols;

BOOL bTypeCombined;

BOOL bSetPinblockDataRequired;
WORD fwKeyBlockImportFormats;
BOOL bPowerSaveControl;

} WFSPINCAPS, *LPWFSPINCAPS;

typedef struct wfs pin key detail

LPSTR lpsKeyName;

WORD fwUse;

BOOL bLoaded;
LPWFSXDATA lpxKeyBlockHeader;

} WFSPINKEYDETAIL, *LPWFSPINKEYDETAIL;

typedef struct wfs pin fdk

ULONG ulFDK;
USHORT usXPosition;
USHORT usYPosition;

} WFSPINFDK, *LPWFSPINFDK;

typedef struct wfs pin func key detail

ULONG ulFuncMask;
USHORT usNumberFDKs ;
LPWFSPINFDK *1ppFDKs;

} WFSPINFUNCKEYDETAIL, *LPWFSPINFUNCKEYDETAIL;

typedef struct wfs pin key detail ex

LPSTR lpsKeyName;

DWORD dwUse;

BYTE bGeneration;

BYTE bVersion;

BYTE bActivatingDate [4] ;
BYTE bExpiryDate[4];
BOOL bLoaded;
LPWFSXDATA lpxKeyBlockHeader;

} WFSPINKEYDETAILEX, *LPWFSPINKEYDETAILEX;

/* WFS_INF_PIN SECUREKEY DETAIL command key layout output structure
typedef struct wfs pin hex keys

USHORT usXPos;

*/

USHORT
USHORT
USHORT
ULONG
ULONG

usYPos;
usXSize;
usYSize;
ulFK;
ulShiftFK;

} WFSPINHEXKEYS, *LPWFSPINHEXKEYS;

Page 133
CWA 15748-6:2008

/* WFS_INF_PIN SECUREKEY DETAIL command output structure */
typedef struct _wfs_pin secure key detail
{

WORD fwKeyEntryMode;

LPWFSPINFUNCKEYDETAIL 1lpFuncKeyDetail;

ULONG ulClearFDK;

ULONG ulCancelFDK;

ULONG ulBackspaceFDK;

ULONG ulEnterFDK;

WORD wColumns;

WORD wRowsS ;

LPWFSPINHEXKEYS *]ppHexKeys ;
} WFSPINSECUREKEYDETAIL, *LPWFSPINSECUREKEYDETAIL;
/*===*/
/* PIN Execute Command Structures */
/*===*/

typedef struct wfs pin crypt

WORD

LPSTR
LPWFSXDATA
WORD

LPSTR
LPWFSXDATA
BYTE

BYTE
LPWFSXDATA

wMode ;

lpsKey;
lpxKeyEncKey;
wAlgorithm;
lpsStartValueKey;
lpxStartValue;
bPadding;
bCompression;
lpxCryptData;

} WEFSPINCRYPT, *LPWFSPINCRYPT;

typedef struct wfs pin import

{

LPSTR
LPSTR
LPWFSXDATA
LPWFSXDATA
WORD

lpsKey;
lpsEncKey;
lpxIdent;
lpxValue;
fwUse;

} WFSPINIMPORT, *LPWFSPINIMPORT;

typedef struct wfs pin derive

WORD

LPSTR
LPSTR
LPSTR
LPWFSXDATA
BYTE
LPWFSXDATA
LPWFSXDATA

wDerivationAlgorithm;
lpsKey;

lpsKeyGenKey;
lpsStartValueKey;
lpxStartValue;
bPadding;
lpxInputData;
lpxIdent;

} WFSPINDERIVE, *LPWFSPINDERIVE;

typedef struct wfs pin getpin

USHORT
USHORT
BOOL
CHAR
ULONG
ULONG
ULONG
ULONG

usMinLen;
usMaxLen;
bAutoEnd;

cEcho;
ulActiveFDKs;
ulActiveKeys;
ulTerminateFDKs;
ulTerminateKeys;

Page 134
CWA 15748-6:2008

} WFSPINGETPIN, *LPWFSPINGETPIN;

typedef struct wfs pin entry

{

USHORT usDigits;
WORD wCompletion;
} WEFSPINENTRY, *LPWFSPINENTRY;

typedef struct _wfs pin local des

{

LPSTR lpsValidationData;
LPSTR lpsOffset;

BYTE bPadding;

USHORT usMaxPIN;

USHORT usValDigits;

BOOL bNoLeadingZero;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WFSPINLOCALDES, *LPWFSPINLOCALDES;

typedef struct wfs pin create offset

LPSTR lpsValidationData;
BYTE bPadding;

USHORT usMaxPIN;

USHORT usValDigits;

LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WFSPINCREATEOFFSET, *LPWFSPINCREATEOFFSET;

typedef struct wfs pin local eurocheque

LPSTR lpsEurochequeData;
LPSTR lpsPVV;

WORD wFirstEncDigits;
WORD wFirstEncOffset;
WORD wPVVDigits;

WORD wPVVOffset;

LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;

} WFSPINLOCALEUROCHEQUE, *LPWFSPINLOCALEUROCHEQUE;

typedef struct wfs pin local visa

{

LPSTR lpsPAN;
LPSTR lpsPVV;

WORD wPVVDigits;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;

} WFSPINLOCALVISA, *LPWFSPINLOCALVISA;

typedef struct wfs pin presentidc

WORD wPresentAlgorithm;
WORD wChipProtocol;
ULONG ulChipDatalLength;
LPBYTE lpbChipData;
LPVOID lpAlgorithmData;

} WFSPINPRESENTIDC, *LPWFSPINPRESENTIDC;

typedef struct _wfs_pin present_result

WORD wChipProtocol;
ULONG ulChipDatalLength;
LPBYTE lpbChipData;

} WFSPINPRESENTRESULT, *LPWFSPINPRESENTRESULT;

typedef struct wfs pin presentclear
ULONG ulPINPointer;
USHORT usPINOffset;

} WFSPINPRESENTCLEAR, *LPWFSPINPRESENTCLEAR;

typedef struct _wfs pin block

LPSTR lpsCustomerData;
LPSTR lpsXORData;

BYTE bPadding;

WORD wFormat ;

LPSTR lpsKey;

LPSTR lpsKeyEncKey;

} WFSPINBLOCK, *LPWFSPINBLOCK;

typedef struct wfs pin getdata

USHORT usMaxLen;

BOOL bAutoEnd;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;

} WFSPINGETDATA, *LPWFSPINGETDATA;
typedef struct wfs pin key
WORD wCompletion;
ULONG ulDigit;
} WFSPINKEY, *LPWFSPINKEY;

typedef struct wfs pin data

USHORT usKeys;
LPWFSPINKEY *1pPinKeys;
WORD wCompletion;

} WFSPINDATA, *LPWFSPINDATA;

typedef struct wfs pin init

{

LPWFSXDATA lpxIdent;
LPWFSXDATA lpxKey;

} WEFSPININIT, *LPWFSPININIT;

typedef struct wfs pin local banksys

{
LPWFSXDATA 1pxATMVAC;
} WFSPINLOCALBANKSYS, *LPWFSPINLOCALBANKSYS;

typedef struct wfs pin banksys io
ULONG ulLength;
LPBYTE lpbData;

} WFSPINBANKSYSIO, *LPWFSPINBANKSYSIO;

typedef struct wfs pin secure message

WORD wProtocol;
ULONG ulLength;
LPBYTE lpbMsg;

} WFSPINSECMSG, *LPWFSPINSECMSG;

typedef struct wfs pin import key ex

LPSTR lpsKey;

LPSTR lpsEncKey;
LPWFSXDATA lpxValue;
LPWFSXDATA lpxControlVector;

DWORD dwUse;

Page 135
CWA 15748-6:2008

Page 136
CWA 15748-6:2008

WORD wKeyCheckMode ;
LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTKEYEX, *LPWFSPINIMPORTKEYEX;

typedef struct _wfs pin enc_io

WORD wProtocol;
ULONG ulDatalLength;
LPVOID lpvData;

} WFSPINENCIO, *LPWFSPINENCIO;

/* WFS_CMD_PIN SECUREKEY ENTRY command input structure */
typedef struct wfs pin secure key entry

USHORT usKeyLen;

BOOL bAutoEnd;

ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
WORD wVerificationType;

} WFSPINSECUREKEYENTRY, *LPWFSPINSECUREKEYENTRY;

/* WFS_CMD_ PIN SECUREKEY ENTRY command output structure */
typedef struct wfs pin secure key entry out

USHORT usDigits;
WORD wCompletion;
LPWFSXDATA 1pxKCV;

} WFSPINSECUREKEYENTRYOUT, *LPWFSPINSECUREKEYENTRYOUT;

/* WFS_CDM_PIN IMPORT KEYBLOCK command input structure */
typedef struct wfs pin import key block

LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxKeyBlock;

} WFSPINIMPORTKEYBLOCK, *LPWFSPINIMPORTKEYBLOCK;

typedef struct wfs pin import rsa public key

{

LPSTR lpsKey;

LPWFSXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WFSPINIMPORTRSAPUBLICKEY, *LPWFSPINIMPORTRSAPUBLICKEY;
typedef struct wfs pin import rsa public key output
DWORD dwRSAKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAPUBLICKEYOUTPUT, *LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;
typedef struct wfs pin export rsa issuer signed item
WORD wExportItemType;
LPSTR lpsName;
} WFSPINEXPORTRSAISSUERSIGNEDITEM, *LPWFSPINEXPORTRSAISSUERSIGNEDITEM;

typedef struct wfs pin export rsa issuer signed item output

LPWFSXDATA lpxValue;
DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT, *LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

typedef struct wfs pin import rsa signed des key

Page 137
CWA 15748-6:2008

LPSTR lpsKey;

LPSTR lpsDecryptKey;

DWORD dwRSAEncipherAlgorithm;
LPWFSXDATA lpxValue;

DWORD dwUse;

LPSTR lpsSigKey;

DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

} WFSPINIMPORTRSASIGNEDDESKEY, *LPWFSPINIMPORTRSASIGNEDDESKEY ;

typedef struct wfs pin import rsa signed des key output

WORD wKeyLength;
WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;

} WFSPINIMPORTRSASIGNEDDESKEYOUTPUT, *LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

typedef struct wfs pin generate rsa key

LPSTR lpsKey;
DWORD dwUse;
WORD wModulusLength;
WORD wExponentValue;

} WFSPINGENERATERSAKEYPAIR, *LPWFSPINGENERATERSAKEYPAIR;

typedef struct wfs pin export rsa epp signed item

WORD wExportItemType;
LPSTR lpsName;

LPSTR lpsSigKey;

DWORD dwSignatureAlgorithm;

} WFSPINEXPORTRSAEPPSIGNEDITEM, *LPWFSPINEXPORTRSAEPPSIGNEDITEM;

typedef struct wfs pin export rsa epp signed item output

{

LPWFSXDATA lpxValue;
LPWFSXDATA lpxSelfSignature;
LPWFSXDATA lpxSignature;

} WFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT, *LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;
typedef struct wfs pin load certificate

LPWFSXDATA lpxLoadCertificate;
} WEFSPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE;

typedef struct wfs pin load certificate output

LPWFSXDATA lpxCertificateData;
} WEFSPINLOADCERTIFICATEOUTPUT, *LPWFSPINLOADCERTIFICATEOUTPUT;

typedef struct wfs pin get certificate

WORD wGetCertificate;
} WEFSPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

typedef struct wfs pin get certificate output

LPWFSXDATA lpxCertificate;
} WEFSPINGETCERTIFICATEOUTPUT, *LPWFSPINGETCERTIFICATEOUTPUT;

typedef struct wfs pin replace certificate

LPWFSXDATA lpxReplaceCertificate;
} WFSPINREPLACECERTIFICATE, *LPWFSPINREPLACECERTIFICATE;

typedef struct wfs pin replace certificate output

LPWFSXDATA lpxNewCertificateData;
} WFSPINREPLACECERTIFICATEOUTPUT, *LPWFSPINREPLACECERTIFICATEOUTPUT;

Page 138
CWA 15748-6:2008

typedef struct _wfs pin start key exchange

LPWFSXDATA lpxRandomItem;
} WFSPINSTARTKEYEXCHANGE, *LPWFSPINSTARTKEYEXCHANGE ;

typedef struct wfs pin import rsa enciphered pkcs7 key

LPWFSXDATA lpxImportRSAKeyIn;
LPSTR lpsKey;
DWORD dwUse;

} WESPINIMPORTRSAENCIPHEREDPKCS7KEY, *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY ;
typedef struct wfs pin import rsa enciphered pkcs7 key output
WORD wKeyLength;
LPWFSXDATA lpxRSAData;
}WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT, *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT;

typedef struct wfs pin emv_import public key

LPSTR lpsKey;

DWORD dwUse;

WORD wImportScheme;
LPWFSXDATA lpxImportData;
LPSTR lpsSigKey;

} WEFSPINEMVIMPORTPUBLICKEY, *LPWFSPINEMVIMPORTPUBLICKEY;
typedef struct wfs pin emv import public key output

LPSTR lpsExpiryDate;
} WFSPINEMVIMPORTPUBLICKEYOUTPUT, *LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

typedef struct wfs pin digest
WORD wHashAlgorithm;
LPWFSXDATA lpxDigestInput;
} WFSPINDIGEST, *LPWFSPINDIGEST;

typedef struct wfs pin digest output

LPWFSXDATA lpxDigestOutput;
} WFSPINDIGESTOUTPUT, *LPWFSPINDIGESTOUTPUT;

typedef struct wfs pin hsm init
WORD wInitMode;
LPWFSXDATA lpxOnlineTime;
} WFSPINHSMINIT, *LPWFSPINHSMINIT;
typedef struct wfs pin generate KCV
LPSTR lpsKey;
WORD wKeyCheckMode;
} WFSPINGENERATEKCV, *LPWFSPINGENERATEKCV;

typedef struct wfs pin kcv

LPWFSXDATA 1pxKCV;
} WFSPINKCV, *LPWFSPINKCV;

typedef struct wfs pin set guidlight
WORD wGuidLight;
DWORD dwCommand ;
} WEFSPINSETGUIDLIGHT, *LPWFSPINSETGUIDLIGHT;

typedef struct _wfs_pin maintain pin

BOOL bMaintainPIN;
} WEFSPINMAINTAINPIN, *LPWFSPINMAINTAINPIN;

typedef struct _wfs pin hsm_info
WORD wHSMSerialNumber;
LPSTR lpsZKAID;

} WFSPINHSMINFO, *LPWFSPINHSMINFO;

typedef struct _wfs pin hsm detail
WORD wActiveLogicalHSM;

LPWFSPINHSMINFO *1ppHSMInfo;
} WFSPINHSMDETAIL, *LPWFSPINHSMDETAIL;

typedef struct wfs pin hsm identifier

WORD wHSMSerialNumber;
} WEFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;

typedef struct wfs pin power save control

USHORT usMaxPowerSaveRecoveryTime;
} WFSPINPOWERSAVECONTROL, *LPWFSPINPOWERSAVECONTROL;

typedef struct wfs pin access
LPSTR lpsKeyName;
LONG 1ErrorCode;
} WFSPINACCESS, *LPWFSPINACCESS;

typedef struct wfs pin device position

WORD wPosition;
} WEFSPINDEVICEPOSITION, *LPWFSPINDEVICEPOSITION;

typedef struct wfs pin power save change

{
USHORT usPowerSaveRecoveryTime;
} WFSPINPOWERSAVECHANGE, *LPWFSPINPOWERSAVECHANGE;

/* restore alignment */
#pragma pack (pop)

#ifdef cplusplus
} /*extern "C"*/

#endif

#endif /* _ INC XFSPIN H */

Page 139
CWA 15748-6:2008

Page 140
CWA 15748-6:2008

8. Appendix-A

This section provides extended explanation of concepts and functionality needing further clarification. The
terminology as described below is used within the following sections.

