

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 16926-7:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-7 February 2020

ICS 35.200; 35.240.15; 35.240.40
English version Extensions for Financial Services (XFS) interface specification Release 3.40 - Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

2

Table of Contents

European Foreword .. 4

1. Introduction .. 8

1.1 Background to Release 3.40 ... 8
1.2 XFS Service-Specific Programming ... 8

2. Check Readers and Scanners .. 10

3. References ... 11

4. Info Commands ... 12

4.1 WFS_INF_CHK_STATUS ... 12

4.2 WFS_INF_CHK_CAPABILITIES .. 15

4.3 WFS_INF_CHK_FORM_LIST ... 18

4.4 WFS_INF_CHK_MEDIA_LIST .. 19

4.5 WFS_INF_CHK_QUERY_FORM .. 20
4.6 WFS_INF_CHK_QUERY_MEDIA ... 22

4.7 WFS_INF_CHK_QUERY_FIELD .. 24

5. Execute Commands .. 26

5.1 WFS_CMD_CHK_PROCESS_FORM ... 26

5.2 WFS_CMD_CHK_RESET ... 29

5.3 WFS_CMD_CHK_SET_GUIDANCE_LIGHT .. 30

5.4 WFS_CMD_CHK_POWER_SAVE_CONTROL .. 32
5.5 WFS_CMD_CHK_SYNCHRONIZE_COMMAND ... 33

6. Events ... 34

6.1 WFS_EXEE_CHK_NOMEDIA ... 34

6.2 WFS_EXEE_CHK_MEDIAINSERTED .. 35

6.3 WFS_SRVE_CHK_MEDIAINSERTED .. 36

6.4 WFS_EXEE_CHK_FIELDERROR .. 37

6.5 WFS_EXEE_CHK_FIELDWARNING .. 38
6.6 WFS_USRE_CHK_INKTHRESHOLD ... 39

6.7 WFS_SRVE_CHK_MEDIADETECTED .. 40

6.8 WFS_SRVE_CHK_DEVICEPOSITION ... 41

6.9 WFS_SRVE_CHK_POWER_SAVE_CHANGE .. 42

7. Forms Language Usage .. 43

7.1 Definition Syntax .. 44

7.2 XFS form/media definition files in multi-vendor environments .. 45
7.3 Form and Media Measurements ... 46

7.4 Form Definition ... 47

CWA 16926-7:2020 (E)

3

7.5 Field Definition ... 48

7.6 Media Definition ... 51

8. C - Header file .. 52

CWA 16926-7:2020 (E)

4

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations – Part 2. It was approved by a Workshop of representatives of interested
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• ATM Japan LTD

• AURIGA SPA

• BANK OF AMERICA

• CASHWAY TECHNOLOGY

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO.

• CIMA SPA

• CLEAR2PAY SCOTLAND LIMITED

• DIEBOLD NIXDORF

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM

• FINANZ INFORMATIK

• FUJITSU FRONTECH LIMITED

• FUJITSU TECHNOLOGY

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HESS CASH SYSTEMS GMBH & CO. KG

• HITACHI OMRON TS CORP.

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA AG

• NCR FSG

• NEC CORPORATION

• OKI ELECTRIC INDUSTRY SHENZHEN

CWA 16926-7:2020 (E)

5

• OKI ELECTRONIC INDUSTRY CO

• PERTO S/A

• REINER GMBH & CO KG

• SALZBURGER BANKEN SOFTWARE

• SIGMA SPA

• TEB

• ZIJIN FULCRUM TECHNOLOGY CO

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-7, but this does not guarantee, either explicitly or implicitly, its correctness. Users
of CWA 16926-7 should be aware that neither the Workshop participants, nor CEN can be held liable for damages
or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-7 do so on their own
responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

CWA 16926-7:2020 (E)

6

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to
Version 3.40 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

CWA 16926-7:2020 (E)

7

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx

CWA 16926-7:2020 (E)

8

1. Introduction

1.1 Background to Release 3.40

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN
Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to
create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.40 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification. Notable enhancements include:

• Common API level based ‘Service Information’ command to report Service Provider information,
data and versioning.

• Common API level based events to report changes in status and invalid parameters.

• Support for Advanced Encryption Standard (AES) in PIN.

• VDM Entry Without Closing XFS Service Providers.

• Addition of a Biometrics device class.

• CDM/CIM Note Classification List handling.

• Support for Derived Unique Key Per Transaction (DUKPT) in PIN.

• Addition of Transaction Start/End commands.

• Addition of explicit CIM Prepare/Present commands.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or

CWA 16926-7:2020 (E)

9

WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example
would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not
have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is
unable to fulfil the request, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error
for Info commands is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how
to use the service.

