

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 16926-77:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-77 February 2020

ICS 35.200; 35.240.15; 35.240.40
English version Extensions for Financial Services (XFS) interface specification Release 3.40 - Part 77: Item Processing Module Device Class Interface - Migration from version 3.30 (CWA 16926) to Version 3.40 (this CWA) - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CWA 16926-77:2020 (E)

2

Table of Contents

European Foreword .. 4

1. Migration Information .. 8

2. Item Processing Module ... 9

2.1 Devices with a Stacker .. 11
2.1.1 Automatic Accept/Refuse ...11
2.1.2 Application Controlled Accept/Refuse ...11

2.2 Device without a Stacker ... 13
2.2.1 Multi-Feed Devices without a Stacker ..13
2.2.2 Single-Feed Devices ..13

3. References ... 14

4. Info Commands ... 15

4.1 WFS_INF_IPM_STATUS .. 15

4.2 WFS_INF_IPM_CAPABILITIES .. 22

4.3 WFS_INF_IPM_CODELINE_MAPPING ... 30

4.4 WFS_INF_IPM_MEDIA_BIN_INFO .. 31

4.5 WFS_INF_IPM_TRANSACTION_STATUS .. 34
4.6 WFS_INF_IPM_MEDIA_BIN_CAPABILITIES .. 38

5. Execute Commands .. 39

5.1 WFS_CMD_IPM_MEDIA_IN ... 39

5.2 WFS_CMD_IPM_MEDIA_IN_END .. 44

5.3 WFS_CMD_IPM_MEDIA_IN_ROLLBACK ... 47

5.4 WFS_CMD_IPM_READ_IMAGE .. 49

5.5 WFS_CMD_IPM_SET_DESTINATION ... 54
5.6 WFS_CMD_IPM_PRESENT_MEDIA .. 55

5.7 WFS_CMD_IPM_RETRACT_MEDIA .. 56

5.8 WFS_CMD_IPM_PRINT_TEXT .. 58

5.9 WFS_CMD_IPM_SET_MEDIA_BIN_INFO ... 59

5.10 WFS_CMD_IPM_RESET .. 60

5.11 WFS_CMD_IPM_SET_GUIDANCE_LIGHT ... 62
5.12 WFS_CMD_IPM_GET_NEXT_ITEM ... 63

5.13 WFS_CMD_IPM_ACTION_ITEM .. 65

5.14 WFS_CMD_IPM_EXPEL_MEDIA ... 67

5.15 WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT .. 68

5.16 WFS_CMD_IPM_ACCEPT_ITEM ... 70

5.17 WFS_CMD_IPM_SUPPLY_REPLENISH ... 71
5.18 WFS_CMD_IPM_POWER_SAVE_CONTROL ... 72

5.19 WFS_CMD_IPM_SET_MODE ... 73

5.20 WFS_CMD_IPM_SYNCHRONIZE_COMMAND ... 74

CWA 16926-77:2020 (E)

3

6. Events ... 75

6.1 WFS_EXEE_IPM_NOMEDIA .. 75

6.2 WFS_EXEE_IPM_MEDIAINSERTED ... 76

6.3 WFS_USRE_IPM_MEDIABINTHRESHOLD .. 77

6.4 WFS_SRVE_IPM_MEDIABININFOCHANGED .. 78

6.5 WFS_EXEE_IPM_MEDIABINERROR .. 79

6.6 WFS_SRVE_IPM_MEDIATAKEN ... 80
6.7 WFS_USRE_IPM_TONERTHRESHOLD ... 81

6.8 WFS_USRE_IPM_SCANNERTHRESHOLD .. 82

6.9 WFS_USRE_IPM_INKTHRESHOLD .. 83

6.10 WFS_SRVE_IPM_MEDIADETECTED .. 84

6.11 WFS_EXEE_IPM_MEDIAPRESENTED ... 85

6.12 WFS_EXEE_IPM_MEDIAREFUSED .. 86
6.13 WFS_EXEE_IPM_MEDIADATA ... 88

6.14 WFS_USRE_IPM_MICRTHRESHOLD ... 91

6.15 WFS_EXEE_IPM_MEDIAREJECTED .. 92

6.16 WFS_SRVE_IPM_DEVICEPOSITION .. 93

6.17 WFS_SRVE_IPM_POWER_SAVE_CHANGE .. 94

6.18 WFS_SRVE_IPM_SHUTTERSTATUSCHANGED ... 95

7. Command and Event Flows .. 96

7.1 Devices with Stacker ... 96
7.1.1 Bunch Media Processing (OK flow) ...96
7.1.2 Bunch Media Processing (Some Media Items Returned) ..97
7.1.3 Bunch Media Processing with Errors ..98
7.1.4 Bunch media processing with Rollback ..99
7.1.5 Bunch media processing with Retract ...100
7.1.6 Bunch Media Processing - Application Refuse Decision (All OK flow) ..100
7.1.7 Bunch Media Processing - Application Refuse Decision (Some items refused)101

7.2 Devices without Stacker .. 103
7.2.1 Bunch Media Processing (OK flow) ...103
7.2.2 Bunch Media Processing (Some Media Items Returned) ..104
7.2.3 Bunch Media Processing with Errors ..105

8. ATM Mixed Media Transaction Flow – Application Guidelines.................... 107

9. C-Header File ... 108

CWA 16926-77:2020 (E)

4

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations - Part 2. It was approved by a Workshop of representatives of interested
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.
The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12.
The following organizations and individuals developed and approved this CEN Workshop Agreement:
• ATM Japan LTD

• AURIGA SPA

• BANK OF AMERICA

• CASHWAY TECHNOLOGY

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO.

• CIMA SPA

• CLEAR2PAY SCOTLAND LIMITED

• DIEBOLD NIXDORF

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM

• FINANZ INFORMATIK

• FUJITSU FRONTECH LIMITED

• FUJITSU TECHNOLOGY

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HESS CASH SYSTEMS GMBH & CO. KG

• HITACHI OMRON TS CORP.

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA AG

• NCR FSG

• NEC CORPORATION

• OKI ELECTRIC INDUSTRY SHENZHEN

• OKI ELECTRONIC INDUSTRY CO

• PERTO S/A

CWA 16926-77:2020 (E)

5

• REINER GMBH & CO KG

• SALZBURGER BANKEN SOFTWARE

• SIGMA SPA

• TEB

• ZIJIN FULCRUM TECHNOLOGY CO

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.
The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-77, but this does not guarantee, either explicitly or implicitly, its correctness.
Users of CWA 16926-77 should be aware that neither the Workshop participants, nor CEN can be held liable for
damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-77 do so on
their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

CWA 16926-77:2020 (E)

6

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to
Version 3.40 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

CWA 16926-77:2020 (E)

7

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx

CWA 16926-77:2020 (E)

8

1. Migration Information

XFS 3.40 has been designed to minimize backwards compatibility issues. This document highlights the changes
made to the IPM device class between version 3.30 and 3.40, by highlighting the additions and deletions to the text.

CWA 16926-77:2020 (E)

9

2. Item Processing Module

This specification describes the XFS service class for Item Processing Modules (IPM). The specification of this
service class includes definitions of the service-specific commands that can be issued, using the
WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This service class is currently defined only for self service devices.

In the U.S., checks are always encoded in magnetic ink for reading by Magnetic Ink Character Recognition
(MICR), and a single font is always used. In Europe some countries use MICR and some use Optical Character
Recognition (OCR) character sets, with different fonts, for their checks.

Item Processing Modules accept one or more media items (Checks, Giros, etc) and process these items according to
application requirements. The IPM class supports devices that can handle a single item as well as those devices that
can handle bunches of items. The following are the three principle device types:

• Single Item: can accept and process a single item at a time.

• Multi-Item Feed with no stacker (known as an escrow in some environments): can accept a bunch of
media from the customer but each item has to be processed fully (i.e. deposited in a bin or returned) before
the next item can be processed.

• Multi-Item Feed with a stacker: can accept a bunch of media from the customer and all items can be
processed together.

The IPM class provides applications with an interface to control the following functions (depending on the
capabilities of the specific underlying device):

• Capture an image of the front of an item in multiple formats and bit depths.

• Capture an image of the back of an item in multiple formats and bit depths.

• Read the code line of an item using MICR reader.

• Read the code line of an item using OCR.

• Endorse (print text) on an item.

• Stamp an item.

• Return an item to the customer.

• Deposit an item in a bin.

• Retract items left by the customer.

The IPM device class uses the concept of a Media-In transaction to track and control a customer’s interaction with
the device. A Media-In transaction consists of one or more WFS_CMD_IPM_MEDIA_IN commands. The
transaction is initiated by the first WFS_CMD_IPM_MEDIA_IN command and remains active until the transaction
is either confirmed through WFS_CMD_IPM_MEDIA_IN_END, or terminated by
WFS_CMD_IPM_MEDIA_IN_ROLLBACK, WFS_CMD_IPM_RETRACT_MEDIA or
WFS_CMD_IPM_RESET. While a transaction is active the WFS_INF_IPM_TRANSACTION_STATUS
command reports the status of the current transaction. When a transaction is not active the
WFS_INF_IPM_TRANSACTION_STATUS command reports the status of the last transaction as well as some
current status values.

There are primarily two types of devices supported by the IPM, those devices with a stacker and those without.

In this the specification the terms “long edge” and “short edge” are used to describe the orientation of a check and
length of its edges. The diagram below illustrates these definitions.

CWA 16926-77:2020 (E)

10

CWA 16926-77:2020 (E)

11

2.1 Devices with a Stacker

On devices with a stacker, the IPM device class supports two mechanisms for deciding if physically acceptable
items should be accepted onto the stacker or refused:

• The device/Service Provider automatically makes the accept/refuse decision.

• The application controls the accept/refuse decision.

2.1.1 Automatic Accept/Refuse

In summary, the following process is followed (the exact order will depend on application requirements):

1. The application initiates the transaction via the WFS_CMD_IPM_MEDIA_IN command. This command
accepts a bunch of media items. The images and code line for every media item accepted is sent to the
application before the command completes.

2. The application then asks the customer if they have any more items to process.

3. If the customer has more items to deposit then the WFS_CMD_IPM_MEDIA_IN command is called one
or more times to add more items to the stacker.

4. Once the customer has inserted all their bunches of items and they have been added to the stacker the
application can process each item and predefine what should happen to each media item during the
WFS_CMD_IPM_MEDIA_IN_END command, e.g.:

a. Define if the item should be stamped and what should be printed on the item (using
WFS_CMD_IPM_PRINT_TEXT), set the destination bin (using
WFS_CMD_IPM_SET_DESTINATION), and request the item is rescanned after printing (using
WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT), or

b. Define that the item should be returned to the customer (using
WFS_CMD_IPM_SET_DESTINATION).

5. When all items have been processed the application calls WFS_CMD_IPM_MEDIA_IN_END to
complete the transaction and carry out the predefined actions, e.g. print and deposit some items while
returning others.

Note: Before the WFS_CMD_IPM_MEDIA_IN_END command is called, the customer can cancel the transaction
at any time and all items are returned to the customer by the application calling WFS_CMD_IPM_ROLLBACK.

2.1.2 Application Controlled Accept/Refuse

In summary, the following process is followed (the exact order will depend on application requirements):

1. The application uses the WFS_CMD_IPM_MEDIA_IN command to accept a bunch of media items (the
first use of this command initiates the transaction). The application indicates that it wants to make the
accept/refuse decision for each item via an input parameter, and as a result only one item is processed and
the code line and images are only produced for a single item.

2. The application processes the item and decides if it should be accepted or refused using the
WFS_CMD_IPM_ACCEPT_ITEM command.

3. The application calls WFS_CMD_IPM_GET_NEXT_ITEM to read the next item. If an item is read then
the flow continues at step 2. When there are no items left to process the flow continues with the next step.

4. The application can return the refused items to the customer with WFS_CMD_IPM_PRESENT_MEDIA.

5. The application then asks the customer if they have any more items to process or wish to re-insert the
refused items after correcting the issue causing the refusal.

6. If the customer has more items to deposit then flow continues at step 1, otherwise the flow continues at the
next step.

7. Once the customer has inserted all their bunches of items and they have been added to the stacker the
application can process each item and predefine what should happen to each media item during the
WFS_CMD_IPM_MEDIA_IN_END command, e.g.:

CWA 16926-77:2020 (E)

12

a. Define if the item should be stamped and what should be printed on the item (using
WFS_CMD_IPM_PRINT_TEXT), set the destination bin (using
WFS_CMD_IPM_SET_DESTINATION), and request the item is rescanned after printing (using
WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT), or

b. Define that the item should be returned to the customer (using
WFS_CMD_IPM_SET_DESTINATION).

8. When all items have been processed the application calls WFS_CMD_IPM_MEDIA_IN_END to
complete the transaction and carry out the predefined actions, e.g. print and deposit some items while
returning others.

Note: Before the WFS_CMD_IPM_MEDIA_IN_END command is called, the customer can cancel the transaction
at any time and all items are returned to the customer by the application calling WFS_CMD_IPM_ROLLBACK.

CWA 16926-77:2020 (E)

13

2.2 Device without a Stacker

Devices without a stacker fall into two categories those with a multi-item feed unit and those without. Both of these
types of devices can be handled by the same application flow, however they are both documented below for clarity.

2.2.1 Multi-Feed Devices without a Stacker

In summary, the following process is followed (the exact order will depend on application requirements):

1. The application uses the WFS_CMD_IPM_MEDIA_IN command to accept a bunch of media items (the
first use of this command initiates the transaction). However as there is no stacker only one item is
processed and the code line and images are only produced for a single item.

2. The application processes the item and decides what should be done to the item, e.g.:

a. Define if the item should be stamped and what should be printed on the item (using
WFS_CMD_IPM_PRINT_TEXT), set the destination bin (using
WFS_CMD_IPM_SET_DESTINATION), and request the item is rescanned after printing (using
WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT), or

b. Define that the item should be returned to the customer (using
WFS_CMD_IPM_SET_DESTINATION).

3. The application calls WFS_CMD_IPM_ACTION_ITEM to have the predefined actions executed.

4. The application calls WFS_CMD_IPM_GET_NEXT_ITEM to read the next item. If an item is read then
the flow continues at step 2. When there are not items left to process the flow continues with the next step.

5. The application then asks the customer if they have any more items to process.

6. If the customer has more items to deposit then flow continues at step 1.

7. When the customer is finished the application calls WFS_CMD_IPM_MEDIA_IN_END to terminate the
transaction.

2.2.2 Single-Feed Devices

In summary, the following process is followed:

1. The application initiates the transaction via the WFS_CMD_IPM_MEDIA_IN command. This command
accepts a single item and produces the image and code line.

2. The application processes the item and decides what should be done to the item, e.g.:

a. Define if the item should be stamped and what should be printed on the item (using
WFS_CMD_IPM_PRINT_TEXT), set the destination bin (using
WFS_CMD_IPM_SET_DESTINATION), and request the item is rescanned after printing (using
WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT), or

b. Define that the item should be returned to the customer (using
WFS_CMD_IPM_SET_DESTINATION).

3. The application calls WFS_CMD_IPM_ACTION_ITEM to have the predefined actions executed.

4. The application optionally calls WFS_CMD_IPM_GET_NEXT_ITEM to have a single flow for devices
with multi-feed and without. The flow continues with the next step.

5. The application then asks the customer if they have any more items to process.

6. If the customer has more items to deposit then flow continues at step 1.

7. When the customer is finished the application calls WFS_CMD_IPM_MEDIA_IN_END to terminate the
transaction.

CWA 16926-77:2020 (E)

14

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.40
2. Extensions for Financial Services (XFS) interface specification, Release 3.40, Part 15: Cash-In Module, Device
Class Interface, Programmer's Reference

CWA 16926-77:2020 (E)

15

4. Info Commands

4.1 WFS_INF_IPM_STATUS

Description This command is used to request status information for the device.

Input Param None.

Output Param LPWFSIPMSTATUS lpStatus;
typedef struct _wfs_ipm_status
 {
 WORD fwDevice;
 WORD wAcceptor;
 WORD wMedia;
 WORD wToner;
 WORD wInk;
 WORD wFrontImageScanner;
 WORD wBackImageScanner;
 WORD wMICRReader;
 WORD wStacker;
 WORD wReBuncher;
 WORD wMediaFeeder;
 LPWFSIPMPOS *lppPositions;
 DWORD dwGuidLights[WFS_IPM_GUIDLIGHTS_SIZE];
 LPSTR lpszExtra;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wMixedMode;
 WORD wAntiFraudModule;
 } WFSIPMSTATUS, *LPWFSIPMSTATUS;

fwDevice
Specifies the state of the IPM. However, an fwDevice status of WFS_IPM_DEVONLINE does
not necessarily imply that accepting can take place: the value of wAcceptor field must be taken
into account. The state of the device will be one of the following values:

Value Meaning
WFS_IPM_DEVONLINE The device is online (i.e. powered on and

operable).
WFS_IPM_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).
WFS_IPM_DEVPOWEROFF The device is powered off or physically not

connected.
WFS_IPM_DEVNODEVICE There is no device intended to be there; e.g.

this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_IPM_DEVHWERROR The device is inoperable due to a hardware
error.

WFS_IPM_DEVUSERERROR The device is present but a person is
preventing proper device operation.

WFS_IPM_DEVBUSY The device is busy and unable to process an
execute command at this time.

WFS_IPM_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_IPM_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

wAcceptor
Supplies the state of the overall acceptor media bins as one of the following values:

CWA 16926-77:2020 (E)

16

Value Meaning
WFS_IPM_ACCBINOK All media bins present are in a good state.
WFS_IPM_ACCBINSTATE One or more of the media bins is in a high,

full or inoperative condition. Items can still
be accepted into at least one of the media
bins. The status of the bins can be obtained
through the
WFS_INF_IPM_MEDIA_BIN_INFO
command.

WFS_IPM_ACCBINSTOP Due to a media bin problem accepting is
impossible. No items can be accepted
because all of the media bins are in a full or
in an inoperative condition.

WFS_IPM_ACCBINUNKNOWN Due to a hardware error or other condition,
the state of the media bins cannot be
determined.

wMedia
Specifies the state of the media as one of the following values:

Value Meaning
WFS_IPM_MEDIAPRESENT Media is present in the device.
WFS_IPM_MEDIANOTPRESENT Media is not present in the device.
WFS_IPM_MEDIAJAMMED Media is jammed in the device.
WFS_IPM_MEDIANOTSUPP The capability to report the state of the

media is not supported by the device.
WFS_IPM_MEDIAUNKNOWN The state of the media cannot be determined

with the device in its current state.
WFS_IPM_MEDIAPOSITION Media is at one or more of the input, output

and refused positions.

wToner
Specifies the state of the toner or ink supply or the state of the ribbon of the endorser as one of the
following values:

Value Meaning
WFS_IPM_TONERFULL The toner or ink supply is full or the ribbon

is OK.
WFS_IPM_TONERLOW The toner or ink supply is low or the print

contrast with a ribbon is weak.
WFS_IPM_TONEROUT The toner or ink supply is empty or the print

contrast with a ribbon is not sufficient any
more.

WFS_IPM_TONERNOTSUPP The physical device does not support
endorsing or the capability to report the
status of the toner/ink is not supported by the
device.

WFS_IPM_TONERUNKNOWN Status of toner or ink supply or the ribbon
cannot be determined with the device in its
current state.

wInk
Specifies the status of the stamping ink in the device as one of the following values:

Value Meaning
WFS_IPM_INKFULL Ink supply in the device is full.
WFS_IPM_INKLOW Ink supply in the device is low.
WFS_IPM_INKOUT Ink supply in the device is empty.
WFS_IPM_INKNOTSUPP The physical device does not support

stamping or the capability to report the status
of the stamp ink supply is not supported by
the device.

WFS_IPM_INKUNKNOWN Status of the stamping ink supply cannot be
determined with the device in its current
state.

CWA 16926-77:2020 (E)

17

wFrontImageScanner
Specifies the status of the image scanner that captures images of the front of the media items. This
value can be one of the following values:

Value Meaning
WFS_IPM_SCANNEROK The front scanner is OK.
WFS_IPM_SCANNERFADING The front scanner performance is degraded.
WFS_IPM_SCANNERINOP The front scanner is inoperative.
WFS_IPM_SCANNERNOTSUPP The physical device has no front scanner or

the capability to report the status of the front
scanner is not supported by the device.

WFS_IPM_SCANNERUNKNOWN Status of the front scanner cannot be
determined with the device in its current
state.

wBackImageScanner
Specifies the status of the image scanner that captures images of the back of the media items. This
value can be one of the following values:

Value Meaning
WFS_IPM_SCANNEROK The back scanner is OK.
WFS_IPM_SCANNERFADING The back scanner performance is degraded.
WFS_IPM_SCANNERINOP The back scanner is inoperative.
WFS_IPM_SCANNERNOTSUPP The physical device has no back scanner or

the capability to report the status of the back
scanner is not supported by the device.

WFS_IPM_SCANNERUNKNOWN Status of the back scanner cannot be
determined with the device in its current
state.

wMICRReader
Specifies the status of the MICR code line reader as one of the following values:

Value Meaning
WFS_IPM_MICROK The MICR code line reader is OK.
WFS_IPM_MICRFADING The MICR code line reader performance is

degraded.
WFS_IPM_MICRINOP The MICR code line reader is inoperative.
WFS_IPM_MICRNOTSUPP The physical device has no MICR code line

reader or the capability to report the status of
the MICR code line reader is not supported
by the device.

WFS_IPM_MICRUNKNOWN Status of the MICR code line reader cannot
be determined with the device in its current
state.

wStacker
Supplies the state of the stacker (also known as an escrow). The stacker is where the media items
are held while the application decides what to do with them. This field can be one of the
following values:

Value Meaning
WFS_IPM_STACKEREMPTY The stacker is empty.
WFS_IPM_STACKERNOTEMPTY The stacker is not empty.
WFS_IPM_STACKERFULL The stacker is full. This state is set if the

number of media items on the stacker has
reached the
WFSIPMCAPS.usMaxMediaOnStacker field
of the Capabilities or some physical limit has
been reached.

WFS_IPM_STACKERINOP The stacker is inoperative.
WFS_IPM_STACKERUNKNOWN Due to a hardware error or other condition,

the state of the stacker cannot be determined.
WFS_IPM_STACKERNOTSUPP The physical device has no stacker or the

capability to report the status of the stacker
is not supported by the device.

CWA 16926-77:2020 (E)

18

wReBuncher
Supplies the state of the re-buncher (return stacker). The re-buncher is where media items are re-
bunched ready for return to the customer. This field can be one of the following values:

Value Meaning
WFS_IPM_REBUNCHEREMPTY The re-buncher is empty.
WFS_IPM_REBUNCHERNOTEMPTY The re-buncher is not empty.
WFS_IPM_REBUNCHERFULL The re-buncher is full. This state is set if the

number of media items on the re-buncher has
reached its physical limit.

WFS_IPM_REBUNCHERINOP The re-buncher is inoperative.
WFS_IPM_REBUNCHERUNKNOWN Due to a hardware error or other condition,

the state of the re-buncher cannot be
determined.

WFS_IPM_REBUNCHERNOTSUPP The physical device has no re-buncher or the
capability to report the status of the re-
buncher is not supported by the device.

wMediaFeeder
Supplies the state of the media feeder. This value can be one of the following values:

Value Meaning
WFS_IPM_FEEDEREMPTY The media feeder is empty.
WFS_IPM_FEEDERNOTEMPTY The media feeder is not empty.
WFS_IPM_FEEDERINOP The media feeder is inoperative.
WFS_IPM_FEEDERUNKNOWN Due to a hardware error or other condition,

the state of the media feeder cannot be
determined.

WFS_IPM_FEEDERNOTSUPP The physical device has no media feeder or
the capability to report the status of the
media feeder is not supported by the device.

lppPositions
Pointer to a NULL-terminated array of pointers to WFSIPMPOS structures. There is one for each
of the three logical position types.

lppPositions [WFS_IPM_POSINPUT]
Points to a WFSIPMPOS structure that specifies the status of the input position. This pointer must
not be NULL.

lppPositions [WFS_IPM_POSOUTPUT]
Points to a WFSIPMPOS structure that specifies the status of the output position. This pointer
must not be NULL.

lppPositions [WFS_IPM_POSREFUSED]
Points to a WFSIPMPOS structure that specifies the status of the refused position. This pointer
must not be NULL.

typedef struct _wfs_ipm_pos
 {
 WORD wShutter;
 WORD wPositionStatus;
 WORD wTransport;
 WORD wTransportMediaStatus;
 WORD fwJammedShutterPosition;
 } WFSIPMPOS, *LPWFSIPMPOS;

wShutter
Specifies the state of the shutter as one of the following values:

Value Meaning
WFS_IPM_SHTCLOSED The shutter is operational and is closed.
WFS_IPM_SHTOPEN The shutter is operational and is open.
WFS_IPM_SHTJAMMED The shutter is jammed and is not

operational. The field
fwJammedShutterPosition provides the
positional state of the shutter.

CWA 16926-77:2020 (E)

19

WFS_IPM_SHTUNKNOWN Due to a hardware error or other
condition, the state of the shutter cannot
be determined.

WFS_IPM_SHTNOTSUPPORTED The physical device has no shutter or
shutter state reporting is not supported.

wPositionStatus
The status of the input or output position as one of the following values:

Value Meaning
WFS_IPM_PSEMPTY The position is empty.
WFS_IPM_PSNOTEMPTY The position is not empty.
WFS_IPM_PSUNKNOWN Due to a hardware error or other

condition, the state of the position cannot
be determined.

WFS_IPM_PSNOTSUPPORTED The device is not capable of reporting
whether or not items are at the position.

wTransport
Specifies the state of the transport mechanism as one of the following values. The transport is
defined as any area leading to or from the position:

Value Meaning
WFS_IPM_TPOK The transport is in a good state.
WFS_IPM_TPINOP The transport is inoperative due to a

hardware failure or media jam.
WFS_IPM_TPUNKNOWN Due to a hardware error or other

condition, the state of the transport
cannot be determined.

WFS_IPM_TPNOTSUPPORTED The physical device has no transport or
transport state reporting is not supported.

wTransportMediaStatus
Returns information regarding items which may be present on the transport as one of the
following values:

Value Meaning
WFS_IPM_TPMEDIAEMPTY The transport is empty.
WFS_IPM_TPMEDIANOTEMPTY The transport is not empty.
WFS_IPM_TPMEDIAUNKNOWN Due to a hardware error or other

condition it is not known whether there
are items on the transport.

WFS_IPM_TPMEDIANOTSUPPORTED The device is not capable of reporting
whether or not items are on the transport.

fwJammedShutterPosition
Returns information regarding the position of the jammed shutter. The possible values of this
field are:

Value Meaning
WFS_IPM_SHUTTERPOS_NOTSUPPORTED The physical device has no shutter or the

reporting of the position of a jammed
shutter is not supported.

WFS_ IPM _SHUTTERPOS_NOTJAMMED The shutter is not jammed.
WFS_ IPM _SHUTTERPOS_OPEN The shutter is jammed, but fully open.
WFS_ IPM _SHUTTERPOS_PARTIALLY_OPEN

 The shutter is jammed, but partially
open.

WFS_ IPM _SHUTTERPOS_CLOSED The shutter is jammed, but fully closed.
WFS_ IPM _SHUTTERPOS_UNKNOWN The position of the shutter is unknown.

dwGuidLights [...]
Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_IPM_GUIDLIGHTS_MAX.

CWA 16926-77:2020 (E)

20

Specifies the state of the guidance light indicator as
WFS_IPM_GUIDANCE_NOT_AVAILABLE, WFS_IPM_GUIDANCE_OFF or a combination
of the following flags consisting of one type B, optionally one type C and optionally one type D.

Value Meaning Type
WFS_IPM_GUIDANCE_NOT_AVAILABLE The status is not available. A
WFS_IPM_GUIDANCE_OFF The light is turned off. A
WFS_IPM_GUIDANCE_SLOW_FLASH The light is blinking slowly. B
WFS_IPM_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.
WFS_IPM_GUIDANCE_QUICK_FLASH The light is blinking quickly. B
WFS_IPM_GUIDANCE_CONTINUOUS The light is turned on continuous B

(steady).
WFS_IPM_GUIDANCE_RED The light is red. C
WFS_IPM_GUIDANCE_GREEN The light is green. C
WFS_IPM_GUIDANCE_YELLOW The light is yellow. C
WFS_IPM_GUIDANCE_BLUE The light is blue. C
WFS_IPM_GUIDANCE_CYAN The light is cyan. C
WFS_IPM_GUIDANCE_MAGENTA The light is magenta. C
WFS_IPM_GUIDANCE_WHITE The light is white. C
WFS_IPM_GUIDANCE_ENTRY The light is in the entry state. D
WFS_IPM_GUIDANCE_EXIT The light is in the exit state. D

dwGuidLights [WFS_IPM_GUIDANCE_MEDIAIN]
Specifies the state of the guidance light indicator on the bunch media in position.

dwGuidLights [WFS_IPM_GUIDANCE_MEDIAOUT]
Specifies the state of the guidance light indicator on the bunch media out position.

dwGuidLights [WFS_IPM_GUIDANCE_MEDIAREFUSED]
Specifies the state of the guidance light indicator on the bunch media refused position.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_IPM_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_IPM_DEVONLINE or
WFS_IPM_DEVOFFLINE). If the device is not in its normal operating position (i.e.
WFS_IPM_DEVICEINPOSITION) then media may not be presented through the normal
customer interface. This value is one of the following values:

Value Meaning
WFS_IPM_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_IPM_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_IPM_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_IPM_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

CWA 16926-77:2020 (E)

21

wMixedMode
Reports if Mixed Media mode is active. See the WFS_CMD_IPM_SET_MODE command for a
description of the modes. This flag can also be set/reset by the command
WFS_CMD_CIM_SET_MODE on the CIM interface. This value is one of the following values:

Value Meaning
WFS_IPM_MIXEDMEDIANOTACTIVE Mixed media transactions are not supported

by the device or Mixed Media mode is not
activated.