Definitions and Abbreviations

ATM Automated Teller Machine, used here for any type of self-service terminal,
regardless whether it actually dispenses cash

CA Certificate Authority

Certificate A data structure that contains a public key and a name that allows certification of a
public key belonging to a specific individual. This is certified using digital
signatures.

Host The remote system that an ATM communicates with.

KTK Key Transport Key

PKI Public Key Infrastructure

Private Key That key of an entity’s key pair that should only be used by that entity.

Public Key That key of an entity’s key pair that can be made public.

Symmetric Key A key used with symmetric cryptography

Verification Key A key that is used to verify the validity of a certificate

Signaturelssuer An entity that signs the ATM’s public key at production time, may be the ATM

manufacturer

Notation of Cryptographic Items and Functions

SKg The private key belonging to entity E

PKg The public belonging to entity E

SKatm The private key belonging to the ATM/PIN

PK1m The public key belonging to the ATM/PIN

SKnost The private key belonging to the Host

PKyost The public key belonging to the Host

SKg; The private key belonging to Signature Issuer

PKg The public key belonging to Signature Issuer

SKroor The root private key belonging to the Host

PKroor The root public key belonging to the Host

KnaME A symmetric key

Certyost A Certificate that contains the public verification of the host and is signed by a
trusted Certificate Authority.

Certyrm A Certificate that contains the ATM/PINpublic verification or encipherment key,
which is signed by a trusted Certificate Authority.

Certca The Certificate of a new Certificate Authority

Rarm Random Number of the ATM/PIN

Thost Identifier of the Host

Kkrk Key Transport Key

Ryost Random number of the Host

Tatm Identifier of the ATM/PIN

TParm Thumb Print of the ATM/PIN

Sign(SKg)[D] The signing of data block D, using the private key SKg

Recover(PKg)[S] The recovery of the data block D from the signature S, using the private key PKg

RSACrypt(PKg)[D] | RSA Encryption of the data block D using the public key PKg

Hash [M] Hashing of a message M of arbitrary length to a 20 Byte hash value

Des(K) [D] DES encipherment of an 8 byte data block D using the secret key K

Des” (K)[D] DES decipherment of an 8 byte data block D using the 8 byte secret key K

Des3(K)[D] Triple DES encipherment of an 8 byte data block D using the 16 byte secret key K =

(K || Kg), equivalent to Des(Ky) [Des(Kg) [Des(Ky) [D] 1]

Des3™ (K) [D]

Triple DES decipherment of an 8 byte data block D using the 16 byte secret key K =
(K. || Kg), equivalent to Des™ (K;) [Des (Kg) [Des” (K;) [D] 1]

RndE

A random number created by entity E

Ul

Unique Identifier for entity E

(A]B)

Concatenation of A and B

Page 141
CWA 15748-6:2008

8.1 Remote Key Loading Using Signatures

8.1.1 RSA Data Authentication and Digital Signatures

Digital signatures rely on a public key infrastructure (PKI). The PKI model involves an entity, such as a Host,
having a pair of encryption keys — one private, one public. These keys work in consort to encrypt, decrypt and
authenticate data. One way authentication occurs is through the application of a digital signature. For example:

1. The Host creates some data that it would like to digitally sign;

2. Host runs the data through a hashing algorithm to produce a hash or digest of the data. The digest is unique
to every block of data — a digital fingerprint of the data, much smaller and therefore more economical to
encrypt than the data itself.

3. Digest is encrypted with the Host’s private key.

This is the digital signature — a data block digest encrypted with the private key. The Host then sends the following
to the ATM:

1. Data block.
2. Digital signature.
3. Host’s public key.
To validate the signature, the ATM performs the following:

1. ATM runs data through the standard hashing algorithm — the same one used by the Host — to produce a
digest of the data received. Consider this digest,;

2. ATM uses the Host’s public key to decrypt the digital signature. The digital signature was produced using
the Host’s private key to encrypt the data digest; therefore, when decrypted with the Host’s public key it
produces the same digest. Consider this digest;. Incidentally, no other public key in the world would work
to decrypt digest; — only the public key corresponding to the signing private key.

3. ATM compares digest; with digest,.
If digest, matches digest, exactly, the ATM has confirmed the following:

e Data was not tampered with in transit. Changing a single bit in the data sent from the Host to the ATM
would cause digest, to be different than digest;. Every data block has a unique digest; therefore, an altered
data block is detected by the ATM.

e Public key used to decrypt the digital signature corresponds to the private key used to create it. No other
public key could possibly work to decrypt the digital signature, so the ATM was not handed someone
else’s public key.

This gives an overview of how Digital Signatures can be used in Data Authentication. In particular, Signatures can
be used to validate and securely install Encryption Keys. The following section describes Key Exchange and the
use of Digital signatures.

Page 142
CWA 15748-6:2008

8.1.2 RSA Secure Key Exchange using Digital Signatures

In summary, both end points, the ATM and the Host, inform each other of their Public Keys. This information is
then used to securely send the PIN device Master Key to the ATM. A trusted third party, the Signature Issuer, is
used to generate the signatures for the Public keys of each end point, ensuring their validity.

The detail of this is as follows:-
Purpose: The Host wishes to install a new master key (Ky;) on the ATM securely.

1. Assumptions:
The Host has obtained the Public Key (PKg) from the Signature Issuer.

2. The Host has provided the Signature Issuer with its Public Key (PKyost), and receives the corresponding
signature Sign(SKg))[PKyosr]. The signature Issuer uses its own Private Key (SKg)) to create this
signature.

3. Inthe case where Enhanced Remote Key Loading is used, the host has provided the Signature Issuer with
its Public Key (PKroor), and receives the corresponding signature Sign (SKg;)[PKroor]. The host has
generated another key pair PKyost and SKyogt and signs the PKyosr with the SKgoor.

4. (Optional) The host obtains a list of the valid PIN device’s Unique Identifiers. The Signature Issuer installs
a Signature Sign(SKg;)[Ulstm] for the Unique Id (Ulsmy) on the ATM PIN. The Signature Issuer uses
SKg; to do this.

5. The Signature Issuer installs its Public Key (PKg;) on the ATM PIN. It also derives and installs the
Signature Sign(SKg;)[PKarm] of the ATM PIN’s Public Key (PKaryv) on the ATM PIN. The Signature
Issuer uses SKg; to do this.

6. The ATM PIN device additionally contains its own Public (PKtv) and Private Key (SKatm).

Step 1
The ATM PIN sends its Public Key to the Host in a secure structure:

The ATM PIN sends its ATM Public Key with its associated Signature. When the Host receives this information it
will use the Signature Issuer’s Public Key to validate the signature and obtain the ATM Public Key.

The XFS command used to export the PIN public key securely as described above is
WFS_CMD_PIN_EXPORT RSA ISSUER SIGNED ITEM.

Step 2 (Optional
The Host verifies that the key it has just received is from a valid sender.

It does this by obtaining the PIN device unique identifier. The ATM PIN sends its Unique Identifier with its
associated Signature. When the Host receives this information it will use the Signature Issuer’s Public Key to
validate the signature and retrieve the PIN Unique Identifier. It can then check this against the list it received from
the Signature Issuer.

The XFS command used to export the PIN Unique Identifier is
WFS CMD PIN _EXPORT RSA ISSUER SIGNED ITEM.

Step 3 (Enhanced Remote Key Loading only)
The Host sends its root public key to the ATM PIN:

The Host sends its Root Public Key (PKroor) and associated Signature. The ATM PIN verifies the signature using
PKg; and stores the key.

The XFS command used to import the host root public key securely as described above is
WFS_CMD_PIN IMPORT RSA PUBLIC KEY.

Step 4
The Host sends its public key to the ATM PIN:

The Host sends its Public Key (PKyosr) and associated Signature. The ATM PIN verifies the signature using PKg,
(or PKroor in the Enhanced Remote Key Loading Scheme) and stores the key.

The XFS command used to import the host public key securely as described above is
WFS_CMD_PIN_IMPORT RSA PUBLIC KEY.

Step 5
The ATM PIN receives its Master Key from the Host:

Page 143
CWA 15748-6:2008

The Host encrypts the Master Key (Ky) with PK,1v. A signature for this is then created using SKyjosr. The ATM
PIN will then validate the signature using PKyosr and then obtain the master key by decrypting using SK ory.

The XFS commands used to exchange master symmetric keys as described above are:
e WFS CMD _PIN START KEY EXCHANGE
e WFS CMD_PIN IMPORT_RSA SIGNED DES KEY

Step 6 — Alternative including random number
The host requests the ATM PIN to begin the DES key transfer process and generate a random number.

The Host encrypts the Master Key (Ky) with PKarv. A signature for the random number and encrypted key is then
created using SKyosr-

The ATM PIN will then validate the signature using PKyogsr, verify the random number and then obtain the master
key by decrypting using SKaty.

The XFS commands used to exchange master symmetric keys as described above are:
e WFS CMD _PIN START KEY EXCHANGE
e WFS CMD_PIN IMPORT_RSA SIGNED DES KEY

The following diagrams summaries the key exchange process described above:

Page 144
CWA 15748-6:2008

8.1.3 Initialization Phase — Signature Issuer and ATM PIN

This would typically occur in a secure manufacturing environment.

Signature
Issuer

P KATM

<
<

UTarm

PKs:

Sian(SKe) [PKatm]

Sign(SKs1)[UIamm]

VvVVY

PIN

PKam

PKst
Sign(SKsp)[PKatm]
SKatm

UTarm
Sign(SKs;)[UIarm]

Page 145
CWA 15748-6:2008

8.1.4 Initialization Phase — Signature Issuer and Host

This would typically occur in a secure offline environment.

_ Host
Signature | st
Issuer
PKSI >
Sign(SKsp)[PKhost] PKnost

> PKs:

Sign(SKs1)[PKhost]
SKhost

Page 146
CWA 15748-6:2008

8.1.5 Key Exchange — Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key in a typical ATM
Network. The following is the recommended sequence of interchanges.

Host _ PIN
PKarm|Sign(SKsp)[PKam]
Host validates 4

signature with PKg;

PKatm Obtained

Optionally send PIN
Unique Identifier

Host validates UIarm| [Sign(SKsp)[UIarm]

signature with PKg;

Ul,rm Obtained &
verified against
list

PIN validates
signature with PKg;

PKost|1Sign(SKsp) [PKhost] .

>

PKost obtained

Encrypt Kv with
PKarm and generate

Signature for result RSACrypt(PKarm)[Km]|1Sign(SKhost)[PIN validates
using SKhost. RSACrypt(PKarm)[Km]1] signature with
PKnost, and obtains

> Km by decrypting
with SKATM

KM obtained

Page 147
CWA 15748-6:2008

8.1.6 Key Exchange (with random number) — Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key when the PIN device and
Service Provider supports the WFS CMD_PIN START KEY EXCHANGE command.

H PIN
ost 4 PKam| | Sign(SKs;)[PKatm]
Host validates
signature with PKs;
PKATM obtained
H.OSt validat.es UL [Sign(SKsi)[UTam] Optionally send PIN
signature with PKs; 4 Unique Identifier
Ulxrm obtained &
verified against
list
PKhost| 1Sign(SKsp) [PKhost] PIN validates
> signature with PKs;
PKpost obtained
annssor;qlgl??rtlsl;er Request Rarm PIN generates
Ratm > random number,
Ratm, and starts key
Ratm exchange
Encrypt Kv with
PKatm and generate
?L%”ZE”&?SELE?;&“ Ry | [RSACrYDPE(PKarm)[Ku] PIN validates
using SKosr. | ISign(SKhost)[Ratm | IRSACrypt(PKarm signature with
)[Km]] PKost, validates

Ratm @and obtains Ky

> by decrypting with
SKatm

Kum obtained

Page 148
CWA 15748-6:2008

8.1.7 Enhanced RKL, Key Exchange (with random number) — Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key when the PIN device and
Service Provider supports the Enhanced Signature Remote Key Loading scheme.

Host PIN

Host validates
signature with PKg; 4
:-PKatm obtained

PKatm| 1Sign(SKsp)[PKatm]

Host validates ;
signature with PKs; 4 Ularu| [Sign(SKsi)[Ulamu] Op_tionally se_n_d PIN
:-UIatm Obtained Unique Identifier
& verified
against list

° PKroot| |Sign(SKs1)[PKroor] PIN validates
Host sends root > signature with PKs;
public key PKrooT :‘blzK_ROOgl

obtaine
PKhost| 1Sign(SKroot) [PKrosT]

Host sends PKhosT PIN validates

signature with
PKroor :- PI’<HOST
obtained

Host requests Request Rarm

random number >

Ratm PIN generates
random number,

Ratm Rarv, and starts key
< exchange

Encrypt Ky with Rarm| [RSACrypt(PKarm)[Kw]

PKarm and generate | 1Sign(SKhost)[Ratm ||RSACrypt(PKatm PIN validates

Signature for Ratm)[Km]] signature with

and encryptionresult PKuost, validates

using SKhosr. > Ratm @and obtains Ky
by decrypting with
SKatm

Kum obtained

Page 149
CWA 15748-6:2008

8.1.8 Default Keys and Security Item loaded during manufacture

Several keys and a security item which are mandatory for the 2 party/Signature authentication scheme are installed
during manufacture. These items are given fixed names so multi-vendor applications can be developed without the
need for vendor specific configuration tools.

Item Name Item Type Signed by Description
“ SiglssuerVendor” Public Key N/A The public key of the signature
issuer, i.e. PKg;
“ EPPCryptKey” Public/Private The private key The key-pair used to encrypt and
key-pair associated with decrypt the symmetric key, i.e.
_SiglssuerVendor SKatm and PK sty The public

key is used for encryption by the
host and the private for

decryption by the EPP.
In addition the following optional keys can be loaded during manufacture.
Item Name Item Type Signed by Description
“ EPPSignKey” Public/Private The private key A key-pair where the private key
key-pair associated with is used to sign data, e.g. other

_SiglssuerVendor generated key pairs.

Page 150
CWA 15748-6:2008

8.2 Remote Key Loading Using Certificates

8.2.1 Certificate Exchange and Authentication

In summary, both end points, the ATM and the Host, inform each other of their Public Keys. This information is

then used to securely send the PIN device Master Key to the ATM. A trusted third party, Certificate Authority (or a

HOST if it becomes the new CA), is used to generate the certificates for the Public Keys of each end point,

ensuring their validity. NOTE: The WFS_CMD_PIN LOAD CERTIFICATE and
WFS CMD PIN GET CERTIFICATE do not necessarily need to be called in the order below. This way though is

the recommend way.

The following flow is how the exchange authentication takes place:

WFS _CMD PIN LOAD_CERTIFICATE is called. In this message contains the host certificate, which
has been signed by the trusted CA. The encryptor uses the Public Key of the CA (loaded at the time of
production) to verify the validity of the certificate. If the certificate is valid, the encryptor stores the

HOST’s Public Verification Key.