CWA 16926-7:2020 (E)

10

2. Check Readers and Scanners

This specification describes the XFS service class of check readers and scanners. Check image scanners are treated
as a special case of check readers, i.e. image-enabled instances of the latter. This class includes devices with a range
of features, from small hand-held read-only devices through which checks are manually swiped one at a time, to
desktop units which automatically feed the check one at a time; recording the MICR data and check image, and
endorse or encode the check. The specification of this service class includes definitions of the service-specific
commands that can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo
functions.

In the U.S., checks are always encoded in magnetic ink for reading by Magnetic Ink Character Recognition
(MICR), and a single font is always used. In Europe some countries use MICR and some use Optical Character
Recognition (OCR) character sets, with different fonts, for their checks.

In all countries, typical fields found encoded on a check include the bank ID number and the account number. Part
of the processing done by the bank is to also encode the amount on the check, usually done by having an operator
enter the handwritten or typewritten face amount on a numeric keypad.

This service class is currently defined only for attended branch service.

CWA 16926-7:2020 (E)

11

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.40

CWA 16926-7:2020 (E)

12

4. Info Commands

4.1 WFS_INF_CHK_STATUS

Description This function is used to query the status of the device and the service.

Input Param None.

Output Param LPWFSCHKSTATUS lpStatus;
struct _wfs_chk_status
 {
 WORD fwDevice;
 WORD fwMedia;
 WORD fwInk;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CHK_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
 } WFSCHKSTATUS, *LPWFSCHKSTATUS;

fwDevice
Specifies the state of the check reader device as one of:

Value Meaning
WFS_CHK_DEVONLINE The device is online (i.e. powered on and

operable).
WFS_CHK_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).
WFS_CHK_DEVPOWEROFF The device is powered off or physically not

connected.
WFS_CHK_DEVNODEVICE There is no device intended to be there; e.g.

this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_CHK_DEVHWERROR The device is inoperable due to a hardware
error.

WFS_CHK_DEVUSERERROR The device is inoperable because a person is
preventing proper device operation.

WFS_CHK_DEVBUSY The device is busy and unable to process an
execute command at this time.

WFS_CHK_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_CHK_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

fwMedia
Specifies the status of the media in the check reader as one of:

Value Meaning
WFS_CHK_MEDIANOTSUPP The capability to report the state of the check

media is not supported by the device.
WFS_CHK_MEDIANOTPRESENT No media is inserted in device.
WFS_CHK_MEDIAREQUIRED Insertion of media required.
WFS_CHK_MEDIAPRESENT Media inserted in device.
WFS_CHK_MEDIAJAMMED Media jam in device.

fwInk
Specifies the status of the ink in the check reader as one of:

Value Meaning
WFS_CHK_INKNOTSUPP Capability not supported by the device.

CWA 16926-7:2020 (E)

13

WFS_CHK_INKFULL Ink supply in device is full.
WFS_CHK_INKLOW Ink supply in device is low.
WFS_CHK_INKOUT Ink supply in device is empty.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_CHK_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as
WFS_CHK_GUIDANCE_NOT_AVAILABLE, WFS_CHK_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
one type D.

Value Meaning Type
WFS_CHK_GUIDANCE_NOT_AVAILABLE The status is not available. A
WFS_CHK_GUIDANCE_OFF The light is turned off. A
WFS_CHK_GUIDANCE_SLOW_FLASH The light is blinking slowly. B
WFS_CHK_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.
WFS_CHK_GUIDANCE_QUICK_FLASH The light is blinking quickly. B
WFS_CHK_GUIDANCE_CONTINUOUS The light is turned on B

continuous (steady).
WFS_CHK_GUIDANCE_RED The light is red. C
WFS_CHK_GUIDANCE_GREEN The light is green. C
WFS_CHK_GUIDANCE_YELLOW The light is yellow. C
WFS_CHK_GUIDANCE_BLUE The light is blue. C
WFS_CHK_GUIDANCE_CYAN The light is cyan. C
WFS_CHK_GUIDANCE_MAGENTA The light is magenta. C
WFS_CHK_GUIDANCE_WHITE The light is white. C
WFS_CHK_GUIDANCE_ENTRY The light is in the entry state. D
WFS_CHK_GUIDANCE_EXIT The light is in the exit state. D

dwGuidLights [WFS_CHK_GUIDANCE_CHECKUNIT]
Specifies the state of the guidance light indicator on the check processing unit.

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_CHK_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_CHK_DEVONLINE or
WFS_CHK_DEVOFFLINE). If the device is not in its normal operating position (i.e.
WFS_CHK_DEVICEINPOSITION) then media may not be presented through the normal
customer interface. This value is one of the following values:

Value Meaning
WFS_CHK_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_CHK_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_CHK_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_CHK_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

CWA 16926-7:2020 (E)

14

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_CHK_AFMNOTSUPP No anti-fraud module is available.
WFS_CHK_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_CHK_AFMINOP Anti-fraud module is inoperable.
WFS_CHK_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_CHK_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

In the case where communications with the device has been lost, the fwDevice field will report
WFS_CHK_DEVPOWEROFF when the device has been removed or
WFS_CHK_DEVHWERROR if the communications are unexpectedly lost. All other fields
should contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16926-7:2020 (E)

15

4.2 WFS_INF_CHK_CAPABILITIES

Description This function is used to request device capability information.