WFS_IPM_CIMMIXEDMEDIA Mixed Media mode using the CIM and IPM
interfaces is activated.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_IPM_AFMNOTSUPP No anti-fraud module is available.
WFS_IPM_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_IPM_AFMINOP Anti-fraud module is inoperable.
WFS_IPM_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_IPM_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra field may
not be device or vendor-independent.

In the case where communications with the device has been lost, the fwDevice field will report
WFS_IPM_DEVPOWEROFF when the device has been removed or
WFS_IPM_DEVHWERROR if the communications are unexpectedly lost. All other fields should
contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general hardware error.

3. Report the value as the last known value.

CWA 16926-77:2020 (E)

22

4.2 WFS_INF_IPM_CAPABILITIES

Description This command is used to request device capability information.

Input Param None.

Output Param LPWFSIPMCAPS lpCaps;
typedef struct _wfs_ipm_caps
 {
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usMaxMediaOnStacker;
 LPWFSIPMPRINTSIZE lpPrintSize;
 BOOL bStamp;
 BOOL bRescan;
 BOOL bPresentControl;
 BOOL bApplicationRefuse;
 WORD fwRetractLocation;
 WORD fwResetControl;
 BOOL bRetractCountsItems;
 WORD fwImageType;
 WORD fwFrontImageColorFormat;
 WORD fwBackImageColorFormat;
 WORD fwFrontScanColor;
 WORD wDefaultFrontScanColor;
 WORD fwBackScanColor;
 WORD wDefaultBackScanColor;
 WORD fwCodelineFormat;
 WORD fwDataSource;
 WORD fwInsertOrientation;
 LPWFSIPMPOSCAPS *lppPositions;
 DWORD dwGuidLights[WFS_IPM_GUIDLIGHTS_SIZE];
 LPSTR lpszExtra;
 BOOL bPowerSaveControl;
 BOOL bImageAfterEndorse;
 WORD fwReturnedItemsProcessing;
 WORD wMixedMode;
 BOOL bMixedDepositAndRollback;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
 LPWFSIPMPRINTSIZE lpPrintSizeFront;
 } WFSIPMCAPS, *LPWFSIPMCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_IPM.

fwType
Specifies the type(s) of the physical device driven by the logical service, as one of the following
values:

Value Meaning
WFS_IPM_TYPESINGLEMEDIAINPUT Device accepts a single media item from the

customer.
WFS_IPM_TYPEBUNCHMEDIAINPUT Device accepts a bunch of media items from

the customer.

bCompound
Specifies whether the logical device is part of a compound physical device.

usMaxMediaOnStacker
Specifies the maximum number of media items that the stacker can hold (zero if the device does
not have a stacker). If the device has a bunch media input capability and the stacker is not present
or has a capacity of one then the application must process each item inserted sequentially as
described in section Multi-Feed Devices without a Stacker.

CWA 16926-77:2020 (E)

23

lpPrintSize
Pointer to a WFSIPMPRINTSIZE structure representing the back side of the check, NULL if
device has no back side printing capabilities. If the media item is inserted in one of the
orientations specified in fwInsertOrientation, the Service Provider will print on the back side of
the media. If the media item is inserted in a different orientation to those specified in
fwInsertOrientation then printing may occur on the front side, upside down or both.

typedef struct _wfs_ipm_print_size
 {
 WORD wRows;
 WORD wCols;
 } WFSIPMPRINTSIZE, *LPWFSIPMPRINTSIZE;
wRows
Specifies the maximum number of rows of text that the device can print on the back of a
media item. This value is one for single line printers.

wCols
Specifies the maximum number of characters that can be printed on a row.

bStamp
Specifies whether the device has stamping capabilities. If the media item is inserted in one of the
orientations specified in fwInsertOrientation, the Service Provider will stamp on the front side of
the media. If the media item is inserted in a different orientation to those specified in
fwInsertOrientation then stamping may occur on the back, upside down or both.

bRescan
Specifies whether the device has the capability to either physically rescan media items after they
have been inserted into the device or is able to generate any image supported by the device during
the WFS_CMD_IPM_READ_IMAGE command (regardless of the images requested during the
WFS_CMD_IPM_MEDIA_IN command). If TRUE then the item can be rescanned or the images
can be generated using the parameters passed in the WFS_CMD_IPM_READ_IMAGE
command. If FALSE then all images required (various color, file format, bit depth) must be
gathered during execution of the WFS_CMD_IPM_MEDIA_IN command.

bPresentControl
Specifies how the presenting of media items is controlled during the
WFS_CMD_IPM_MEDIA_IN_END and WFS_CMD_IPM_MEDIA_IN_ROLLBACK
commands. If set to TRUE the presenting is controlled implicitly by the Service Provider. If set to
FALSE the presenting must be controlled explicitly by the application using the
WFS_CMD_IPM_PRESENT_MEDIA command. This field applies to all positions.

bApplicationRefuse
Specifies if the Service Provider supports the WFS_CMD_IPM_MEDIA_IN command mode
where the application decides to accept or refuse each media item that has successfully been
accepted by the device. If this value is TRUE then the Service Provider supports this mode. If this
value is FALSE then the Service Provider does not support this mode (or the device does not have
a stacker).

fwRetractLocation
Specifies the locations to which the media can be retracted using the
WFS_CMD_IPM_RETRACT_MEDIA command, as a combination of the following flags (zero
if retract is not supported):

Value Meaning
WFS_IPM_CTRLRETRACTTOBIN Retract the media to a retract bin.
WFS_IPM_CTRLRETRACTTOTRANSPORT Retract the media to the transport.
WFS_IPM_CTRLRETRACTTOSTACKER Retract the media to the stacker.
WFS_IPM_CTRLRETRACTTOREBUNCHER Retract the media to the re-buncher.

fwResetControl
Specifies the manner in which the media can be handled on WFS_CMD_IPM_RESET, as a
combination of the following flags:

Value Meaning
WFS_IPM_RESETEJECT Eject the media.
WFS_IPM_RESETRETRACTTOBIN Retract the media to retract bin.
WFS_IPM_RESETRETRACTTOTRANSPORT Retract the media to the transport.
WFS_IPM_RESETRETRACTTOREBUNCHER

Retract the media to the re-buncher.

CWA 16926-77:2020 (E)

24

bRetractCountsItems
This field only applies to retract media bins. It specifies whether the bin reports the number of
items retracted into the bin or just the number of retract operations. If TRUE then ulCount and
ulMediaInCount include the number of media items retracted and the ulMaximumItems value
defines when the threshold event is generated. If FALSE then ulCount and ulMediaInCount do
not contain the number of media items retracted but ulRetractOperations reports the number of
retract operations. In this case the ulMaximumRetractOperations defines when the threshold event
will be generated.

fwImageType
Specifies the image format supported by this device, as a combination of following flags (zero if
not supported):

Value Meaning
WFS_IPM_IMAGETIF The device can return scanned images in

TIFF 6.0 format.
WFS_IPM_IMAGEWMF The device can return scanned images in

WMF (Windows Metafile) format.
WFS_IPM_IMAGEBMP The device can return scanned images in

windows BMP format.
WFS_IPM_IMAGEJPG The device can return scanned images in

JPG format.

fwFrontImageColorFormat
Specifies the front image color formats supported by this device, as a combination of following
flags (zero if not supported):

Value Meaning
WFS_IPM_IMAGECOLORBINARY The device can return scanned images in

binary.
WFS_IPM_IMAGECOLORGRAYSCALE The device can return scanned images in

gray scale.
WFS_IPM_IMAGECOLORFULL The device can return scanned images in full

color.

fwBackImageColorFormat
Specifies the back image color formats supported by this device, as a combination of following
flags (zero if not supported):

Value Meaning
WFS_IPM_IMAGECOLORBINARY The device can return scanned images in

binary.
WFS_IPM_IMAGECOLORGRAYSCALE The device can return scanned images in

gray scale.
WFS_IPM_IMAGECOLORFULL The device can return scanned images in full

color.

fwFrontScanColor
Specifies the front image scan colors supported by this device and individually controllable by the
application. Scan colors are used to enhance the scanning results on colored scan media. This
value is specified as a combination of the following flags (zero if selection of scan colors is not
supported):

Value Meaning
WFS_IPM_SCANCOLORRED The device can return images scanned with

red light.
WFS_IPM_SCANCOLORGREEN The device can return images scanned with

green light.
WFS_IPM_SCANCOLORBLUE The device can return images scanned with

blue light.
WFS_IPM_SCANCOLORYELLOW The device can return images scanned with

yellow light.
WFS_IPM_SCANCOLORWHITE The device can return images scanned with

white light.

CWA 16926-77:2020 (E)

25

wDefaultFrontScanColor
Specifies the default front image color format used by this device (i.e. when not explicitly set), as
one of the following values:

Value Meaning
WFS_IPM_SCANCOLORRED The default color is red light.
WFS_IPM_SCANCOLORGREEN The default color is green light.
WFS_IPM_SCANCOLORBLUE The default color is blue light.
WFS_IPM_SCANCOLORYELLOW The default color is yellow light.
WFS_IPM_SCANCOLORWHITE The default color is white light.

fwBackScanColor
Specifies the back image scan colors supported by this device and individually controllable by the
application. Scan colors are used to enhance the scanning results on colored scan media. This
value is specified as a combination of the following flags (zero if selection of scan colors is not
supported):

Value Meaning
WFS_IPM_SCANCOLORRED The device can return images scanned with

red light.
WFS_IPM_SCANCOLORGREEN The device can return images scanned with

green light.
WFS_IPM_SCANCOLORBLUE The device can return images scanned with

blue light.
WFS_IPM_SCANCOLORYELLOW The device can return images scanned with

yellow light.
WFS_IPM_SCANCOLORWHITE The device can return images scanned with

white light.

wDefaultBackScanColor
Specifies the default front image color format used by this device (i.e. when not explicitly set), as
one of the following values:

Value Meaning
WFS_IPM_SCANCOLORRED The default color is red light.
WFS_IPM_SCANCOLORGREEN The default color is green light.
WFS_IPM_SCANCOLORBLUE The default color is blue light.
WFS_IPM_SCANCOLORYELLOW The default color is yellow light.
WFS_IPM_SCANCOLORWHITE The default color is white light.

fwCodelineFormat
Specifies the code line formats supported by this device, as a combination of following flags (zero
if not supported):

Value Meaning
WFS_IPM_CODELINECMC7 The device can read MICR CMC7 code

lines.
WFS_IPM_CODELINEE13B The device can read MICR E13B code lines.
WFS_IPM_CODELINEOCR The device can read code lines using Optical

Character Recognition. The default or pre-
configured OCR font will be used.

WFS_IPM_CODELINEOCRA The device can read code lines using Optical
Character Recognition font A. The ASCII
codes will conform to Figure E1 in ANSI
X3.17-1981.

WFS_IPM_CODELINEOCRB The device can read code lines using Optical
Character Recognition font B. The ASCII
codes will conform to Figure C2 in ANSI
X3.49-1975.

fwDataSource
Specifies the reading/imaging capabilities supported by this device, as a combination of the
following flags (zero if not supported):

CWA 16926-77:2020 (E)

26

Value Meaning
WFS_IPM_IMAGEFRONT The device can scan the front image of the

document.
WFS_IPM_IMAGEBACK The device can scan the back image of the

document.
WFS_IPM_CODELINE The device can recognize the code line.

fwInsertOrientation
Specifies the media item insertion orientations supported by the Service Provider such that
hardware features such as MICR reading, endorsing and stamping will be aligned with the correct
edges and sides of the media item. Devices may still return code lines and images even if one of
these orientations is not used during media insertion. If the media items are inserted in one of the
orientations defined in this capability then any printing or stamping will be on the correct side of
the media item. If the media is inserted in a different orientation then any printing or stamping
may be on the wrong side, upside down or both. This value is reported based on the customer’s
perspective. This value is a combination of the following flags:

Value Meaning
WFS_IPM_INSCODELINERIGHT The media item should be inserted short

edge first with the code line to the right.
WFS_IPM_INSCODELINELEFT The media item should be inserted short

edge first with the code line to the left.
WFS_IPM_INSCODELINEBOTTOM The media item should be inserted long edge

first with the code line to the bottom.
WFS_IPM_INSCODELINETOP The media item should be inserted long edge

first with the code line to the top.
WFS_IPM_INSFACEUP The media item should be inserted with the

front of the media item facing up.
WFS_IPM_INSFACEDOWN The media item should be inserted with the

front of the media item facing down.

lppPositions
Pointer to a NULL-terminated array of pointers to WFSIPMPOSCAPS structures. There is one
structure for each of the three logical position types.

lppPositions [WFS_IPM_POSINPUT]
Points to a WFSIPMPOSCAPS structure that specifies the capabilities of the input position. This
pointer must not be NULL.

lppPositions [WFS_IPM_POSOUTPUT]
Points to a WFSIPMPOSCAPS structure that specifies the capabilities of the output position. This
pointer must not be NULL.

lppPositions [WFS_IPM_POSREFUSED]
Points to a WFSIPMPOSCAPS structure that specifies the capabilities of the refused position.
This pointer must not be NULL.

typedef struct _wfs_ipm_pos_caps
 {
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwRetractAreas;
 } WFSIPMPOSCAPS, *LPWFSIPMPOSCAPS;

bItemsTakenSensor
Specifies whether or not the described position can detect when items at the exit position are
taken by the user. If set to TRUE the Service Provider generates an accompanying
WFS_SRVE_IPM_MEDIATAKEN event. If set to FALSE this event is not generated. This
field relates to output and refused positions, so will always be set to FALSE for input
positions.

bItemsInsertedSensor
Specifies whether the described position has the ability to detect when items have been
inserted by the user. If set to TRUE the Service Provider generates an accompanying
WFS_SRVE_IPM_MEDIAINSERTED event. If set to FALSE this event is not generated.
This field relates to all input positions, so will always be set to FALSE for output and refuse
positions.

CWA 16926-77:2020 (E)

27

fwRetractAreas
Specifies the areas to which items may be retracted from this position. This field will be set to
a combination of the following flags:

Value Meaning
WFS_IPM_CTRLRETRACTTOBIN Can retract items in this position to a

retract bin.
WFS_IPM_CTRLRETRACTTOTRANSPORT Can retract items in this position to the

transport.
WFS_IPM_CTRLRETRACTTOSTACKER Can retract items in this position to the

stacker.
WFS_IPM_CTRLRETRACTTOREBUNCHER Can retract items in this position to the

re-buncher.

dwGuidLights [...]
Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_IPM_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the
capability to show directional movement representing “entry” and “exit”. The “entry” state gives
the impression of leading a user to place media into the device. The “exit” state gives the
impression of ejection from a device to a user and would be used for retrieving media from the
device.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B), colors (type C) and directions (type D) that the guidance light
indicator is capable of handling. If the guidance light indicator only supports one color then no
value of type C is returned. If the guidance light indicator does not support direction then no value
of type D is returned. A value of WFS_IPM_GUIDANCE_NOT_AVAILABLE indicates that the
device has no guidance light indicator or the device controls the light directly with no application
control possible.

Value Meaning Type
WFS_IPM_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.
WFS_IPM_GUIDANCE_OFF The light can be off. B
WFS_IPM_GUIDANCE_SLOW_FLASH The light can blink slowly. B
WFS_IPM_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.
WFS_IPM_GUIDANCE_QUICK_FLASH The light can blink quickly. B
WFS_IPM_GUIDANCE_CONTINUOUS The light can be continuous B

(steady).
WFS_IPM_GUIDANCE_RED The light can be red. C
WFS_IPM_GUIDANCE_GREEN The light can be green. C
WFS_IPM_GUIDANCE_YELLOW The light can be yellow. C
WFS_IPM_GUIDANCE_BLUE The light can be blue. C
WFS_IPM_GUIDANCE_CYAN The light can be cyan. C
WFS_IPM_GUIDANCE_MAGENTA The light can be magenta. C
WFS_IPM_GUIDANCE_WHITE The light can be white. C
WFS_IPM_GUIDANCE_ENTRY The light can be in the entry state. D
WFS_IPM_GUIDANCE_EXIT The light can be in the exit state. D

dwGuidLights [WFS_IPM_GUIDANCE_MEDIAIN]
Specifies whether the guidance light indicator on the bunch media in position is available.

dwGuidLights [WFS_IPM_GUIDANCE_MEDIAOUT]
Specifies whether the guidance light indicator on the bunch media out position is available.

dwGuidLights [WFS_IPM_GUIDANCE_MEDIAREFUSED]
Specifies whether the guidance light indicator on the bunch media refused position is available.

CWA 16926-77:2020 (E)

28

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

bImageAfterEndorse
Specifies whether the device can generate an image after text is printed on the media item. If
TRUE then the generation of the image can be specified using the
WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT command. If FALSE, this functionality is not
available. This capability applies to media items whose destination is a media bin; the
fwReturnedItemsProcessing capability indicates whether this functionality is supported for media
items that are to be returned to the customer.

fwReturnedItemsProcessing
Specifies the processing that this device supports for media items that are identified to be returned
to the customer using the WFS_CMD_IPM_SET_DESTINATION command, as a combination
of the following flags (zero if none are supported):

Value Meaning
WFS_IPM_RETITEMENDORSE This device can endorse a media item to be

returned to the customer; the endorsement is
specified using the
WFS_CMD_IPM_PRINT_TEXT command.

WFS_IPM_RETITEMENDORSEIMAGE This device can generate an image of a
media item to be returned to the customer
after it has been endorsed; the image is
generated using the
WFS_CMD_IPM_GET_IMAGE_AFTER_-
PRINT command.

wMixedMode
Specifies whether the device supports accepting and processing items other than the types defined
in the IPM specification. If the device does not support Mixed Media processing this field will be
WFS_IPM_MIXEDMEDIANOTSUPP. Otherwise this field will be set to the following value:

Value Meaning
WFS_IPM_CIMMIXEDMEDIA Mixed Media transactions are supported

using the CIM and IPM interfaces.

bMixedDepositAndRollback
Specifies whether the device can deposit one type of media and rollback the other in the same
Mixed Media transaction. Where bMixedDepositAndRollback is TRUE the Service Provider can
accept WFS_CMD_CIM_CASH_IN_END and WFS_CMD_IPM_MEDIA_IN_ROLLBACK or
WFS_CMD_CIM_CASH_IN_ROLLBACK and WFS_CMD_IPM_MEDIA_IN_END to
complete the current transaction. This value can only be TRUE where wMixedMode ==
WFS_IPM_CIMMIXEDMEDIA. When bMixedDepositAndRollback is FALSE applications must
either deposit or return ALL items to complete a transaction. Where Mixed Media transactions are
not supported bMixedDepositAndRollback is FALSE.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

lpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

CWA 16926-77:2020 (E)

29

lpPrintSizeFront
Pointer to a WFSIPMPRINTSIZE structure representing the front side of the check, NULL if
device has no front printing capabilities. If the media item is inserted in one of the orientations
specified in fwInsertOrientation, the Service Provider will print on the front side of the media. If
the media item is inserted in a different orientation to those specified in fwInsertOrientation then
printing may occur on the back side, upside down or both.

typedef struct _wfs_ipm_print_size
 {
 WORD wRows;
 WORD wCols;
 } WFSIPMPRINTSIZE, *LPWFSIPMPRINTSIZE;

wRows
Specifies the maximum number of rows of text that the device can be print on the front of a
media item. This value is one for single line printers.

wCols
Specifies the maximum number of characters that can be printed on a row.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra field may
not be device or vendor-independent.

CWA 16926-77:2020 (E)

30

4.3 WFS_INF_IPM_CODELINE_MAPPING

Description This command is used to retrieve the byte code mapping for the special banking symbols defined
for image processing (e.g. check processing). This mapping must be reported as there is no
standard for the fonts defined below.

Input Param LPWFSIPMCODELINEMAPPING lpCodelineMapping;
typedef struct _wfs_ipm_codeline_mapping
 {
 WORD wCodelineFormat;
 } WFSIPMCODELINEMAPPING, *LPWFSIPMCODELINEMAPPING;

wCodelineFormat
Specifies the code line format that the mapping for the special characters is required for. This field
can be one of the following values:

Value Meaning
WFS_IPM_CODELINECMC7 Report the CMC7 mapping.
WFS_IPM_CODELINEE13B Report the E13B mapping.

Output Param LPWFSIPMCODELINEMAPPINGOUT lpCodelineMappingOut;
typedef struct _wfs_ipm_codeline_mapping_out
 {
 WORD wCodelineFormat;
 LPWFSIPMXDATA lpxCharMapping;
 } WFSIPMCODELINEMAPPINGOUT, *LPWFSIPMCODELINEMAPPINGOUT;

wCodelineFormat
Specifies the code line format that is being reported. This field can be one of the following values:

Value Meaning
WFS_IPM_CODELINECMC7 Report the CMC7 mapping.
WFS_IPM_CODELINEE13B Report the E13B mapping.

lpxCharMapping
Defines the mapping of the font specific symbols to byte values. These byte values are used to
represent the font specific characters when the code line is read. The font specific meaning of
each index is defined in the following tables:

E13B

Index 0 1 2 3 4

Symbol that
byte value
represents

 N/A

Meaning Transit Amount On Us Dash Reject /
Unreadable

CMC7

Index 0 1 2 3 4 5

Symbol N/A

Meaning S1 -
Internal

S2 -
Terminator

S3 -
Amount

S4 -
Unused

S5 -
Routing

Reject /
Unreadable

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments For code lines defined in the OCR-A font then the ASCII codes will conform to Figure E1 in
ANSI X3.17-1981. For code lines defined in the OCR-B font then the ASCII codes will conform
to Figure C2 in ANSI X3.49-1975. In both these cases unrecognized characters will be reported as
the REJECT code, 0x1A.

CWA 16926-77:2020 (E)

31

4.4 WFS_INF_IPM_MEDIA_BIN_INFO

Description This command is used to obtain information about the status and contents of the media bins that
can be used by IPM commands. This command does not report bins that can only be used by the
other interface on a compound device.

Input Param None.

Output Param LPWFSIPMMEDIABININFO lpMediaBinInfo;
typedef struct _wfs_ipm_media_bin_info
 {
 USHORT usCount;
 LPWFSIPMMEDIABIN *lppMediaBin;
 } WFSIPMMEDIABININFO, *LPWFSIPMMEDIABININFO;

usCount
Number of WFSIPMMEDIABIN structures returned in lppMediaBin.

lppMediaBin
Pointer to an array of pointers to WFSIPMMEDIABIN structures.

typedef struct _wfs_ipm_media_bin
 {
 USHORT usBinNumber;
 LPSTR lpstrPositionName;
 WORD fwType;
 WORD wMediaType;
 LPSTR lpstrBinID;
 ULONG ulMediaInCount;
 ULONG ulCount;
 ULONG ulRetractOperations;
 BOOL bHardwareSensors;
 ULONG ulMaximumItems;
 ULONG ulMaximumRetractOperations;
 USHORT usStatus;
 LPSTR lpszExtra;
 } WFSIPMMEDIABIN, *LPWFSIPMMEDIABIN;

usBinNumber
Index number of the media bin structure. Each structure has a unique number starting with a
value of one (1) for the first structure, and incrementing by one for each subsequent structure.

lpstrPositionName
The physical position name where the bin is inserted.

fwType
Specifies the type of media bin as one or more of the following flags:

Value Meaning
WFS_IPM_TYPEMEDIAIN Media bin. This type of bin can be

specified as a destination for media
items.

WFS_IPM_TYPERETRACT Retract bin. This type of bin can be
specified as a destination for the
WFS_CMD_IPM_RETRACT_MEDIA
command.

wMediaType
Specifies the type of media the media bin takes. This value is specified as one of the following
values:

Value Meaning
WFS_IPM_MEDIATYPIPM The media bin takes media items via the

IPM device class only.
WFS_IPM_MEDIATYPCOMPOUND The media bin takes media from the IPM

device class and from another device
class (e.g. CIM).

CWA 16926-77:2020 (E)

32

lpstrBinID
An application defined Media Bin Identifier.

ulMediaInCount
Count of items that have entered the media bin as a result of operations on the IPM interface.
This counter is incremented whenever media enters the media bin for any reason as a result of
an operation initiated through the IPM interface. This value is persistent. On a retract-only bin,
if the device cannot count media during a retract operation this value will be zero. In the case
of Mixed Media processing this count does not include items associated with the CIM
interface.

ulCount
Total number of media in the media bin (including items that may have been added via a
compound device interface). If the bin is a shared bin with a compound device interface then
this value may not be the same as the value of ulMediaInCount. On a retract-only bin, if the
device cannot count media during a retract operation this value will be zero.

ulRetractOperations
The number of retract operations via commands WFS_CMD_IPM_RETRACT_MEDIA and
WFS_CMD_IPM_RESET and error recovery where media is moved to the bin. This value is
persistent.

bHardwareSensors
A capability that specifies whether or not the threshold event,
WFS_USRE_IPM_MEDIABINTHRESHOLD (WFS_IPM_STATMBHIGH), can be
generated based on hardware sensors in the device. If this value is TRUE then threshold events
may be generated based on hardware sensors. If applications want the threshold event to be
based on the hardware sensors then the threshold limits, ulMaximumItems and
ulMaximumRetractOperations, must be set to zero. If they are not set to zero then the
hardware sensors are ignored. This field is deprecated. The value for bHardwareSensors is
reported using the WFS_INF_IPM_MEDIA_BIN_CAPABILITIES command.

ulMaximumItems
When ulCount reaches this value the threshold event
WFS_USRE_IPM_MEDIABINTHRESHOLD (WFS_IPM_STATMBHIGH) will be
generated.

ulMaximumRetractOperations
When ulRetractOperations reaches this value the threshold event
WFS_USRE_IPM_MEDIABINTHRESHOLD (WFS_IPM_STATMBHIGH) will be
generated. This value is zero if the bin is not a retract bin (i.e. does not contain the
WFS_IPM_TYPERETRACT value in the fwType field).

usStatus
Describes the status of the media bin as one of the following values:

Value Meaning
WFS_IPM_STATMBOK The media bin is in a good state. Where

WFSIPMMEDIABINCAPS.bItemSensor
s = TRUE this value also means the bin
contains at least 1 item.

WFS_IPM_STATMBFULL The media bin is full.
WFS_IPM_STATMBHIGH The media bin is almost full (threshold).
WFS_IPM_STATMBINOP The media bin is inoperative.
WFS_IPM_STATMBMISSING The media bin is missing.
WFS_IPM_STATMBUNKNOWN The media bin is unknown.
WFS_IPM_STATMBEMPTY The media bin is in a good state and is

empty. This is only reported where
WFSIPMMEDIABINCAPS.bItemSensor
s = TRUE.

CWA 16926-77:2020 (E)

33

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments In the case where the media bin allows both deposit and retract operations but cannot count the
number of media items retracted, then the threshold event will be generated when either
ulRetractOperations or ulCount reaches its associated threshold value. Since these counts are
unrelated but the media items are being placed in the same bin the threshold event is very
inaccurate and should be disabled in favor of hardware sensors.

CWA 16926-77:2020 (E)

34

4.5 WFS_INF_IPM_TRANSACTION_STATUS

Description This command is used to request the status of the current or last media-in transaction as well as
current status values outside a transaction. A media-in transaction consists of one or more
WFS_CMD_IPM_MEDIA_IN commands. A media-in transaction is initiated by the
WFS_CMD_IPM_MEDIA_IN command and remains active until the transaction is either
confirmed through the WFS_CMD_IPM_MEDIA_IN_END command, or cancelled by the
WFS_CMD_IPM_MEDIA_IN_ROLLBACK, the WFS_CMD_IPM_RETRACT_MEDIA or the
WFS_CMD_IPM_RESET command. Multiple calls to the WFS_CMD_IPM_MEDIA_IN
command can be made while a transaction is active to obtain additional items from the customer.
The following values returned by this command can change after the media-in transaction has
ended if items are later moved in the device:

WFSIPMTRANSSTATUS.usMediaOnStacker
WFSIPMTRANSSTATUS.lpszExtra
WFSIPMMEDIASTATUS.wMediaLocation
WFSIPMMEDIASTATUS.usBinNumber
WFSIPMMEDIASTATUS.wCustomerAccess

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSIPMSTATUS.wMixedMode == WFS_IPM_CIMMIXEDMEDIA), on completion, all
members of the WFSIPMTRANSSTATUS structure refer to both IPM and CIM items. The
exceptions being usTotalItems and lppMediaInfo as these members represent IPM items only.