Next, WFS_CMD PIN GET CERTIFICATE is called. The encryptor then sends a message that contains
a certificate, which is signed by the CA and is sent to the HOST. The HOST uses the Public Key from the
CA to verify the certificate. If valid then the HOST stores the encryptor’s verification or encryption key

(primary or secondary this depends on the state of the encryptor).

The following diagram shows how the Host and ATM Load and Get each others information to make Remote Key

Loading possible:
Host Certyost
The Host sends its
Certpogt to the ATM. The PIN verifies the
message. If it verifies
TPatm then it stores the key

The Host Requests
the ATM Keys.

The Host verifies the
message. If it
verifies then it
stores the key.

Request for Certarm

CertATM

and returns the
thumbprint.

The PIN sends the
keys inside of a
certificate.

8.2.2 Remote Key Exchange

Page 151

CWA 15748-6:2008

After the above has been completed, the HOST is ready to load the key into the encryptor. The following is done to
complete this and the application must complete the Remote Key Exchange in this order:

1. First, the WFS CMD PIN START KEY EXCHANGE is called. This returns Rry from the encryptor
to be used in the authenticating the WFS CMD_ PIN IMPORT RSA ENCHIPERED PKCS7 KEY
message.

2. Next, WFS_CMD PIN IMPORT RSA ENCIPHERED PKCS7 KEY is called. This command sends
down the KTK to the encryptor. The following items below show how this is accomplished.

a) HOST has obtained a Key Transport Key and wants to transfer it to the encryptor. HOST constructs a
key block containing an identifier of the HOST, Ijjost, and the key, Kxrk, and enciphers the block,
using the encryptor’s Public Encryption Key from the WFS_CMD_PIN GET CERTIFICATE

b)

d)

command.

After completing the above, the HOST generates random data and builds the outer message containing
the random number of the host, Ryjost, the random number of the encryptor returned in the

WFS _CMD PIN START KEY EXCHANGE command, Rty , the identifier of the encryptor, Ignc,
and the enciphered key block. The HOST signs the whole block using its private signature key and

sends the message down to the encryptor.

The encryptor then verifies the HOST’s signature on the message by using the HOST’s Public
Verification Key. Then the encryptor checks the identifier and the random number of the encryptor
passed in the message to make sure that the encryptor is talking to the right HOST. The encryptor then
deciphers the enciphered block using its private verification key. After the message has been
deciphered, the encryptor checks the Identifier of the HOST. Finally, if everything checks out to this
point the encryptor will load the Key Transport Key. NOTE: If one step of this verification occurs the

encryptor will return the proper error to the HOST.

After the Key Transport Key has been accepted, the encryptor constructs a message that contains the
random number of the host, the random number of the encryptor and the HOST identifier all signed

by the private signature key of the encyrptor. This message is sent to the host.

The HOST verifies the message sent from the encryptor by using the ATM’s public verification key.
The HOST then checks the identifier of the host and then compares the identifier in the message with
the one stored in the HOST. Then checks the random number sent in the message and to the one
stored in the HOST. The HOST finally checks the encryptor’s random number with the one received

in received in the WFS_CMD_ PIN START KEY EXCHANGE command.

The following diagram below shows how the Host and ATM transmit the Key Transport Key.

Host

The Host starts
the Key
Exchange
process.

The Host sends the
Signed Key
Transport Key
message to the
ATM.

The Host
receives the
message and
verifies the
message and

Request Ratm

RAT M

Sign(SKyost) [Ruost| IRatM| [Iatm| IRSACrYypt(PKarm) [IHost | | Kkrk1]

Sign(SKarm) [Ruost| IRatM| | IHost]

-

PIN

The PIN
generates
random number
and sends it to
the host

The PIN verifies
the messages
and if validate
stores the key.
The PIN then
sends a message
hack to the Host.

Page 152
CWA 15748-6:2008

8.2.3 Replace Certificate

After the key is been loaded into the encryptor, the following could be completed:

e (Optional) WFS CMD_PIN REPLACE CERTIFICATE. This is called by entity that would like to take
over the job of being the CA. The new CA requests a Certificate from the previous Certificate Authority.
The HOST must over-sign the message to take over the role of the CA to ensure that the encryptor accepts
the new Certificate Authority. The HOST sends the message to the encryptor. The encryptor uses the
HOST’s Public Verification Key to verify the HOST’s signature. The encryptor uses the previous CA’s
Public Verification Key to verify the signature on the new Certificate sent down in the message. If valid,
the EPP stores the new CA’s certificate and uses the new CA’s Public Verification Key as its new CA
verification key. The diagram below shows how the Host and the ATM communicate to load the new CA.

Host PIN
Sign(SKhost) [Certca]

Host wants to >

take CA duties, The PIN verifies

sends new the message, if

Certificate TParm valid the PIN

- stores the new

CA.
The PIN then
sends the

Page 153
CWA 15748-6:2008

8.2.4 Primary and Secondary Certificates

Primary and Secondary Certificates for both the Public Verification Key and Public Encipherment Key are pre-
loaded into the encryptor. Primary Certificates will be used until told otherwise by the HOST via the

WFS CMD PIN LOAD CERTIFICATE or WFS CMD PIN REPLACE CERTIFICATE commands. This
change in state will be specified in the PKCS #7 message of the WFS CMD_ PIN LOAD CERTIFICATE or
WFS CMD PIN REPLACE CERTIFICATE commands. The reason why the HOST would want to change states
is because the HOST thinks that the Primary Certificates have been compromised.

After the HOST tells the encryptor to shift to the secondary certificate state, only Secondary Certificates can be
used. The encryptor will no longer be able to go back to the Primary State and any attempts from the HOST to get
or load a Primary Certificate will return an error. When either Primary or Secondary certificates are compromised it
is up to the vendor on how the encryptor should be handled with the manufacturer.

Page 154
CWA 15748-6:2008

8.3 German ZKA GeldKarte

The PIN service is able to handle the German "Geldkarte", which is an electronic purse specified by the ZKA
(Zentraler Kreditausschuf3).

For anyone attempting to write an application that handles this type of chip card, it is essential to read and
understand the ZKA specifications see [Ref 17], [Ref 6] and [Ref 7].

8.3.1 How to use the SECURE_MSG commands

This is to describe how an application should use the WFS_ CMD_PIN SECURE MSG_SEND and
WFS CMD PIN SECURE MSG RECEIVE commands for transactions involving chipcards with a German ZKA
GeldKarte chip.

Applications must call SECURE_MSG_SEND for every command they send to the chip or to a host
system, including those commands that do not actually require secure messaging. This enables the Service
Provider to remember security-relevant data that may be needed or checked later in the transaction.

Applications must pass a complete message as input to SECURE _MSG_SEND, with all fields - including
those that will be filled by the Service Provider - being present in the correct length. All fields that are not
filled by the Service Provider must be filled with the ultimate values in order to enable MACing by the
Service Provider.

Every command SECURE_MSG_SEND that an application issues must be followed by exactly one
command SECURE_MSG _ RECEIVE that informs the Service Provider about the response from the chip
or host. If no response is received (timeout or communication failure) the application must issue a
SECURE MSG RECEIVE command with IpSecMsgln->IpbMsg = NULL to inform the Service Provider
about this fact.

If a system is restarted after a SECURE _MSG_SEND was issued to the Service Provider but before the
SECURE MSG RECEIVE was issued, the restart has the same effect as a SECURE MSG RECEIVE
command with IpSecMsgin->IpbMsg = NULL.

Between a SECURE _MSG_SEND and the corresponding SECURE MSG RECEIVE no
SECURE MSG SEND with the same IpSecMsgin->wProtocol must be issued. Other WFS CMD_PIN...
commands — including SECURE _MSG SEND / RECEIVE with different wProtocol — may be used.

Page 155
CWA 15748-6:2008

8.3.2 Protocol WFS_PIN_PROTISOAS

This protocol handles ISO8583 messages between an ATM and an authorization system (AS).

Only messages in the new ISO format, with new PAC/MAC-format using session keys and Triple-DES are
supported.

Authorization messages may be used to dispense the amount authorized in cash or to load the amount into an
electronic purse (GeldKarte).

For loading a GeldKarte the only type of authorization supported is a transaction originating from track 3 of a
German ec-card (message types 0200/0210 for authorization and 0400/0410 for reversal).

For dispensing cash, transactions originating from international cards (message types 0100/0110 and 0400/0410)
are supported as well.

The following bitmap positions are filled by the Service Provider:
e BMPI11 - Trace-Nummer
e BMP52-PAC
e BMP57 - Verschliisselungsparameter (only the challenge values RNDygs and RNDpac)
e BMP64 - MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the Service Provider and have to be filled by the application:
e Nachrichtentyp
e BMP3 - Abwicklungskennzeichen (only for GeldKarte, not for cash)
e BMP4 - Transaktionsbetrag (only for GeldKarte, not for cash)
e BMP41 - Terminal-ID
e BMP42 - Betreiber-BLZ

For additional documentation of authorization messages see [Ref. 27] — [Ref. 30].

Page 156
CWA 15748-6:2008

8.3.3 Protocol WFS_PIN_PROTISOLZ

This protocol handles ISO8583 messages between a ,,Ladeterminal" and a ,,Ladezentrale" (LZ).
Only messages in the new ISO format, with new MAC-format using session keys and Triple-DES are supported.
Both types of GeldKarte chip (type 0 = DEM, type 1 = EUR) are supported.
The following bitmap positions are filled by the Service Provider:
e BMPI11: Trace-Nummer
e BMP57: Verschliisselungsparameter (only the challenge value RNDMES)
e BMP64: MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the Service Provider and have to be filled by the application:
e Nachrichtentyp
e BMP3: Abwicklungskennzeichen
e BMP4: Transaktionsbetrag
e BMPI12: Uhrzeit
e BMPI13: Datum
e BMP25: Konditionscode
e BMP41: Terminal-ID
e BMP42: Betreiber-BLZ (caution: "Ladeentgelt" also in BMP42 is not set by the EPP)
e BMP61: Online-Zeitpunkt
e BMP62: Chipdaten
The following bitmap positions are only checked if they are available:
e BMP43: Standort
e BMP60: Kontodaten Ladeterminal

For a documentation of the Ladezentrale interface see [Ref. 31].

Page 157
CWA 15748-6:2008

8.3.4 Protocol WFS_PIN_PROTISOPS

This protocol handles ISO8583 messages between a terminal and a "Personalisierungsstelle” (PS). These messages
are about OPT.

The Service Provider creates the whole message with WFS CMD_ PIN SECURE MSG SEND, including
message type and bitmap.

For a documentation of the Personalisierungsstelle interface see [Ref. 7].

Page 158
CWA 15748-6:2008

8.3.5 Protocol WFS_PIN_PROTCHIPZKA

This protocol is intended to handle messages between the application and a GeldKarte.
Both types of GeldKarte are supported.

Both types of load transactions ("Laden vom Kartenkonto" and "Laden gegen andere Zahlungsmittel") are
supported.

See the chapter "Command Sequence" below for the actions that Service Providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the Service Provider, the
ATR (answer to reset) data from the chip is not passed to the Service Provider.

For a documentation of the chip commands used to load a GeldKarte see [Ref. 31].

Page 159
CWA 15748-6:2008

8.3.6 Protocol WFS_PIN_PROTRAWDATA

This protocol is intended for vendor-specific purposes. Generally the use of this protocol is not recommended and
should be restricted to issues that are impossible to handle otherwise.

For example a HSM that requires vendor-specific, cryptographically secured data formats for importing keys or
terminal data may use this protocol.

Application programmers should be aware that the use of this command may prevent their applications from
running on different hardware.

Page 160
CWA 15748-6:2008

8.3.7 Protocol WFS_PIN_PROTPBM

This protocol handles host messages between a terminal and a host system, as specified by PBM protocol.
For documentation of this protocol see [Ref. 8] — [Ref. 13].

Some additions are defined to the PBM protocol in order to satisfy the German ZKA 3.0 PAC/MAC standard. See
[Ref. 14].

The commands WFS_CMD_PIN SECURE_MSG_SEND and WFS_CMD_PIN_SECURE MSG RECEIVE
handle the PAC and MAC in the VARDATA ‘K’ or ‘Q’ subfield of transactions records and responses. The MAC
in the traditional MACODE field is not affected.

In order to enable the Service Provider to understand the messages, the application must provide the messages
according to the following rules:

e All alphanumeric fields must be coded in EBCDIC.

e Pre-Edit (padding and blank compression) must not be done by the application. The Service Provider will
check the MACMODE field and will perform the pre-edit according to what the MACMODE field
intends.

e In order to enable the Service Provider to find the vardata subfield ‘K’ or ‘Q’, it must be included in the
message by the application, with the indicator ‘K’ or ‘Q’ and its length set.

e Because CARDDATA (track 2) and T3DATA (track 3) fields always take part in the MAC computation
for a transaction record, these fields must be included in the message, even if they already have been sent
to the host in a previous transaction record and the CI-Option SHORTREC prevents them from being sent
again.

Page 161
CWA 15748-6:2008

8.3.8 Protocol WFS_PIN_PROTHSMLDI

With this protocol an application can request information about the personalized OPT groups.
The information returned consists of personalization record like in BMP62 of an OPT response but without MAC.
Data format:

XX XX VV - group ID and version number (BCD format)

XX - number of LDIs within the group (BCD format)

ﬁ'r.st LDI of the group

last LDI of the group
XX XX VV - group ID and version number (BCD format)

etc. for several groups

Each LDI consists of:
NN Number of the LDI
00 Alg. Code
LL Length of the following data
XX..XX data of the LDI

For each group ID the Service Provider must always return the standard LDI. LDI 01 must also be returned for
groups AF XX VV. Further LDIs can be returned optionally.

Page 162
CWA 15748-6:2008

8.3.9 Protocol WFS_PIN_PROTGENAS

This protocol provides the capability to create a PAC (encrypted Pin-Block) and to create and verify a MAC for a
proprietary message. As the Service Provider doesn’t know the message format, it cannot complete the message by
adding security relevant fields like random values, PAC and MAC, like it does for the protocol

WFS _PIN PROTISOAS. Only the application is able to place these fields into the proper locations. Using this
protocol, an application can generate the PAC and the random values in separate steps, adds them to the proprietary
send-message, and finally lets the Service Provider generate the MAC. The generated MAC can then be added to
the send-message as well.

For a received message, the application extracts the MAC and the associated random value and passes them along
with the entire message data to the Service Provider for MAC verification.

PAC generation supports Pin-Block ISO-Format 0 and 1.

Command description:
The first byte of field [pbMsg of WFSPINSECMSG contains a subcommand, which is used to qualify the type of
operation. The remaining bytes of the command data are depending on the value of the subcommand.

The following sub-commands are defined:

e GeneratePAC (Code 0x01)
Returns the encrypted Pin-Block together with generation and version values of the Master Key and the
PAC random value.

e GetMACRandom (Code 0x02)
Returns the generation and version values of the Master Key and the MAC random value.

e GenerateMAC (Code 0x03)
Returns the generated MAC for the message data passed in. Note, that the MAC is generated for exactly
the data that is presented (contents and sequence). Data, that should not go into MAC calculation must not
be passed in.

e VerifyMAC (Code 0x04)
Generates a MAC for the data passed in and compares it with the provided MAC value. MAC random
value, key generation and key version must be passed in separately.