Input Param None.

Output Param LPWFSIPMTRANSSTATUS lpTransStatus;
typedef struct _wfs_ipm_trans_status
 {
 WORD wMediaInTransaction;
 USHORT usMediaOnStacker;
 USHORT usLastMediaInTotal;
 USHORT usLastMediaAddedToStacker;
 USHORT usTotalItems;
 USHORT usTotalItemsRefused;
 USHORT usTotalBunchesRefused;
 LPWFSIPMMEDIASTATUS *lppMediaInfo;
 LPSTR lpszExtra;
 } WFSIPMTRANSSTATUS, *LPWFSIPMTRANSSTATUS;

wMediaInTransaction
Status of the media-in transaction. This value is specified as one of the following values:

Value Meaning
WFS_IPM_MITOK The media-in transaction completed

successfully.
WFS_IPM_MITACTIVE There is a media-in transaction active.
WFS_IPM_MITROLLBACK The media-in transaction was successfully

rolled back.
WFS_IPM_MITROLLBACKAFTERDEPOSIT The media-in transaction was successfully

rolled back after some items had been
deposited to a bin. This value only applies to
devices without a stacker.

WFS_IPM_MITRETRACT The media-in transaction ended with the
items being successfully retracted.

WFS_IPM_MITFAILURE The media-in transaction failed as the result
of a device failure.

WFS_IPM_MITUNKNOWN The state of the media-in transaction is
unknown.

WFS_IPM_MITRESET The media-in transaction ended as the result
of a WFS_CMD_IPM_RESET or
WFS_CMD_CIM_RESET command.

CWA 16926-77:2020 (E)

35

usMediaOnStacker
Contains the total number of media items currently on the stacker or
WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown. This count only applies to devices
with stackers. This value can change outside of a media-in transaction as the media moves within
the device.

usLastMediaInTotal
Contains the number of media items processed by the last WFS_CMD_IPM_MEDIA_IN
command, or WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown. This count is not
modified for bunches of items which are refused as a single entity. This count only applies to
devices with stackers and is persistent.

usLastMediaAddedToStacker
Contains the number of media items on the stacker successfully accepted by the last
WFS_CMD_IPM_MEDIA_IN command, or WFS_IPM_MEDIANUMBERUNKNOWN if it is
unknown. This count only applies to devices with stackers and is persistent.

The number of media items refused during the last command can be determined by
usLastMediaInTotal - usLastMediaAddedToStacker. This is only possible if these values contain
known values, and would not include bunches of items refused as a single entity.

usTotalItems
The total number of items that have been allocated a media ID during the whole of the current
transaction (if a transaction is active) or last transaction (if no transaction is active). This count
does not include refused items and CIM items, is WFS_IPM_MEDIANUMBERUNKNOWN if it
is unknown, and is persistent.

usTotalItemsRefused
Contains the total number of refused items during the execution of the whole transaction. This
count does not include bunches of items which are refused as a single entity without being
processed as single items, is WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown, and is
persistent.

usTotalBunchesRefused
Contains the total number of refused bunches of items that were not processed as single items, is
WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown, and is persistent.

lppMediaInfo
Pointer to a NULL-terminated array of pointers to WFSIPMMEDIASTATUS structures. This
array contains details of the media items processed during the current or last transaction
(depending on the value of wMediaInTransaction). The array contains one element for every item
that has been allocated a media ID (i.e. IPM items that have been reported to the application). If
there are no media items then lppMediaInfo is NULL. The WFSIPMIMAGEDATA structure is
described in the WFS_CMD_IPM_READ_IMAGE command section. The media info is available
until a new transaction is started with the WFS_CMD_IPM_MEDIA_IN command. The media
location information may be updated after a transaction is completed, e.g. if media that was
presented to the customer is subsequently retracted. The media info is persistent.

typedef struct _wfs_ipm_mediastatus
 {
 USHORT usMediaID;
 WORD wMediaLocation;
 USHORT usBinNumber;
 ULONG ulCodelineDataLength;
 LPBYTE lpbCodelineData;
 WORD wMagneticReadIndicator;
 LPWFSIPMIMAGEDATA *lppImage;
 WORD fwInsertOrientation;
 LPWFSIPMMEDIASIZE lpMediaSize;
 WORD wMediaValidity;
 WORD wCustomerAccess;
 } WFSIPMMEDIASTATUS, *LPWFSIPMMEDIASTATUS;

usMediaID
Specifies the sequence number (starting from 1) of the media item.

CWA 16926-77:2020 (E)

36

wMediaLocation
Specifies the location of the media item. This value can change outside of a media-in
transaction as the media moves within the device. This value is specified as one of the
following values:

Value Meaning
WFS_IPM_LOCATION_DEVICE The media item is inside the device in

some position other than a bin.
WFS_IPM_LOCATION_BIN The media item is in a bin. The bin

number is defined by usBinNumber.
WFS_IPM_LOCATION_CUSTOMER The media item has been returned to the

customer.
WFS_IPM_LOCATION_UNKNOWN The media item location is unknown.

usBinNumber
If wMediaLocation is WFS_IPM_LOCATION_BIN then this field contains the bin number
where the media was stored. This value can change outside of a media-in transaction as the
media moves within the device

ulCodelineDataLengh
Count of bytes of the following lpbCodelineData.

lpbCodelineData
Points to the code line data. lpbCodelineData contains characters in the ASCII range. If the
code line was read using the OCR-A font then the ASCII codes will conform to Figure E1 in
ANSI X3.17-1981. If the code line was read using the OCR-B font then the ASCII codes will
conform to Figure C2 in ANSI X3.49-1975. In both these cases unrecognized characters will
be reported as the REJECT code, 0x1A. The E13B and CMC7 fonts use the ASCII equivalents
for the standard characters and use the byte values as reported by the
WFS_INF_IPM_CODELINE_MAPPING command for the symbols that are unique to MICR
fonts.

wMagneticReadIndicator
Specifies the type of technology used to read a MICR code line. This value is specified as one
of the following values:

Value Meaning
WFS_IPM_MRI_MICR The MICR code line was read using

MICR technology and MICR characters
were present.

WFS_IPM_MRI_NOT_MICR The MICR code line was NOT read
using MICR technology.

WFS_IPM_MRI_NO_MICR The MICR code line was read using
MICR technology and no magnetic
characters were read.

WFS_IPM_MRI_UNKNOWN It is unknown how the MICR code line
was read.

WFS_IPM_MRI_NOTMICRFORMAT The code line is not a MICR format code
line.

WFS_IPM_MRI_NOT_READ No code line was read.

lppImage
Pointer to a NULL-terminated array of pointers to WFSIPMIMAGEDATA structures. If there
is no image data then lppImage will be set to NULL. If the Service Provider has determined
the orientation of the media (i.e. fwInsertOrientation is not set to
WFS_IPM_INSUNKNOWN), then all images returned are in the standard orientation and the
images will match the image source requested by the application. This means that images will
be returned with the code line at the bottom, and the image of the front and rear of the media
item will be returned in the structures associated with the WFS_IPM_IMAGEFRONT and
WFS_IPM_IMAGEBACK image sources respectively.

fwInsertOrientation
This value reports how the media item was actually inserted into the input position (from the
customer's perspective). This value is either WFS_IPM_INSUNKNOWN or a combination of
the following flags consisting of one of type A and one of type B.

CWA 16926-77:2020 (E)

37

Value Meaning Type
WFS_IPM_INSUNKNOWN The orientation of the inserted N/A

media is unknown.
WFS_IPM_INSCODELINERIGHT The code line is to the right. A
WFS_IPM_INSCODELINELEFT The code line is to the left. A
WFS_IPM_INSCODELINEBOTTOM The code line is to the bottom. A
WFS_IPM_INSCODELINETOP The code line is to the top. A
WFS_IPM_INSFACEUP The front of the media (the side B

with the code line) is facing up.
WFS_IPM_INSFACEDOWN The front of the media (the side B

with the code line) is facing down.

lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the media item.
lpMediaSize is NULL if the device does not support media size measurement.

typedef struct _wfs_ipm_media_size
 {
 ULONG ulSizeX;
 ULONG ulSizeY;
 } WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;

ulSizeX
Specifies the length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the length of the short edge of the media in millimeters, or zero if unknown.

wMediaValidity
Media items may have special security features which can be detected by the device. This field
specifies whether the media item is suspect or valid, allowing the application the choice in
how to further process a media item that could not be confirmed as being valid. This value is
specified as one of the following values:

Value Meaning
WFS_IPM_ITEMOK The media item is valid.
WFS_IPM_ITEMSUSPECT The validity of the media item is suspect.
WFS_IPM_ITEMUNKNOWN The validity of the media item is

unknown.
WFS_IPM_ITEMNOVALIDATION No specific security features were

evaluated.

wCustomerAccess
Specifies if the media item has been in customer access since it was first deposited, e.g. it has
been retracted from a position with customer access. This value can change outside of a
media-in transaction as the media moves within the device. This value is specified as one of
the following values:

Value Meaning
WFS_IPM_ACCESSUNKNOWN It is not known if the media item has

been in a position with customer access.
WFS_IPM_ACCESSCUSTOMER The media item has been in a position

with customer access.
WFS_IPM_ACCESSNONE The media item has not been in a position

with customer access.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters. This value can change outside of a media-in transaction as the media moves within the
device.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-77:2020 (E)

38

4.6 WFS_INF_IPM_MEDIA_BIN_CAPABILITIES
Description This command is used to retrieve information on bin capabilities. It does not provide information

on status or counters of media bins.

This command can be seen as an extension to the WFS_INF_IPM_MEDIA_BIN_INFO
command as it will always result in the same contents with regard to usNumber and the media bin
information.

Input Param None.
Output Param LPWFSIPMBINCAPS lpMediaBinCaps;

typedef struct _wfs_ipm_bin_caps
 {
 USHORT usCount;
 LPWFSIPMMEDIABINCAPS *lppMediaBinCaps;
 } WFSIPMBINCAPS, *LPWFSIPMBINCAPS;
usCount
Number of WFSIPMMEDIABINCAPS structures returned in lppMediaBinCap.

lppMediaBinCap
Pointer to an array of pointers to WFSIPMMEDIABINCAPS structures.

typedef struct _wfs_ipm_media_bin_caps
 {
 USHORT usBinNumber;
 LPSTR lpstrPositionName;
 BOOL bHardwareSensors;
 BOOL bItemSensors;
 LPSTR lpszExtra;
 ULONG ulMaximum;
 } WFSIPMMEDIABINCAPS, *LPWFSIPMMEDIABINCAPS;

usBinNumber
Index number of the media bin structure. Each structure has a unique number starting with a
value of one (1) for the first structure, and incrementing by one for each subsequent structure.

lpstrPositionName
The physical position name where the bin is inserted.

bHardwareSensors
A capability that specifies whether or not the threshold event,
WFS_USRE_IPM_MEDIABINTHRESHOLD (WFS_IPM_STATMBHIGH), can be
generated based on hardware sensors in the device. If this value is TRUE then threshold events
may be generated based on hardware sensors. If applications want the threshold event to be
based on the hardware sensors then the threshold limits,
WFSIPMMEDIABIN.ulMaximumItems and
WFSIPMMEDIABIN.ulMaximumRetractOperations, must be set to zero. If they are not set to
zero then the hardware sensors are ignored.

bItemSensors
A capability that specifies whether or not the threshold event,
WFS_USRE_IPM_MEDIABINTHRESHOLD (WFS_IPM_STATMBEMPTY), can be
generated based on hardware sensors in the device. If this value is TRUE then threshold events
can be generated and WFSIPMMEDIABIN.usStatus can report
WFS_IPM_STATMBEMPTY.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

ulMaximum
The maximum number of items the media bin can hold. This is only for informational
purposes. No threshold event will be generated when this value is reached. This value is
persistent.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.
Comments None.

CWA 16926-77:2020 (E)

39

5. Execute Commands

5.1 WFS_CMD_IPM_MEDIA_IN

Description This command accepts media into the device from the input position.

A media-in transaction consists of one or more WFS_CMD_IPM_MEDIA_IN commands. A
media-in transaction is initiated by the first WFS_CMD_IPM_MEDIA_IN command and remains
active until the transaction is either confirmed through the WFS_CMD_IPM_MEDIA_IN_END
command, or cancelled by the WFS_CMD_IPM_MEDIA_IN_ROLLBACK, the
WFS_CMD_IPM_RETRACT_MEDIA or the WFS_CMD_IPM_RESET command. Multiple
calls to the WFS_CMD_IPM_MEDIA_IN command can be made while a transaction is active to
obtain additional items from the customer. If a media-in transaction is active (i.e. the transaction
status is WFS_IPM_MITACTIVE) when a WFS_CMD_IPM_MEDIA_IN command is
successfully cancelled, or the command times out then the transaction remains active.

When the command is executed, if there is no media in the input slot then the device is enabled
for media entry and the WFS_EXEE_IPM_NOMEDIA event is generated when the device is
ready to accept media. When the customer inserts the media a
WFS_EXEE_IPM_MEDIAINSERTED event is generated and media processing begins. If media
is already present at the input slot then a WFS_EXEE_IPM_MEDIAINSERTED event is
generated and media processing begins immediately.

The WFS_EXEE_IPM_MEDIADATA event delivers the code line and all requested image data
during execution of this command. One event is generated for each media item scanned by this
command. The WFS_EXEE_IPM_MEDIADATA event is not generated for refused media items.

A failure during processing a single media item does not mean that the command has failed even
if some or all of the media are refused by the media reader. In this case the command will return
WFS_SUCCESS and one or more WFS_EXEE_IPM_MEDIAREFUSED events will be sent to
report the reasons why the items have been refused.

Refused items are not presented back to the customer with this command. The
WFS_EXEE_IPM_MEDIAREFUSED event indicates whether or not media must be returned to
the customer before further media movement commands can be executed. If the
WFS_EXEE_IPM_MEDIAREFUSED event indicates that the media must be returned then the
application must use the WFS_CMD_IPM_PRESENT_MEDIA command to return the refused
items. If the event does not indicate that the application must return the media items then the
application can still elect to return the media items using the
WFS_CMD_IPM_PRESENT_MEDIA command or instead allow the refused items to be
returned during the WFS_CMD_IPM_MEDIA_IN_END or
WFS_CMD_IPM_MEDIA_IN_ROLLBACK commands.

If there is no stacker on the device or bApplicationRefuse is TRUE then just one of the media
items inserted are processed by this command, and therefore the command completes as soon as
the last image for the first item is produced or when the first item is automatically refused. If there
is a stacker on the device then the command completes when the last image for the last item is
produced or when the last item is refused.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSIPMSTATUS.wMixedMode == WFS_IPM_CIMMIXEDMEDIA) the Service Provider will
not perform any operation unless the WFS_CMD_CIM_CASH_IN command is called or has
already been called on the CIM interface. On completion, the members of the WFSIPMMEDIAIN
structure refer to IPM and CIM items. In Mixed Media mode application refusal is not supported.

Input Param LPWFSIPMMEDIAINREQUEST lpMediaInRequest;
typedef struct _wfs_ipm_media_in_request
 {
 WORD wCodelineFormat;
 LPWFSIPMIMAGEREQUEST *lppImage;
 USHORT usMaxMediaOnStacker;
 BOOL bApplicationRefuse;
 } WFSIPMMEDIAINREQUEST, *LPWFSIPMMEDIAINREQUEST;

CWA 16926-77:2020 (E)

40

wCodelineFormat
Specifies the code line format, as one of following values (if zero no code line data is required):

Value Meaning
WFS_IPM_CODELINECMC7 Read CMC7 code line.
WFS_IPM_CODELINEE13B Read E13B code line.
WFS_IPM_CODELINEOCR Read code line using OCR. The default or

pre-configured OCR font will be used.
WFS_IPM_CODELINEOCRA Read code line using OCR font A.
WFS_IPM_CODELINEOCRB Read code line using OCR font B.

lppImage
Pointer to a NULL-terminated array of pointers to WFSIPMIMAGEREQUEST structures. The
array contains one pointer to a WFSIPMIMAGEREQUEST structure for every image that should
be read for each media item. If lppImage is NULL no images are required.

typedef struct _wfs_ipm_image_request
 {
 WORD wImageSource;
 WORD wImageType;
 WORD wImageColorFormat;
 WORD wImageScanColor;
 LPSTR lpszImagePath;
 } WFSIPMIMAGEREQUEST, *LPWFSIPMIMAGEREQUEST;

wImageSource
Specifies the source as one of the following values:

Value Meaning
WFS_IPM_IMAGEFRONT The returned image is for the front of the

media item.
WFS_IPM_IMAGEBACK The returned image is for the back of the

media item.

wImageType
Specifies the format of the image returned by this command as one of the following values:

Value Meaning
WFS_IPM_IMAGETIF The returned image is in TIFF 6.0

format. The output file name will have
the .tif extension appended to the
filename.

WFS_IPM_IMAGEWMF The returned image is in WMF
(Windows Metafile) format. The output
file name will have the .wmf extension
appended to the filename.

WFS_IPM_IMAGEBMP The returned image is in Windows BMP
format. The output file name will have
the .bmp extension appended to the
filename.

WFS_IPM_IMAGEJPG The returned image is in JPG format. The
output file name will have the .jpg
extension appended to the filename.

wImageColorFormat
Specifies the color format of the requested image as one of the following values:

Value Meaning
WFS_IPM_IMAGECOLORBINARY The scanned images has to be returned in

binary (image contains two colors,
usually the colors black and white).

WFS_IPM_IMAGECOLORGRAYSCALE The scanned images has to be returned in
gray scale (image contains multiple gray
colors).

WFS_IPM_IMAGECOLORFULL The scanned images has to be returned in
full color (image contains colors like red,
green, blue etc.).

CWA 16926-77:2020 (E)

41

wImageScanColor
Selects the color that should be used to scan the image. The value is specified as one of the
following values:

Value Meaning
WFS_IPM_SCANCOLORDEFAULT Select the default color for the side of the

item being scanned.
WFS_IPM_SCANCOLORRED Select the red scan color.
WFS_IPM_SCANCOLORGREEN Select the green scan color.
WFS_IPM_SCANCOLORBLUE Select the blue scan color.
WFS_IPM_SCANCOLORYELLOW Select the yellow scan color.
WFS_IPM_SCANCOLORWHITE Select the white scan color.

lpszImagePath
Specifies the full path name of the folder where the image will be stored, e.g. “C:\TEMP”. The
actual file name for the image produced will be vendor specific. The name used is reported in
the event containing the item data for each media item. The Service Provider may reuse file
names from the start of each media-in transaction, so applications must manage the file
lifetime as required. If NULL is provided for this field then the command will be rejected with
the WFS_ERR_INVALID_DATA error. If the folder does not exist or cannot be accessed by
the Service Provider then the command will be rejected with the
WFS_ERR_IPM_FILEIOERROR error. This value is terminated with a single null character
and cannot contain UNICODE characters.

usMaxMediaOnStacker
Maximum number of media items allowed on the stacker during the media-in transaction. This
value is used to limit the total number of media items on the stacker. When this limit is reached all
further media items will be refused and a WFS_EXEE_IPM_MEDIAREFUSED event will be
generated reporting WFS_IPM_REFUSED_STACKERFULL. This value cannot exceed the
value reported in the WFSIPMCAPS.usMaxMediaOnStacker field of the Capabilities or the
Service Provider will return a WFS_ERR_INVALID_DATA error. If this value is zero then the
maximum number of items allowed on the stacker reported in the
WFSIPMCAPS.usMaxMediaOnStacker field of the Capabilities will be used. This value must be
the same during all calls to the WFM_CMD_IPM_MEDIA_IN command within a single media-in
transaction or the Service Provider will return a WFS_ERR_INVALID_DATA error. This value
is ignored on devices without stackers.

bApplicationRefuse
Specifies if the application wants to make the decision to accept or refuse each media item that
has successfully been accepted by the device. If this value is TRUE then the application must
decide to accept or refuse each item. The application must use the
WFS_CMD_IPM_ACCEPT_ITEM and WFS_CMD_IPM_GET_NEXT_ITEM commands in a
sequential manner to process the bunch of media inserted during the
WFS_CMD_IPM_MEDIA_IN command. If this value is FALSE then any decision on whether an
item should be refused is left to the device/Service Provider. This value must have the same value
within all calls to WFS_CMD_IPM_MEDIA_IN within a transaction. This value must be FALSE
when the bApplicationRefuse capability is FALSE. This value must be FALSE when
wMixedMode status is WFS_IPM_CIMMIXEDMEDIA.

Output Param LPWFSIPMMEDIAIN lpMediaIn;
typedef struct _wfs_ipm_media_in
 {
 USHORT usMediaOnStacker;
 USHORT usLastMedia;
 USHORT usLastMediaOnStacker;
 WORD wMediaFeeder;
 } WFSIPMMEDIAIN, *LPWFSIPMMEDIAIN;

usMediaOnStacker
Contains the total number of media items on the stacker (including usLastMediaOnStacker), or
WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown. This count only applies to devices
with stackers.

CWA 16926-77:2020 (E)

42

usLastMedia
Contains the number of media items processed by this instance of the command execution, or
WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown. This count only applies to devices
with stackers.

usLastMediaOnStacker
Contains the number of media items on the stacker successfully accepted by this instance of the
command execution, or WFS_IPM_MEDIANUMBERUNKNOWN if it is unknown. This count
only applies to devices with stackers.

The number of refused media items can be determined by usLastMedia - usLastMediaOnStacker.
This is only possible if these values contain known values, and would not be possible if a bunch
of items were refused as a single entity.

wMediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder
waiting for processing via the WFS_CMD_IPM_GET_NEXT_ITEM command. This value can
be one of the following values:

Value Meaning
WFS_IPM_FEEDEREMPTY The media feeder is empty.
WFS_IPM_FEEDERNOTEMPTY The media feeder is not empty.
WFS_IPM_FEEDERNOTSUPP The physical device has no media feeder.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_STACKERFULL The internal stacker is already full or has

already reached the limit specified as an
input parameter. No media items can be
accepted.

WFS_ERR_IPM_SHUTTERFAIL Open or close of the shutter failed due to
manipulation or hardware error.

WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_FILEIOERROR Directory does not exist or file IO error

while storing the image to the hard disk.
WFS_ERR_IPM_REFUSEDITEMS Programming error: refused items that must

be returned via the
WFS_CMD_IPM_PRESENT_MEDIA
command have not been presented (see
bPresentRequired in the
WFS_EXEE_IPM_MEDIAREFUSED event
parameters).

WFS_ERR_IPM_ALLBINSFULL All media bins are unusable due to being
full, missing or inoperative, so no further
items can be accepted.

WFS_ERR_IPM_SCANNERINOP Only images were requested by the
application and these cannot be obtained
because the image scanner is inoperative.

WFS_ERR_IPM_MICRINOP Only MICR data was requested by the
application and it cannot be obtained
because the MICR reader is inoperative.

WFS_ERR_IPM_POSITIONNOTEMPTY One of the input/output/refused positions is
not empty and items cannot be inserted until
the media items in the position are removed.

WFS_ERR_IPM_FEEDERNOTEMPTY The media feeder is not empty. This only
applies when the
WFS_CMD_IPM_GET_NEXT_ITEM
command should be used to retrieve the next
media item.

CWA 16926-77:2020 (E)

43

WFS_ERR_IPM_MEDIAREJECTED The media was rejected before it was fully
inserted within the device. The
WFS_EXEE_IPM_MEDIAREJECTED
event is posted with the details. The device is
still operational.

WFS_ERR_IPM_FEEDERINOPERATIVE The media feeder is inoperative.
WFS_ERR_IPM_MEDIAPRESENT Media from a previous transaction is present

in the device when an attempt to start a new
media-in transaction was made. The media
must be cleared before a new transaction can
be started.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IPM_NOMEDIA No media is present in the input position and

the device is ready for the customer to insert
media.

WFS_EXEE_IPM_MEDIAINSERTED The media has been inserted into the device.
WFS_EXEE_IPM_MEDIAREFUSED The media has been refused.
WFS_EXEE_IPM_MEDIADATA Delivers media data (images and code line)

during the command.
WFS_EXEE_IPM_MEDIAREJECTED The media has been rejected before it was

fully inserted within the device and has been
presented back to the user. It is available at
the input position. When the media is
removed, a
WFS_SRVE_IPM_MEDIATAKEN event
will be generated.

WFS_USRE_IPM_SCANNERTHRESHOLD The imaging scanner is fading or
inoperative. Note that this event is sent only
once, at the point at which the status
changes.

WFS_USRE_IPM_MICRTHRESHOLD The MICR reader performance is degraded
or the reader is inoperative. Note that this
event is sent only once, at the point at which
the status changes.

WFS_SRVE_IPM_SHUTTERSTATUSCHANGED
The shutter status has changed.

Comments None.

CWA 16926-77:2020 (E)

44

5.2 WFS_CMD_IPM_MEDIA_IN_END

Description This command ends a media-in transaction. If media items are on the stacker as a result of a
WFS_CMD_IPM_MEDIA_IN command, the actions predefined through the
WFS_CMD_IPM_PRINT_TEXT (stamping & endorsing) and
WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT commands are executed and then these media
items are moved to the destination defined by the WFS_CMD_IPM_SET_DESTINATION
command. If no action (print, stamp, rescan) has been predefined then the items are just moved to
their destination. If the destination has not been set for a media item then the Service Provider will
decide which bin to put the item into. If no items are in the device the command will complete
with the WFS_ERR_IPM_NOMEDIAPRESENT error and the transaction status will be set to
WFS_IPM_MITOK.

The way in which media is returned to the customer as a result of this command is defined by the
bPresentControl flag reported by the WFS_INF_IPM_CAPABILITIES command. If the
bPresentControl flag is FALSE the application must call the
WFS_CMD_IPM_PRESENT_MEDIA command to present the media items to be returned as a
result of this command. If the bPresentControl flag is TRUE the Service Provider presents any
returned items implicitly and the application does not need to call the
WFS_CMD_IPM_PRESENT_MEDIA command.

If items have been refused and the WFS_IPM_EXEE_MEDIAREFUSED event has indicated that
the items must be returned (i.e. bPresentRequired is TRUE) then these items must be returned
using the WFS_CMD_IPM_PRESENT_MEDIA command before the
WFS_CMD_IPM_MEDIA_IN_END command is issued, otherwise a
WFS_ERR_IPM_REFUSEDITEMS error will be returned. If items have been refused and the
WFS_IPM_EXEE_MEDIAREFUSED event has indicated that the items do not need to be
returned (i.e. bPresentRequired is FALSE) then the WFS_CMD_IPM_MEDIA_IN_END
command causes any refused items which have not yet been returned to the customer (via the
WFS_CMD_IPM_PRESENT_MEDIA command) to be returned along with any items that the
application has selected to return to the customer (via the
WFS_CMD_IPM_SET_DESTINATION command). Even if all items are being deposited,
previously refused items will be returned to the customer by this command. The
WFS_EXEE_IPM_MEDIAPRESENTED event(s) inform the application of the position where
the media has been presented to.

This command completes when all the media items have been put into their specified bins and in
the case where media is returned to the customer as a result of this command, after the last bunch
of media items to be returned to the customer has been presented, but before the last bunch is
taken.

The media-in transaction is ended even if this command does not complete successfully.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSIPMSTATUS.wMixedMode == WFS_IPM_CIMMIXEDMEDIA) the Service Provider will
not perform any operation unless the WFS_CMD_CIM_CASH_IN_END command is called or
has already been called on the CIM interface. Alternatively, if the
WFSIPMCAPS.bMixedDepositAndRollback is TRUE, then the
WFS_CMD_CIM_CASH_IN_ROLLBACK command could be used instead of the
WFS_CMD_CIM_CASH_IN_END command in order to deposit the checks and return the bills.
On completion, the members of the WFSIPMMEDIAINEND structure will refer to IPM items.

Input Param None.