Command/Message sequence:

Page 163

CWA 15748-6:2008

Command IpbMsg in IpbMsg in Service Provider’s

WFS_CMD_PIN _ IpbSecMsgIn IpbSecMsgOut actions

SECURE_MSG SEND Byte 0: 0x01 Byte 0: key generation Generates a session key for
(Generate PAC) Byte 1: key version PAC generation and

Byte 1: format (0 or 1)
Byte 2-9: ANF (Primary
Account Number, if
length is less than 12
digits, value must be left

Byte 2-17: PAC random
Byte 18-25: PAC value
(all values are binary
values)

finally the PAC

itself.

Determine generation and
version values of Master-
Key and return them along

padded with binary 0, with the random value.
only applicable for
format 0)

SECURE_MSG SEND Byte 0: 0x02 Byte 0: key generation Generates a session key for

(Get MAC Random)

Byte 1: key version

Byte 2-17: MAC random
(all values are binary
values)

MAC generation (see next
step below)

Determine generation and
version values of Master-
Key and return them along
with the random value

SECURE MSG SEND Byte 0: 0x03 Byte 0-7: generated MAC | Generates MAC over bytes
(Generate MAC) (binary value) 1-n of the inbound
Byte 1-n: Message to be message using the session
mac’ed (all values are key created in the previous
binary values) step.
SECURE_MSG_RECEIVE | Byte 0: 0x04 N/a Generates a session key
(Verify MAC) using the Master key
Byte 1: key generation identified by key

Byte 2: key version

Byte 3-18: MAC random
Byte 19-26: MAC

Byte 27-n: Message to be
verified (all values are
binary values)

Note: If no message has
been received, this
function must be called
by omitting Bytes 1-n

generation and version by
using the random value
passed in.

Generates a MAC for the
message data passed in and
compare the resulting
MAC with the MAC
passed in.

Returns:

The error code WFS_ERR PIN FORMATINVALID is returned when:

e The subcommand in Byte 0 of /[pbMsg for Execute Command WFS_CMD_ PIN SECURE MSG SEND
with protocol WFS_PIN_ PROTGENAS is not 01, 02 or 03.

e The subcommand in Byte 0 of [pbMsg for Execute Command

WFS CMD PIN SECURE MSG RECEIVE with protocol WFS_PIN PROTGENAS is not 04.

e The subcommand in Byte 0 of [pbMsg for Execute Command WFS _CMD PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 01 and Byte 1 is not 00 and not 01 (Pin-Block format is not
ISO-0 and ISO-1).

e The individual command data length for a subcommand is less than specified.
The error code WFS_ERR PIN HSMSTATEINVALID is returned when:

The subcommand in Byte 0 of [ppMsg for Execute Command WFS_CMD PIN SECURE MSG_SEND with
protocol WFS_PIN PROTGENAS is 03 (Generate MAC) without a preceding GetMACRandom
(WFS_CMD_PIN SECURE MSG SEND with subcommand 02).

The error code WFS_ERR PIN_ MACINVALID is returned when:

e The subcommand in Byte 0 of [pbMsg for Execute Command
WFS CMD PIN SECURE MSG RECEIVE with protocol WFS PIN PROTGENAS is 04 (Verify
MAC) and the MACs didn’t match.

The error code WFS_ERR _PIN_KEYNOTFOUND is returned when:

Page 164
CWA 15748-6:2008

e The subcommand in Byte 0 of [pbMsg for Execute Command WFS CMD PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 01 (Generate PAC) and the Service Provider doesn’t find a
master key.

e The subcommand in Byte 0 of [pbMsg for Execute Command WFS _CMD PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 02 (Get MAC Random) and the Service Provider doesn’t find a
master key.

e The subcommand in Byte 0 of /pbMsg for Execute Command
WFS_CMD PIN_SECURE MSG_RECEIVE with protocol WFS_PIN PROTGENAS is 04 (Verify
MAC) and the Service Provider doesn’t find a key for the provided key generation and key version values.

The error code WFS_ERR_PIN NOPIN is returned when:

e The subcommand in Byte 0 of /lpbMsg for Execute Command WFS CMD_ PIN SECURE MSG SEND
with protocol WFS PIN PROTGENAS is 01 (Generate PAC) and no PIN or insufficient PIN-digits have
been entered.

Page 165
CWA 15748-6:2008

8.3.10 Protocol WFS_PIN_PROTCHIPPINCHG

This protocol is intended to handle messages exchanged between the PinPad and a GeldKarte, which are all related
to the PIN change transaction.

Only Type-1-GeldKarte is supported, because the former Type-0-GeldKarte will no longer be used as it was a
dedicated Deutsche Mark electronic purse only. The Type-1-GeldKarte is used for Euro currency.

The transaction types supported are:
e PIN-Activation (,,PIN-Aktivierung*)
e PIN-Activation after Failure (,,PIN-Aktivierung nach Fehlerfall)
e PIN-Change ("PIN-Anderung")

See the command sequence section below for the actions that Service Providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the Service Provider, the
ATR (answer to reset) data from the chip is not passed to the Service Provider.

For the complete documentation of the chip commands used for PIN-Change see [Ref. 34].

Page 166
CWA 15748-6:2008

8.3.11 Protocol WFS_PIN_PROTPINCMP

This simple protocol is used to perform a comparison of two PINs entered into the Pin Pad. In order to be able to
compare the PINs, the first value must be temporary stored while the second value is entered. The user will be
prompted to enter the PIN twice. After the PIN has been entered for the first time, the PinPad needs to store the PIN
value into a temporary location. After the user has entered the PIN for the second time, the PinPad has to compare
both values.

This protocol consists of two subcommands. The first subcommand requests the PinPad to save the PIN value
entered by the WFS_ CMD_ PIN GET_ PIN command for subsequent comparison. The second subcommand forces
the PinPad to compare the PIN stored with the second value entered by the WFS CMD PIN GET_PIN command.
The status of the PIN comparison is returned in the output data.

See the command sequence section below for the actions that Service Providers take for this protocol.

Page 167
CWA 15748-6:2008

8.3.12 Protocol WFS_PIN_PROTISOPINCHG

This protocol handles ISO8583 messages between an ATM and an authorization system (AS) related to the
transactions:

e PIN-Activation (,,PIN-Aktivierung®)
e PIN-Activation after Failure (,,PIN-Aktivierung nach Fehlerfall®)
e PIN-Change ("PIN-Anderung")
The message types supported are:
e 0640 (PIN Change / PIN Activation Request)
e (0642 (Confirmation / Reversal Request for PIN Change / PIN Activation)
e (00643 (Confirmation Repeat Request for PIN Change / PIN Activation)
e 0650 (PIN Change / PIN Activation Response)
e 0652 (Confirmation / Reversal Response)
The following bitmap positions are filled by the Service Provider:
e BMP52 PAC
e BMP57 Verschliisselungsparameter (Kreming Generation, Kreming Version, RNDygand RNDpac)

e BMP62 (EF_ID, EF_INFO, Record number of PIN, Key Version of K¢,q, EF_FBZ, PAC, Random value
returned by GET CHALLENGE)

e BMP64 MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

See the command sequence section below for the actions that Service Providers take for the various messages.

For the complete documentation of the messages used for PIN-Change see [Ref. 34].

Page 168
CWA 15748-6:2008

8.3.13 Command Sequence

The following list shows the sequence of actions an application has to take for the various GeldKarte Transactions.
Please note that this is a summary and is just intended to clarify the purpose of the chipcard-related
WFS _CMD PIN ... commands. In no way it can replace the ZKA specifications mentioned above.

GET CHALLENGE

Command wProtocol lpbMsg Service Provider’s actions
WFS_CMD_PIN WFS_PIN
PROT
Preparation for
Load/Unload
SECURE MSG SEND CHIPZKA Command APDU
SELECT FILE DF BORSE
SECURE MSG RECEIVE : CHIPZKA Response APDU recognize type of chip
SECURE_MSG_SEND CHIPZKA Command APDU
READ RECORD EF ID
SECURE MSG RECEIVE | CHIPZKA record EF ID store EF ID
SECURE MSG SEND CHIPZKA Command APDU
READ RECORD EF LLOG
SECURE MSG RECEIVE ' CHIPZKA record EF LLOG
SECURE_MSG_SEND CHIPZKA Command APDU
READ_RECORD EF_BORSE
SECURE MSG RECEIVE | CHIPZKA record EF_ BORSE
SECURE MSG SEND CHIPZKA Command APDU
READ RECORD
EF BETRAG
SECURE MSG RECEIVE ' CHIPZKA record EF BETRAG
Load against other ec-Card
SECURE MSG SEND CHIPZKA for type 0 chips only
Command APDU
READ RECORD EF KEYD
SECURE MSG RECEIVE : CHIPZKA record EF KEYD
SECURE _MSG_SEND CHIPZKA for type 1 chips only
Command APDU
GET KEYINFO
SECURE MSG RECEIVE | CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RND1 from store RND1
Chip
SECURE_MSG SEND CHIPZKA Command APDU fill:
LADEN EINLEITEN -Terminal ID
with Secure Msg. -Traceno.
-RND2
-MAC
SECURE_MSG RECEIVE | CHIPZKA Response APDU store response APDU for later check of
ISOLZ message, BMP 62
SECURE_MSG SEND ISOAZ ISO8583 message 0200 Fill:
Authorization Request - Traceno. (BMP 11)
-PAC (BMP 52)
- RNDyzs + RNDpac (BMP 57)
- MAC (BMP 64)
check other security relevant fields
SECURE_MSG RECEIVE |ISOAZ ISO8583 message 0210 check MAC and other security relevant
Authorization Response fields
SECURE MSG_SEND ISOLZ ISO8583 message 0200 Fill:
Ladeanfrage - Traceno. (BMP 11)
- RNDyzs (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE_MSG RECEIVE | ISOLZ ISO8583 message 0210 check MAC and other security relevant
Ladeantwort fields, store BMP62 for later use in
LADEN command.
SECURE_MSG_SEND CHIPZKA Command APDU

Page 169
CWA 15748-6:2008

Command wProtocol | IpbMsg Service Provider’s actions
WEFS_CMD_PIN _ WEFS_PIN
PROT
SECURE MSG RECEIVE | CHIPZKA Random number RND3 from store RND3
chip
SECURE_MSG_SEND CHIPZKA Command APDU provide complete command from
LADEN with Secure Msg. BMP62 of ISOLZ response , compute
command MAC
SECURE MSG RECEIVE ' CHIPZKA Response APDU check response MAC
GET JOURNAL ISOLZ Vendor specific
GET JOURNAL ISOAZ Vendor specific
Reversal of a Load against
other ec-Card
SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BORSE
SECURE_MSG _RECEIVE : CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE _MSG RECEIVE ' CHIPZKA Random number RNDS from store RND5
chip
SECURE_MSG_SEND CHIPZKA Command APDU Fill:
LADEN EINLEITEN -Terminal ID
with Secure Msg. -Traceno.
-RND6
-Keyno. KGK; 1
-MAC
SECURE_MSG RECEIVE | CHIPZKA Response APDU store response APDU for later check of
ISOLZ message, BMP 62
SECURE _MSG SEND ISOAZ ISO8583 message 0400 Fill:
Storno - Traceno. (BMP 11)
-PAC (BMP 52)
- RNDygs + RNDpac (BMP 57)
- MAC (BMP 64)
check other security relevant fields
SECURE_MSG RECEIVE |ISOAZ ISO8583 message 0410 check MAC and other security relevant
Storno Response fields.
SECURE_MSG_SEND ISOLZ 1SO8583 message 0400 Fill:
Storno - Traceno. (BMP 11)
- RNDygs (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE_MSG RECEIVE | ISOLZ ISO8583 message 0410 check MAC and other security relevant
Storno Response fields, store BMP62 for later use in
LADEN command.
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RND7 from store RND7
chip
SECURE_MSG SEND CHIPZKA Command APDU provide complete command from
LADEN with Secure Msg. BMP62 of ISOLZ response , compute
command MAC
SECURE MSG RECEIVE | CHIPZKA Response APDU check response MAC
GET JOURNAL ISOLZ Vendor specific
GET JOURNAL ISOAZ Vendor specific
PIN Verification Type 0
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RNDO from store RNDO
chip
SECURE_MSG_SEND CHIPZKA Command APDU fill
EXTERNAL -Keyno. Kinro
AUTHENTICATE -ENCRND
SECURE MSG RECEIVE ' CHIPZKA Response APDU

Page 170
CWA 15748-6:2008

SECURE_MSG_SEND CHIPZKA Command APDU fill RND1
PUT DATA
SECURE MSG RECEIVE | CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU
READ RECORD
EF_INFO
with Secure Messaging
SECURE MSG RECEIVE : CHIPZKA record EF_INFO check MAC
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RND2 from store RND2
chip
SECURE_MSG SEND CHIPZKA Command APDU provide complete command APDU
VERIFY
SECURE MSG RECEIVE | CHIPZKA Response APDU
PIN Verification Type 1
SECURE_MSG_SEND CHIPZKA Command APDU
GET KEYINFO
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE
SECURE MSG RECEIVE | CHIPZKA Random number RNDO from store RNDO
chip
SECURE_MSG_SEND CHIPZKA Command APDU fill ENCO
MUTUAL AUTHENTICATE
SECURE MSG RECEIVE : CHIPZKA Response APDU check ENC1
SECURE_MSG_SEND CHIPZKA Command APDU provide complete command APDU
VERIFY
SECURE MSG RECEIVE ' CHIPZKA Response APDU check MAC
,Laden vom Kartenkonto*
(both types)
SECURE_MSG_SEND CHIPZKA Command APDU fill
LADEN EINLEITEN -Terminal ID
-Trace No.
SECURE MSG RECEIVE | CHIPZKA Response APDU
SECURE _MSG _SEND ISOLZ ISO8583 message 0200 fill
Ladeanfrage - Traceno. (BMP 11)
- RNDyss (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE_MSG RECEIVE | ISOLZ ISO8583 message 0210 check MAC and other security relevant
Ladeantwort fields.
SECURE_MSG_SEND CHIPZKA Command APDU
LADEN
SECURE_MSG _RECEIVE | CHIPZKA Response APDU
GET JOURNAL ISOLZ Vendor specific
Reversal of a ,,LLaden vom
Kartenkonto*
SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BORSE
SECURE_MSG_RECEIVE | CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU fill
LADEN EINLEITEN -Terminal ID
-Traceno.
SECURE_MSG_RECEIVE | CHIPZKA Response APDU
SECURE_MSG SEND ISOLZ ISO8583 message 0400 fill
Storno - Traceno. (BMP 11)
- RNDyss (BMP 57)

- MAC (BMP 64)
check other security relevant fields.

Page 171
CWA 15748-6:2008

SECURE _MSG RECEIVE | ISOLZ ISO8583 message 0410 check MAC and other security relevant
Storno Response fields
SECURE_MSG_SEND CHIPZKA Command APDU
LADEN
SECURE MSG RECEIVE | CHIPZKA Response APDU
GET JOURNAL ISOLZ Vendor specific
Unload
SECURE_MSG_SEND CHIPZKA ENTLADEN EINLEITEN fill
-Terminal ID
-Trace No.
SECURE MSG RECEIVE ' CHIPZKA Response APDU
SECURE MSG_SEND ISOLZ ISO8583 message fill
Entladeanfrage 0200 - Traceno. (BMP 11)
- RNDyzs (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE_MSG RECEIVE | ISOLZ ISO8583 message check MAC and other security relevant
Entladeantwort 0210 fields
SECURE MSG SEND CHIPZKA ENTLADEN
SECURE MSG RECEIVE : CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA ENTLADEN EINLEITEN fill
-Terminal ID
-Trace No.
SECURE MSG RECEIVE ' CHIPZKA Response APDU
SECURE MSG_SEND ISOLZ ISO8583 message fill
Entladequittung 0202 - Traceno. (BMP 11)
- RNDyzs (BMP 57)
- MAC (BMP 64)
check other security relevant fields.
SECURE_MSG RECEIVE | ISOLZ ISO8583 message check MAC and other security relevant
Entladebestitigung 0212 fields
SECURE_MSG_SEND CHIPZKA Command APDU
ENTLADEN
SECURE MSG RECEIVE ' CHIPZKA Response APDU
GET JOURNAL ISOLZ Vendor specific
Repeated Messages
(Stornowiederholung /
Entladequittungswiederhol
ung)
SECURE_MSG SEND ISOLZ ISO8583 message fill
Stornowiederholung 0401 or - Traceno. (BMP 11)
Entladequittungswiederholung | - RNDygs (BMP 57)
0203 - MAC (BMP 64)
check other security relevant fields.
SECURE_MSG RECEIVE | ISOLZ ISO8583 message check MAC and other security relevant
Stornoantwort 410 or fields
Entladebestitigung 0212
GET JOURNAL ISOLZ Vendor specific
Command wProtocol IpbMsg Service Provider’s actions
WFS_CMD_PIN _ WEFS_PIN P
ROT
Preparation for PIN
Change
SECURE_MSG_SEND CHIPPINCHG : Command APDU
READ RECORD EF 1D
SECURE MSG RECEIVE | CHIPPINCHG | Response APDU Store EF 1D
Record EF_ID Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG_SEND CHIPPINCHG : Command APDU
GET CHALLENGE

Page 172
CWA 15748-6:2008

Command wProtocol IpbMsg Service Provider’s actions
WEFS_CMD_PIN _ WEFS_PIN P
ROT

SECURE_MSG RECEIVE | CHIPPINCHG ' Random number RNDO from ' Store RNDO

Chip
SECURE_MSG _SEND CHIPPINCHG ' Command APDU Fill RND1

READ RECORD EF INFO
SECURE _MSG RECEIVE | CHIPPINCHG ' Response APDU Record Check MAC, Store EF_INO

EF_INFO Will be inserted into BMP62 of a PIN

Change request
SECURE_MSG _SEND CHIPPINCHG ;| Command APDU
GET KEYINFO
SECURE_MSG RECEIVE : CHIPPINCHG ' Response APDU Store version byte
Version of KCard Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG_SEND CHIPPINCHG ' Command APDU
SEARCH RECORD 01’ of
EF PWDD
SECURE MSG_RECEIVE : CHIPPINCHG : Response APDU Store record number
Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG_SEND CHIPPINCHG | Command APDU
READ RECORD EF FBZ
SECURE_MSG_RECEIVE | CHIPPINCHG | Response APDU
Initial value FBZ
Actual value FBZ
PIN Verification
SECURE_MSG_SEND CHIPPINCHG | Command APDU
GET KEYINFO
SECURE _MSG RECEIVE ' CHIPPINCHG ' Response APDU
SECURE_MSG_SEND CHIPPINCHG | Command APDU
GET CHALLENGE
SECURE _MSG RECEIVE | CHIPPINCHG ' Random number RNDO from | Store RNDO
chip
SECURE_MSG_SEND CHIPPINCHG | Command APDU Fill ENCO
MUTUAL
AUTHENTICATE
SECURE MSG RECEIVE : CHIPPINCHG ' Response APDU Check ENC1
SECURE_MSG_SEND CHIPPINCHG ;| Command APDU Provide complete command APDU
VERIFY
SECURE_MSG_RECEIVE | CHIPPINCHG | Response APDU Check MAC
Create PAC for old PIN
PIN Change
Let the user enter the PIN for
the first time, by invoking the
command
WES CMD PIN GET PIN
SECURE_MSG SEND HSMPINCMP | Byte 0: 0x01 Save the PIN value entered for
(Save PIN) subsequent compare. Output data
buffer length is zero.
Let the user enter the PIN for
the second time, by invoking
the command
WES CMD PIN GET PIN
SECURE MSG SEND HSMPINCMP | Byte 0: 0x02 Compare PIN values.

(Compare PINs) Returns Byte 0: as 0x00 when PIN
does not match, and 0x01 when PIN
does match.

Create PAC for new PIN if values
match
SECURE_MSG_SEND CHIPPINCHG | Command APDU
MANAGE SECURITY
ENVIRONMENT
SECURE MSG RECEIVE : CHIPPINCHG ' Response APDU
SECURE_MSG_SEND CHIPPINCHG | Command APDU

GET CHALLENGE

Page 173
CWA 15748-6:2008

Command wProtocol IpbMsg Service Provider’s actions
WEFS_CMD_PIN _ WEFS_PIN P
ROT
SECURE_MSG RECEIVE | CHIPPINCHG ' Random number RNDO from | Store RNDO
Chip Will be inserted into BMP62 of a PIN
Change request
SECURE_MSG_SEND ISOPINCHG 1SO8583 Message 0640 Fill
- PAC old PIN (BMP52)
- Krerminal generation + Krpeyninal Version
+ RNDyjgs + RNDppc (BMP57)
- Chip Data (BMP62) with PAC of
new PIN
- MAC (BMP64)
SECURE MSG RECEIVE : ISOPINCHG ISO8583 message 0650 Check MAC
SECURE_MSG _SEND CHIPPINCHG : Command APDU
from BMP62
SECURE MSG RECEIVE | CHIPPINCHG ' Response APDU
PIN Change Confirmation/
Repeated Confirmation
SECURE_MSG SEND ISOPINCHG ISO8583 Fill
message 0642 or 0643 - Kterminal generation + Krermina Version
BMP25 =00 + RNDygs (BMP57)
- Chip Data (BMP62) with PAC of
new PIN
- MAC (BMP64)
SECURE MSG RECEIVE : ISOPINCHG ISO8583 message 0652 Check MAC
PIN Change Reversal/
Repeated Reversal
SECURE_MSG SEND ISOPINCHG ISO8583 Fill
message 0642 or 0643 - Krerminal generation + Krpeyminal version
BMP25 #00 + RNDygs (BMP57)
- Chip Data (BMP62) with PAC of old
PIN
- MAC (BMP64)
SECURE MSG RECEIVE | ISOPINCHG ISO8583 message 0652 Check MAC
PIN Activation after failure
SECURE_MSG SEND ISOPINCHG ISO8583 Fill
message 0640 - PAC entered PIN (BMP52)
- Krerminal generation + Krpeyminal Version
+ RNDygs + RNDppc (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)
SECURE MSG RECEIVE : ISOPINCHG ISO8583 message 0650 Check MAC
PIN Activation
SECURE_MSG SEND CHIPPINCHG | Command APDU
MANAGE SECURITY
ENVIRONMENT
SECURE MSG RECEIVE ' CHIPPINCHG : Response APDU
SECURE_MSG SEND CHIPPINCHG | Command APDU
GET CHALLENGE
SECURE_MSG RECEIVE | CHIPPINCHG ' Random number RNDO from | Store RNDO
Chip Will be inserted into BMP62 of a PIN
Activation request
SECURE_MSG SEND ISOPINCHG 1SO8583 Message 0640 Fill
- PAC entered PIN (BMP52)
- Krerminal generation + Krpeyminal Version
+ RNDyjgs + RNDppc (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)
SECURE MSG RECEIVE | ISOPINCHG ISO8583 message 0650 Check MAC

Page 174
CWA 15748-6:2008

SECURE_MSG SEND CHIPPINCHG ;| Command APDU
from BMP62
SECURE MSG RECEIVE : CHIPPINCHG : Response APDU
PIN Activation
Confirmation/ Repeated
Confirmation
SECURE_MSG SEND CHIPPINCHG | Command APDU
MANAGE SECURITY
ENVIRONMENT
SECURE MSG RECEIVE : CHIPPINCHG : Response APDU
SECURE_MSG SEND CHIPPINCHG | Command APDU
GET CHALLENGE
SECURE _MSG RECEIVE | CHIPPINCHG ' Random number RNDO from | Store RNDO
Chip Will be inserted into BMP62 of a PIN
Activation confirmation
SECURE_MSG_SEND ISOPINCHG I1SO8583 Fill
message 0642 or 0643 - Krerminal generation + Krpeyninal version
BMP25 =00 + RNDygs (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)
SECURE MSG RECEIVE : ISOPINCHG ISO8583 message 0652 Check MAC
SECURE_MSG_SEND CHIPPINCHG : Command APDU
from BMP62
SECURE MSG RECEIVE : CHIPPINCHG Response APDU

Page 175
CWA 15748-6:2008

8.4 EMV Support

EMYV support by this specification consists in the ability of importing Certification Authority and Chip Card Public
Keys, creating the PIN Blocks for offline PIN verification and verifying static and dynamic data. This section is
used to further explain concepts and functionality that needs further clarification.

The PIN service is able to manage the EMV chip card regarding the card authentication and the RSA local PIN
verification. Two steps are mandatory in order to reach these two functions: The loading of the keys which come
from the Certification Authorities or from the card itself, and the EMV PIN block management.

The Service Provider is responsible for all key validation during the import process. The application is responsible
for management of the key lifetime and expiry after the key is successfully imported.

8.4.1 Keys loading

The final goal of an application is to retrieve the keys located on card to perform the operations of authentication or
local PIN check (RSA encrypted). These keys are provided by the card using EMV certificates and can be retrieved
using a Public Key provided by a Certification Authority. The application should first load the keys issued by the
Certification Authority. At transaction time the application will use these keys to load the keys that the application
has retrieved from the chip card.

Certification Authority keys
These keys are provided in the following formats:

e Plain text.
e Plain Text with EMV 2000 Verification Data (See [Ref. 4] under the reference section for this document).

e EPI CA (or self signed) format as specified in the Europay International, EPT CA Module Technical —
Interface specification Version 1.4 (See [Ref. 5] under the reference section for this document).

e PKCSVI1 5 encrypted (as used by GIECB in France) (See [Ref. 15] under the reference section for this
document).
EPI CA format
The following table corresponds to table 4 of the Europay International, EPI CA Module Technical — Interface
specification Version 1.4 (See [Ref. 5]) and identifies the Europay Public Key (self-certified) and the associated
data:

Field name Length Description Format

ID of Certificate Subject 5 RID for Europay Binary

Europay public key Index 1 Europay public key Index Binary

Subject public key Algorithm 1 Algorithm to be used with the Europay public | Binary

Indicator key Index, set to 0x01

Subject public key Length 1 Length of the Europay public key Modulus Binary
(equal to Nca)

Subject public key Exponent 1 Length of the Europay public key Exponent Binary

Length

Leftmost Digits of Subject public | Nca-37 Nca-37 most significant bytes of the Europay | Binary

key public key Modulus

Subject public key Remainder 37 37 least significant bytes of the Europay public | Binary
key Modulus

Subject public key Exponent 1 Exponent for Europay public key Binary

Subject public key Certificate Nca Output of signature algorithm Binary

Table 1

Page 176
CWA 15748-6:2008

The following table corresponds to table 13 of the Europay International, EPI CA Module Technical — Interface
specification Version 1.4 and identifies the Europay Public Key Hash code and associated data.

Field name Length Description Format
ID of Certificate Subject 5 RID for Europay Binary
Europay public key Index 1 Europay public key Index Binary
Subject public key Algorithm 1 Algorithm to be used with the Europay public | Binary
Indicator key Index, set to 0x01
Certification Authority public key |20 Hash-code for Europay public key Binary
Check Sum

Table 2

Table 2 corresponds to table 13 of the Europay International, EPI CA Module Technical — Interface specification
Version 1.4 (See [Ref. 5]).

Chip card keys

These keys are provided as EMV certificates which come from the chip card in a multiple layer structure (issuer
key first, then the ICC keys). Two kinds of algorithm are used with these certificates in order to retrieve the keys:
One for the issuer key and the other for the ICC keys (ICC Public Key and ICC PIN encipherment key). The
associated data with these algorithms — The PAN (Primary Account Number) and the SDA (Static Data to be
Authenticated) - come also from the chip card.

Page 177
CWA 15748-6:2008

8.4.2 PIN block management

The PIN block management is done through the command WFS CMD PIN GET PINBLOCK. A new format
WEFS PIN_ FORMEMY has been added to indicate to the PIN service that the PIN block must follow the
requirements of the EMVco, Book2 — Security & Key management Version 4.0 document The parameter
IpsCustomerData is used in this case to transfer to the PIN service the challenge number coming from the chip card.
The final encryption must be done using a RSA Public Key. Please note that the application is responsible to send
the PIN block to the chip card inside the right APDU.

Page 178
CWA 15748-6:2008

8.4.3 SHA-1 Digest

The SHA-1 Digest is a hash algorithm used by EMV in validating ICC static and dynamic data item. The SHA-1
Digest is supported through the WFS CMD PIN DIGEST command. The application will pass the data to be
hashed to the Service Provider. Once the encryptor completes the SHA-1 hash code, the Service Provider will
return the 20-byte hash value back to the application.

Page 179
CWA 15748-6:2008

8.5 French Cartes Bancaires

“Groupement des Cartes Bancaires” from France has specified a cryptographic architecture for ATM networks.
See the document [Ref. 15] for details.

The XFS command WFS CMD_PIN ENC IO with the protocol WFS PIN_ENC PROT GIECB is used for:
e ATM initialization
e Renewal of ATM master key
e Renewal of HOST master key
e Generation and loading of key transport key

Keys loaded or generated with WFS_CMD_PIN ENC IO get names like any other keys in a XFS PIN service.
WES INF PIN KEY DETAIL[EX] shows the key with this name and the name may be used with
WFS_CMD_PIN IMPORT KEY[EX] to delete a key.

8.5.1 Data Structure for WFS_CMD_PIN_ENC_IO

Data will be transferred as tag-length-value (TLV) structure, encoded according to the distinguished encoding rules
(DER) defined in [Ref. 16].

The following is a list of top level tags defined for the use with WFS PIN_ ENC PROT_GIECB. All these tags
have the APPLICATION class, therefore the Identifier Octets are (binary):

e 010n nnnn - for the primitive types

e 011n nnnn - for the constructed types

Tag Number Primitive / Identifier Contents
Constructed Octet

0 P 0x40 Protocol Version
The INTEGER value zero for this version of the
protocol

1 P 0x41 Interchange Code
An ASCII string holding one of the interchange
codes defined in [Ref. 15], e.g. “HRN-H1”

2 C 0x62 Interchange Data
The data items as defined by [Ref.15], see table
below for details

3 P 0x43 Key Name
An ASCII string holding the name for the key being
loaded or generated.

The Interchange Data (Tag 2) is constructed from data items where tag numbers of the sub-tags from 1 to 23
correspond to the data item numbers (“N° donnée”) as defined in section 3.1 of [Ref. 15]. Some of the data items
consist of data elements, for these the constructed encoding will be used. For data items with no data elements the
primitive encoding will be used.