Output Param LPWFSIPMMEDIAINEND lpMediaInEnd;
typedef struct _wfs_ipm_media_in_end
 {
 USHORT usItemsReturned;
 USHORT usItemsRefused;
 USHORT usBunchesRefused;
 LPWFSIPMMEDIABININFO lpMediaBinInfo;
 } WFSIPMMEDIAINEND, *LPWFSIPMMEDIAINEND;

CWA 16926-77:2020 (E)

45

usItemsReturned
Contains the number of media items that were returned to the customer by application selection
through the WFS_CMD_IPM_SET_DESTINATION command during the current transaction.
This does not include items that were refused.

usItemsRefused
Contains the total number of items automatically returned to the customer during the execution of
the whole transaction. This count does not include bunches of items which are refused as a single
entity without being processed as single items.

usBunchesRefused
Contains the total number of refused bunches of items that were automatically returned to the
customer without being processed as single items.

lpMediaBinInfo
Pointer to a WFSIPMMEDIABININFO structure containing a list of media bins that have taken
media during the current transaction. For a description of the WFSIPMMEDIABININFO
structure see the definition of the WFS_INF_IPM_MEDIA_BIN_INFO command. This pointer
must always point to a WFSIPMMEDIABININFO structure, it cannot be NULL. The structure
returned only contains data related to the current transaction, i.e. ulCount and ulMediaInCount
define the number of media in the media bin for this transaction.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_SHUTTERFAIL Open or close of the shutter failed due to

manipulation or hardware error.
WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_MEDIABINERROR A problem occurred with a media bin. A

WFS_EXEE_IPM_MEDIABINERROR
event will be sent with the details.

WFS_ERR_IPM_POSITIONNOTEMPTY One of the input/output/refused positions is
not empty.

WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command
sequence, e.g. this command was executed
when there was no active transaction.

WFS_ERR_IPM_REFUSEDITEMS Programming error: refused items that must
be returned via the
WFS_CMD_IPM_PRESENT_MEDIA
command have not been presented (see
bPresentRequired in the
WFS_EXEE_IPM_MEDIAREFUSED event
parameters).

WFS_ERR_IPM_FEEDERNOTEMPTY The media feeder is not empty.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IPM_MEDIABINTHRESHOLD A threshold condition has occurred in one of

the media bins.
WFS_EXEE_IPM_MEDIADATA Delivers media images scanned after the

item has been printed.
WFS_EXEE_IPM_MEDIABINERROR A problem occurred with a media bin.
WFS_USRE_IPM_TONERTHRESHOLD The toner or ink supply is low or empty or

the printing contrast with ribbon is weak or
not sufficient, operator intervention is
required. Note that this event is sent only
once, at the point at which the supply
becomes low or empty. It is sent with
WFS_IPM_TONERLOW or
WFS_IPM_TONEROUT status.

CWA 16926-77:2020 (E)

46

WFS_USRE_IPM_INKTHRESHOLD The stamp ink supply is low or empty,
operator intervention is required. Note that
this event is sent only once, at the point at
which the supply becomes low or empty. It
is sent with WFS_IPM_INKLOW or
WFS_IPM_INKOUT status.

WFS_USRE_IPM_SCANNERTHRESHOLD The imaging scanner is fading or
inoperative. Note that this event is sent only
once, at the point at which the status
changes.

WFS_SRVE_IPM_MEDIATAKEN The media has been taken by the user.
WFS_EXEE_IPM_MEDIAPRESENTED The media has been presented for removal.
WFS_SRVE_IPM_SHUTTERSTATUSCHANGED

The shutter status has changed.

Comments None.

CWA 16926-77:2020 (E)

47

5.3 WFS_CMD_IPM_MEDIA_IN_ROLLBACK

Description This command ends a media-in transaction. All media that is in the device as a result of
WFS_CMD_IPM_MEDIA_IN commands is returned to the customer. Nothing is printed on the
media. If no items are in the device the command will complete with the
WFS_ERR_IPM_NOMEDIAPRESENT error and the transaction status will be set to
WFS_IPM_MITROLLBACK.

The way in which media is returned to the customer as a result of this command is defined by the
bPresentControl flag reported by the WFS_INF_IPM_CAPABILITIES command. If the
bPresentControl flag is FALSE the application must call the
WFS_CMD_IPM_PRESENT_MEDIA command to present the media items to be returned as a
result of this command. If the bPresentControl flag is TRUE the Service Provider presents any
returned items implicitly and the application does not need to call the
WFS_CMD_IPM_PRESENT_MEDIA command.

If items have been refused and the WFS_IPM_EXEE_MEDIAREFUSED event has indicated that
the items must be returned (i.e. bPresentRequired is TRUE) then these items must be returned
using the WFS_CMD_IPM_PRESENT_MEDIA command before the
WFS_CMD_IPM_MEDIA_IN_ROLLBACK command is issued, otherwise a
WFS_ERR_IPM_REFUSEDITEMS error will be returned. If items have been refused and the
WFS_IPM_EXEE_MEDIAREFUSED event has indicated that the items do not need to be
returned (i.e. bPresentRequired is FALSE) then the WFS_CMD_IPM_MEDIA_IN_ROLLBACK
command causes any refused items which have not yet been returned to the customer (via the
WFS_CMD_IPM_PRESENT_MEDIA command) to be returned along with any items that are
returned as a result of the rollback. The WFS_EXEE_IPM_MEDIAPRESENTED event(s) inform
the application of the position where the media has been presented to.

In the case where media is returned to the customer as a result of this command, this command
completes when the last bunch of media items to be returned to the customer has been presented,
but before the last bunch is taken.

The media-in transaction is ended even if this command does not complete successfully.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSIPMSTATUS.wMixedMode == WFS_IPM_CIMMIXEDMEDIA) the Service Provider will
not perform any operation unless the WFS_CMD_CIM_CASH_IN_ROLLBACK command is
called or has already been called on the CIM interface. Alternatively, if the
WFSIPMCAPS.bMixedDepositAndRollback is TRUE, then the
WFS_CMD_CIM_CASH_IN_END command could be used instead of the
WFS_CMD_CIM_CASH_IN_ROLLBACK command in order to deposit the bills and return the
checks.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence (e.g. no transaction active).
WFS_ERR_IPM_SHUTTERFAIL Open or close of the shutter failed due to

manipulation or hardware error.
WFS_ERR_IPM_POSITIONNOTEMPTY The output position is not empty.
WFS_ERR_IPM_REFUSEDITEMS Programming error: refused items that must

be returned via the
WFS_CMD_IPM_PRESENT_MEDIA
command have not been presented (see
bPresentRequired in the
WFS_EXEE_IPM_MEDIAREFUSED event
parameters).

CWA 16926-77:2020 (E)

48

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IPM_MEDIATAKEN The media has been taken by the user.
WFS_EXEE_IPM_MEDIAPRESENTED The media has been presented for removal.
WFS_SRVE_IPM_SHUTTERSTATUSCHANGED

The shutter status has changed.

Comments None.

CWA 16926-77:2020 (E)

49

5.4 WFS_CMD_IPM_READ_IMAGE

Description On devices where items can be physically rescanned or all the supported image formats can be
generated during this command (regardless of the images requested during the
WFS_CMD_IPM_MEDIA_IN command), i.e. where bRescan capability is TRUE, then this
command is used to obtain additional images and/or reread the code line for media already in the
device.

On devices where bRescan capability is FALSE, this command is used to retrieve an image or
code line that was initially obtained when the media was initially processed (e.g. during the
WFS_CMD_IPM_MEDIA_IN or WFS_CMD_IPM_GET_NEXT_ITEM command). In this case,
all images required must have been previously been requested during the
WFS_CMD_IPM_MEDIA_IN command.

The media has to be inserted using the command WFS_CMD_IPM_MEDIA_IN. If no media is
present the command returns the error code WFS_ERR_IPM_NOMEDIAPRESENT.

Input Param LPWFSIPMREADIMAGEIN lpReadImageIn;
typedef struct _wfs_ipm_read_image_request
 {
 USHORT usMediaID;
 WORD wCodelineFormat;
 LPWFSIPMIMAGEREQUEST *lppImage;
 } WFSIPMREADIMAGEIN, *LPWFSIPMREADIMAGEIN;

usMediaID
Specifies the sequence number of a media item. Valid IDs are 1 to the maximum media ID
assigned within the transaction.

wCodelineFormat
Specifies the code line format, as a one of following values (zero if source not selected):

Value Meaning
WFS_IPM_CODELINECMC7 Read CMC7 code line.
WFS_IPM_CODELINEE13B Read E13B code line.
WFS_IPM_CODELINEOCR Read code line using OCR. The default or

pre-configured OCR font will be used.
WFS_IPM_CODELINEOCRA Read code line using OCR font A.
WFS_IPM_CODELINEOCRB Read code line using OCR font B.

lppImage
Pointer to a NULL-terminated array of pointers to WFSIPMIMAGEREQUEST structures
describing the required images. If NULL no images are required.

typedef struct _wfs_ipm_image_request
 {
 WORD wImageSource;
 WORD wImageType;
 WORD wImageColorFormat;
 WORD wImageScanColor;
 LPSTR lpszImagePath;
 } WFSIPMIMAGEREQUEST, *LPWFSIPMIMAGEREQUEST;

wImageSource
Specifies the source as one of the following values:

Value Meaning
WFS_IPM_IMAGEFRONT The returned image is for the front of the

media item.
WFS_IPM_IMAGEBACK The returned image is for the back of the

media item.

wImageType
Specifies the format of the image returned by this command as one of the following values:

CWA 16926-77:2020 (E)

50

Value Meaning
WFS_IPM_IMAGETIF The returned image is in TIFF 6.0

format. The output file name will have
the .tif extension appended to the
filename.

WFS_IPM_IMAGEWMF The returned image is in WMF
(Windows Metafile) format. The output
file name will have the .wmf extension
appended to the filename.

WFS_IPM_IMAGEBMP The returned image is in Windows BMP
format. The output file name will have
the .bmp extension appended to the
filename.

WFS_IPM_IMAGEJPG The returned image is in JPG format. The
output file name will have the .jpg
extension appended to the filename.

wImageColorFormat
Specifies the color format of the requested image as one of the following values:

Value Meaning
WFS_IPM_IMAGECOLORBINARY The scanned images has to be returned in

binary (image contains two colors,
usually the colors black and white).

WFS_IPM_IMAGECOLORGRAYSCALE The scanned images has to be returned in
gray scale (image contains multiple gray
colors).

WFS_IPM_IMAGECOLORFULL The scanned images has to be returned in
full color (image contains colors like red,
green, blue etc.).

wImageScanColor
Selects the scan color. The value is specified as one of the following values:

Value Meaning
WFS_IPM_SCANCOLORDEFAULT Select the default scan color for the side

of the item being scanned.
WFS_IPM_SCANCOLORRED Select the red scan color.
WFS_IPM_SCANCOLORGREEN Select the green scan color.
WFS_IPM_SCANCOLORBLUE Select the blue scan color.
WFS_IPM_SCANCOLORYELLOW Select the yellow scan color.
WFS_IPM_SCANCOLORWHITE Select the white scan color.

lpszImagePath
Specifies the full path and file name where the image will be stored. If NULL is provided for
this field then the command will be rejected with the WFS_ERR_INVALID_DATA error. If
the folder does not exist or cannot be accessed by the Service Provider then the command will
be rejected with the WFS_ERR_IPM_FILEIOERROR error. This value is terminated with a
single null character and cannot contain UNICODE characters.

Output Param LPWFSIPMMEDIADATA lpMediaData;
typedef struct _wfs_ipm_mediadata
 {
 USHORT usMediaID;
 ULONG ulCodelineDataLength;
 LPBYTE lpbCodelineData;
 WORD wMagneticReadIndicator;
 LPWFSIPMIMAGEDATA *lppImage;
 WORD fwInsertOrientation;
 LPWFSIPMMEDIASIZE lpMediaSize;
 WORD wMediaValidity;
 } WFSIPMMEDIADATA, *LPWFSIPMMEDIADATA;

usMediaID
Specifies the sequence number (starting from 1) of the media item.

CWA 16926-77:2020 (E)

51

ulCodelineDataLength
Count of bytes of the following lpbCodelineData.

lpbCodelineData
Points to the code line data. lpbCodelineData contains characters in the ASCII range. If the code
line was read using the OCR-A font then the ASCII codes will conform to Figure E1 in ANSI
X3.17-1981. If the code line was read using the OCR-B font then the ASCII codes will conform
to Figure C2 in ANSI X3.49-1975. In both these cases unrecognized characters will be reported as
the REJECT code, 0x1A. The E13B and CMC7 fonts use the ASCII equivalents for the standard
characters and use the byte values as reported by the WFS_INF_IPM_CODELINE_MAPPING
command for the symbols that are unique to MICR fonts.

wMagneticReadIndicator
Specifies the type of technology used to read a MICR code line.

Value Meaning
WFS_IPM_MRI_MICR The MICR code line was read using MICR

technology and MICR characters were
present.

WFS_IPM_MRI_NOT_MICR The MICR code line was NOT read using
MICR technology.

WFS_IPM_MRI_NO_MICR The MICR code line was read using MICR
technology and no magnetic characters were
read.

WFS_IPM_MRI_UNKNOWN It is unknown how the MICR code line was
read.

WFS_IPM_MRI_NOTMICRFORMAT The code line is not a MICR format code
line.

WFS_IPM_MRI_NOT_READ No code line was read.

lppImage
Pointer to a NULL-terminated array of pointers to WFSIPMIMAGEDATA structures. If image
data items have not been requested then lppImage will be set to NULL. If the Service Provider
has determined the orientation of the media (i.e. fwInsertOrientation is not set to
WFS_IPM_INSUNKNOWN), then all images returned are in the standard orientation and the
images will match the image source requested by the application. This means that images will be
returned with the code line at the bottom, and the image of the front and rear of the media item
will be returned in the structures associated with the WFS_IPM_IMAGEFRONT and
WFS_IPM_IMAGEBACK image sources respectively.

typedef struct _wfs_ipm_image_data
 {
 WORD wImageSource;
 WORD wImageType;
 WORD wImageColorFormat;
 WORD wImageScanColor;
 WORD wImageStatus;
 LPSTR lpszImageFile;
 } WFSIPMIMAGEDATA, *LPWFSIPMIMAGEDATA;

wImageSource
Specifies the source of the data returned by this item as one of the following values:

Value Meaning
WFS_IPM_IMAGEFRONT The returned image is for the front of the

media item.
WFS_IPM_IMAGEBACK The returned image is for the back of the

media item.

wImageType
Specifies the format of the image returned by this item as one of the following values:

Value Meaning
WFS_IPM_IMAGETIF The returned image is in TIFF 6.0

format.
WFS_IPM_IMAGEWMF The returned image is in WMF

(Windows Metafile) format.

CWA 16926-77:2020 (E)

52

WFS_IPM_IMAGEBMP The returned image is in Windows BMP
format.

WFS_IPM_IMAGEJPG The returned image is in JPG format.

wImageColorFormat
Specifies the color format of the image returned by this item as one of following values:

Value Meaning
WFS_IPM_IMAGECOLORBINARY The scanned image is returned in binary

format (image contains two colors,
usually the colors black and white).

WFS_IPM_IMAGECOLORGRAYSCALE The scanned image is returned in binary
format (image contains multiple gray
colors).

WFS_IPM_IMAGECOLORFULL The scanned image is returned in full
color (image contains colors like red,
green, blue, etc.).

wImageScanColor
Specifies the scan color of the image returned by this item as one of following values:

Value Meaning
WFS_IPM_SCANCOLORRED The image was scanned with red light.
WFS_IPM_SCANCOLORGREEN The image was scanned with green light.
WFS_IPM_SCANCOLORBLUE The image was scanned with blue light.
WFS_IPM_SCANCOLORYELLOW The image was scanned with yellow

light.
WFS_IPM_SCANCOLORWHITE The image was scanned with white light.

wImageStatus
Status of the requested image data. Possible values are:

Value Meaning
WFS_IPM_DATAOK The data is OK.
WFS_IPM_DATASRCNOTSUPP The data source or image attributes are

not supported by the Service Provider,
e.g. scan color not supported.

WFS_IPM_DATASRCMISSING The requested image could not be
obtained.

lpszImageFile
Specifies the full path and file name where the image is stored, e.g.
“C:\Temp\FrontImage.bmp”. This value is terminated with a single null character and cannot
contain UNICODE characters. The path and file name used is selected by the input
parameters.

fwInsertOrientation
This value reports how the media item was actually inserted into the input position (from the
customer's perspective). This value is either WFS_IPM_INSUNKNOWN or a combination of the
following flags consisting of one of type A and one of type B.

Value Meaning Type
WFS_IPM_INSUNKNOWN The orientation of the inserted N/A

media is unknown.
WFS_IPM_INSCODELINERIGHT The code line is to the right. A
WFS_IPM_INSCODELINELEFT The code line is to the left. A
WFS_IPM_INSCODELINEBOTTOM The code line is to the bottom. A
WFS_IPM_INSCODELINETOP The code line is to the top. A
WFS_IPM_INSFACEUP The front of the media (the side B

with the code line) is facing up.
WFS_IPM_INSFACEDOWN The front of the media (the side B

with the code line) is facing down.

lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the media item. lpMediaSize
is NULL if the device does not support media size measurement.

CWA 16926-77:2020 (E)

53

typedef struct _wfs_ipm_media_size
 {
 ULONG ulSizeX;
 ULONG ulSizeY;
 } WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;

ulSizeX
Specifies the length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the length of the short edge of the media in millimeters, or zero if unknown.

wMediaValidity
Media items may have special security features which can be detected by the device. This field
specifies whether the media item is suspect or valid, allowing the application a choice in how to
further process a media item that could not be confirmed as being valid. This value is specified as
one of the following values:

Value Meaning
WFS_IPM_ITEMOK The media item is valid.
WFS_IPM_ITEMSUSPECT The validity of the media item is suspect.
WFS_IPM_ITEMUNKNOWN The validity of the media item is unknown.
WFS_IPM_ITEMNOVALIDATION No specific security features were evaluated.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_FILEIOERROR Directory does not exist or file IO error

while storing the image to the hard disk.
WFS_ERR_IPM_SCANNERINOP Only images were requested by the

application and these cannot be obtained
because the image scanner is inoperative.

WFS_ERR_IPM_MICRINOP Only MICR data was requested by the
application and it cannot be obtained
because the MICR reader is inoperative.

WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.
WFS_ERR_IPM_INVALIDMEDIAID The requested media ID does not exist.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IPM_SCANNERTHRESHOLD The imaging scanner is fading or

inoperative. Note that this event is sent only
once, at the point at which the status
changes.

WFS_USRE_IPM_MICRTHRESHOLD The MICR reader performance is degraded
or the reader is inoperative. Note that this
event is sent only once, at the point at which
the status changes.

Comments None.

CWA 16926-77:2020 (E)

54

5.5 WFS_CMD_IPM_SET_DESTINATION

Description This command is used to predefine the destination of the specified media item. The media is not
moved immediately by this command. On devices with stackers, the command
WFS_CMD_IPM_MEDIA_IN_END transports the corresponding media item to the defined
destination. On devices without stackers, the command WFS_CMD_IPM_ACTION_ITEM
transports the corresponding media item to the defined destination.

The Service Provider will determine which bin to use for any items that have not had a destination
set by the application.

Input Param LPWFSIPMSETDESTINATION lpSetDestination;
typedef struct _wfs_ipm_set_destination
 {
 USHORT usMediaID;
 USHORT usBinNumber;
 } WFSIPMSETDESTINATION, *LPWFSIPMSETDESTINATION;

usMediaID
Specifies the sequence number of a media item. Valid IDs are 1 to the maximum media ID
assigned within the transaction. Zero selects all media on the stacker.

usBinNumber
Specifies the number of a media bin or zero to return the media items to the customer. The media
bins that can accept deposited items can be obtained through the
WFS_INF_IPM_MEDIA_BIN_INFO command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.
WFS_ERR_IPM_INVALIDMEDIAID The requested media ID does not exist.
WFS_ERR_IPM_INVALIDBIN The specified bin cannot take media, either it

is a retract only bin or it is missing.
WFS_ERR_IPM_NOBIN The specified bin does not exist.
WFS_ERR_IPM_MEDIABINFULL The media bin is already full and no media

can be placed in the specified bin.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-77:2020 (E)

55

5.6 WFS_CMD_IPM_PRESENT_MEDIA
Description This command is used to present media items to the customer.

Applications can use this command to return refused items without terminating the media-in
transaction. This allows customers to correct the problem with the media item and reinsert during
execution of a subsequent WFS_CMD_IPM_MEDIA_IN command.

This command is also used to return items after a WFS_CMD_IPM_MEDIA_IN_END or
WFS_CMD_IPM_MEDIA_IN_ROLLBACK command when the bPresentControl flag reported
by the WFS_INF_IPM_CAPABILITIES command is FALSE.

A WFS_EXEE_IPM_MEDIAPRESENTED event is generated when media is presented and a
WFS_SRVE_IPM_MEDIATAKEN event is generated when the media is taken (if the position
has a taken sensor (WFSIPMPOSCAPS.bItemsTakenSensor == TRUE)).

This command completes when the last bunch of media items to be returned to the customer has
been presented, but before the last bunch is taken.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSIPMSTATUS.wMixedMode == WFS_IPM_CIMMIXEDMEDIA) the Service Provider will
not perform any operation unless the WFS_CMD_CIM_PRESENT_MEDIA command is called
or has already been called on the CIM interface.

Input Param LPWFSIPMPRESENTMEDIA lpPresentMedia;
typedef struct _wfs_ipm_present_media
 {
 WORD wPosition;
 } WFSIPMPRESENTMEDIA, *LPWFSIPMPRESENTMEDIA;

wPosition
Specifies the position where items are returned from as one of the following values:

Value Meaning
WFS_IPM_REFUSE_INPUT Items in the input position are presented to

the customer.
WFS_IPM_REFUSE_REFUSED Items in the refused media position are

presented to the customer.
WFS_IPM_REFUSE_REBUNCHER Items in the refuse/return re-buncher are

presented to the customer.

If wPosition is zero then all refused items are returned from all positions in a sequence determined
by the Service Provider. In general the media items in the input position should be returned before
those in any other position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_NOMEDIAPRESENT The control action could not be completed

because there is no media in the position
specified.

WFS_ERR_IPM_SHUTTERFAIL Open of the shutter failed due to
manipulation or hardware error.

WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.
WFS_ERR_IPM_POSITIONNOTEMPTY One of the input/output/refused positions is

not empty.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IPM_MEDIATAKEN The media has been taken by the user.
WFS_EXEE_IPM_MEDIAPRESENTED The media has been presented for removal.
WFS_SRVE_IPM_SHUTTERSTATUSCHANGED

The shutter status has changed.
Comments None.

CWA 16926-77:2020 (E)

56

5.7 WFS_CMD_IPM_RETRACT_MEDIA

Description The media is removed from its present position (media present in device, media entering,
unknown position) and stored in the area specified in the input parameters.

A threshold event is sent if the high or full condition is reached as a result of this command. If the
bin is already full and the command cannot be executed, an error is returned and the media
remains in its present position.

If media items are to be endorsed/stamped during this operation, then the
WFS_CMD_IPM_PRINT_TEXT command must be called prior to the
WFS_CMD_IPM_RETRACT_MEDIA command. Where endorsing is specified, the same text
will be printed on all media items that are detected.

This command ends the current media-in transaction.

If no items are in the device the command will complete with the
WFS_ERR_IPM_NOMEDIAPRESENT error and the transaction status will be set to
WFS_IPM_MITRETRACT.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSIPMSTATUS.wMixedMode == WFS_IPM_CIMMIXEDMEDIA) the Service Provider will
not perform any operation unless the WFS_CMD_CIM_RETRACT command is called or has
already been called on the CIM interface. Where the items are to be retracted to a media bin, the
bin must support a wMediaType of WFS_IPM_MEDIATYPCOMPOUND. On completion, the
members of the WFSIPMRETRACTMEDIAOUT structure will refer to IPM items.

Input Param LPWFSIPMRETRACTMEDIA lpRetractMedia;

If the application does not wish to specify a position it can set lpRetractMedia to NULL. In this
case the Service Provider will determine where to move any items found.
typedef struct _wfs_ipm_retract_media
 {
 WORD wRetractLocation;
 USHORT usBinNumber;
 } WFSIPMRETRACTMEDIA, *LPWFSIPMRETRACTMEDIA;

wRetractLocation
Specifies the location for the retracted media. See the fwRetractLocation capability to determine
the supported locations. This field can take one of the following values:

Value Meaning
WFS_IPM_CTRLRETRACTTOBIN Retract the media to the retract bin specified

in usBinNumber.
WFS_IPM_CTRLRETRACTTOTRANSPORT Retract the media to the transport.
WFS_IPM_CTRLRETRACTTOSTACKER Retract the media to the stacker.
WFS_IPM_CTRLRETRACTTOREBUNCHER Retract the media to the re-buncher.

usBinNumber
If wRetractLocation is WFS_IPM_CTRLRETRACTTOBIN then this field contains the
usBinNumber of the media bin where the media should be retracted to. This media bin must have
a fwType field that includes the WFS_IPM_TYPERETRACT flag. If wRetractLocation is not
WFS_IPM_CTRLRETRACTTOBIN then this field is ignored.

Output Param LPWFSIPMRETRACTMEDIAOUT lpRetractMediaOut;
typedef struct _wfs_ipm_retract_media_out
 {
 USHORT usMedia;
 WORD wRetractLocation;
 USHORT usBinNumber;
 } WFSIPMRETRACTMEDIAOUT, *LPWFSIPMRETRACTMEDIAOUT;

usMedia
Contains the number of media items retracted as a result of this command or
WFS_IPM_MEDIANUMBERUNKNOWN if the number of items is unknown (e.g. device
cannot count retracted items).

CWA 16926-77:2020 (E)

57

wRetractLocation
Contains the location of the retracted items as one of the following values:

Value Meaning
WFS_IPM_CTRLRETRACTTOBIN The media has been retracted to the bin

specified in usBinNumber.
WFS_IPM_CTRLRETRACTTOTRANSPORT The media has been retracted to the

transport.
WFS_IPM_CTRLRETRACTTOSTACKER The media has been retracted to the stacker.
WFS_IPM_CTRLRETRACTTOREBUNCHER The media has been retracted to the re-

buncher.

usBinNumber
The usBinNumber of the media bin where the items were retracted to. This value is zero if the
wRetractLocation is not WFS_IPM_CTRLRETRACTTOBIN.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_NOMEDIAPRESENT No media present on retract. Either there was

no media present (in a position to be
retracted) when the command was called or
the media was removed during the retract.

WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_STACKERFULL The stacker or re-buncher is full.
WFS_ERR_IPM_INVALIDBIN The specified bin cannot retract media.
WFS_ERR_IPM_NOBIN The specified bin does not exist.
WFS_ERR_IPM_MEDIABINERROR A problem occurred with a media bin. A

WFS_EXEE_IPM_MEDIABINERROR
event will be sent with the details.

WFS_ERR_IPM_SHUTTERFAIL Open or close of the shutter failed due to
manipulation or hardware error.

WFS_ERR_IPM_FOREIGNITEMSDETECTED Foreign items have been detected in the
input position.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IPM_MEDIABINTHRESHOLD A threshold condition has occurred in the

retract bin.
WFS_EXEE_IPM_MEDIABINERROR A problem occurred with the retract bin.
WFS_SRVE_IPM_MEDIATAKEN The media has been taken by the user.
WFS_SRVE_IPM_SHUTTERSTATUSCHANGED

The shutter status has changed.

Comments If a retract request is received by a device with no retract capability, the
WFS_ERR_UNSUPP_COMMAND error is returned.

CWA 16926-77:2020 (E)

58

5.8 WFS_CMD_IPM_PRINT_TEXT

Description This command is used to predefine the data that will be printed on a media item and nothing is
printed during execution of this command. On devices with stackers the data is printed when the
bunch is processed through the WFS_CMD_IPM_MEDIA_IN_END command. The request will
not be performed if the bunch is returned with the WFS_CMD_IPM_MEDIA_IN_ROLLBACK
command. On devices without stackers the data is printed when the
WFS_CMD_IPM_ACTION_ITEM command is executed.

The data will be printed on media items that are identified to be returned to the customer using the
WFS_CMD_IPM_SET_DESTINATION command if the fwReturnedItemsProcessing capability
has the WFS_IPM_RETITEMENDORSE flag set.

For devices that can print multiple lines, each line is separated by a Carriage Return (Unicode
0x000D) and Line Feed (Unicode 0x000A) sequence. For devices that can print on both sides, the
front and back print data are separated by a Carriage Return (Unicode 0x000D) and a Form Feed
(Unicode 0x000C) sequence. In this case the data to be printed on the back is the first set of data,
and the front is the second set of data.

The media has to be inserted before this command is called. If no media is present the command
returns the error code WFS_ERR_IPM_NOMEDIAPRESENT.

This command can also be used to endorse/stamp media items detected during both
WFS_CMD_IPM_RETRACT_MEDIA and WFS_CMD_IPM_RESET commands. In this case,
usMediaID must be zero and the same text will be printed on all media items that are detected.
When usMediaID is zero, the data that is specified in the WFS_CMD_IPM_PRINT_TEXT
command will override any text that has previously been specified in any earlier
WFS_CMD_IPM_PRINT_TEXT commands in the current media-in transaction.