All Tags have the CONTEXT class, therefore the Identifier Octets are (binary):
e 100n nnnn - for the primitive types

e 101n nnnn- for the constructed types

Page 180
CWA 15748-6:2008

Tag Primitive / Identifier Data Item Label
(=Data Item Constructed Octet
No)

1 C 0xAl IdKG

2 C 0xA2 KTK-encrypted

3 C 0xA3 KGp

4 C 0xA4 KDp

5 C 0xAS SnSCD

6 P 0x86 Rand

7 P 0x87 HOST authentication
8 P 0x88 KDp signature

9 P 0x89 KGp signature

10 P 0x8A KTK signature

11 P 0x8B KT-encrypted

12 P 0x8C Ksc-encrypted

13 P 0x8D PIN cryptogram

14 P 0x8E Seal

15 P 0x8F Thumbprint of KDp
16 P 0x90 Thumbprint of KGp
17 C 0xB1 IdKD

18 C 0xB2 IdKTK

19 C 0xB3 IdKT
20 C 0xB4 IdKSC
21 P 0x95 Manufacturer
22 C 0xB6 SCD type
23 C 0xB7 Firmware version

Inside the constructed data items, primitive encoding is used for the data elements, all tags having CONTEXT class
with tag numbers corresponding to the data element numbers (“N° d’élément de donnée”) as defined in section 3.1
of [Ref. 15].

Example:
The example shows the DER encoding of the input for a WFS_CMD_PIN_ENCIO command, for the interchange
“GIN-HS5”. All data except the 128 byte content of data item 7 is shown in hexadecimal (Ox omitted for the sake of

readability).
40 01 00 (tag / length / value for Protocol Version 0)
41 06 47 49 4E 2D 47 34 (tag / length / value for Interchange Code “GIN-H5")
62 81 BS (tag / length for Interchange Data)
Al 14 (tag / length for data item 1)
81 01 00 (data element 1)
82 0C 00 00 00 00 00 00O OO 00 00 00 OO0 00 (data element 2)
83 01 00 (data element 3)
A5 10 (tag / length for data item 5)
81 03 00 00 00 (data element 1)
82 09 00 00 00O OO 0O 00 00 00 0O (data element 2)
86 08 00 00 00 00 00 00 00 OO (tag / length / value for data item 6)
87 81 80 <128 bytes> (tag / length / value for data item 7)

43 05 4D 59 4B 45 59 (tag / length / value for Key Name “MYKEY”)

8.5.2 Command Sequence

Page 181
CWA 15748-6:2008

The following list shows the sequence of actions an application has to take for the various Cartes Bancaires

interchanges.

¢ GIN (ATM initialization)

Action Interchange Key Name Input Output
Code Data Items Data Items

Thumbprint supplied by host via external channel (GIN-H1)
WES_CMD_PIN_ENCIO GIN-G2 21,22,23

Host Communication (GIN-G2 / GIN-H3)
WFS_CMD_PIN_ENCIO GIN-H3 Key Name for KG 3 16
WFS_CMD_PIN_ENCIO GIN-G4 5,6,1

Host Communication (GIN-G4 / GIN-H5)
WFS_CMD_PIN_ENCIO GIN-H5 Key Name for KD 5,6,1,7
WFS_CMD_PIN_ENCIO GIN-G6 5,4,8

Host Communication (GIN-G6)
WFS_CMD_PIN_ENCIO | GIN-G7 | 15
Send thumbprint to host via external channel (GIN-G7)
e GRN (Renewal of ATM Master Key)
Action Interchange Key Name Input Output
Code Data Items Data Items

WFS_CMD_PIN_ENCIO GRN-G1 5,6,1

Host Communication (GRN-G1 / GRN-H2)
WFS_CMD_PIN_ENCIO GRN-H2 Key Name for 5,6,1,7

KD
WFS_CMD_PIN_ENCIO GRN-G3 5,4,8,17
Host Communication (GRN-G3)
WFS_CMD_PIN_ENCIO GRN-C 17
or
GRN-R

e HRN (Renewal of HOST Master Key)

The Interchange codes “GRN-C” to commit the transaction resp. “GRN-R” to roll back the transactions are an
addition to those defined in [Ref. 15].

Action

Interchange
Code

Key Name

Input
Data Items

Output
Data Items

Host Communication (HRN-H1)

WFS_CMD_PIN_ENCIO

HRN-HI

Key Name for
KG

3,9,1

Page 182
CWA 15748-6:2008

DKT (Generation and Loading of KTK)

[]
Action Interchange Key Name Input Output
Code Data Items Data Items
WFS CMD PIN ENCIO : DKT-Gl 5,6
Host Communication (DKT-G1 / DKT-H2)
Key Name for 5,6,2,10,1,17

WFS_CMD_PIN_ENCIO

DKT-H2

KTK

Page 183
CWA 15748-6:2008

8.6 Secure Key Entry

This section provides additional information to describe how encryption keys are entered securely through the
pinpad keyboard and also provides examples of possible keyboard layouts.

8.6.1 Keyboard Layout

The following sections describe what is returned within the WFS_INF PIN SECUREKEY DETAIL output
parameters to describe the physical keyboard layout. These descriptions are purely examples to help understand the
usage of the parameters they do not indicate a specific layout per Key Entry Mode.

In the following section all references to parameters relate to the output fields of the
WFS_INF _PIN SECUREKEY DETAIL command.

When fwKeyEntryMode represents a regular shaped pin pad (WFS_PIN_SECUREKEY REG UNIQUE or

WEFS PIN SECUREKEY REG SHIFT) then [ppHexKeys must contain one entry for each physical key on the
pinpad (i.e. the product of wRows by wColumns). On a regular shaped pinpad the application can choose to ignore
the position and size data and just use the wRows and wColumns parameters to define the layout. However, a
Service Provider must return the position and size data for each key.

8.6.1.1 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_UNIQUE

When fwKeyEntryMode is WFS_PIN_SECUREKEY REG _UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the IpFuncKeyDetail parameter. Any positions on the pinpad that are not used must be defined as a
WFS PIN FK UNUSED in the u/FK and ulShiftFK field of the [ppHexKeys structure.

1 2 3 Clear (A)
4 5 6 Cancel (B)
7 8 9 Enter (C)
(D) 0 (E) (F)

In the above example, where all keys are the same size and the hex digits are located as shown the lppHexKeys will
contain the entries in the array as defined in the following table.

Index wusXPos usYPos usxSize usYSize ulFK ulShiftFK

0 0 0 250 250 FK 1 FK_UNUSED
1 250 0 250 250 FK 2 FK_UNUSED
2 500 0 250 250 FK 3 FK_UNUSED
3 750 0 250 250 FK A FK UNUSED
4 0 250 250 250 FK 4 FK UNUSED
5 250 250 250 250 FK 5 FK UNUSED
6 500 250 250 250 FK 6 FK UNUSED
7 750 250 250 250 FK B FK UNUSED
8 0 500 250 250 FK 7 FK UNUSED
9 250 500 250 250 FK 8 FK_UNUSED
10 500 500 250 250 FK 9 FK_UNUSED
11 750 500 250 250 FK C FK_UNUSED
12 0 750 250 250 FK D FK_UNUSED
13 250 750 250 250 FK 0 FK_UNUSED
14 500 750 250 250 FK E FK_UNUSED
15 750 750 250 250 FK F FK UNUSED

8.6.1.2 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_SHIFT

When fwKeyEntryMode is WFS_PIN SECUREKEY REG SHIFT then the values in the array report which
physical keys are associated with the function keys 0-9, A-F, and the shift key as defined in the [pFuncKeyDetail
parameter. Other function keys as defined by the [pFuncKeyDetail parameter that can be enabled must also be
reported. Any positions on the pinpad that are not used must be defined as a WFS_PIN_FK UNUSED in the ul/FK
and ulShifiFK field of the [ppHexKeys structure. Digits 0 to 9 are accessed through the numeric keys as usual.
Digits A to F are accessed by using the shift key in combination with another function key, e.g. shift-0 (zero) is hex
digit A.

Page 184

CWA 15748-6:2008

In the above example, where all keys are the same size and the hex digits 'A' to 'F' are accessed through shift '0' to

1 (B)
4 (E)

7

SHIFT

2(0)
5 (F)
8

0(A)

3(D) Clear
6 Cancel
9 Enter

'S', then the [ppHexKeys will contain the entries in the array as defined in the following table.

|
=
o
(o]
»

O 031NN WN—O

10
11
12
13
14
15

8.6.1.3

usXPos

0

250
500
750
0

250
500
750
0

250
500
750
0

250
500
750

usYPos usxSize
0 250
0 250
0 250
0 250
250 250
250 250
250 250
250 250
500 250
500 250
500 250
500 250
750 250
750 250
750 250
750 250

usYSize
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250

ulFK
FK_1

FK 2

FK 3
FK_CLEAR
FK_4

FK_5

FK_6
FK_CANCEL
FK_7

FK_8

FK_9
FK_ENTER
FK_SHIFT
FK_0
FK_UNUSED
FK_UNUSED

fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_SHIFT

ulShiftFK
FK_B

FK_C

FK D
FK_UNUSED
FK_E

FK_F
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_A
FK_UNUSED
FK_UNUSED

When fwKeyEntryMode represents an irregular shaped pin pad the wRows and wColumns parameters define the
ratio of the width to height, i.e. square if the parameters are the same or rectangular if wColumns is larger than
wRows, etc. A Service Provider must return the position and size data for each key reported.

When fwKeyEntryMode is WFS_PIN SECUREKEY IRREG SHIFT then the values in the array must be the
function keys codes for 0-9 and the shift key as defined in the lpFuncKeyDetail parameter. Other function keys as
defined by the [pFuncKeyDetail parameter that can be enabled must also be reported. Any positions on the pinpad
that are not used must be defined as a WFS_PIN_FK UNUSED in the u/FK and u/ShiftFK field of the lppHexKeys
structure. Digits 0 to 9 are accessed through the numeric keys as usual. Digits A - F are accessed by using the shift
key in combination with another function key, e.g. shift-0(zero) is hex digit A.

In the above example, where the hex digits 'A' to 'F' are accessed through shift '0' to *5°, wColumns will be 4,

1 (B) 2(0) 3 (D) Clear
4 (E) 5(F) 6 Cancel
7 8 9 Enter
0(A)
SHIFT

wRows will be 5 and the [ppHexKeys will contain the entries in the array as defined in the following table.

Index usXPos

— = 00 IO LN kAW —O

— O

0

250
500
750
0

250
500
750
0

250
500
750

usYPos

0
0
0
0
200
200
200
200
400
400
400
400

usxSize
250
250
250
250
250
250
250
250
250
250
250
250

usYSize
200
200
200
200
200
200
200
200
200
200
200
200

ulFK
FK_1

FK 2

FK 3
FK_CLEAR
FK_4

FK_5

FK_6
FK_CANCEL
FK_7

FK_8

FK_9
FK_ENTER

ulShiftFK
FK_B

FK_C

FK_D
FK_UNUSED
FK_E

FK_F
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED

Page 185
CWA 15748-6:2008

Index usXPos usYPos usxSize usYSize ulFK ulShiftFK

12 0 600 250 200 FK_UNUSED FK_UNUSED
13 250 600 250 200 FK 0 FK A

14 500 600 250 200 FK_UNUSED FK_UNUSED
15 750 600 250 200 FK_UNUSED FK_UNUSED
16 0 800 1000 200 FK _SHIFT FK_UNUSED

8.6.1.4 fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_UNIQUE

When fwKeyEntryMode is WFS_PIN SECUREKEY REG UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the [pFuncKeyDetail parameter. The wRows and wColumns parameters define the ratio of the width to
height, i.e. square if the parameters are the same or rectangular if if wColumns is larger than wRows, etc. A Service
Provider must return the position and size data for each key.

20 70 880 930
0 60 780 920 990
I I I I I
0 R
20 —
(0) A\ E R T Y U I O P 1 2 3 Cancel
200—
220—
A S D F G H J K L 4 5 6 | |Enter
V4 X C \Y B N M . , 7 8 9 Clear
Space 0
(A |(B)] [(Of [(D) [(E) (F)

In the above example, where an alphanumeric keyboard supports secure key entry and the hex digits are located as
shown, the [ppHexKeys will contain the entries in the array as defined in the following table. All the hex digits and
function keys that can be enabled must be included in the array; in addition any keys that would help an application
display an image of the keyboard can be included. In this example only the pinpad digits (the keys on the right) and
the unique hex digits are reported. Note that the position data in this example may not be 100% accurate as the
diagram is not to scale.

Index usXPos usYPos wusxSize usYSize ulFK ulShiftFK

0 780 18 40 180 FK 1 FK UNUSED
1 830 18 40 180 FK 2 FK UNUSED
2 880 18 40 180 FK 3 FK UNUSED
3 930 18 60 180 FK CANCEL FK UNUSED
4 780 216 40 180 FK 4 FK UNUSED
5 830 216 40 180 FK 5 FK UNUSED
6 880 216 40 180 FK 6 FK_UNUSED
7 930 216 60 180 FK_ENTER FK_UNUSED
8 780 414 40 180 FK 7 FK_UNUSED
9 830 414 40 180 FK 8 FK_UNUSED
10 880 414 40 180 FK 9 FK_UNUSED

Page 186
CWA 15748-6:2008

Index
11
12
13
14
15
16
17
18
19
20
21

usXPos

930
780
830
880
930
680
730
780
830
880
930

usYPos

414
612
612
612
612
810
810
810
810
810
810

usxSize

60
40
40
40
60
40
40
40
40
40
60

usYSize

180
180
180
180
180
180
180
180
180
180
180

ulFK
FK_CLEAR
FK_UNUSED
FK_0
FK_UNUSED
FK_UNUSED
FK_A

FK_B

FK_C

FK_D

FK_E

FK_F

ulShiftFK
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED
FK_UNUSED

Page 187
CWA 15748-6:2008

8.6.2 Command Usage

This section provides an example of the sequence of commands required to enter an encryption key securely. In the
following sequence, the application retrieves the keyboard secure key entry mode and associated keyboard layout
and displays an image of the keyboard for the user. It then gets the first key part, verifies the KCV for the key part
and stores it. The sequence is repeated for the second key part and then finally the key part is activated.

- . WFS_INF_PIN_SECUREKEY_DETAIL PIN
Application >

Display Keyboard Layout

pa—

WFS_CMD_PIN_SECUREKEY_ENTRY (Part 1)

>

Verify KCV (part 1)

pa—

WFS_CMD_PIN_IMPORT_KEY (Part 1)

>

WFS_CMD_PIN_SECUREKEY_ENTRY (Part 2)

>

Verify KCV (part 2)

pa—

WFS_CMD_PIN_IMPORT_KEY (Part 2)

>

WFS_CMD_PIN_IMPORT_KEY (Activate)

>

Verify KCV (Full key)

pa—

Page 188
CWA 15748-6:2008

9. Appendix-B (Country Specific WFS_CMD_PIN_ENC _IO protocols)

This section is used for country-specific extensions to the WFS_CMD_PIN _ENC_ IO command.

9.1 Luxemburg Protocol

The general XFS command WFS_ CMD_PIN ENC IO is used to communicate transparently with the security
module (see also command specifications).

In particular, to access the Luxembourg encryption commands defined in the following paragraphs, the input
structure WFSPINENCIO of the WFS CMD PIN_ ENC IO command has to be defined as follows:

Input Param LPWFSPINENCIO IpEncloln;

typedef struct _wfs pin enc_io

{

WORD wProtocol;
ULONG ulDatalength;
LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;
wProtocol
Must be set to the constant WFS PIN ENC PROT LUX.
ulDataLength

Specifies the length in bytes of the structure pointed to by the following field /pvData.