Input Param LPWFSIPMPRINTTEXT lpPrintText;
typedef struct _wfs_ipm_print_text
 {
 USHORT usMediaID;
 BOOL bStamp;
 LPWSTR lpszPrintData;
 } WFSIPMPRINTTEXT, *LPWFSIPMPRINTTEXT;

usMediaID
Specifies the sequence number of a media item. Valid IDs are 1 to the maximum media ID
assigned within the transaction. Zero selects all media on the stacker.

bStamp
Specifies whether the media will be stamped.

lpszPrintData
Specifies the UNICODE data that will be printed on the media item that is entered by the
customer. If a UNICODE character is not supported by the device it will be replaced by a vendor
dependent substitution character.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_TONEROUT Toner or ink supply is empty or printing

contrast with ribbon is not sufficient.
WFS_ERR_IPM_INKOUT No stamping possible, stamping ink supply

empty.
WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_INVALIDMEDIAID The requested media ID does not exist.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-77:2020 (E)

59

5.9 WFS_CMD_IPM_SET_MEDIA_BIN_INFO

Description This command is used to adjust information about the status and contents of the media bins
present in the IPM.

This command generates the service event WFS_SRVE_IPM_MEDIABININFOCHANGED to
inform applications that media bin information has been changed.

This command can only be used to change the application defined bin identifier, software
counters and thresholds. All other fields in the input structure will be ignored.

The following fields of the WFSIPMMEDIABIN structure may be updated by this command:

lpstrBinID
ulMediaInCount
ulCount
ulRetractOperations
ulMaximumItems
ulMaximumRetractOperations

The WFS_EXEE_IPM_MEDIABINERROR event can be generated if there is a problem
accessing a media bin on systems that store media bin data on the bin hardware. This event can be
generated when the command fails with a WFS_ERR_IPM_MEDIABINERROR error or
completes with WFS_SUCCESS. WFS_SUCCESS will be reported when some media bin details
are changed successfully but some fail. If no bins are changed the
WFS_ERR_IPM_MEDIABINERROR error will be returned.

Input Param LPWFSIPMMEDIABININFO lpMediaBinInfo;

The WFSIPMMEDIABININFO structure is specified in the documentation of the
WFS_INF_IPM_MEDIA_BIN_INFO command. All media bins must be included not just the
media bins whose values are to be changed.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_INVALIDBIN Invalid media bin.
WFS_ERR_IPM_MEDIABINERROR A problem occurred with the media bins, no

bin settings have been changed. The
WFS_EXEE_IPM_MEDIABINERROR
event will be report the error details.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_IPM_MEDIABINTHRESHOLD A threshold condition has been reached or

cleared in one of the media bins.
WFS_SRVE_IPM_MEDIABININFOCHANGED

A media bin was updated as a result of this
command.

WFS_EXEE_IPM_MEDIABINERROR A problem occurred with a media bin. Note:
This event can be generated even when the
command completes with WFS_SUCCESS.

Comments None.

CWA 16926-77:2020 (E)

60

5.10 WFS_CMD_IPM_RESET
Description This command is used by the application to perform a hardware reset which will attempt to return

the IPM device to a known good state. This command does not override a lock obtained on
another application or service handle.

The device will attempt to retract or eject any items found anywhere within the device. This may
not always be possible because of hardware problems. One or more
WFS_SRVE_IPM_MEDIADETECTED events will inform the application where items were
actually moved to.

If media items are to be endorsed/stamped during this operation, then the
WFS_CMD_IPM_PRINT_TEXT must be called prior to the WFS_CMD_IPM_RESET
command. Where endorsing is specified, the same text will be printed on all media items that are
detected.

This command ends a media-in transaction started by the WFS_CMD_IPM_MEDIA_IN
command.

Mixed Media Mode: Where the items are to be moved to a media bin, the bin must support a
wMediaType of WFS_IPM_MEDIATYPCOMPOUND.

Input Param LPWFSIPMRESET lpReset;

Specifies where media that is found in the device should be moved to. The media destinations
supported by the Service Provider are reported by the WFS_INF_IPM_CAPABILITIES
command. If the application does not wish to specify a position it can set lpReset to NULL. In this
case the Service Provider will determine where to move any items found.
typedef struct _wfs_ipm_reset
 {
 WORD wMediaControl;
 USHORT usBinNumber;
 } WFSIPMRESET, *LPWFSIPMRESET;

wMediaControl
Specifies the manner in which the media should be handled, as one of the following values:

Value Meaning
WFS_IPM_RESETEJECT Eject the media, i.e. return the media to the

customer. Note that more than one position
may be used to return media.

WFS_IPM_RESETRETRACTTOBIN Retract the media to the retract bin as
specified in usBinNumber.

WFS_IPM_RESETRETRACTTOTRANSPORT
Retract the media to the transport.

WFS_IPM_RESETRETRACTTOREBUNCHER
Retract the media to the re-buncher.

usBinNumber
Number of the retract bin the media is retracted to. It is only relevant if wMediaControl equals
WFS_IPM_RESETRETRACTTOBIN. The numbers of available media bins can be obtained
through the usBinNumber and fwType fields returned by the
WFS_INF_IPM_MEDIA_BIN_INFO command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_SHUTTERFAIL Open or close of the shutter failed due to

manipulation or hardware error.
WFS_ERR_IPM_MEDIAJAMMED The media is jammed. Operator intervention

is required.
WFS_ERR_IPM_MEDIABINERROR A problem occurred with a media bin. A

WFS_EXEE_IPM_MEDIABINERROR
event will be sent with the details.

WFS_ERR_IPM_INVALIDBIN The bin cannot accept retracted items.

CWA 16926-77:2020 (E)

61

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IPM_MEDIADETECTED A media is detected in the device during a

reset operation.
WFS_USRE_IPM_MEDIABINTHRESHOLD A threshold condition has occurred in the

retract bin.
WFS_EXEE_IPM_MEDIABINERROR A problem occurred with the retract bin.
WFS_SRVE_IPM_MEDIATAKEN The media has been taken by the user.
WFS_EXEE_IPM_MEDIAPRESENTED The media has been presented for removal.
WFS_SRVE_IPM_SHUTTERSTATUSCHANGED

The shutter status has changed.

Comments None.

CWA 16926-77:2020 (E)

62

5.11 WFS_CMD_IPM_SET_GUIDANCE_LIGHT
Description This command is used to set the status of the IPM guidance lights. This includes defining the flash

rate, the color and a direction. When an application tries to use a color or direction that is not
supported then the Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

Input Param LPWFSIPMSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_ipm_set_guidlight
 {
 WORD wGuidLight;
 DWORD dwCommand;
 } WFSIPMSETGUIDLIGHT, *LPWFSIPMSETGUIDLIGHT;

wGuidLight
Specifies the index of the guidance light to be set as one of the values defined within the
capabilities section.

dwCommand
Specifies the state of the guidance light indicator as WFS_IPM_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
type D. If no value of type C is specified then the default color is used. The Service Provider
determines which color is used as the default color.

Value Meaning Type
WFS_IPM_GUIDANCE_OFF The light indicator is turned off. A
WFS_IPM_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.
WFS_IPM_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B

medium frequency.
WFS_IPM_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.
WFS_IPM_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).
WFS_IPM_GUIDANCE_RED The light indicator color is set C

to red.
WFS_IPM_GUIDANCE_GREEN The light indicator color is set C

to green.
WFS_IPM_GUIDANCE_YELLOW The light indicator color is set C

to yellow.
WFS_IPM_GUIDANCE_BLUE The light indicator color is set C

to blue.
WFS_IPM_GUIDANCE_CYAN The light indicator color is set C

to cyan.
WFS_IPM_GUIDANCE_MAGENTA The light indicator color is set C

to magenta.
WFS_IPM_GUIDANCE_WHITE The light indicator color is set C

to white.
WFS_IPM_GUIDANCE_ENTRY The light indicator is set D

to the entry state.
WFS_IPM_GUIDANCE_EXIT The light indicator is set D

to the exit state.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light
does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

CWA 16926-77:2020 (E)

63

5.12 WFS_CMD_IPM_GET_NEXT_ITEM

Description This command is used to get the next item from the multi-item feed unit and capture the item
data. The data and the format of the data that is generated by this command are defined by the
input parameters of the WFS_CMD_IPM_MEDIA_IN command. The media data is reported via
the WFS_EXEE_IPM_MEDIADATA event.

This command must be supported by all Service Providers where the hardware does not have a
stacker or where the Service Provider supports the application making the accept/refuse decision.
On single item feed devices this command simply returns the error code
WFS_ERR_IPM_NOMEDIAPRESENT. This allows a single application flow to be used on all
devices without a stacker.

Input Param None.

Output Param LPWFSIPMNEXTITEMOUT lpNextItemOut;
typedef struct _wfs_ipm_next_item_out
 {
 WORD wMediaFeeder;
 } WFSIPMNEXTITEMOUT, *LPWFSIPMNEXTITEMOUT;

wMediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder
waiting for processing via the WFS_CMD_IPM_GET_NEXT_ITEM command. This value can
be one of the following values:

Value Meaning
WFS_IPM_FEEDEREMPTY The media feeder is empty.
WFS_IPM_FEEDERNOTEMPTY The media feeder is not empty.
WFS_IPM_FEEDERNOTSUPP The physical device has no media feeder.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_NOMEDIAPRESENT No media is present on the media feeder.
WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_FILEIOERROR Directory does not exist or file IO error

while storing the image to the hard disk.
WFS_ERR_IPM_REFUSEDITEMS Programming error: refused items that must

be returned via the
WFS_CMD_IPM_PRESENT_MEDIA
command have not been presented (see
bPresentRequired in the
WFS_EXEE_IPM_MEDIAREFUSED event
parameters).

WFS_ERR_IPM_POSITIONNOTEMPTY One of the input/output/refused positions is
not empty.

WFS_ERR_IPM_SCANNERINOP Only images were requested by the
application and these cannot be obtained
because the image scanner is inoperative.

WFS_ERR_IPM_MICRINOP Only MICR data was requested by the
application and it cannot be obtained
because the MICR reader is inoperative.

WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command
sequence.

WFS_ERR_IPM_FEEDERINOPERATIVE The media feeder is inoperative.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IPM_MEDIAREFUSED The media has been refused.
WFS_EXEE_IPM_MEDIADATA Delivers media data (images and code line)

during the command.

CWA 16926-77:2020 (E)

64

WFS_USRE_IPM_SCANNERTHRESHOLD The imaging scanner is fading or
inoperative. Note that this event is sent only
once, at the point at which the status
changes.

WFS_USRE_IPM_MICRTHRESHOLD The MICR reader performance is degraded
or the reader is inoperative. Note that this
event is sent only once, at the point at which
the status changes.

Comments None.

CWA 16926-77:2020 (E)

65

5.13 WFS_CMD_IPM_ACTION_ITEM

Description This command is used to cause the predefined actions (move item to destination, stamping,
endorsing, re-imaging) to be executed on the current media item. This command only applies to
devices without stackers and on devices with stackers this command is not supported.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_SHUTTERFAIL Open or close of the shutter failed due to

manipulation or hardware error.
WFS_ERR_IPM_MEDIABINERROR A problem occurred with a media bin. A

WFS_EXEE_IPM_MEDIABINERROR
event will be sent with the details.

WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_TONEROUT Toner or ink supply is empty or printing

contrast with ribbon is not sufficient.
WFS_ERR_IPM_INKOUT No stamping possible, stamping ink supply

empty.
WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.
WFS_ERR_IPM_FILEIOERROR Directory does not exist or file IO error

while storing the image to the hard disk.
WFS_ERR_IPM_SCANNERINOP The scanner is inoperative.
WFS_ERR_IPM_REFUSEDITEMS Programming error: refused items that must

be returned via the
WFS_CMD_IPM_PRESENT_MEDIA
command have not been presented (see
bPresentRequired in the
WFS_EXEE_IPM_MEDIAREFUSED event
parameters).

WFS_ERR_IPM_POSITIONNOTEMPTY One of the input/output/refused positions is
not empty.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IPM_MEDIATAKEN The media has been taken by the user.
WFS_EXEE_IPM_MEDIAPRESENTED The media has been presented for removal.
WFS_EXEE_IPM_MEDIADATA Delivers media images scanned after the

item has been printed.
WFS_USRE_IPM_MEDIABINTHRESHOLD A threshold condition has occurred in one of

the media bins.
WFS_EXEE_IPM_MEDIABINERROR A problem occurred with a media bin.
WFS_USRE_IPM_TONERTHRESHOLD The toner or ink supply is low or empty or

the printing contrast with ribbon is weak or
not sufficient, operator intervention is
required. Note that this event is sent only
once, at the point at which the supply
becomes low or empty. It is sent with
WFS_IPM_TONERLOW or
WFS_IPM_TONEROUT status.

CWA 16926-77:2020 (E)

66

WFS_USRE_IPM_INKTHRESHOLD The stamp ink supply is low or empty,
operator intervention is required. Note that
this event is sent only once, at the point at
which the supply becomes low or empty. It
is sent with WFS_IPM_INKLOW or
WFS_IPM_INKOUT status.

WFS_USRE_IPM_SCANNERTHRESHOLD The imaging scanner is fading or
inoperative. Note that this event is sent only
once, at the point at which the status
changes.

WFS_SRVE_IPM_SHUTTERSTATUSCHANGED
The shutter status has changed.

Comments None.

CWA 16926-77:2020 (E)

67

5.14 WFS_CMD_IPM_EXPEL_MEDIA

Description The media that has been presented to the customer will be expelled out of the device.

This command completes after the bunch has been expelled from the device.

This command does not end the current media-in transaction. The application must deal with any
media remaining within the device, e.g. by using the
WFS_CMD_IPM_MEDIA_IN_ROLLBACK, WFS_CMD_IPM_MEDIA_IN_END, or
WFS_CMD_IPM_RETRACT_MEDIA command.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_NOMEDIAPRESENT No media present to expel.
WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_SHUTTERFAIL Open or close of the shutter failed due to

manipulation or hardware error.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-77:2020 (E)

68

5.15 WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT

Description This command is used to indicate that an image of the item should be generated after the text is
printed on the item. The image is not generated during execution of this command.

On devices with stackers, the image will be scanned during execution of the
WFS_CMD_IPM_MEDIA_IN_END command. On devices without stackers, the image will be
scanned during execution of the WFS_CMD_IPM_ACTION_ITEM command.

Input Param LPWFSIPMGETIMAGEAFTERPRINT lpGetImageAfterPrint;
typedef struct _wfs_ipm_get_image_after_print
 {
 USHORT usMediaID;
 LPWFSIPMIMAGEREQUEST *lppImage;
 } WFSIPMGETIMAGEAFTERPRINT, *LPWFSIPMGETIMAGEAFTERPRINT;

usMediaID
Specifies the sequence number of a media item. Valid IDs are 1 to the maximum media ID
assigned within the transaction. Zero selects all media on the stacker.

lppImage
Pointer to a NULL-terminated array of pointers to WFSIPMIMAGEREQUEST structures
describing the required images.

typedef struct _wfs_ipm_image_request
 {
 WORD wImageSource;
 WORD wImageType;
 WORD wImageColorFormat;
 WORD wImageScanColor;
 LPSTR lpszImagePath;
 } WFSIPMIMAGEREQUEST, *LPWFSIPMIMAGEREQUEST;

wImageSource
Specifies the source as one of the following values:

Value Meaning
WFS_IPM_IMAGEFRONT The returned image is for the front of the

media item.
WFS_IPM_IMAGEBACK The returned image is for the back of the

media item.

wImageType
Specifies the format of the image returned by this command as one of the following values:

Value Meaning
WFS_IPM_IMAGETIF The returned image is in TIFF 6.0

format. The output file name will have
the .tif extension appended to the
filename.

WFS_IPM_IMAGEWMF The returned image is in WMF
(Windows Metafile) format. The output
file name will have the .wmf extension
appended to the filename.

WFS_IPM_IMAGEBMP The returned image is in Windows BMP
format. The output file name will have
the .bmp extension appended to the
filename.

WFS_IPM_IMAGEJPG The returned image is in JPG format. The
output file name will have the .jpg
extension appended to the filename.

wImageColorFormat
Specifies the color format of the requested image as one of the following values:

CWA 16926-77:2020 (E)

69

Value Meaning
WFS_IPM_IMAGECOLORBINARY The scanned images has to be returned in

binary (image contains two colors,
usually the colors black and white).

WFS_IPM_IMAGECOLORGRAYSCALE The scanned images has to be returned in
gray scale (image contains multiple gray
colors).

WFS_IPM_IMAGECOLORFULL The scanned images has to be returned in
full color (image contains colors like red,
green, blue etc.).

wImageScanColor
Selects the image scan color. The value is specified as one of the following values:

Value Meaning
WFS_IPM_SCANCOLORDEFAULT Select the default scan color for the side

of the item being scanned.
WFS_IPM_SCANCOLORRED Select the red scan color.
WFS_IPM_SCANCOLORGREEN Select the green scan color.
WFS_IPM_SCANCOLORBLUE Select the blue scan color.
WFS_IPM_SCANCOLORYELLOW Select the yellow scan color.
WFS_IPM_SCANCOLORWHITE Select the white scan color.

lpszImagePath
Specifies the full path name of the folder where the image will be stored, e.g. “C:\TEMP”. The
actual file name for the image produced will be vendor specific. The name used is reported in
the event containing the image data. The Service Provider may reuse file names from the start
of each media-in transaction, so applications must manage the file lifetime as required. If
NULL is provided for this parameter then the command will be rejected with the
WFS_ERR_INVALID_DATA error. If the folder does not exist or cannot be accessed by the
Service Provider then the command will be rejected with the
WFS_ERR_IPM_FILEIOERROR error.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_FILEIOERROR Directory does not exist or access denied.
WFS_ERR_IPM_SCANNERINOP Image scanner is inoperative so no image

can be produced.
WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.
WFS_ERR_IPM_INVALIDMEDIAID The requested media ID does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-77:2020 (E)

70

5.16 WFS_CMD_IPM_ACCEPT_ITEM

Description This command is used by applications to indicate if the current media item should be accepted or
refused. Applications only use this command when the WFS_CMD_IPM_MEDIA_IN command
is used in the mode where the application can decide if each physically acceptable media item
should be accepted or refused, i.e. the bApplicationRefuse parameter is TRUE.

Input Param LPWFSIPMACCEPTITEM lpAcceptItem;
typedef struct _wfs_ipm_accept_item
 {
 BOOL bAccept;
 } WFSIPMACCEPTITEM, *LPWFSIPMACCEPTITEM;

bAccept
Specifies if the item should be accepted or refused. If this value is TRUE then the item is accepted
and moved to the stacker. If this value is FALSE then the item is moved to the re-buncher/refuse
position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_MEDIAJAMMED The media is jammed.
WFS_ERR_IPM_NOMEDIAPRESENT No media is present in the device.
WFS_ERR_IPM_SEQUENCEINVALID Programming error: invalid command

sequence.
WFS_ERR_IPM_REFUSEDITEMS Programming error: refused items that must

be returned via the
WFS_CMD_IPM_PRESENT_MEDIA
command have not been presented (see
bPresentRequired in the
WFS_EXEE_IPM_MEDIAREFUSED event
parameters).

WFS_ERR_IPM_POSITIONNOTEMPTY One of the input/output/refused positions is
not empty.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-77:2020 (E)

71

5.17 WFS_CMD_IPM_SUPPLY_REPLENISH

Description After the supplies have been replenished, this command is used to indicate that one or more
supplies have been replenished and are expected to be in a healthy state.

Hardware that cannot detect the level of a supply and reports on the supply’s status using metrics
(or some other means), must assume the supply has been fully replenished after this command is
issued. The appropriate threshold event must be broadcast.

Hardware that can detect the level of a supply must update its status based on its sensors, generate
a threshold event if appropriate, and succeed the command even if the supply has not been
replenished. If it has already detected the level and reported the threshold before this command
was issued, the command must succeed and no threshold event is required.

Input Param LPWFSIPMSUPPLYREPLEN lpSupplyReplen;
typedef struct _wfs_ipm_supply_replen
 {
 WORD fwSupplyReplen;
 } WFSIPMSUPPLYREPLEN, *LPWFSIPMSUPPLYREPLEN;

fwSupplyReplen
Specifies the supply that was replenished as a combination of the following flags:

Value Meaning
WFS_IPM_REPLEN_TONER The toner supply was replenished.
WFS_IPM_REPLEN_INK The ink supply was replenished.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IPM_TONERTHRESHOLD This user event is used to specify that the

state of the toner (or ink) supply threshold
has been cleared.

WFS_USRE_IPM_INKTHRESHOLD This user event is used to specify that the
state of the stamping ink supply threshold
has been cleared.

Comments If any one of the specified supplies is not supported by a Service Provider,
WFS_ERR_UNSUPP_DATA should be returned, and no replenishment actions will be taken by
the Service Provider.

CWA 16926-77:2020 (E)

72

5.18 WFS_CMD_IPM_POWER_SAVE_CONTROL

Description This command activates or deactivates the power saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSIPMPOWERSAVECONTROL lpPowerSaveControl;
typedef struct _wfs_ipm_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSIPMPOWERSAVECONTROL, *LPWFSIPMPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power saving mode. The device will be set to the highest
possible power saving mode within this constraint. If usMaxPowerSaveRecoveryTime is set to
zero then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR_IPM_POWERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the
device.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IPM_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-77:2020 (E)

73

5.19 WFS_CMD_IPM_SET_MODE

Description This execute command is used to set the deposit mode for the device and is only applicable for
Mixed Media processing. The deposit mode determines how the device will process non IPM
items that are inserted. The deposit mode applies to all subsequent transactions. The deposit mode
is persistent and is unaffected by a device reset by the WFS_CMD_IPM_RESET command or
reset on another interface. The command will fail with the WFS_ERR_INVALID_DATA error
where an attempt is made to set a mode that is not supported.

Input Param LPWFSIPMSETMODE lpMode;
typedef struct _wfs_ipm_setmode
 {
 WORD wMixedMode;
 } WFSIPMSETMODE, *LPWFSIPMSETMODE;

wMixedMode
Specifies the Mixed Media mode of the device as one of the following values:

Value Meaning
WFS_IPM_MIXEDMEDIANOTACTIVE Mixed Media transactions are deactivated.

This is the default mode.
WFS_IPM_CIMMIXEDMEDIA Mixed Media transactions are activated in

combination with the CIM interface as
defined by the capability wMixedMode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_CASHINACTIVE A cash-in transaction is active on the CIM

interface.
WFS_ERR_IPM_MEDIAINACTIVE An item processing transaction is active.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments The commands WFS_CMD_CIM_SET_MODE and WFS_CMD_IPM_SET_MODE are
equivalent; an application can use either to control the Mixed Media mode. If the requested mode
is already active WFS_CMD_CIM_SET_MODE command returns with WFS_SUCCESS.

CWA 16926-77:2020 (E)

74

5.20 WFS_CMD_IPM_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in
the lpdwSynchronizableCommands parameter of the WFS_INF_IPM_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command other than the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the
WFS_CMD_IPM_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSIPMSYNCHRONIZECOMMAND lpSynchronizeCommand;
typedef struct _wfs_ipm_synchronize_command
 {
 DWORD dwCommand;
 LPVOID lpCmdData;
 } WFSIPMSYNCHRONIZECOMMAND, *LPWFSIPMSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

lpCmdData
Pointer to data or a data structure that represents the parameter that is normally associated with
the command that is specified in dwCommand. For example, if dwCommand is
WFS_CMD_IPM_RETRACT_MEDIA then lpCmdData will point to a
WFSIPMRETRACTMEDIA structure. This parameter can be NULL if no command input
parameter is needed or if this detail is not needed to synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
not result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IPM_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service
Provider.

WFS_ERR_IPM_SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the lpCmdData is not supported
by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

CWA 16926-77:2020 (E)

75

6. Events

6.1 WFS_EXEE_IPM_NOMEDIA

Description This execute event specifies that the physical media must be inserted into the device in order for
the execute command to proceed.

Event Param None.

Comments None.

CWA 16926-77:2020 (E)

76

6.2 WFS_EXEE_IPM_MEDIAINSERTED

Description This execute event specifies that the physical media has been inserted into the device.

Event Param None.

Comments The application may use this event to, for example, remove a message box from the screen telling
the user to insert media.

CWA 16926-77:2020 (E)

77

6.3 WFS_USRE_IPM_MEDIABINTHRESHOLD

Description This user event specifies that a threshold condition has occurred in one of the media bins or the
threshold condition is removed.

Event Param LPWFSIPMMEDIABIN lpMediaBin;

lpMediaBin
Pointer to WFSIPMMEDIABIN structure, describing the media bin on which the threshold
condition occurred. See lpMediaBin->usStatus for the type of condition. For a description of the
WFSIPMMEDIABIN structure, see the definition of the WFS_INF_IPM_MEDIA_BIN_INFO
command.

Comments None.

CWA 16926-77:2020 (E)

78

6.4 WFS_SRVE_IPM_MEDIABININFOCHANGED

Description This service event specifies that a media bin has changed in configuration. A media bin may have
been removed or inserted or a media bin parameter may have changed. This event will also be
posted on successful completion of the following commands from the IPM interface:

WFS_CMD_IPM_SET_MEDIA_BIN_INFO

For Mixed Media processing the event may be posted on successful completion of the following
commands from the CIM interface:

WFS_CMD_CIM_SET_CASH_UNIT_INFO
WFS_CMD_CIM_END_EXCHANGE
WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS

If an application receives this event it should issue a WFS_INF_IPM_MEDIA_BIN_INFO
command to obtain updated media bin information.

Event Param LPWFSIPMMEDIABIN lpMediaBin;

lpMediaBin
Pointer to the changed media bin structure. For a description of the WFSIPMMEDIABIN
structure see the definition of the WFS_INF_IPM_MEDIA_BIN_INFO command.

Comments None.

CWA 16926-77:2020 (E)

79

6.5 WFS_EXEE_IPM_MEDIABINERROR

Description This execute event specifies that a media bin was addressed which caused a problem.

Event Param LPWFSIPMMBERROR lpMediaBinError;
typedef struct _wfs_ipm_mb_error
 {
 WORD wFailure;
 LPWFSIPMMEDIABIN lpMediaBin;
 } WFSIPMMBERROR, *LPWFSIPMMBERROR;

wFailure
Specifies the kind of failure that occurred in the media bin. This value is specified as one of the
following values:

Value Meaning
WFS_IPM_MEDIABINJAMMED Specified media bin is jammed.
WFS_IPM_MEDIABINERROR Specified media bin has malfunctioned.
WFS_IPM_MEDIABINFULL Specified media bin is full.
WFS_IPM_MEDIABINNOTCONF Specified media bin is not configured due to

being removed and/or replaced with a
different media bin.

WFS_IPM_MEDIABININVALID Specified media bin ID is invalid.
WFS_IPM_MEDIABINCONFIG Attempt to change the setting of a self-

configuring media bin.
WFS_IPM_MEDIABINFEEDPROBLEM A problem has been detected with the

feeding module.

lpMediaBin
Pointer to a WFSIPMMEDIABIN structure containing the details of the media bin structure that
caused the problem. For a description of the WFSIPMMEDIABIN structure see the definition of
the WFS_INF_IPM_MEDIA_BIN_INFO command.

Comments None.

CWA 16926-77:2020 (E)

80

6.6 WFS_SRVE_IPM_MEDIATAKEN

Description This service event is sent when the media is taken by the customer.

Event Param LPWFSIPMPOSITION lpPosition;
typedef struct _wfs_ipm_position
 {
 WORD wPosition;
 } WFSIPMPOSITION, *LPWFSIPMPOSITION;

wPosition
Specifies the position where the media has been taken from. This value can be one of the
following values:

Value Meaning
WFS_IPM_POSINPUT Input position.
WFS_IPM_POSOUTPUT Output position.
WFS_IPM_POSREFUSED Refused media item position.

Comments Note that since this event can occur after the completion of a function that includes a media eject,
it is not an execute event.

CWA 16926-77:2020 (E)

81

6.7 WFS_USRE_IPM_TONERTHRESHOLD

Description This user event is used to specify that the state of the toner (or ink) reached a threshold.

Event Param LPWFSIPMTHRESHOLD lpTonerThreshold;
typedef struct _wfs_ipm_threshold
 {
 WORD wThreshold;
 } WFSIPMTHRESHOLD, *LPWFSIPMTHRESHOLD;

wThreshold
Specified as one of the following values:

Value Meaning
WFS_IPM_TONERFULL The toner (or ink) in the device is in a good

state.
WFS_IPM_TONERLOW The toner (or ink) in the device is low.
WFS_IPM_TONEROUT The toner (or ink) in the device is out.

Comments None.

CWA 16926-77:2020 (E)

82

6.8 WFS_USRE_IPM_SCANNERTHRESHOLD

Description This user event is used to specify that the state of the imaging scanner reached a threshold.