IpvData

Points to an input structure that contains the data specific to the Luxemburg protocol that has to be
sent to the encryption module. This input structure is specific for each command defined in the
protocol (see following paragraphs), but has following general form:

LPPROTLUXIN lpvData;

typedef struct _prot_ lux_ in

WORD wCommand ;
. Command Input Data ...
} PROTLUXIN, *LPPROTLUXIN;

wCommand
Specifies the command that has to be executed in the security module.

Value Meaning

WFS CMD ENC 10 LUX LOAD APPKEY Load an Application Key.
WFS CMD ENC 10 LUX GENERATE MAC Generate the CBC-MAC.
WFS CMD_ENC 10 LUX CHECK MAC Check the CBC-MAC.
WFS CMD ENC 10 LUX BUILD PINBLOCK Build the PIN block.

WFS CMD ENC 10 LUX DECRYPT TDES Decrypt data.

WFS CMD ENC 10 LUX ENCRYPT TDES Encrypt data.

... Command Input Data ...

Specifies the command input data. This field is specific for each command defined in the
protocol (see following paragraphs).

In the same way, to access the results of the private Luxembourg encryption commands, the output structure
LPWFSPINENCIO of the WFS CMD_PIN ENC IO command will be as follows:

Output Param LPWFSPINENCIO IpEncloOut;

typedef struct _wfs pin enc_io

WORD wProtocol;
ULONG ulDatalength;
LPVOID lpvData;

} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Is set to the constant WFS PIN ENC PROT LUX.

Page 189
CWA 15748-6:2008
ulDataLength
Specifies the length in bytes of the structure pointed to by the following field IpvData.

IpvData
Points to a PROTLUXOUT structure that contains the reply data specific to the Luxembourg

protocol. This output structure is specific for each command defined in the protocol (see
following paragraphs), but has following general form:

typedef struct prot lux out

WORD wCommand ;
WORD wResult;
. Command Output Data ...

} PROTLUXOUT, *LPPROTLUXOUT;

wCommand
Specifies the command that has to be executed in the encryption module. This field contains
the same value as the corresponding field in the input structure.

wResult

Specifies the command reply codes specific for this protocol. Possible general values for the
Luxemburg protocol are:

Value Meaning

PROT LUX SUCCESS Command terminated correctly.

PROT LUX ERR INVALID CMD Invalid command. The wCommand
issued is not valid or not supported.

PROT _LUX ERR INVALID DATA The data structure passed as input

parameter for the command contains
invalid or incoherent data.

PROT LUX ERR INVALID KEY The key needed for the operation was not
loaded or is invalid. This operation
failed.

... Command Output Data ...

Specifies the command output data. This field is specific for each command defined in the
protocol (see following paragraphs). In the case of an error, the command specific structure is
returned, but only the wCommand and the wResult fields are valid.

Comments Luxembourg encryption commands defined in the following paragraphs will return the generic
error PROT LUX ERR INVALID DATA when the input data is invalid.

Page 190

CWA 15748-6:2008

9.1.1 WFS_CMD_ENC_IO_LUX_LOAD_APPKEY

Description

Input Param

This command can be used to load an Application Key and to replace the Transport Key. Once
the keys are loaded the encryptor will use the keys to do the other commands.

The encryptor will use the Application Key to obtain a random encrypted session key needed for
the PIN Encryption, the MAC Computation and the Data Encryption/Decryption.

The application will use the Transport Key for loading the other keys (MK _MAC, MK _PAC and
MK _ ENC) into the encryptor.

When this command is used for replacing the Transport Key, the new Transport key is provided
encrypted by the existing Transport Key.

The generation of the first Transport Key is the responsibility of the Authorization Center in
Luxemburg (CETREL). The loading method of the first Transport Key into the encryptor is
vendor dependent.

Keys loaded through this command are reported through the WFS_INF PIN KEY DETAIL and
WFS_INF PIN KEY DETAIL EX commands.

Keys loaded through this command do not require to be deleted before the application can replace
them.

To access this command, the structure WFSPINENCIO of the WFS CMD_ PIN ENC 10
command has to be defined as required by the Luxembourg protocol (see general definition in the
first paragraph). The only definitions specific to this command are the input and output structures
pointed to by the /[pvData fields. They are defined as follows:

LPPROTLUXLOADAPPKEY IpvData;
typedef struct prot lux load app key in

WORD wCommand ;

LPSTR lpsKeyName;

LPSTR lpsSequenceNumber;
LPWFSXDATA lpxKeyData;

} PROTLUXLOADAPPKEYIN, *LPPROTLUXLOADAPPKEYIN;

wCommand
Is set to WFS_ CMD_ENC 10 LUX LOAD_APPKEY

IpsKeyName
This field contains the name of the key to be loaded. The Service Provider will right pad the
IpsKeyName to 20 bytes with char 0x20.

Allowed values are:
= “MK MAC” for the MAC key. Used for MAC calculation only.
= “MK _PAC” for the PIN block key. Used for PIN block construction only.
= “MK_ENC” for the ENC/DEC key. Used for data encryption/decryption only.

= “BANK TRANS KEY” for the Transport Key. It can only be used for loading the other
keys (MK _MAC, MK PAC and MK_ENC) into the encryptor.

IpsSequenceNumber
This field is defined by the Authorization Center in Luxemburg (CETREL) and contains a 4 bytes
key logic number as follows:

= Least significant 2 bytes represent the Key Generation
= Most significant 2 bytes represent the Key Version

The key logic number will contribute in the MAC calculation, in the PIN BLOCK construction
and in the Data Encryption/Decryption.

Allowed values are:
= “2001” for the MK_MAC key
= “2002” for the MK _PAC key

Output Param

Comments

Page 191
CWA 15748-6:2008

= “2003” for the MK ENC key
= “2004” for the BANK TRANS KEY encrypted by the existing BANK TRANS KEY

IpxKeyData
IpxKeyData contains the 40 bytes of the Key data in ZKA key-file format (encrypted key of 16-
bytes, HASH of 16-bytes and MAC of 8-bytes).

The MAC in the /[pxKeyData is calculated with the contribution of the values from the
IpsKeyName (20 bytes), IpsSequenceNumber (4 bytes) and the key data itself (16-bytes) in the
following order:

= [psKeyName

= [psSequenceNumber

= Key data
LPPROTLUXLOADAPPKEYOUT IpvData;

typedef struct _prot_lux load app key out

{

WORD wCommand ;
WORD wResult;
} PROTLUXLOADAPPKEYOUT, *LPPROTLUXLOADAPPKEYOUT;

wCommand
Is set to WFS_ CMD_ENC 10 LUX LOAD_APPKEY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes are possible:

Value Meaning

PROT LUX ERR _VERIFICATION FAILED Verification failed. The supplied MAC does
not match with the calculated MAC.

This command will return generic error PROT LUX ERR INVALID KEY when Key Transport
Key is not loaded.

Page 192
CWA 15748-6:2008

9.1.2 WFS_CMD_ENC_IO_LUX_GENERATE_MAC

Description This command is used to generate the CBC-MAC (Message Authentication Code ISO9797-
1:1999, Padding Method 1, MAC Algorithm 3).

This command returns the generated MAC for the data passed in.

To access the WFS CMD ENC 10 LUX GENERATE MAC command, the structure
WEFSPINENCIO of the WFS_ CMD_PIN ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the [pvData fields. Those are
defined as follows:

Input Param LPPROTLUXGENERATEMACIN IpvData;

typedef struct prot lux generate mac_in

WORD wCommand ;
LPWFSXDATA lpxData;
WORD wMacLength;

} PROTLUXGENERATEMACIN, *LPPROTLUXGENERATEMACIN;

wCommand

Is set to WFS_CMD_ENC_I0_LUX_GENERATE_MAC.

IpxData
The IpxData parameter contains the data whose MAC is to be generated. Data will be padded
according to ISO9797-1:1999, Padding Method 1 if it is not passed in as multiple of 8 bytes.

wMacLength
Specifies the MAC length. Legal values are: 2, 4, 6 or 8.

Output Param LPPROTLUXGENERATEMACOUT IpvData;

typedef struct prot lux generate mac out

WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXGENERATEMACOUT, *LPPROTLUXGENERATEMACOUT;

wCommand

Is set to WFS_CMD_ENC_I0_LUX_GENERATE_MAC.

wResult
The command reply codes (see general definition in the first paragraph).

IpxMac
The IpxMac parameter contains the generated MAC.

IpxRandom
The IpxRandom parameter contains the random value used to work out the session key.

Comments The MAC is in ISO9797-1 format and is obtained from a random session key. The generated
MAC is returned with the JpxRandom value that was used to obtain the random session key. This
command will return generic error PROT _LUX ERR INVALID KEY when MK MAC key is
not loaded.

Page 193
CWA 15748-6:2008

9.1.3 WFS_CMD_ENC_IO_LUX_CHECK_MAC

Description

Input Param

Output Param

Comments

This command verifies the CBC-MAC (Message Authentication Code ISO9797-1:1999, Padding
Method 1, MAC Algorithm 3).

This command generates a MAC for the data passed in and compares it with the provided MAC
value.

To access the WFS CMD_ENC 10 LUX CHECK MAC command, the structure
WEFSPINENCIO of the WFS_ CMD_PIN ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the [pvData fields. Those are
defined as follows:

LPPROTLUXCHECKMACIN IpvData;

typedef struct _prot_ lux_ check mac_in

WORD wCommand ;
LPWFSXDATA lpxData;
LPWFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXCHECKMACIN, *LPPROTLUXCHECKMACIN;

wCommand
Is set to WFS_CMD_ENC 10 LUX CHECK MAC.

IpxData
The IpxData parameter contains the data whose MAC is to be checked. Data will be padded
according to ISO9797-1:1999, Padding Method 1 if it is not passed in as multiple of 8 bytes.

IpxMac
The IpxMac parameter contains the MAC that is to be checked.

Legal values for the MAC length are: 2, 4, 6 or 8.

IpxRandom
The IpxRandom parameter contains the random value used to work out the session key.

LPPROTLUXCHECKMACOUT lIpvData;

typedef struct prot lux check mac_out

WORD wCommand ;
WORD wResult;
} PROTLUXCHECKMACOUT, *LPPROTLUXCHECKMACOUT;

wCommand

Is set to WFS_CMD_ENC IO LUX_CHECK_MAC.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes can be returned:

Value Meaning

PROT LUX ERR VERIFICATION FAILED Verification Failed. The MAC generated by
this command does not compare with the
MAC passed in by the application.

If the value of wResult is PROT _LUX SUCCESS, then the MAC check was successful. This
command will return generic error PROT_LUX ERR INVALID KEY when MK _MAC key is
not loaded.

Page 194

CWA 15748-6:2008

9.1.4 WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK

Description

Input Param

Output Param

Comments

This command is used to construct the PIN blocks described below for remote PIN check. For
PIN block format see comment section below.

To access the WFS CMD ENC 10 LUX BUILD PINBLOCK command, the structure
WEFSPINENCIO of the WFS_ CMD PIN ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the [pvData fields. Those are
defined as follows:

LPPROTLUXPINBLOCKIN IpvData;
typedef struct prot lux pinblock in

WORD wCommand ;
WORD wFormat;
} PROTLUXPINBLOCKIN, *LPPROTLUXPINBLOCKIN;

wCommand

Is set to WFS_CMD_ENC_IO_LUX_BUILD PINBLOCK.

wFormat
Specifies the format of the PIN Block. Possible values are:

Value Meaning
PROT_LUXFORMISO1 ISO-1 PIN Block
PROTLUXPINBLOCKOUT lpvData;
typedef struct prot lux pinblock out
WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxPinBlock;
LPWFSXDATA lpxRandom;
} PROTLUXPINBLOCKOUT, *LPPROTLUXPINBLOCKOUT;
wCommand

Is set to WFS_CMD_ENC_IO_LUX_BUILD PINBLOCK.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning

PROT LUX ERR PIN FORMAT LENGTH The Pin Block could not be constructed
because PIN was not entered or the PIN
length was invalid.

IpxPinBlock
The IpxPinBlock parameter contains the constructed PIN block.

IpxRandom
The IpxRandom parameter contains the random value used to calculate the session key.

The PIN-BLOCK is constructed in an ISO-1 format with random number padding and then Triple
DES encrypted using a random session key. The encrypted PIN Block is returned with the
IpxRandom value that was used to obtain the random session key. This command will return
generic error PROT_LUX ERR INVALID KEY when MK PAC key is not loaded.

Page 195
CWA 15748-6:2008

9.1.5 WFS_CMD_ENC_IO_LUX_DECRYPT_TDES

Description

Input Param

Output Param

Comments

This command is used to decrypt the data according to triple DES algorithm.

To access the WFS CMD _ENC 10 LUX DECRYPT TDES command, the structure
WEFSPINENCIO of the WFS_ CMD PIN ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the [pvData fields. Those are
defined as follows:

LPPROTLUXDECRYPTTDESIN IpvData;

typedef struct prot lux decrypt tdes in

WORD wCommand ;
WORD wType;
LPWFSXDATA lpxData;
LPWFSXDATA 1pxIV;
LPWFSXDATA lpxRandom;

} PROTLUXDECRYPTTDESIN, *LPPROTLUXDECRYPTTDESIN;

wCommand
Is setto WFS_CMD_ENC IO _LUX DECRYPT _TDES

wlype
An integer word specifying the type of triple DES decryption to be used as one of the following
flags:

Value Meaning

PROT LUXTRIDESECB Triple DES with Electronic Code Book.

PROT LUXTRIDESCBC Triple DES with Cipher Block Chaining.
IpxData
The IpxData parameter contains the data to be decrypted. Data must be multiple of 8-byte blocks.
IpxIV

If wType is WFS_PIN LUXTRIDESCBC then this field contains the 8-bytes of data containing
the InitialValue needed for decryption in CBC mode. Otherwise this field is ignored.

IpxRandom
The IpxRandom parameter contains the random value used to calculate the session key.

LPPROTLUXDECRYPTTDESOUT IpvData;

typedef struct _prot_lux decrypt_ tdes out

WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxData;

} PROTLUXDECRYPTTDESOUT, *LPPROTLUXDECRYPTTDESOUT;

wCommand

Is set to WFS_CMD_ENC_IO_LUX_DECRYPT TDES.

wResult
The command reply codes (see general definition in the first paragraph).

IpxData
The IpxData parameter contains the decrypted data.

The Triple-DES decryption uses a random session key. The session key is derived from a random
number that is provided in [pxRandom. This command will return generic error
PROT_LUX ERR INVALID KEY when MK ENC key is not loaded.

Page 196

CWA 15748-6:2008

9.1.6 WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES

Description

Input Param

Output Param

Comments

This command is used to encrypt the data according to triple DES algorithm.

To access the WFS CMD ENC 10 LUX ENCRYPT TDES command, the structure
WEFSPINENCIO of the WFS_ CMD PIN ENC IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the [pvData fields. Those are
defined as follows:

LPPROTLUXENCRYPTTDESIN IpvData;

typedef struct prot lux encrypt tdes in

WORD wCommand ;
WORD wType;
LPWFSXDATA lpxData;
LPWFSXDATA 1pxIV;

} PROTLUXENCRYPTTDESIN, *LPPROTLUXENCRYPTTDESIN;

wCommand

Is set to WFS_CMD_ENC_IO_LUX_ENCRYPT TDES.

wType
An integer word specifying the type of triple DES encryption to be used as one of the following
flags:

Value Meaning

WEFS PIN LUXTRIDESECB Triple DES with Electronic Code Book.