Event Param LPWFSIPMSCANNERTHRESHOLD lpScannerThreshold;
typedef struct _wfs_ipm_scanner_threshold
 {
 WORD wScanner;
 WORD wThreshold;
 } WFSIPMSCANNERTHRESHOLD, *LPWFSIPMSCANNERTHRESHOLD;

wScanner
Identifies the scanner where the threshold has been reached, specified as one of the following
values:

Value Meaning
WFS_IPM_FRONTSCANNER Front image scanner.
WFS_IPM_BACKSCANNER Back image scanner.

wThreshold
Specified as one of the following values:

Value Meaning
WFS_IPM_SCANNEROK The imaging scanner is in a good state.
WFS_IPM_SCANNERFADING The imaging scanner performance is

degraded.
WFS_IPM_SCANNERINOP The imaging scanner is inoperative.

Comments None.

CWA 16926-77:2020 (E)

83

6.9 WFS_USRE_IPM_INKTHRESHOLD

Description This user event is used to specify that the state of the stamping ink reached a threshold.

Event Param LPWFSIPMTHRESHOLD lpInkThreshold;
typedef struct _wfs_ipm_threshold
 {
 WORD wThreshold;
 } WFSIPMTHRESHOLD, *LPWFSIPMTHRESHOLD;

wThreshold
Specified as one of the following values:

Value Meaning
WFS_IPM_INKFULL The stamping ink in the device is in a good

state.
WFS_IPM_INKLOW The stamping ink in the device is low.
WFS_IPM_INKOUT The stamping ink in the device is out.

Comments None.

CWA 16926-77:2020 (E)

84

6.10 WFS_SRVE_IPM_MEDIADETECTED

Description This service event is generated when media is detected in the device during a reset operation.

Event Param LPWFSIPMMEDIADETECTED lpMediaDetected;
typedef struct _wfs_ipm_media_detected
 {
 WORD wPosition;
 USHORT usRetractBinNumber;
 } WFSIPMMEDIADETECTED, *LPWFSIPMMEDIADETECTED;

wPosition
Specifies the media position after the reset operation, as one of the following values:

Value Meaning
WFS_IPM_MEDIARETRACTED The media was retracted during the reset

operation.
WFS_IPM_MEDIAPRESENT The media is in the device.
WFS_IPM_MEDIAPOSITION The media is at one or more of the input,

output and refused positions.
WFS_IPM_MEDIAJAMMED The media is jammed in the device.
WFS_IPM_MEDIARETURNED The media has been returned and taken by

the customer.
WFS_IPM_MEDIAUNKNOWN The media is in an unknown position.

usRetractBinNumber
Number of the retract bin the media was retracted to. This number has to be between one and the
number of bins supported by this device. It is only relevant if wPosition equals
WFS_IPM_MEDIARETRACTED.

Comments None.

CWA 16926-77:2020 (E)

85

6.11 WFS_EXEE_IPM_MEDIAPRESENTED

Description This execute event is used to indicate when media has been presented to the customer for
removal.

Event Param LPWFSIPMMEDIAPRESENTED lpMediaPresented;
typedef struct _wfs_ipm_media_presented
 {
 WORD wPosition;
 USHORT usBunchIndex;
 USHORT usTotalBunches;
 } WFSIPMMEDIAPRESENTED, *LPWFSIPMMEDIAPRESENTED;

wPosition
Specifies the position where the media has been presented to. This value can be one of the
following values:

Value Meaning
WFS_IPM_POSINPUT Input position.
WFS_IPM_POSOUTPUT Output position.
WFS_IPM_POSREFUSED Refused media item position.

usBunchIndex
Specifies the index (starting from one) of the presented bunch (one or more items presented as a
bunch).

usTotalBunches
Specifies the total number of bunches to be returned from all positions. The total represents the
number of bunches that will be returned as a result of a single command that presents media. This
value is zero if the total number of bunches is not known.

Comments None.

CWA 16926-77:2020 (E)

86

6.12 WFS_EXEE_IPM_MEDIAREFUSED

Description This execute event is sent when a media item is refused. One event is sent for every media item or
bunch of media items that has been refused.

Event Param LPWFSIPMMEDIAREFUSED lpMediaRefused;
typedef struct _wfs_ipm_media_refused
 {
 WORD wReason;
 WORD wMediaLocation;
 BOOL bPresentRequired;
 LPWFSIPMMEDIASIZE lpMediaSize;
 } WFSIPMMEDIAREFUSED, *LPWFSIPMMEDIAREFUSED;

wReason
Specified as one of the following values:

Value Meaning
WFS_IPM_REFUSED_FOREIGNITEMS Foreign items were detected in the input

position.
WFS_IPM_REFUSED_STACKERFULL The stacker is full or the maximum number

of items that the application wants to be
allowed on the stacker has been reached (see
usMaxMediaOnStacker input parameter in
the WFS_CMD_IPM_MEDIA_IN
command).

WFS_IPM_REFUSED_CODELINEINVALID The code line data was found but was
invalid.

WFS_IPM_REFUSED_INVALIDMEDIA The media item is not a check, and in the
case of Mixed Media processing not a cash
item either.

WFS_IPM_REFUSED_TOOLONG The media item (or bunch of items) long
edge was too long.

WFS_IPM_REFUSED_TOOSHORT The media item (or bunch of items) long
edge was too short.

WFS_IPM_REFUSED_TOOWIDE The media item (or bunch of items) short
edge was too wide.

WFS_IPM_REFUSED_TOONARROW The media item (or bunch of items) short
edge was too narrow.

WFS_IPM_REFUSED_TOOTHICK The media item was too thick.
WFS_IPM_REFUSED_INVALIDORIENTATION

The media item was inserted in an invalid
orientation.

WFS_IPM_REFUSED_DOUBLEDETECT The media items could not be separated.
WFS_IPM_REFUSED_REFUSEPOSFULL There are too many items in the refuse area.

The refused items must be returned to the
customer before any additional media items
can be accepted.

WFS_IPM_REFUSED_RETURNBLOCKED Processing of the items did not take place as
the bunch of items is blocking the return of
other items.

WFS_IPM_REFUSED_INVALIDBUNCH Processing of the items did not take place as
the bunch of items presented is invalid, e.g.
it is too large or was presented incorrectly.

WFS_IPM_REFUSED_OTHERITEM The item was refused for some reason not
covered by the other reasons.

WFS_IPM_REFUSED_OTHERBUNCH The bunch was refused for some reason not
covered by the other reasons.

WFS_IPM_REFUSED_JAMMING The media item is causing a jam.
WFS_IPM_REFUSED_METAL Metal (e.g. staple, paperclip, etc) was

detected in the input position.

CWA 16926-77:2020 (E)

87

wMediaLocation
Specifies where the refused media should be presented to the customer from. It can be one of the
following values:

Value Meaning
WFS_IPM_REFUSE_INPUT The media is presented to the customer by

passing WFS_IPM_REFUSE_INPUT to the
WFS_CMD_IPM_PRESENT_MEDIA
command. The media needs to be presented
before any further input can take place.

WFS_IPM_REFUSE_REFUSED The media is presented to the customer by
passing WFS_IPM_REFUSE_REFUSED to
the WFS_CMD_IPM_PRESENT_MEDIA
command.

WFS_IPM_REFUSE_REBUNCHER The media is presented to the customer by
passing
WFS_IPM_REFUSE_REBUNCHER to the
WFS_CMD_IPM_PRESENT_MEDIA
command.

WFS_IPM_REFUSE_STACKER The media is in the stacker and will be
presented to the customer at the end of the
transaction.

bPresentRequired
This flag indicates if the media needs to be presented to the customer before any additional media
movement commands can be executed. If this value is TRUE then the media must be presented to
the customer via the WFS_CMD_IPM_PRESENT_MEDIA command before further media
movement commands can be executed. If this value is FALSE then the device can continue
without the media being returned to the customer.

lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the refused media (or bunch
of media). lpMediaSize is NULL if the device does not support media size measurement.

typedef struct _wfs_ipm_media_size
 {
 ULONG ulSizeX;
 ULONG ulSizeY;
 } WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;

ulSizeX
Specifies the length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the length of the short edge of the media in millimeters, or zero if unknown.

Comments None.

CWA 16926-77:2020 (E)

88

6.13 WFS_EXEE_IPM_MEDIADATA

Description This execute event returns the code line and all the images requested for each item processed.
This event can be generated during the WFS_CMD_IPM_MEDIA_IN,
WFS_CMD_IPM_MEDIA_IN_END, WFS_CMD_IPM_GET_NEXT_ITEM and
WFS_CMD_IPM_ACTION_ITEM commands. One event is generated for each item processed,
no event is generated for refused items.

Event Param LPWFSIPMMEDIADATA lpMediaData;
typedef struct _wfs_ipm_mediadata
 {
 USHORT usMediaID;
 ULONG ulCodelineDataLength;
 LPBYTE lpbCodelineData;
 WORD wMagneticReadIndicator;
 LPWFSIPMIMAGEDATA *lppImage;
 WORD fwInsertOrientation;
 LPWFSIPMMEDIASIZE lpMediaSize;
 WORD wMediaValidity;
 } WFSIPMMEDIADATA, *LPWFSIPMMEDIADATA;

usMediaID
Specifies the sequence number (starting from 1) of the media item.

ulCodelineDataLength
Number of bytes of the following lpbCodelineData.

lpbCodelineData
Points to the code line data. lpbCodelineData contains characters in the ASCII range. If the code
line was read using the OCR-A font then the ASCII codes will conform to Figure E1 in ANSI
X3.17-1981. If the code line was read using the OCR-B font then the ASCII codes will conform
to Figure C2 in ANSI X3.49-1975. In both these cases unrecognized characters will be reported as
the REJECT code, 0x1A. The E13B and CMC7 fonts use the ASCII equivalents for the standard
characters and use the byte values as reported by the WFS_INF_IPM_CODELINE_MAPPING
command for the symbols that are unique to MICR fonts.

wMagneticReadIndicator
Specifies the type of technology used to read a MICR code line.

Value Meaning
WFS_IPM_MRI_MICR The MICR code line was read using MICR

technology and MICR characters were
present.

WFS_IPM_MRI_NOT_MICR The MICR code line was NOT read using
MICR technology.

WFS_IPM_MRI_NO_MICR The MICR code line was read using MICR
technology and no magnetic characters were
read.

WFS_IPM_MRI_UNKNOWN It is unknown how the MICR code line was
read.

WFS_IPM_MRI_NOTMICRFORMAT The code line is not a MICR format code
line.

WFS_IPM_MRI_NOT_READ No code line was read.

lppImage
Pointer to a NULL-terminated array of pointers to WFSIPMIMAGEDATA structures. If image
data items are not used lppImage will be set to NULL. If the Service Provider has determined the
orientation of the media (i.e. fwInsertOrientation is not set to WFS_IPM_INSUNKNOWN), then
all images returned are in the standard orientation and the images will match the image source
requested by the application. This means that images will be returned with the code line at the
bottom, and the image of the front and rear of the media item will be returned in the structures
associated with the WFS_IPM_IMAGEFRONT and WFS_IPM_IMAGEBACK image sources
respectively.

CWA 16926-77:2020 (E)

89

typedef struct _wfs_ipm_image_data
 {
 WORD wImageSource;
 WORD wImageType;
 WORD wImageColorFormat;
 WORD wImageScanColor;
 WORD wImageStatus;
 LPSTR lpszImageFile;
 } WFSIPMIMAGEDATA, *LPWFSIPMIMAGEDATA;

wImageSource
Specifies the source of the data returned by this item as one of the following values:

Value Meaning
WFS_IPM_IMAGEFRONT The returned image is for the front of the

media item.
WFS_IPM_IMAGEBACK The returned image is for the back of the

media item.

wImageType
Specifies the format of the image returned by this item as one of the following values:

Value Meaning
WFS_IPM_IMAGETIF The returned image is in TIFF 6.0

format.
WFS_IPM_IMAGEWMF The returned image is in WMF

(Windows Metafile) format.
WFS_IPM_IMAGEBMP The returned image is in Windows BMP

format.
WFS_IPM_IMAGEJPG The returned image is in JPG format.

wImageColorFormat
Specifies the color format of the image returned by this item as one of following values:

Value Meaning
WFS_IPM_IMAGECOLORBINARY The scanned image is returned in binary

format (image contains two colors,
usually the colors black and white).

WFS_IPM_IMAGECOLORGRAYSCALE The scanned image is returned in binary
format (image contains multiple gray
colors).

WFS_IPM_IMAGECOLORFULL The scanned image is returned in full
color (image contains colors like red,
green, blue, etc.).

wImageScanColor
Specifies the scan color of the image returned by this item as one of following values:

Value Meaning
WFS_IPM_SCANCOLORRED The image was scanned with red light.
WFS_IPM_SCANCOLORGREEN The image was scanned with green light.
WFS_IPM_SCANCOLORBLUE The image was scanned with blue light.
WFS_IPM_SCANCOLORYELLOW The image was scanned with yellow

light.
WFS_IPM_SCANCOLORWHITE The image was scanned with white light.

wImageStatus
Status of the requested image data. Possible values are:

Value Meaning
WFS_IPM_DATAOK The data is OK.
WFS_IPM_DATASRCNOTSUPP The data source or image attributes are

not supported by the Service Provider,
e.g. scan color not supported.

WFS_IPM_DATASRCMISSING The requested image could not be
obtained.

CWA 16926-77:2020 (E)

90

lpszImageFile
Specifies the full path and file name where the image is stored, e.g.
“C:\Temp\FrontImage.bmp”. Each image requested is stored in a unique file with a unique
name allocated by the Service Provider. The folder location where the file is stored is specified
in the input parameters of the WFS_CMD_IPM_MEDIA_IN command. File names which are
allocated by the Service Provider will be reused in the next transaction. This value is
terminated with a single null character and cannot contain UNICODE characters.

fwInsertOrientation
This value reports how the media item was actually inserted into the input position (from the
customer's perspective). This value is either WFS_IPM_INSUNKNOWN or a combination of the
following flags consisting of one of type A and one of type B.

Value Meaning Type
WFS_IPM_INSUNKNOWN The orientation of the inserted N/A

media is unknown.
WFS_IPM_INSCODELINERIGHT The code line is to the right. A
WFS_IPM_INSCODELINELEFT The code line is to the left. A
WFS_IPM_INSCODELINEBOTTOM The code line is to the bottom. A
WFS_IPM_INSCODELINETOP The code line is to the top. A
WFS_IPM_INSFACEUP The front of the media (the side B

with the code line) is facing up.
WFS_IPM_INSFACEDOWN The front of the media (the side B

with the code line) is facing down.

lpMediaSize
Pointer to a WFSIPMMEDIASIZE structure that specifies the size of the media item. lpMediaSize
is NULL if the device does not support media size measurement.

typedef struct _wfs_ipm_media_size
 {
 ULONG ulSizeX;
 ULONG ulSizeY;
 } WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;

ulSizeX
Specifies the length of the long edge of the media in millimeters, or zero if unknown.

ulSizeY
Specifies the length of the short edge of the media in millimeters, or zero if unknown.

wMediaValidity
Media items may have special security features which can be detected by the device. This field
specifies whether the media item is suspect or valid, allowing the application a choice in how to
further process a media item that could not be confirmed as being valid. This value is specified as
one of the following values:

Value Meaning
WFS_IPM_ITEMOK The media item is valid.
WFS_IPM_ITEMSUSPECT The validity of the media item is suspect.
WFS_IPM_ITEMUNKNOWN The validity of the media item is unknown.
WFS_IPM_ITEMNOVALIDATION No specific security features were evaluated.

Comments None.

CWA 16926-77:2020 (E)

91

6.14 WFS_USRE_IPM_MICRTHRESHOLD

Description This user event is used to specify that the state of the MICR reader reached a threshold.

Event Param LPWFSIPMTHRESHOLD lpMICRThreshold;
typedef struct _wfs_ipm_threshold
 {
 WORD wThreshold;
 } WFSIPMTHRESHOLD, *LPWFSIPMTHRESHOLD;

wThreshold
Specified as one of the following values:

Value Meaning
WFS_IPM_MICROK The MICR reader is in a good state.
WFS_IPM_MICRFADING The MICR reader performance is degraded.
WFS_IPM_MICRINOP The MICR reader is inoperative.

Comments None.

CWA 16926-77:2020 (E)

92

6.15 WFS_EXEE_IPM_MEDIAREJECTED

Description This execute event is generated to report that an attempt to insert media into the device has been
rejected before the media was fully inside the device, i.e. no
WFS_EXEE_IPM_MEDIAINSERTED event has been generated. Rejection of the media will
cause the WFS_CMD_IPM_MEDIA_IN command to complete with a
WFS_ERR_IPM_MEDIAREJECTED error, at which point the media should be removed.

Event Param LPWFSIPMMEDIAREJECTED lpMediaRejected;
typedef struct _wfs_ipm_media_rejected
 {
 WORD wReason;
 } WFSIPMMEDIAREJECTED, *LPWFSIPMMEDIAREJECTED;

wReason
Specified as one of the following values:

Value Meaning
WFS_IPM_REJECT_LONG The rejected media was too long.
WFS_IPM_REJECT_THICK The rejected media was too thick.
WFS_IPM_REJECT_DOUBLE More than one media item was detected (this

value only applies to devices without a
media feeder).

WFS_IPM_REJECT_TRANSPORT The media could not be moved inside the
device.

WFS_IPM_REJECT_SHUTTER The media was rejected due to the shutter
failing to close.

WFS_IPM_REJECT_REMOVED The media was removed (no
WFS_SRVE_IPM_MEDIATAKEN event is
expected).

WFS_IPM_REJECT_METAL Metal (e.g. staple, paperclip, etc) was
detected in the input position.

WFS_IPM_REJECT_FOREIGNITEMS The media was rejected because foreign
items were detected in the input position.

WFS_IPM_REJECT_OTHER The media was rejected due to a reason other
than those listed above.

Comments The application may use this event to, for example, display a message box on the screen
indicating why the media was rejected, and telling the user to remove and reinsert the media.

CWA 16926-77:2020 (E)

93

6.16 WFS_SRVE_IPM_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSIPMDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_ipm_device_position
 {
 WORD wPosition;
 } WFSIPMDEVICEPOSITION, *LPWFSIPMDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_IPM_DEVICEINPOSITION The device is in its normal operating

position.
WFS_IPM_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_IPM_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-77:2020 (E)

94

6.17 WFS_SRVE_IPM_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSIPMPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_ipm_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSIPMPOWERSAVECHANGE, *LPWFSIPMPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode this device
will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-77:2020 (E)

95

6.18 WFS_SRVE_IPM_SHUTTERSTATUSCHANGED

Description Within the limitations of the hardware sensors this service event is generated whenever the status
of a shutter changes. The shutter status can change because of an explicit, implicit or manual
operation depending on how the shutter is operated.

Event Param LPWFSIPMSHUTTERSTATUSCHANGED lpShutterStatusChanged;
typedef struct _wfs_ipm_shutter_status_changed
 {
 WORD fwPosition;
 WORD fwShutter;
 } WFSIPMSHUTTERSTATUSCHANGED, *LPWFSIPMSHUTTERSTATUSCHANGED;

fwPosition
Specifies one of the IPM positions whose shutter status has changed as one of the following
values:

Value Meaning
WFS_IPM_POSINPUT Input position.
WFS_IPM_POSOUTPUT Output position.
WFS_IPM_POSREFUSED Refused media item position.

fwShutter
Specifies the new state of the shutter as one of the following values:

Value Meaning
WFS_IPM_SHTCLOSED The shutter is closed.
WFS_IPM_SHTOPEN The shutter is open.
WFS_IPM_SHTJAMMED The shutter is jammed.
WFS_IPM_SHTUNKNOWN Due to a hardware error or other condition,

the state of the shutter cannot be determined.

Comments None.

CWA 16926-77:2020 (E)

96

7. Command and Event Flows

7.1 Devices with Stacker

7.1.1 Bunch Media Processing (OK flow)
Step Application / Customer XFS IPM Service

1. WFS_CMD_IPM_MEDIA_IN - Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Test and separate media items.
- Send one WFS_EXEE_IPM_MEDIADATA event

for every media item.
- Completion: WFS_CMD_IPM_MEDIA_IN

3. WFS_INF_IPM_TRANSACTION_STATUS - Report media status and positions.
4. If more media is to be inserted: Goto step 1.

Otherwise loop over all accepted media items:
steps 5.-8.

5. If additional images are required then
WFS_CMD_IPM_READ_IMAGE

- Reads data from the selected media item.
- Writes image data to the specified files.
- Completion: WFS_CMD_IPM_READ_IMAGE

6. WFS_CMD_IPM_PRINT_TEXT - Specifies if the item is to be stamped and specifies
the data to print on the selected media item.

- Completion: WFS_CMD_IPM_PRINT_TEXT
7. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media

item.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
8. Continue with individual media item

processing: Goto step 5.

9. WFS_CMD_IPM_MEDIA_IN_END - End processing for the inserted media items.
- Print on the individual media items.
- Transport the individual media items to the

specified destinations.
10. - Completion: WFS_CMD_IPM_MEDIA_IN_END

CWA 16926-77:2020 (E)

97

7.1.2 Bunch Media Processing (Some Media Items Returned)
Step Application / Customer XFS IPM Service

1. WFS_CMD_IPM_MEDIA_IN - Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Test and separate media items.
- Send one WFS_EXEE_IPM_MEDIADATA event

for every media item.
- Completion: WFS_CMD_IPM_MEDIA_IN

3. WFS_INF_IPM_TRANSACTION_STATUS - Report media status and positions.
4. If more media is to be inserted: Goto step 1.

Otherwise loop over all accepted media items:
Repeat steps 5.-8.

5. If additional images are required then
WFS_CMD_IPM_READ_IMAGE

- Reads data from the selected media item.
- Writes image data to the specified files.
- Completion: WFS_CMD_IPM_READ_IMAGE

6. WFS_CMD_IPM_PRINT_TEXT - Specifies if the item is to be stamped and specifies
the data to print on the selected media item.

- Completion: WFS_CMD_IPM_PRINT_TEXT
7. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media item

(bin or output).
- For some media items the output position is

selected.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
8. Continue with individual media item

processing: Goto step 5.

9. WFS_CMD_IPM_MEDIA_IN_END - End processing for the inserted media items.
- Print on the individual media items.
- Transport the individual media items to the

specified destinations.
10. If bPresentControl == TRUE:

- Present the returned media items to the customer.
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTOPEN)
- Event: WFS_EXEE_IPM_MEDIAPRESENTED

11. - Completion: WFS_CMD_IPM_MEDIA_IN_END
12. If bPresentControl == FALSE:

WFS_CMD_IPM_PRESENT_MEDIA
- Present the returned media items to the customer.
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTOPEN)
- Event: WFS_EXEE_IPM_MEDIAPRESENTED
- Completion:

WFS_CMD_IPM_PRESENT_MEDIA
13. Customer takes returned media items. - Event: WFS_SRVE_IPM_MEDIATAKEN

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTCLOSED)

CWA 16926-77:2020 (E)

98

7.1.3 Bunch Media Processing with Errors
Step Application / Customer XFS IPM Service

1. WFS_CMD_IPM_MEDIA_IN - Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Test and separate media items.
- Send one WFS_EXEE_IPM_MEDIADATA event

for every accepted media item.
- Event: WFS_EXEE_IPM_MEDIAREFUSED

(wReason ==
WFS_IPM_REFUSED_FOREIGNITEMS)
if foreign items are detected

- and/or
- Event: WFS_EXEE_IPM_MEDIAREFUSED

(wReason ==
WFS_IPM_REFUSED_STACKERFULL)
if the stacker becomes full

- and/or
- Event: WFS_EXEE_IPM_MEDIAREFUSED

(wReason ==
WFS_IPM_REFUSED_CODELINEINVALID)
if the code line could not be read.

3. - Completion: WFS_CMD_IPM_MEDIA_IN
4. If the application chooses to return refused

items before the end of transaction
WFS_CMD_IPM_PRESENT_MEDIA.
Otherwise continue with step 4. of the OK
flow.

5. For all bunches except for the last bunch
returned to the customer repeat steps 6.-7.
For the last bunch: Goto step 8.

6. - Present the media items to the customer.
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTOPEN)
- Event: WFS_EXEE_IPM_MEDIAPRESENTED

7. Customer takes returned media items. - Event: WFS_SRVE_IPM_MEDIATAKEN
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
8. Present last bunch to customer. - Present the media items to the customer.

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_MEDIAPRESENTED
9. - Completion:

WFS_CMD_IPM_PRESENT_MEDIA
10. Customer takes returned media items. - Event: WFS_SRVE_IPM_MEDIATAKEN

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTCLOSED)

11. Continue with step 4. of the OK flow.

CWA 16926-77:2020 (E)

99

7.1.4 Bunch media processing with Rollback
Step Application / Customer XFS IPM Service
1.-8. See OK flow.

9. WFS_CMD_IPM_MEDIA_IN_ROLLBACK - Without printing, all media items from the stacker
(plus any refused notes not already returned) are
transported to the output position.

10. If bPresentControl == TRUE:
- Present the media items to the customer.
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTOPEN)
- Event: WFS_EXEE_IPM_MEDIAPRESENTED

11. - Completion: WFS_CMD_IPM_ROLLBACK
12. If bPresentControl == FALSE:

WFS_CMD_IPM_PRESENT_MEDIA
- Present the returned media items to the customer.
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTOPEN)
- Event: WFS_EXEE_IPM_MEDIAPRESENTED
- Completion:

WFS_CMD_IPM_PRESENT_MEDIA
13. Customer takes returned media items. - Event: WFS_SRVE_IPM_MEDIATAKEN

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTCLOSED)

CWA 16926-77:2020 (E)

100

7.1.5 Bunch media processing with Retract
Step Application / Customer XFS IPM Service
1.-8. See OK flow.

9. WFS_CMD_IPM_RETRACT_MEDIA - Stops processing of media items.
- Without printing, all media items from the stacker

are transported to the retract cassette.
- Completion:

WFS_CMD_IPM_RETRACT_MEDIA

7.1.6 Bunch Media Processing - Application Refuse Decision (All OK flow)
Step Application / Customer XFS IPM Service

1. WFS_CMD_IPM_MEDIA_IN
(bApplicationRefuse == TRUE)

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Test and separate media item.
- Send one WFS_EXEE_IPM_MEDIADATA event

for first media item.
- Completion: WFS_CMD_IPM_MEDIA_IN

3. Application processes media data and decides to
keep media item.
WFS_CMD_IPM_ACCEPT_ITEM (TRUE) -
keep item

- Move item to stacker.
- Completion: WFS_CMD_IPM_ACCEPT_ITEM

4. WFS_CMD_IPM_GET_NEXT_ITEM - If item successfully read then send one
WFS_EXEE_IPM_MEDIADATA event for next
media item.

- Completion:
WFS_CMD_IPM_GET_NEXT_ITEM

5. If the item was read successfully continue with
step 3. Otherwise if there are no more items then
continue with Step 6.

6. If more media is to be inserted: Goto step 1.
Otherwise loop over all accepted media items:
Repeat steps 7.-9.

7. WFS_CMD_IPM_PRINT_TEXT - Specifies if the item is to be stamped and specifies
the data to print on the selected media item.

- Completion: WFS_CMD_IPM_PRINT_TEXT
8. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media

item.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
9. Continue with individual media item processing:

Goto step 5.

10. WFS_CMD_IPM_MEDIA_IN_END - End processing for the inserted media items.
- Print on the individual media items.
- Transport the individual media items to the

specified destinations.
11. - Completion: WFS_CMD_IPM_MEDIA_IN_END

CWA 16926-77:2020 (E)

101

7.1.7 Bunch Media Processing - Application Refuse Decision (Some items
refused)

Step Application / Customer XFS IPM Service
1. WFS_CMD_IPM_MEDIA_IN

(bApplicationRefuse == TRUE)
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTOPEN)
- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Test and separate media item.
- Send one WFS_EXEE_IPM_MEDIADATA event

for first media item.
- Completion: WFS_CMD_IPM_MEDIA_IN

3. Application processes media data and decides to
keep/or refuse media item
WFS_CMD_IPM_ACCEPT_ITEM
(TRUE/FALSE)

- Move item to stacker or refuse position/re-
buncher.

- Completion: WFS_CMD_IPM_ACCEPT_ITEM

4. WFS_CMD_IPM_GET_NEXT_ITEM - If item successfully read then send one
WFS_EXEE_IPM_MEDIADATA event for next
media item.

- Completion:
WFS_CMD_IPM_GET_NEXT_ITEM

5. If the item was read successfully continue with
step 3. Otherwise if there are no more items
then continue with Step 6.

6. If the application chooses to return refused
items before the end of transaction
WFS_CMD_IPM_PRESENT_MEDIA.
Otherwise continue with Step 13.

7. For all bunches except for the last bunch
returned to the customer repeat steps 8.-9.
For the last bunch: Goto step 10.

8. - Present the media items to the customer.
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTOPEN)
- Event: WFS_EXEE_IPM_MEDIAPRESENTED

9. Customer takes returned media items. - Event: WFS_SRVE_IPM_MEDIATAKEN
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
10. Present last bunch to customer. - Present the media items to the customer.