WEFS PIN LUXTRIDESCBC Triple DES with Cipher Block Chaining.
IpxData

The IpxData parameter contains the data to be encrypted. Data must be multiple of 8-byte blocks.
Application must fill the end of the data with 0x00 if the data does not contain a multiple of 8-
byte blocks.

IpxIV
If wType is WFS_PIN_LUXTRIDESCBC then this field contains the 8-bytes of data containing
the Initial Value needed for encryption in CBC mode. Otherwise this field is ignored.

LPPROTLUXENCRYPTTDESOUT IpvData;

typedef struct prot lux encrypt tdes out

WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxData;
LPWFSXDATA lpxRandom;

} PROTLUXENCRYPTTDESOUT, *LPPROTLUXENCRYPTTDESOUT;

wCommand

Is set to WFS_CMD_ENC_IO_LUX_ENCRYPT TDES.

wResult
The command reply codes (see general definition in the first paragraph).

IpxData
The IpxData parameter contains the encrypted data.

IpxRandom
The IpxRandom parameter contains the random value used to calculate the session key.

The Triple-DES encryption uses a random session key. The session key is derived from a random
number that is returned in IpxRandom. This command will return generic error.

Page 197
CWA 15748-6:2008

9.1.7 Luxemburg-specific Header File

This header section is to be created into a separate file from the standard xfspin.h and identifies the definitions for

the Luxemburg Protocol only.
/**

*
*xfspinlux.h XFS - Personal Identification Number Keypad (PIN) Luxemburg

*Protocol definitions
*

*
*
*
*
* *
* *
**/

#ifndef INC XFSPINLUX H
#define _ INC_XFSPINLUX H

#ifdef cplusplus

extern "C" {

#endif

/* be aware of alignment */

#pragma pack (push, 1)

/* values of PROTLUXIN.wCommand */

#define WFS_CMD_ENC_TO_LUX_LOAD APPKEY (0x0001)
#define WFS_CMD ENC_ IO LUX_ GENERATE MAC (0x0002)
#define WFS_CMD_ENC_TO_LUX_CHECK_MAC (0x0003)
#define WFS CMD_ENC_IO LUX BUILD PINBLOCK (0x0004)
#define WFS_CMD_ENC_TO_LUX_DECRYPT TDES (0x0005)
#define WFS_CMD_ENC_IO LUX_ENCRYPT TDES (0x0006)

#define PROT LUX RESULT OFFSET (0)

/* values of PROTLUXOUT.wResult */

#define PROT_LUX_ SUCCESS (0)

#define PROT LUX ERR INVALID CMD (- (PROT_LUX RESULT OFFSET + 1))
#define PROT LUX ERR INVALID DATA (- (PROT_LUX RESULT OFFSET + 2))
#define PROT LUX ERR INVALID KEY (- (PROT_LUX RESULT OFFSET + 3))
/* values of PROTLUXLOADAPPKEYOUT.wResult */

/* values of PROTLUXCHECKMACOUT.wResult */

#define PROT LUX ERR VERIFICATION FAILED (- (PROT_LUX RESULT OFFSET + 4))
/* values of PROTLUXPINBLOCKOUT.wResult */

#define PROT LUX ERR PIN FORMAT LENGTH (- (PROT_LUX RESULT OFFSET + 5))

/* values of PROTLUXDECRYPTTDESIN.wType and PROTLUXENCRYPTTDESIN.wType*/

#define PROT LUXTRIDESECB (0x0000)
#define PROT LUXTRIDESCBC (0x0001)

/* values of PROTLUXPINBLOCKIN.fwFormat */

#define PROT LUXFORMISO1l (0x0001)
// Used to type-cast specific command to access common fields
typedef struct prot lux in

WORD wCommand ;
} PROTLUXIN, *LPPROTLUXIN;

// Used to type-cast specific response to access common fields

Page 198
CWA 15748-6:2008

typedef struct _prot lux out
WORD wCommand ;
WORD wResult;
} PROTLUXOUT, *LPPROTLUXOUT;

typedef struct _prot_ lux load app key in

WORD wCommand ;

LPSTR lpsKeyName;

LPSTR lpsSequenceNumber;
LPWFSXDATA lpxKeyData;

} PROTLUXLOADAPPKEYIN, *LPPROTLUXLOADAPPKEYIN;

typedef struct prot lux load app key out

{

WORD wCommand ;
WORD wResult;
} PROTLUXLOADAPPKEYOUT, *LPPROTLUXLOADAPPKEYOUT;

typedef struct prot lux generate mac_in

{

WORD wCommand ;
LPWFSXDATA lpxData;
WORD wMacLength;

} PROTLUXGENERATEMACIN, *LPPROTLUXGENERATEMACIN;

typedef struct prot lux generate mac_out

{

WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXGENERATEMACOUT, *LPPROTLUXGENERATEMACOUT;

typedef struct prot lux check mac in

WORD wCommand ;
LPWFSXDATA lpxData;
LPWFSXDATA lpxMac;
LPWFSXDATA lpxRandom;

} PROTLUXCHECKMACIN, *LPPROTLUXCHECKMACIN;
typedef struct prot lux check mac out

WORD wCommand ;

WORD wResult;
} PROTLUXCHECKMACOUT, *LPPROTLUXCHECKMACOUT;
typedef struct prot lux pinblock in

WORD wCommand ;

WORD wFormat;
}PROTLUXPINBLOCKIN, *LPPROTLUXPINBLOCKIN;

typedef struct prot lux pinblock out

WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxPinBlock;
LPWFSXDATA lpxRandom;

} PROTLUXPINBLOCKOUT, *LPPROTLUXPINBLOCKOUT;

typedef struct prot lux decrypt tdes in

WORD wCommand ;
WORD wType;
LPWFSXDATA lpxData;
LPWFSXDATA 1pxIV;

LPWFSXDATA lpxRandom;

Page 199
CWA 15748-6:2008

} PROTLUXDECRYPTTDESIN, *LPPROTLUXDECRYPTTDESIN;

typedef struct _prot_ lux decrypt tdes_out

{

WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxData;
} PROTLUXDECRYPTTDESOUT , *LPPROTLUXDECRYPTTDESOUT;

typedef struct prot lux encrypt tdes in

WORD wCommand ;
WORD wType;
LPWFSXDATA lpxData;
LPWFSXDATA 1pxIV;

} PROTLUXENCRYPTTDESIN, *LPPROTLUXENCRYPTTDESIN;

typedef struct prot lux encrypt tdes out

WORD wCommand ;
WORD wResult;
LPWFSXDATA lpxData;
LPWFSXDATA lpxRandom;

} PROTLUXENCRYPTTDESOUT, *LPPROTLUXENCRYPTTDESOUT;
/* restore alignment */

#pragma pack (pop)

#ifdef _ cplusplus

} /*extern "C"*/

#endif

#endif /* _ INC XFSPINLUX H */

Page 200
CWA 15748-6:2008

10. Appendix—C (Standardized IpszExtra fields)

This section contains the values that have been standardized for the IpszExtra fields within previous releases of the
PIN specification. These values are still applicable to this version of the standard and must be supported if the
functionality is supported.

10.1 WFS_INF_PIN_STATUS

The following standardized IpszExtra values have been defined for the WFS INF PIN STATUS command.

For Remote Key Loading using Certificates, the following key/value pairs indicate the level of support of the
Service Provider. If these pairs are not returned then this indicates the Service Provider does not support the
corresponding feature:

CERTIFICATESTATE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a hexadecimal value. This
state determines which public verification or encryption key should be read out of the device. For example
CERTIFICATESTATE =0x00000001 indicates that the state of the Encryptor is Primary. The possible values are
the following:

Value Meaning

WEFS_PIN CERT PRIMARY The encryption module indicates that all pre-
loaded certificates have been loaded and that
primary verification certificates will be
accepted for the commands
WFS CMD_PIN LOAD CERTIFICATE
or
WFS _CMD_PIN REPLACE CERTIFICA
TE

WEFS PIN_ CERT_SECONDARY The encryption module indicates that
primary verification certificates will not be
accepted and only secondary verification
certificates will be accepted. If primary
certificates have been compromised (which
the certificate authority or the host detects),
then secondary certificates should be used in
any transaction. This is done by calling the
WFS CMD_PIN LOAD CERTIFICATE
command or the
WFS CMD_PIN REPLACE CERTIFICA
TE.

WFS PIN CERT NOTREADY The certificate module is not ready. (The
device is powered off or physically not
present).

Page 201
CWA 15748-6:2008

10.2 WFS_INF_PIN_CAPABILITIES

The following standardized IpszExtra values have been defined for the WFS_INF PIN CAPABILITIES command.
For German HSMs this parameter will contain the following information:
e HSM=<HSM vendor> - (can contain the values KRONE,ASCOM,IBM or NCR)

e JOURNAL=<0/1> - (0 means that the HSM does not support journaling by the
WEFS CMD PIN GET JOURNAL command, 1 means it supports journaling)

For Remote Key Loading the following key/value pairs indicate the level of support of the Service Provider. If
these pairs are not returned then this indicates the Service Provider does not support the corresponding feature:

REMOTE KEY SCHEME=<0Oxnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. REMOTE _KEY SCHEME will specify to the user which type(s) of Remote
Key Loading/Authentication is supported. For example,

“REMOTE_KEY_ SCHEME=0x00000002" indicates that three-party certificates are supported.
The support level is defined as a combination of the following flags:

Value Meaning

WFS PIN RSA AUTH 2PARTY_SIG Two-party Signature based authentication.
WFS PIN RSA AUTH 3PARTY_CERT Three-party Certificate based authentication.

RSA SIGN ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA SIGN ALGORITHM will specify what type(s) of RSA Signature
Algorithms is supported. For example, “RSA_SIGN_ALGORITHM=0x00000001" indicates that
RSASSA PKCS1 V1 5 is supported. The support level is defined as a combination of the

following flags:
Value Meaning
WEFS PIN SIGN RSASSA PKCS1 VI 5 SSA PKCS V1 5 Signatures supported.
WEFS PIN SIGN _RSASSA PSS SSA_PSS Signatures supported.

RSA CRYPT ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA CRYPT ALGORITHM will specify what type(s) of RSA encipherment
algorithms is supported. For example, “RSA CRYPT ALGORITHM=0x00000002" indicates
that RSAES OAE-P is supported. The support level is defined as a combination of the following

flags:
Value Meaning
WEFS PIN CRYPT RSAES PKCS1 V1 5 AES PKCS V1 5 algorithm supported.
WEFS PIN CRYPT RSAES OAEP AES OAEP algorithm supported.

RSA KEY CHECK MODE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA KEY CHECK MODE will specify what type of key check value can
be returned from a RSA key import function. For example,
“RSA_KEY CHECK MODE=0x00000001" indicates that SHA1 is supported. The support level
is defined as a combination of the following flags:

Value Meaning

WFS PIN RSA KCV_SHAI1 The key check value contains a SHA 1 of the
public key as defined in Ref. 3.

SIGNATURE_CAPABILITIES=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of
a hexadecimal value. SIGNATURE CAPABILITIES will specify which capabilities are
supported by the Signature scheme. The signature capabilities are defined as a combination of the

following flags:
Value Meaning
WEFS PIN SIG_ GEN RSA KEY PAIR Specifies if the Service Provider supports the

RSA Signature Scheme

WEFS_CMD_PIN GENERATE RSA KEY
_PAIR and

WFS CMD PIN EXPORT RSA EPP SIG
NED commands.

Page 202
CWA 15748-6:2008

WFS PIN SIG RANDOM_NUMBER Specifies if the Service Provider returns a
random number from the
WFS CMD PIN START KEY EXCHAN
GE command within the RSA Signature
Scheme.

WEFS PIN SIG EXPORT EPP ID Specifies if the Service Provider supports
exporting the EPP Security [tem within the
RSA Signature Scheme.

For EMV support the following key/value pairs indicate the level of support of the Service Provider. Note that a
series of this key/value pairs may occur that lists all import schemes supported by the PIN Service Provider. If these
pairs are not returned then this indicates that the Service Provider does not support the corresponding feature.

EMV_IMPORT SCHEME=<0xnnnn>, this field will specify to the user how the specified key
will be imported. nnnn is the ASCII representation of a single hexadecimal value which defines
the import scheme. A series of these pairs may be returned to support multiple import schemes.

The specific values that are used for nnnn are defined within the ‘C’ include file see section “C —
Header File”. The following descriptions use the ‘C’ constant name.

Value Meaning

WEFS_PIN EMV _IMPORT PLAIN CA A plain text CA public key is imported with
no verification.

WFS _PIN EMV_IMPORT CHKSUM CA A plain text CA public key is imported using
the EMV 2000 verification algorithm. See
[Ref. 4].

WFS PIN EMV_IMPORT_EPI CA A CA public key is imported using the self-
sign scheme defined in the Europay
International, EPI CA Module Technical —
Interface specification Version 1.4, [Ref. 5]

WFS PIN EMV_IMPORT ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, [Ref. 4].

WFS PIN EMV_IMPORT ICC An ICC public key is imported as defined in
EMYV 2000 Book II, [Ref. 4].

WFS PIN EMV _IMPORT ICC PIN An ICC PIN public key is imported as

defined in EMV 2000 Book II, [Ref. 4].

WFS PIN EMV _IMPORT PKCSV1 5 CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

EMV_HASH=<0xnnnn>, this field will specify to the user which type of Hash Algorithm is
supported by the Service Provider. nnnn is the ASCII representation of the combination of hash
algorithms supported by the Service Provider.

Value Meaning

WFS PIN HASH SHA1 DIGEST The SHA 1 digest algorithm is supported by
the WFS_ CMD_PIN DIGEST command.

The capabilities associated with key loading in multiple parts are defined by the following:

PIN IMPORT KEY PARTS=<0/1> - (0 means the device does not support key import in
multiple parts, 1 means the device supports key import in multiple parts)

A Service Provider that supports the WFS_ CMD_PIN ENCIO command shall add information about what
protocols it supports as:

ENCIOPROTOCOLS=0xnnnn where nnnn is the ASCII representation of the combination of
the values supported for the wProtocol parameter.

A Service Provider may automatically generate a beep on key presses, this is reported by the following key=value
pair:
AUTOBEEP=<0/1> - (0 means no beeps are generated automatically, 1 means beeps are
generated automatically)

For devices where the secure PIN keypad is integrated within a generic Win32 keyboard then, if the following pair
is present:

Page 203
CWA 15748-6:2008

“KYBD=COMBINED WIN32” - then standard Win32 key events will be generated for any key
when there is no ‘active’ GET DATA or GET PIN command.

Note that XFS continues to support PIN keys define only, and is not extended to support new
alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both
PIN and generic keyboards.

When an application wishes to receive XFS-based key information then he can use the XFS
GET _DATA and GET_PIN functions.

No Win32 keystrokes are generated for any key (active or not) in a combined device when
GET_DATA or GET_PIN are ‘active’.

When no GET_DATA or GET PIN function is ‘active’ then any key press will result in a
Win32 key event. These events can be ignored by the application, if required.

Note that this does not compromise secure PIN entry — there will be no Win32 keyboard events
during PIN collection.

On terminals and kiosks with separate PIN and Win32 keyboards, the Win32 keyboard behaves
purely as a PC keyboard and the PIN device behaves only as an XFS device.