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_MEDIAPRESENTED
11. - Completion:

WFS_CMD_IPM_PRESENT_MEDIA
12. Customer takes returned media items. - Event: WFS_SRVE_IPM_MEDIATAKEN

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTCLOSED)

13. If more media is to be inserted: Goto step 1.
Otherwise loop over all accepted media items:
Repeat steps 14.-16.

14. WFS_CMD_IPM_PRINT_TEXT - Specifies if the item is to be stamped and specifies
the data to print on the selected media item.

- Completion: WFS_CMD_IPM_PRINT_TEXT
15. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media

item.
- Completion:

CWA 16926-77:2020 (E)

102

WFS_CMD_IPM_SET_DESTINATION
16. Continue with individual media item

processing: Goto step 5.

17. WFS_CMD_IPM_MEDIA_IN_END - End processing for the inserted media items.
- Print on the individual media items.
- Transport the individual media items to the

specified destinations.
18. - Completion: WFS_CMD_IPM_MEDIA_IN_END

CWA 16926-77:2020 (E)

103

7.2 Devices without Stacker

Note that in the following flows that the single and bunch media devices follow the same flow except only one item
is inserted and the WFS_CMD_GET_NEXT_ITEM command always returns reporting that there are no more items
to process.

7.2.1 Bunch Media Processing (OK flow)
Step Application / Customer XFS IPM Service

1. WFS_CMD_IPM_MEDIA_IN - Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Send one WFS_EXEE_IPM_MEDIADATA event

for first media item.
- Completion: WFS_CMD_IPM_MEDIA_IN

3. WFS_INF_IPM_TRANSACTION_STATUS - Report media status and positions.
4. If additional images are required then

WFS_CMD_IPM_READ_IMAGE
- Reads data from the selected media item.
- Writes image data to the specified files.
- Completion: WFS_CMD_IPM_READ_IMAGE

5. WFS_CMD_IPM_PRINT_TEXT - Specifies if the item is to be stamped and specifies
the data to print on the selected media item.

- Completion: WFS_CMD_IPM_PRINT_TEXT
6. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media

item.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
7. WFS_CMD_IPM_ACTION_ITEM - Print and deposit item in bin as specified by

application in previous commands.
- Completion: WFS_CMD_IPM_ACTION_ITEM

8. WFS_CMD_IPM_GET_NEXT_ITEM - If item successfully read then send one
WFS_EXEE_IPM_MEDIADATA event for next
media item.

- Completion:
WFS_CMD_IPM_GET_NEXT_ITEM

9. If the item was read successfully continue with
step 3. Otherwise if there are no more items
then continue with Step 10.

10. If more media is to be inserted: Goto step 1.
Otherwise continue with step 11.

11. WFS_CMD_IPM_MEDIA_IN_END - End transaction.
12. - Completion: WFS_CMD_IPM_MEDIA_IN_END

CWA 16926-77:2020 (E)

104

7.2.2 Bunch Media Processing (Some Media Items Returned)
Step Application / Customer XFS IPM Service

1. WFS_CMD_IPM_MEDIA_IN - Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Send one WFS_EXEE_IPM_MEDIADATA event

for first media item.
- Completion: WFS_CMD_IPM_MEDIA_IN

3. WFS_INF_IPM_TRANSACTION_STATUS - Report media status and positions.
4. If additional images are required then

WFS_CMD_IPM_READ_IMAGE
- Reads data from the selected media item.
- Writes image data to the specified files.
- Completion: WFS_CMD_IPM_READ_IMAGE

5. If item is to be kept continue at step 6.
Otherwise continue at step 10.

6. WFS_CMD_IPM_PRINT_TEXT - Specifies if the item is to be stamped and specifies
the data to print on the selected media item.

- Completion: WFS_CMD_IPM_PRINT_TEXT
7. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media

item.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
8. WFS_CMD_IPM_ACTION_ITEM - Print and deposit item in bin as specified by

application in previous commands.
- Completion: WFS_CMD_IPM_ ACTION_ITEM

9. Continue at step 13.
10. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media item

as Return to Customer.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
11. WFS_CMD_IPM_ACTION_ITEM - Present the returned media item to the customer.

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_MEDIAPRESENTED
- Completion: WFS_CMD_IPM_ ACTION_ITEM

12. Customer takes returned item. - WFS_SRVE_IPM_MEDIATAKEN
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
13. WFS_CMD_IPM_GET_NEXT_ITEM - If item successfully read then send one

WFS_EXEE_IPM_MEDIADATA event for next
media item.

- Completion:
WFS_CMD_IPM_GET_NEXT_ITEM

14. If the item was read successfully continue with
step 3. Otherwise if there are no more items
then continue with step 15.

15. If more media is to be inserted: Goto step 1.
Otherwise continue with step 16.

16. WFS_CMD_IPM_MEDIA_IN_END - End transaction.
17. - Completion: WFS_CMD_IPM_MEDIA_IN_END

CWA 16926-77:2020 (E)

105

7.2.3 Bunch Media Processing with Errors
Step Application / Customer XFS IPM Service

1. WFS_CMD_IPM_MEDIA_IN - Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_NOMEDIA
- Wait for media insertion.

2. Customer deposits a bunch of media items. - Event: WFS_EXEE_IPM_MEDIAINSERTED
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
- Send one WFS_EXEE_IPM_MEDIADATA event

for first media item.
- Completion: WFS_CMD_IPM_MEDIA_IN

3. WFS_INF_IPM_TRANSACTION_STATUS - Report media status and positions.
4. If additional images are required then

WFS_CMD_IPM_READ_IMAGE
- Reads data from the selected media item.
- Writes image data to the specified files.
- Completion: WFS_CMD_IPM_READ_IMAGE

5. If item is to be kept continue at step 6.
Otherwise continue at step 10.

6. WFS_CMD_IPM_PRINT_TEXT - Specifies if the item is to be stamped and specifies
the data to print on the selected media item.

- Completion: WFS_CMD_IPM_PRINT_TEXT
7. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media

item.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
8. WFS_CMD_IPM_ACTION_ITEM - Print and deposit item in bin as specified by

application in previous commands.
- Completion: WFS_CMD_IPM_ACTION_ITEM

9. Continue at step 13.
10. WFS_CMD_IPM_SET_DESTINATION - Specifies the destination of the selected media item

as Return to Customer.
- Completion:

WFS_CMD_IPM_SET_DESTINATION
11. WFS_CMD_IPM_ACTION_ITEM - Present the returned media item to the customer.

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_MEDIAPRESENTED
- Completion: WFS_CMD_IPM_ ACTION_ITEM

12. Customer takes returned item. - WFS_SRVE_IPM_MEDIATAKEN
- Event: WFS_SRVE_IPM_SHUTTERSTATUS-

CHANGED(WFS_IPM_SHTCLOSED)
13. WFS_CMD_IPM_GET_NEXT_ITEM - Event: WFS_EXEE_IPM_MEDIAREFUSED

(wReason ==
WFS_IPM_REFUSED_CODELINEINVALID)
if code line could not be read.

- Present the media items to the customer.
- Completion:

WFS_CMD_IPM_GET_NEXT_ITEM (ITEM
REFUSED)

14. WFS_CMD_IPM_PRESENT_MEDIA - Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN)

- Event: WFS_EXEE_IPM_MEDIAPRESENTED
15. - Completion:

WFS_CMD_IPM_PRESENT_MEDIA
16. Customer takes returned media item - Event: WFS_SRVE_IPM_MEDIATAKEN

- Event: WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTCLOSED)

17. If the item was REFUSED continue with

CWA 16926-77:2020 (E)

106

step 13. If the item was read successfully
continue with step 3. Otherwise if there are no
more items then continue with step 18.

18. If more media is to be inserted: Goto step 1.
Otherwise continue with step 19.

19. WFS_CMD_IPM_MEDIA_IN_END - End transaction.
20. - Completion: WFS_CMD_IPM_MEDIA_IN_END

CWA 16926-77:2020 (E)

107

8. ATM Mixed Media Transaction Flow – Application Guidelines

Application guidelines covering Mixed Media processing for CIM and IPM are covered in the CIM Specification
[Ref. 2].

CWA 16926-77:2020 (E)

108

9. C-Header File

/**
* *
* xfsipm.h XFS - Item Processing Module (IPM) definitions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __INC_XFSIPM__H
#define __INC_XFSIPM__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* Value of WFSIPMCAPS.wClass */

#define WFS_SERVICE_CLASS_IPM (16)
#define WFS_SERVICE_CLASS_VERSION_IPM (0x2803) /* Version 3.40 */
#define WFS_SERVICE_CLASS_NAME_IPM "IPM"

#define IPM_SERVICE_OFFSET (WFS_SERVICE_CLASS_IPM * 100)

/* IPM Info Commands */

#define WFS_INF_IPM_STATUS (IPM_SERVICE_OFFSET + 1)
#define WFS_INF_IPM_CAPABILITIES (IPM_SERVICE_OFFSET + 2)
#define WFS_INF_IPM_CODELINE_MAPPING (IPM_SERVICE_OFFSET + 3)
#define WFS_INF_IPM_MEDIA_BIN_INFO (IPM_SERVICE_OFFSET + 4)
#define WFS_INF_IPM_TRANSACTION_STATUS (IPM_SERVICE_OFFSET + 5)
#define WFS_INF_IPM_MEDIA_BIN_CAPABILITIES (IPM_SERVICE_OFFSET + 6)

/* IPM Execute Commands */

#define WFS_CMD_IPM_MEDIA_IN (IPM_SERVICE_OFFSET + 1)
#define WFS_CMD_IPM_MEDIA_IN_END (IPM_SERVICE_OFFSET + 2)
#define WFS_CMD_IPM_MEDIA_IN_ROLLBACK (IPM_SERVICE_OFFSET + 3)
#define WFS_CMD_IPM_READ_IMAGE (IPM_SERVICE_OFFSET + 4)
#define WFS_CMD_IPM_SET_DESTINATION (IPM_SERVICE_OFFSET + 5)
#define WFS_CMD_IPM_PRESENT_MEDIA (IPM_SERVICE_OFFSET + 6)
#define WFS_CMD_IPM_RETRACT_MEDIA (IPM_SERVICE_OFFSET + 7)
#define WFS_CMD_IPM_PRINT_TEXT (IPM_SERVICE_OFFSET + 8)
#define WFS_CMD_IPM_SET_MEDIA_BIN_INFO (IPM_SERVICE_OFFSET + 9)
#define WFS_CMD_IPM_RESET (IPM_SERVICE_OFFSET + 10)
#define WFS_CMD_IPM_SET_GUIDANCE_LIGHT (IPM_SERVICE_OFFSET + 11)
#define WFS_CMD_IPM_GET_NEXT_ITEM (IPM_SERVICE_OFFSET + 12)
#define WFS_CMD_IPM_ACTION_ITEM (IPM_SERVICE_OFFSET + 13)
#define WFS_CMD_IPM_EXPEL_MEDIA (IPM_SERVICE_OFFSET + 14)
#define WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT (IPM_SERVICE_OFFSET + 15)
#define WFS_CMD_IPM_ACCEPT_ITEM (IPM_SERVICE_OFFSET + 16)
#define WFS_CMD_IPM_SUPPLY_REPLENISH (IPM_SERVICE_OFFSET + 17)
#define WFS_CMD_IPM_POWER_SAVE_CONTROL (IPM_SERVICE_OFFSET + 18)
#define WFS_CMD_IPM_SET_MODE (IPM_SERVICE_OFFSET + 19)
#define WFS_CMD_IPM_SYNCHRONIZE_COMMAND (IPM_SERVICE_OFFSET + 20)

/* IPM Messages */

#define WFS_EXEE_IPM_NOMEDIA (IPM_SERVICE_OFFSET + 1)
#define WFS_EXEE_IPM_MEDIAINSERTED (IPM_SERVICE_OFFSET + 2)
#define WFS_USRE_IPM_MEDIABINTHRESHOLD (IPM_SERVICE_OFFSET + 3)
#define WFS_SRVE_IPM_MEDIABININFOCHANGED (IPM_SERVICE_OFFSET + 4)
#define WFS_EXEE_IPM_MEDIABINERROR (IPM_SERVICE_OFFSET + 5)

CWA 16926-77:2020 (E)

109

#define WFS_SRVE_IPM_MEDIATAKEN (IPM_SERVICE_OFFSET + 6)
#define WFS_USRE_IPM_TONERTHRESHOLD (IPM_SERVICE_OFFSET + 7)
#define WFS_USRE_IPM_SCANNERTHRESHOLD (IPM_SERVICE_OFFSET + 8)
#define WFS_USRE_IPM_INKTHRESHOLD (IPM_SERVICE_OFFSET + 9)
#define WFS_SRVE_IPM_MEDIADETECTED (IPM_SERVICE_OFFSET + 10)
#define WFS_EXEE_IPM_MEDIAPRESENTED (IPM_SERVICE_OFFSET + 11)
#define WFS_EXEE_IPM_MEDIAREFUSED (IPM_SERVICE_OFFSET + 12)
#define WFS_EXEE_IPM_MEDIADATA (IPM_SERVICE_OFFSET + 13)
#define WFS_USRE_IPM_MICRTHRESHOLD (IPM_SERVICE_OFFSET + 14)
#define WFS_EXEE_IPM_MEDIAREJECTED (IPM_SERVICE_OFFSET + 15)
#define WFS_SRVE_IPM_DEVICEPOSITION (IPM_SERVICE_OFFSET + 16)
#define WFS_SRVE_IPM_POWER_SAVE_CHANGE (IPM_SERVICE_OFFSET + 17)
#define WFS_SRVE_IPM_SHUTTERSTATUSCHANGED (IPM_SERVICE_OFFSET + 18)

/* Values of WFSIPMSTATUS.fwDevice */

#define WFS_IPM_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_IPM_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_IPM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_IPM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_IPM_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_IPM_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_IPM_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_IPM_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_IPM_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* Values of WFSIPMSTATUS.wAcceptor */

#define WFS_IPM_ACCBINOK (0)
#define WFS_IPM_ACCBINSTATE (1)
#define WFS_IPM_ACCBINSTOP (2)
#define WFS_IPM_ACCBINUNKNOWN (3)

/* Values of WFSIPMSTATUS.wMedia and
 WFSIPMMEDIADETECTED.wPosition */

#define WFS_IPM_MEDIAPRESENT (0)
#define WFS_IPM_MEDIANOTPRESENT (1)
#define WFS_IPM_MEDIAJAMMED (2)
#define WFS_IPM_MEDIANOTSUPP (3)
#define WFS_IPM_MEDIAUNKNOWN (4)
#define WFS_IPM_MEDIAPOSITION (5)
#define WFS_IPM_MEDIARETRACTED (6)
#define WFS_IPM_MEDIARETURNED (7)

/* Values of WFSIPMSTATUS.wToner and
 WFSIPMTHRESHOLD.wThreshold */

#define WFS_IPM_TONERFULL (0)
#define WFS_IPM_TONERLOW (1)
#define WFS_IPM_TONEROUT (2)
#define WFS_IPM_TONERNOTSUPP (3)
#define WFS_IPM_TONERUNKNOWN (4)

/* Values of WFSIPMSTATUS.wInk and
 WFSIPMTHRESHOLD.wThreshold */

#define WFS_IPM_INKFULL (0)
#define WFS_IPM_INKLOW (1)
#define WFS_IPM_INKOUT (2)
#define WFS_IPM_INKNOTSUPP (3)
#define WFS_IPM_INKUNKNOWN (4)

/* Values of WFSIPMSTATUS.wFrontImageScanner,
 WFSIPMSTATUS.wBackImageScanner and
 WFSIPMSCANNERTHRESHOLD.wThreshold */

#define WFS_IPM_SCANNEROK (0)
#define WFS_IPM_SCANNERFADING (1)
#define WFS_IPM_SCANNERINOP (2)

CWA 16926-77:2020 (E)

110

#define WFS_IPM_SCANNERNOTSUPP (3)
#define WFS_IPM_SCANNERUNKNOWN (4)

/* Values of WFSIPMSTATUS.wMICRReader and
 WFSIPMTHRESHOLD.wThreshold */

#define WFS_IPM_MICROK (0)
#define WFS_IPM_MICRFADING (1)
#define WFS_IPM_MICRINOP (2)
#define WFS_IPM_MICRNOTSUPP (3)
#define WFS_IPM_MICRUNKNOWN (4)

/* Values of WFSIPMSTATUS.wStacker */

#define WFS_IPM_STACKEREMPTY (0)
#define WFS_IPM_STACKERNOTEMPTY (1)
#define WFS_IPM_STACKERFULL (2)
#define WFS_IPM_STACKERINOP (3)
#define WFS_IPM_STACKERUNKNOWN (4)
#define WFS_IPM_STACKERNOTSUPP (5)

/* Values of WFSIPMSTATUS.wReBuncher */

#define WFS_IPM_REBUNCHEREMPTY (0)
#define WFS_IPM_REBUNCHERNOTEMPTY (1)
#define WFS_IPM_REBUNCHERFULL (2)
#define WFS_IPM_REBUNCHERINOP (3)
#define WFS_IPM_REBUNCHERUNKNOWN (4)
#define WFS_IPM_REBUNCHERNOTSUPP (5)

/* Values of WFSIPMSTATUS.wMediaFeeder and
 WFSIPMMEDIAIN.wMediaFeeder*/

#define WFS_IPM_FEEDEREMPTY (0)
#define WFS_IPM_FEEDERNOTEMPTY (1)
#define WFS_IPM_FEEDERINOP (2)
#define WFS_IPM_FEEDERUNKNOWN (3)
#define WFS_IPM_FEEDERNOTSUPP (4)

/* Values of WFSIPMSTATUS.wDevicePosition and
 WFSIPMDEVICEPOSITION.wPosition */

#define WFS_IPM_DEVICEINPOSITION (0)
#define WFS_IPM_DEVICENOTINPOSITION (1)
#define WFS_IPM_DEVICEPOSUNKNOWN (2)
#define WFS_IPM_DEVICEPOSNOTSUPP (3)

/* Values of WFSIPMTRANSSTATUS.usMediaOnStacker,
 WFSIPMTRANSSTATUS.usLastMediaInTotal,
 WFSIPMTRANSSTATUS.usLastMediaAddedToStacker,
 WFSIPMTRANSSTATUS.usTotalItems,
 WFSIPMTRANSSTATUS.usTotalItemsRefused,
 WFSIPMTRANSSTATUS.usTotalBunchesRefused,
 WFSIPMMEDIAIN.usMediaOnStacker,
 WFSIPMMEDIAIN.usLastMedia,
 WFSIPMMEDIAIN.usLastMediaOnStacker and
 WFSIPMRETRACTMEDIAOUT.usMedia */

#define WFS_IPM_MEDIANUMBERUNKNOWN (0xFFFF)

/* Indices for WFSIPMSTATUS.lppPositions and
 WFSIPMCAPS.lppPositions,
 Values of WFSIPMPOSITION.wPosition and
 WFSIPMMEDIAPRESENTED.wPosition */

#define WFS_IPM_POSINPUT (0)
#define WFS_IPM_POSOUTPUT (1)
#define WFS_IPM_POSREFUSED (2)

/* Values of WFSIPMPOS.wShutter */

CWA 16926-77:2020 (E)

111

#define WFS_IPM_SHTCLOSED (0)
#define WFS_IPM_SHTOPEN (1)
#define WFS_IPM_SHTJAMMED (2)
#define WFS_IPM_SHTUNKNOWN (3)
#define WFS_IPM_SHTNOTSUPPORTED (4)

/* Values of WFSIPMCAPS.wMixedMode */

#define WFS_IPM_MIXEDMEDIANOTSUPP (0)
#define WFS_IPM_CIMMIXEDMEDIA (1)

/* Values of WFSIPMSETMODE.wMixedMode and
 WFSIPMSTATUS.wMixedMode */

#define WFS_IPM_MIXEDMEDIANOTACTIVE (0)

/* Values of WFSIPMPOS.wPositionStatus */

#define WFS_IPM_PSEMPTY (0)
#define WFS_IPM_PSNOTEMPTY (1)
#define WFS_IPM_PSUNKNOWN (2)
#define WFS_IPM_PSNOTSUPPORTED (3)

/* Values of WFSIPMPOS.wTransport */

#define WFS_IPM_TPOK (0)
#define WFS_IPM_TPINOP (1)
#define WFS_IPM_TPUNKNOWN (2)
#define WFS_IPM_TPNOTSUPPORTED (3)

/* Values of WFSIPMPOS.wTransportMediaStatus */

#define WFS_IPM_TPMEDIAEMPTY (0)
#define WFS_IPM_TPMEDIANOTEMPTY (1)
#define WFS_IPM_TPMEDIAUNKNOWN (2)
#define WFS_IPM_TPMEDIANOTSUPPORTED (3)

/* values of WFSIPMPOS.fwJammedShutterPosition */

#define WFS_IPM_SHUTTERPOS_NOTSUPPORTED (0)
#define WFS_IPM_SHUTTERPOS_NOTJAMMED (1)
#define WFS_IPM_SHUTTERPOS_OPEN (2)
#define WFS_IPM_SHUTTERPOS_PARTIALLY_OPEN (3)
#define WFS_IPM_SHUTTERPOS_CLOSED (4)
#define WFS_IPM_SHUTTERPOS_UNKNOWN (5)

/* Size and max index of dwGuidLights array */

#define WFS_IPM_GUIDLIGHTS_SIZE (32)
#define WFS_IPM_GUIDLIGHTS_MAX (WFS_IPM_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSIPMSTATUS.dwGuidLights [...] and
 WFSIPMCAPS.dwGuidLights [...] and
 Values of WFSIPMSETGUIDLIGHT.wGuidLight */

#define WFS_IPM_GUIDANCE_MEDIAIN (0)
#define WFS_IPM_GUIDANCE_MEDIAOUT (1)
#define WFS_IPM_GUIDANCE_MEDIAREFUSED (2)

/* Values of WFSIPMSTATUS.dwGuidLights [...],
 WFSIPMCAPS.dwGuidLights [...] and
 WFSIPMSETGUIDLIGHT.dwCommand */

#define WFS_IPM_GUIDANCE_NOT_AVAILABLE (0x00000000)
#define WFS_IPM_GUIDANCE_OFF (0x00000001)
#define WFS_IPM_GUIDANCE_SLOW_FLASH (0x00000004)
#define WFS_IPM_GUIDANCE_MEDIUM_FLASH (0x00000008)
#define WFS_IPM_GUIDANCE_QUICK_FLASH (0x00000010)
#define WFS_IPM_GUIDANCE_CONTINUOUS (0x00000080)

CWA 16926-77:2020 (E)

112

#define WFS_IPM_GUIDANCE_RED (0x00000100)
#define WFS_IPM_GUIDANCE_GREEN (0x00000200)
#define WFS_IPM_GUIDANCE_YELLOW (0x00000400)
#define WFS_IPM_GUIDANCE_BLUE (0x00000800)
#define WFS_IPM_GUIDANCE_CYAN (0x00001000)
#define WFS_IPM_GUIDANCE_MAGENTA (0x00002000)
#define WFS_IPM_GUIDANCE_WHITE (0x00004000)
#define WFS_IPM_GUIDANCE_ENTRY (0x00100000)
#define WFS_IPM_GUIDANCE_EXIT (0x00200000)

/* Values of WFSIPMCAPS.fwType */

#define WFS_IPM_TYPESINGLEMEDIAINPUT (0x0001)
#define WFS_IPM_TYPEBUNCHMEDIAINPUT (0x0002)

/* Values of WFSIPMCAPS.fwRetractLocation,
 WFSIPMPOSCAPS.fwRetractAreas,
 WFSIPMRETRACTMEDIA.wRetractLocation and
 WFSIPMRETRACTMEDIAOUT.wRetractLocation */

#define WFS_IPM_CTRLRETRACTTOBIN (0x0001)
#define WFS_IPM_CTRLRETRACTTOTRANSPORT (0x0002)
#define WFS_IPM_CTRLRETRACTTOSTACKER (0x0004)
#define WFS_IPM_CTRLRETRACTTOREBUNCHER (0x0008)

/* Values of WFSIPMCAPS.fwResetControl and
 WFSIPMRESET.wMediaControl */

#define WFS_IPM_RESETEJECT (0x0001)
#define WFS_IPM_RESETRETRACTTOBIN (0x0002)
#define WFS_IPM_RESETRETRACTTOTRANSPORT (0x0004)
#define WFS_IPM_RESETRETRACTTOREBUNCHER (0x0008)

/* Values of WFSIPMCAPS.fwImageType,
 WFSIPMIMAGEREQUEST.wImageType and
 WFSIPMIMAGEDATA.wImageType */

#define WFS_IPM_IMAGETIF (0x0001)
#define WFS_IPM_IMAGEWMF (0x0002)
#define WFS_IPM_IMAGEBMP (0x0004)
#define WFS_IPM_IMAGEJPG (0x0008)

/* Values of WFSIPMCAPS.fwFrontImageColorFormat,
 WFSIPMCAPS.fwBackImageColorFormat,
 WFSIPMIMAGEREQUEST.wImageColorFormat and
 WFSIPMIMAGEDATA.wImageColorFormat */

#define WFS_IPM_IMAGECOLORBINARY (0x0001)
#define WFS_IPM_IMAGECOLORGRAYSCALE (0x0002)
#define WFS_IPM_IMAGECOLORFULL (0x0004)

/* Values of WFSIPMCAPS.fwFrontScanColor,
 WFSIPMCAPS.fwBackScanColor,
 WFSIPMCAPS.wDefaultFrontScanColor,
 WFSIPMCAPS.wDefaultBackScanColor,
 WFSIPMIMAGEREQUEST.wImageScanColor and
 WFSIPMIMAGEDATA.wImageScanColor */

#define WFS_IPM_SCANCOLORDEFAULT (0x0000)
#define WFS_IPM_SCANCOLORRED (0x0001)
#define WFS_IPM_SCANCOLORBLUE (0x0002)
#define WFS_IPM_SCANCOLORGREEN (0x0004)
#define WFS_IPM_SCANCOLORYELLOW (0x0008)
#define WFS_IPM_SCANCOLORWHITE (0x0010)

/* Values of WFSIPMCAPS.fwCodelineFormat,
 WFSIPMCODELINEMAPPING.wCodelineFormat,
 WFSIPMCODELINEMAPPINGOUT.wCodelineFormat,
 WFSIPMMEDIAINREQUEST.wCodelineFormat and

CWA 16926-77:2020 (E)

113

 WFSIPMREADIMAGEIN.wCodelineFomat */

#define WFS_IPM_CODELINECMC7 (0x0001)
#define WFS_IPM_CODELINEE13B (0x0002)
#define WFS_IPM_CODELINEOCR (0x0004)
#define WFS_IPM_CODELINEOCRA (0x0008)
#define WFS_IPM_CODELINEOCRB (0x0010)/* Values of
WFSIPMCAPS.fwDataSource,
 WFSIPMIMAGEREQUEST.wImageSource and
 WFSIPMIMAGEDATA.wImageSource */

#define WFS_IPM_IMAGEFRONT (0x0001)
#define WFS_IPM_IMAGEBACK (0x0002)
#define WFS_IPM_CODELINE (0x0004)

/* Values of WFSIPMCAPS.fwReturnedItemsProcessing */

#define WFS_IPM_RETITEMENDORSE (0x0001)
#define WFS_IPM_RETITEMENDORSEIMAGE (0x0002)

/* Values of WFSIPMMEDIABIN.fwType */

#define WFS_IPM_TYPEMEDIAIN (0x0001)
#define WFS_IPM_TYPERETRACT (0x0002)

/* Values of WFSIPMMEDIABIN.wMediaType */

#define WFS_IPM_MEDIATYPIPM (0x0001)
#define WFS_IPM_MEDIATYPCOMPOUND (0x0002)

/* Values of WFSIPMMEDIABIN.usStatus */

#define WFS_IPM_STATMBOK (1)
#define WFS_IPM_STATMBFULL (2)
#define WFS_IPM_STATMBHIGH (3)
#define WFS_IPM_STATMBINOP (4)
#define WFS_IPM_STATMBMISSING (5)
#define WFS_IPM_STATMBUNKNOWN (6)
#define WFS_IPM_STATMBEMPTY (7)

/* Values of WFSIPMTRANSSTATUS.wMediaInTransaction */

#define WFS_IPM_MITOK (0)
#define WFS_IPM_MITACTIVE (1)
#define WFS_IPM_MITROLLBACK (2)
#define WFS_IPM_MITROLLBACKAFTERDEPOSIT (3)
#define WFS_IPM_MITRETRACT (4)
#define WFS_IPM_MITFAILURE (5)
#define WFS_IPM_MITUNKNOWN (6)
#define WFS_IPM_MITRESET (7)

/* Values of WFSIPMMEDIASTATUS.wMediaLocation */

#define WFS_IPM_LOCATION_DEVICE (0)
#define WFS_IPM_LOCATION_BIN (1)
#define WFS_IPM_LOCATION_CUSTOMER (2)
#define WFS_IPM_LOCATION_UNKNOWN (3)

/* Values of WFSIPMMEDIASTATUS.wCustomerAccess */

#define WFS_IPM_ACCESSUNKNOWN (0)
#define WFS_IPM_ACCESSCUSTOMER (1)
#define WFS_IPM_ACCESSNONE (2)

/* Values of WFSIPMIMAGEDATA.wImageStatus */

#define WFS_IPM_DATAOK (0)
#define WFS_IPM_DATASRCNOTSUPP (1)
#define WFS_IPM_DATASRCMISSING (2)

CWA 16926-77:2020 (E)

114

/* Values of WFSIPMMEDIASTATUS.wMagneticReadIndicator and
 WFSIPMMEDIADATA.wMagneticReadIndicator */

#define WFS_IPM_MRI_MICR (0)
#define WFS_IPM_MRI_NOT_MICR (1)
#define WFS_IPM_MRI_NO_MICR (2)
#define WFS_IPM_MRI_UNKNOWN (3)
#define WFS_IPM_MRI_NOTMICRFORMAT (4)
#define WFS_IPM_MRI_NOT_READ (5)

/* Values of WFSIPMCAPS.fwInsertOrientation,
 WFSIPMMEDIASTATUS.fwInsertOrientation and
 WFSIPMMEDIADATA.fwInsertOrientation */

#define WFS_IPM_INSUNKNOWN (0x0000)
#define WFS_IPM_INSCODELINERIGHT (0x0001)
#define WFS_IPM_INSCODELINELEFT (0x0002)
#define WFS_IPM_INSCODELINEBOTTOM (0x0004)
#define WFS_IPM_INSCODELINETOP (0x0008)
#define WFS_IPM_INSFACEUP (0x0010)
#define WFS_IPM_INSFACEDOWN (0x0020)

/* Values of WFSIPMMEDIASTATUS.wMediaValidity and
 WFSIPMMEDIADATA.wMediaValidity */

#define WFS_IPM_ITEMOK (0)
#define WFS_IPM_ITEMSUSPECT (1)
#define WFS_IPM_ITEMUNKNOWN (2)
#define WFS_IPM_ITEMNOVALIDATION (3)

/* Values of WFSIPMSUPPLYREPLEN.fwSupplyReplen */

#define WFS_IPM_REPLEN_TONER (0x0001)
#define WFS_IPM_REPLEN_INK (0x0002)

/* Values of WFSIPMMEDIAREFUSED.wReason */

#define WFS_IPM_REFUSED_FOREIGNITEMS (1)
#define WFS_IPM_REFUSED_STACKERFULL (2)
#define WFS_IPM_REFUSED_CODELINEINVALID (3)
#define WFS_IPM_REFUSED_INVALIDMEDIA (4)
#define WFS_IPM_REFUSED_TOOLONG (5)
#define WFS_IPM_REFUSED_TOOSHORT (6)
#define WFS_IPM_REFUSED_TOOWIDE (7)
#define WFS_IPM_REFUSED_TOONARROW (8)
#define WFS_IPM_REFUSED_TOOTHICK (9)
#define WFS_IPM_REFUSED_INVALIDORIENTATION (10)
#define WFS_IPM_REFUSED_DOUBLEDETECT (11)
#define WFS_IPM_REFUSED_REFUSEPOSFULL (12)
#define WFS_IPM_REFUSED_RETURNBLOCKED (13)
#define WFS_IPM_REFUSED_INVALIDBUNCH (14)
#define WFS_IPM_REFUSED_OTHERITEM (15)
#define WFS_IPM_REFUSED_OTHERBUNCH (16)
#define WFS_IPM_REFUSED_JAMMING (17)
#define WFS_IPM_REFUSED_METAL (18)

/* Values of WFSIPMMEDIAREFUSED.wMediaLocation and
 WFSIPMPRESENTMEDIA.wPosition */

#define WFS_IPM_REFUSE_INPUT (1)
#define WFS_IPM_REFUSE_REFUSED (2)
#define WFS_IPM_REFUSE_REBUNCHER (3)
#define WFS_IPM_REFUSE_STACKER (4)

/* Values of WFSIPMMBERROR.wFailure */

#define WFS_IPM_MEDIABINJAMMED (1)
#define WFS_IPM_MEDIABINERROR (2)
#define WFS_IPM_MEDIABINFULL (3)
#define WFS_IPM_MEDIABINNOTCONF (4)

CWA 16926-77:2020 (E)

115

#define WFS_IPM_MEDIABININVALID (5)
#define WFS_IPM_MEDIABINCONFIG (6)
#define WFS_IPM_MEDIABINFEEDPROBLEM (7)

/* Values of WFSIPMMEDIAREJECTED.wReason */

#define WFS_IPM_REJECT_LONG (1)
#define WFS_IPM_REJECT_THICK (2)
#define WFS_IPM_REJECT_DOUBLE (3)
#define WFS_IPM_REJECT_TRANSPORT (4)
#define WFS_IPM_REJECT_SHUTTER (5)
#define WFS_IPM_REJECT_REMOVED (6)
#define WFS_IPM_REJECT_METAL (7)
#define WFS_IPM_REJECT_FOREIGNITEMS (8)
#define WFS_IPM_REJECT_OTHER (9)

/* Values of WFSIPMSCANNERTHRESHOLD.wScanner */

#define WFS_IPM_FRONTSCANNER (1)
#define WFS_IPM_BACKSCANNER (2)

/* Values of WFSIPMSTATUS.wAntiFraudModule */

#define WFS_IPM_AFMNOTSUPP (0)
#define WFS_IPM_AFMOK (1)
#define WFS_IPM_AFMINOP (2)
#define WFS_IPM_AFMDEVICEDETECTED (3)
#define WFS_IPM_AFMUNKNOWN (4)

/* XFS IPM Errors */

#define WFS_ERR_IPM_NOMEDIAPRESENT (-(IPM_SERVICE_OFFSET + 1))
#define WFS_ERR_IPM_MEDIABINFULL (-(IPM_SERVICE_OFFSET + 2))
#define WFS_ERR_IPM_STACKERFULL (-(IPM_SERVICE_OFFSET + 3))
#define WFS_ERR_IPM_SHUTTERFAIL (-(IPM_SERVICE_OFFSET + 4))
#define WFS_ERR_IPM_MEDIAJAMMED (-(IPM_SERVICE_OFFSET + 5))
#define WFS_ERR_IPM_FILEIOERROR (-(IPM_SERVICE_OFFSET + 6))
#define WFS_ERR_IPM_INKOUT (-(IPM_SERVICE_OFFSET + 7))
#define WFS_ERR_IPM_TONEROUT (-(IPM_SERVICE_OFFSET + 8))
#define WFS_ERR_IPM_SCANNERINOP (-(IPM_SERVICE_OFFSET + 9))
#define WFS_ERR_IPM_MICRINOP (-(IPM_SERVICE_OFFSET + 10))
#define WFS_ERR_IPM_SEQUENCEINVALID (-(IPM_SERVICE_OFFSET + 11))
#define WFS_ERR_IPM_INVALID_PORT (-(IPM_SERVICE_OFFSET + 12))
#define WFS_ERR_IPM_FOREIGNITEMSDETECTED (-(IPM_SERVICE_OFFSET + 13))
#define WFS_ERR_IPM_INVALIDMEDIAID (-(IPM_SERVICE_OFFSET + 14))
#define WFS_ERR_IPM_MEDIABINERROR (-(IPM_SERVICE_OFFSET + 15))
#define WFS_ERR_IPM_POSITIONNOTEMPTY (-(IPM_SERVICE_OFFSET + 16))
#define WFS_ERR_IPM_INVALIDBIN (-(IPM_SERVICE_OFFSET + 17))
#define WFS_ERR_IPM_NOBIN (-(IPM_SERVICE_OFFSET + 18))
#define WFS_ERR_IPM_REFUSEDITEMS (-(IPM_SERVICE_OFFSET + 19))
#define WFS_ERR_IPM_ALLBINSFULL (-(IPM_SERVICE_OFFSET + 20))
#define WFS_ERR_IPM_FEEDERNOTEMPTY (-(IPM_SERVICE_OFFSET + 21))
#define WFS_ERR_IPM_MEDIAREJECTED (-(IPM_SERVICE_OFFSET + 22))
#define WFS_ERR_IPM_FEEDERINOPERATIVE (-(IPM_SERVICE_OFFSET + 23))
#define WFS_ERR_IPM_MEDIAPRESENT (-(IPM_SERVICE_OFFSET + 24))
#define WFS_ERR_IPM_POWERSAVETOOSHORT (-(IPM_SERVICE_OFFSET + 25))
#define WFS_ERR_IPM_POWERSAVEMEDIAPRESENT (-(IPM_SERVICE_OFFSET + 26))
#define WFS_ERR_IPM_CASHINACTIVE (-(IPM_SERVICE_OFFSET + 27))
#define WFS_ERR_IPM_MEDIAINACTIVE (-(IPM_SERVICE_OFFSET + 28))
#define WFS_ERR_IPM_COMMANDUNSUPP (-(IPM_SERVICE_OFFSET + 29))
#define WFS_ERR_IPM_SYNCHRONIZEUNSUPP (-(IPM_SERVICE_OFFSET + 30))

/*===*/
/* IPM Info Command Structures */
/*===*/

typedef struct _wfs_ipm_pos
{
 WORD wShutter;
 WORD wPositionStatus;

CWA 16926-77:2020 (E)

116

 WORD wTransport;
 WORD wTransportMediaStatus;
 WORD fwJammedShutterPosition;

} WFSIPMPOS, *LPWFSIPMPOS;

typedef struct _wfs_ipm_status
{
 WORD fwDevice;
 WORD wAcceptor;
 WORD wMedia;
 WORD wToner;
 WORD wInk;
 WORD wFrontImageScanner;
 WORD wBackImageScanner;
 WORD wMICRReader;
 WORD wStacker;
 WORD wReBuncher;
 WORD wMediaFeeder;
 LPWFSIPMPOS *lppPositions;
 DWORD dwGuidLights[WFS_IPM_GUIDLIGHTS_SIZE];
 LPSTR lpszExtra;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wMixedMode;
 WORD wAntiFraudModule;
} WFSIPMSTATUS, *LPWFSIPMSTATUS;

typedef struct _wfs_ipm_print_size
{
 WORD wRows;
 WORD wCols;
} WFSIPMPRINTSIZE, *LPWFSIPMPRINTSIZE;

typedef struct _wfs_ipm_pos_caps
{
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwRetractAreas;
} WFSIPMPOSCAPS, *LPWFSIPMPOSCAPS;

/* WFS_INF_IPM_CAPABILITIES output structures */

typedef struct _wfs_ipm_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usMaxMediaOnStacker;
 LPWFSIPMPRINTSIZE lpPrintSize;
 BOOL bStamp;
 BOOL bRescan;
 BOOL bPresentControl;
 BOOL bApplicationRefuse;
 WORD fwRetractLocation;
 WORD fwResetControl;
 BOOL bRetractCountsItems;
 WORD fwImageType;
 WORD fwFrontImageColorFormat;
 WORD fwBackImageColorFormat;
 WORD fwFrontScanColor;
 WORD wDefaultFrontScanColor;
 WORD fwBackScanColor;
 WORD wDefaultBackScanColor;
 WORD fwCodelineFormat;
 WORD fwDataSource;
 WORD fwInsertOrientation;
 LPWFSIPMPOSCAPS *lppPositions;
 DWORD dwGuidLights[WFS_IPM_GUIDLIGHTS_SIZE];
 LPSTR lpszExtra;

CWA 16926-77:2020 (E)

117

 BOOL bPowerSaveControl;
 BOOL bImageAfterEndorse;
 WORD fwReturnedItemsProcessing;
 WORD wMixedMode;
 BOOL bMixedDepositAndRollback;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
 LPWFSIPMPRINTSIZE lpPrintSizeFront;
} WFSIPMCAPS, *LPWFSIPMCAPS;

typedef struct _wfs_ipm_hex_data
{
 USHORT usLength;
 LPBYTE lpbData;
} WFSIPMXDATA, *LPWFSIPMXDATA;

/* WFS_INF_IPM_CODELINE_MAPPING input and output structures */

typedef struct _wfs_ipm_codeline_mapping
{
 WORD wCodelineFormat;
} WFSIPMCODELINEMAPPING, *LPWFSIPMCODELINEMAPPING;

typedef struct _wfs_ipm_codeline_mapping_out
{
 WORD wCodelineFormat;
 LPWFSIPMXDATA lpxCharMapping;
} WFSIPMCODELINEMAPPINGOUT, *LPWFSIPMCODELINEMAPPINGOUT;

/* WFS_INF_IPM_MEDIA_BIN_INFO output structures */

typedef struct _wfs_ipm_media_bin
{
 USHORT usBinNumber;
 LPSTR lpstrPositionName;
 WORD fwType;
 WORD wMediaType;
 LPSTR lpstrBinID;
 ULONG ulMediaInCount;
 ULONG ulCount;
 ULONG ulRetractOperations;
 BOOL bHardwareSensors;
 ULONG ulMaximumItems;
 ULONG ulMaximumRetractOperations;
 USHORT usStatus;
 LPSTR lpszExtra;
} WFSIPMMEDIABIN, *LPWFSIPMMEDIABIN;

typedef struct _wfs_ipm_media_bin_info
{
 USHORT usCount;
 LPWFSIPMMEDIABIN *lppMediaBin;
} WFSIPMMEDIABININFO, *LPWFSIPMMEDIABININFO;

typedef struct _wfs_ipm_image_data
{
 WORD wImageSource;
 WORD wImageType;
 WORD wImageColorFormat;
 WORD wImageScanColor;
 WORD wImageStatus;
 LPSTR lpszImageFile;
} WFSIPMIMAGEDATA, *LPWFSIPMIMAGEDATA;

typedef struct _wfs_ipm_media_size
{
 ULONG ulSizeX;
 ULONG ulSizeY;
} WFSIPMMEDIASIZE, *LPWFSIPMMEDIASIZE;

CWA 16926-77:2020 (E)

118

typedef struct _wfs_ipm_mediastatus
{
 USHORT usMediaID;
 WORD wMediaLocation;
 USHORT usBinNumber;
 ULONG ulCodelineDataLength;
 LPBYTE lpbCodelineData;
 WORD wMagneticReadIndicator;
 LPWFSIPMIMAGEDATA *lppImage;
 WORD fwInsertOrientation;
 LPWFSIPMMEDIASIZE lpMediaSize;
 WORD wMediaValidity;
 WORD wCustomerAccess;
} WFSIPMMEDIASTATUS, *LPWFSIPMMEDIASTATUS;

/* WFS_INF_IPM_TRANSACTION_STATUS output structures */

typedef struct _wfs_ipm_trans_status
{
 WORD wMediaInTransaction;
 USHORT usMediaOnStacker;
 USHORT usLastMediaInTotal;
 USHORT usLastMediaAddedToStacker;
 USHORT usTotalItems;
 USHORT usTotalItemsRefused;
 USHORT usTotalBunchesRefused;
 LPWFSIPMMEDIASTATUS *lppMediaInfo;
 LPSTR lpszExtra;
} WFSIPMTRANSSTATUS, *LPWFSIPMTRANSSTATUS;

 /* WFS_INF_IPM_MEDIA_BIN_CAPABILITIES output structures */

typedef struct _wfs_ipm_media_bin_caps
 {
 USHORT usBinNumber;
 LPSTR lpstrPositionName;
 BOOL bHardwareSensors;
 BOOL bItemSensors;
 LPSTR lpszExtra;
 ULONG ulMaximum;
 } WFSIPMMEDIABINCAPS, *LPWFSIPMMEDIABINCAPS;

typedef struct _wfs_ipm_bin_caps
 {
 USHORT usCount;
 LPWFSIPMMEDIABINCAPS *lppMediaBinCaps;
 } WFSIPMBINCAPS, *LPWFSIPMBINCAPS;

/*===*/
/* IPM Execute Command Structures */
/*===*/

typedef struct _wfs_ipm_image_request
{
 WORD wImageSource;
 WORD wImageType;
 WORD wImageColorFormat;
 WORD wImageScanColor;
 LPSTR lpszImagePath;
} WFSIPMIMAGEREQUEST, *LPWFSIPMIMAGEREQUEST;

typedef struct _wfs_ipm_media_in_request
{
 WORD wCodelineFormat;
 LPWFSIPMIMAGEREQUEST *lppImage;
 USHORT usMaxMediaOnStacker;
 BOOL bApplicationRefuse;
} WFSIPMMEDIAINREQUEST, *LPWFSIPMMEDIAINREQUEST;

CWA 16926-77:2020 (E)

119

typedef struct _wfs_ipm_media_in
{
 USHORT usMediaOnStacker;
 USHORT usLastMedia;
 USHORT usLastMediaOnStacker;
 WORD wMediaFeeder;
} WFSIPMMEDIAIN, *LPWFSIPMMEDIAIN;

/* WFS_CMD_IPM_MEDIA_IN_END structures */

typedef struct _wfs_ipm_media_in_end
{
 USHORT usItemsReturned;
 USHORT usItemsRefused;
 USHORT usBunchesRefused;
 LPWFSIPMMEDIABININFO lpMediaBinInfo;
} WFSIPMMEDIAINEND, *LPWFSIPMMEDIAINEND;

typedef struct _wfs_ipm_read_image_request
{
 USHORT usMediaID;
 WORD wCodelineFormat;
 LPWFSIPMIMAGEREQUEST *lppImage;
} WFSIPMREADIMAGEIN, *LPWFSIPMREADIMAGEIN;

typedef struct _wfs_ipm_mediadata
{
 USHORT usMediaID;
 ULONG ulCodelineDataLength;
 LPBYTE lpbCodelineData;
 WORD wMagneticReadIndicator;
 LPWFSIPMIMAGEDATA *lppImage;
 WORD fwInsertOrientation;
 LPWFSIPMMEDIASIZE lpMediaSize;
 WORD wMediaValidity;
} WFSIPMMEDIADATA, *LPWFSIPMMEDIADATA;

/* WFS_CMD_IPM_SET_DESTINATION structures */

typedef struct _wfs_ipm_set_destination
{
 USHORT usMediaID;
 USHORT usBinNumber;
} WFSIPMSETDESTINATION, *LPWFSIPMSETDESTINATION;

typedef struct _wfs_ipm_next_item_out
{
 WORD wMediaFeeder;
} WFSIPMNEXTITEMOUT, *LPWFSIPMNEXTITEMOUT;

/* WFS_CMD_IPM_PRESENT_MEDIA structures */

typedef struct _wfs_ipm_present_media
{
 WORD wPosition;
} WFSIPMPRESENTMEDIA, *LPWFSIPMPRESENTMEDIA;

/* WFS_CMD_IPM_RETRACT_MEDIA structures */

typedef struct _wfs_ipm_retract_media
{
 WORD wRetractLocation;
 USHORT usBinNumber;
} WFSIPMRETRACTMEDIA, *LPWFSIPMRETRACTMEDIA;

typedef struct _wfs_ipm_retract_media_out
{
 USHORT usMedia;
 WORD wRetractLocation;
 USHORT usBinNumber;

CWA 16926-77:2020 (E)

120

} WFSIPMRETRACTMEDIAOUT, *LPWFSIPMRETRACTMEDIAOUT;

/* WFS_CMD_IPM_PRINT_TEXT structures */

typedef struct _wfs_ipm_print_text
{
 USHORT usMediaID;
 BOOL bStamp;
 LPWSTR lpszPrintData;
} WFSIPMPRINTTEXT, *LPWFSIPMPRINTTEXT;

/* WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT structures */

typedef struct _wfs_ipm_get_image_after_print
{
 USHORT usMediaID;
 LPWFSIPMIMAGEREQUEST *lppImage;
} WFSIPMGETIMAGEAFTERPRINT, *LPWFSIPMGETIMAGEAFTERPRINT;

/* WFS_CMD_IPM_ACCEPT_ITEM structures */

typedef struct _wfs_ipm_accept_item
{
 BOOL bAccept;
} WFSIPMACCEPTITEM, *LPWFSIPMACCEPTITEM;

/* WFS_CMD_IPM_RESET structures */

typedef struct _wfs_ipm_reset
{
 WORD wMediaControl;
 USHORT usBinNumber;
} WFSIPMRESET, *LPWFSIPMRESET;

/* WFS_CMD_IPM_SUPPLY_REPLENISH structures */

typedef struct _wfs_ipm_supply_replen
{
 WORD fwSupplyReplen;
} WFSIPMSUPPLYREPLEN, *LPWFSIPMSUPPLYREPLEN;

/* WFS_CMD_IPM_SET_GUIDANCE_LIGHT structures */

typedef struct _wfs_ipm_set_guidlight
{
 WORD wGuidLight;
 DWORD dwCommand;
} WFSIPMSETGUIDLIGHT, *LPWFSIPMSETGUIDLIGHT;

/* WFS_CMD_IPM_POWER_SAVE_CONTROL structure */

typedef struct _wfs_ipm_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSIPMPOWERSAVECONTROL, *LPWFSIPMPOWERSAVECONTROL;

typedef struct _wfs_ipm_setmode
{
 WORD wMixedMode;
} WFSIPMSETMODE, *LPWFSIPMSETMODE;

typedef struct _wfs_ipm_synchronize_command
{
 DWORD dwCommand;
 LPVOID lpCmdData;
} WFSIPMSYNCHRONIZECOMMAND, *LPWFSIPMSYNCHRONIZECOMMAND;

/*===*/
/* IPM Message Structures */
/*===*/

CWA 16926-77:2020 (E)

121

/* WFS_EXEE_IPM_MEDIABINERROR structure */

typedef struct _wfs_ipm_mb_error
{
 WORD wFailure;
 LPWFSIPMMEDIABIN lpMediaBin;
} WFSIPMMBERROR, *LPWFSIPMMBERROR;

/* WFS_SRVE_IPM_MEDIATAKEN structure */

typedef struct _wfs_ipm_position
{
 WORD wPosition;
} WFSIPMPOSITION, *LPWFSIPMPOSITION;

/* WFS_USRE_IPM_TONERTHRESHOLD and
 WFS_USRE_IPM_INKTHRESHOLD structures */

typedef struct _wfs_ipm_threshold
{
 WORD wThreshold;
} WFSIPMTHRESHOLD, *LPWFSIPMTHRESHOLD;

/* WFS_USRE_IPM_SCANNERTHRESHOLD structure */

typedef struct _wfs_ipm_scanner_threshold
{
 WORD wScanner;
 WORD wThreshold;
} WFSIPMSCANNERTHRESHOLD, *LPWFSIPMSCANNERTHRESHOLD;

/* WFS_SRVE_IPM_MEDIADETECTED structure */

typedef struct _wfs_ipm_media_detected
{
 WORD wPosition;
 USHORT usRetractBinNumber;
} WFSIPMMEDIADETECTED, *LPWFSIPMMEDIADETECTED;

/* WFS_EXEE_IPM_MEDIAPRESENTED structure */

typedef struct _wfs_ipm_media_presented
{
 WORD wPosition;
 USHORT usBunchIndex;
 USHORT usTotalBunches;
} WFSIPMMEDIAPRESENTED, *LPWFSIPMMEDIAPRESENTED;

/* WFS_EXEE_IPM_MEDIAREFUSED structure */

typedef struct _wfs_ipm_media_refused
{
 WORD wReason;
 WORD wMediaLocation;
 BOOL bPresentRequired;
 LPWFSIPMMEDIASIZE lpMediaSize;
} WFSIPMMEDIAREFUSED, *LPWFSIPMMEDIAREFUSED;

/* WFS_EXEE_IPM_MEDIAREJECTED structure */

typedef struct _wfs_ipm_media_rejected
{
 WORD wReason;
} WFSIPMMEDIAREJECTED, *LPWFSIPMMEDIAREJECTED;

/* WFS_SRVE_IPM_DEVICEPOSITION structure */

typedef struct _wfs_ipm_device_position
{

CWA 16926-77:2020 (E)

122

 WORD wPosition;
} WFSIPMDEVICEPOSITION, *LPWFSIPMDEVICEPOSITION;

/* WFS_SRVE_IPM_POWERSAVECHANGE structure */

typedef struct _wfs_ipm_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSIPMPOWERSAVECHANGE, *LPWFSIPMPOWERSAVECHANGE;

typedef struct _wfs_ipm_shutter_status_changed
{
 WORD fwPosition;
 WORD fwShutter;
} WFSIPMSHUTTERSTATUSCHANGED, *LPWFSIPMSHUTTERSTATUSCHANGED;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSIPM__H */

	1. Migration Information
	2. Item Processing Module
	2.1 Devices with a Stacker
	2.1.1 Automatic Accept/Refuse
	2.1.2 Application Controlled Accept/Refuse

	2.2 Device without a Stacker
	2.2.1 Multi-Feed Devices without a Stacker
	2.2.2 Single-Feed Devices

	3. References
	4. Info Commands
	4.1 WFS_INF_IPM_STATUS
	4.2 WFS_INF_IPM_CAPABILITIES
	4.3 WFS_INF_IPM_CODELINE_MAPPING
	4.4 WFS_INF_IPM_MEDIA_BIN_INFO
	4.5 WFS_INF_IPM_TRANSACTION_STATUS
	4.6 WFS_INF_IPM_MEDIA_BIN_CAPABILITIES

	5. Execute Commands
	5.1 WFS_CMD_IPM_MEDIA_IN
	5.2 WFS_CMD_IPM_MEDIA_IN_END
	5.3 WFS_CMD_IPM_MEDIA_IN_ROLLBACK
	5.4 WFS_CMD_IPM_READ_IMAGE
	5.5 WFS_CMD_IPM_SET_DESTINATION
	5.6 WFS_CMD_IPM_PRESENT_MEDIA
	5.7 WFS_CMD_IPM_RETRACT_MEDIA
	5.8 WFS_CMD_IPM_PRINT_TEXT
	5.9 WFS_CMD_IPM_SET_MEDIA_BIN_INFO
	5.10 WFS_CMD_IPM_RESET
	5.11 WFS_CMD_IPM_SET_GUIDANCE_LIGHT
	5.12 WFS_CMD_IPM_GET_NEXT_ITEM
	5.13 WFS_CMD_IPM_ACTION_ITEM
	5.14 WFS_CMD_IPM_EXPEL_MEDIA
	5.15 WFS_CMD_IPM_GET_IMAGE_AFTER_PRINT
	5.16 WFS_CMD_IPM_ACCEPT_ITEM
	5.17 WFS_CMD_IPM_SUPPLY_REPLENISH
	5.18 WFS_CMD_IPM_POWER_SAVE_CONTROL
	5.19 WFS_CMD_IPM_SET_MODE
	5.20 WFS_CMD_IPM_SYNCHRONIZE_COMMAND

	6. Events
	6.1 WFS_EXEE_IPM_NOMEDIA
	6.2 WFS_EXEE_IPM_MEDIAINSERTED
	6.3 WFS_USRE_IPM_MEDIABINTHRESHOLD
	6.4 WFS_SRVE_IPM_MEDIABININFOCHANGED
	6.5 WFS_EXEE_IPM_MEDIABINERROR
	6.6 WFS_SRVE_IPM_MEDIATAKEN
	6.7 WFS_USRE_IPM_TONERTHRESHOLD
	6.8 WFS_USRE_IPM_SCANNERTHRESHOLD
	6.9 WFS_USRE_IPM_INKTHRESHOLD
	6.10 WFS_SRVE_IPM_MEDIADETECTED
	6.11 WFS_EXEE_IPM_MEDIAPRESENTED
	6.12 WFS_EXEE_IPM_MEDIAREFUSED
	6.13 WFS_EXEE_IPM_MEDIADATA
	6.14 WFS_USRE_IPM_MICRTHRESHOLD
	6.15 WFS_EXEE_IPM_MEDIAREJECTED
	6.16 WFS_SRVE_IPM_DEVICEPOSITION
	6.17 WFS_SRVE_IPM_POWER_SAVE_CHANGE
	6.18 WFS_SRVE_IPM_SHUTTERSTATUSCHANGED

	7. Command and Event Flows
	7.1 Devices with Stacker
	7.1.1 Bunch Media Processing (OK flow)
	7.1.2 Bunch Media Processing (Some Media Items Returned)
	7.1.3 Bunch Media Processing with Errors
	7.1.4 Bunch media processing with Rollback
	7.1.5 Bunch media processing with Retract
	7.1.6 Bunch Media Processing - Application Refuse Decision (All OK flow)
	7.1.7 Bunch Media Processing - Application Refuse Decision (Some items refused)

	7.2 Devices without Stacker
	7.2.1 Bunch Media Processing (OK flow)
	7.2.2 Bunch Media Processing (Some Media Items Returned)
	7.2.3 Bunch Media Processing with Errors

	8. ATM Mixed Media Transaction Flow – Application Guidelines
	9. C-Header File