Input Param None.

Output Param LPWFSCHKCAPS lpCaps;
typedef struct _wfs_chk_caps

 {
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 BOOL bMICR;
 BOOL bOCR;
 BOOL bAutoFeed;
 BOOL bEndorser;
 BOOL bEncoder;
 WORD fwStamp;
 WORD wImageCapture;
 LPSTR lpszFontNames;
 LPSTR lpszEncodeNames;
 WORD fwCharSupport;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CHK_GUIDLIGHTS_SIZE];
 BOOL bPowerSaveControl;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
 } WFSCHKCAPS, *LPWFSCHKCAPS;

fwClass
Specifies the logical service class as WFS_SERVICE_CLASS_CHK.

fwType
Specifies the type of the physical device; only current value is WFS_CHK_TYPECHK.

bCompound
Specifies whether the logical device is part of a compound physical device.

bMICR
TRUE if the device can read MICR on checks.

bOCR
TRUE if the device can read OCR on checks.

bAutoFeed
TRUE if the device has autofeed capability; FALSE if only manual feed.

bEndorser
TRUE if a programmable endorser is present.

bEncoder
TRUE if an encoder is present.

fwStamp
Specifies the physical dimensions of the check where the endorser stamp can be used. A single
value can be returned.

Value Meaning
WFS_CHK_STAMPNONE Device cannot stamp/endorse check.
WFS_CHK_STAMPFRONT Device can stamp/endorse front of check.
WFS_CHK_STAMPBACK Device can stamp/endorse back of check.
WFS_CHK_STAMPBOTH Device can stamp/endorse both sides of the

check.

wImageCapture
Specifies the physical dimensions that can be image captured. A single value can be returned.

Value Meaning
WFS_CHK_ICAPNONE Device cannot capture image.

CWA 16926-7:2020 (E)

16

WFS_CHK_ICAPFRONT Device can image capture front of check.
WFS_CHK_ICAPBACK Device can image capture back of check.
WFS_CHK_ICAPBOTH Device can image capture both sides of the

check.

lpszFontNames
The names of the fonts supported for reading; each is terminated with a null and the string is
terminated with two nulls. Reserved font names include CMC7 and E13B.

lpszEncodeNames
The names of the fonts supported for encoding; each is terminated with a null and the string is
terminated with two nulls.

fwCharSupport
One or more flags specifying the Character Sets, in addition to single byte ASCII, that is
supported by the Service Provider:

Value Meaning
WFS_CHK_ASCII ASCII is supported for XFS forms.
WFS_CHK_UNICODE UNICODE is supported for XFS forms.

For fwCharSupport, a Service Provider can support ONLY ASCII forms or can support BOTH
ASCII and UNICODE forms. A Service Provider cannot support UNICODE forms without also
supporting ASCII forms.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_CHK_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the
capability to show directional movement representing “entry” and “exit”. The “entry” state gives
the impression of leading a user to place media into the device. The “exit” state gives the
impression of ejection from a device to a user and would be used for retrieving media from the
device.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B), colors (type C) and directions (type D) that the guidance light
indicator is capable of handling. If the guidance light indicator only supports one color then no
value of type C is returned. If the guidance light indicator does not support direction then no value
of type D is returned. A value of WFS_CHK_GUIDANCE_NOT_AVAILABLE indicates that
the device has no guidance light indicator or the device controls the light directly with no
application control possible.

Value Meaning Type
WFS_CHK_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.
WFS_CHK_GUIDANCE_OFF The light can be off. B
WFS_CHK_GUIDANCE_SLOW_FLASH The light can blink slowly. B
WFS_CHK_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.
WFS_CHK_GUIDANCE_QUICK_FLASH The light can blink quickly. B
WFS_CHK_GUIDANCE_CONTINUOUS The light can be continuous B

(steady).
WFS_CHK_GUIDANCE_RED The light can be red. C
WFS_CHK_GUIDANCE_GREEN The light can be green. C
WFS_CHK_GUIDANCE_YELLOW The light can be yellow. C
WFS_CHK_GUIDANCE_BLUE The light can be blue. C
WFS_CHK_GUIDANCE_CYAN The light can be cyan. C
WFS_CHK_GUIDANCE_MAGENTA The light can be magenta. C

CWA 16926-7:2020 (E)

17

WFS_CHK_GUIDANCE_WHITE The light can be white. C
WFS_CHK_GUIDANCE_ENTRY The light can be in the entry state. D
WFS_CHK_GUIDANCE_EXIT The light can be in the exit state. D

dwGuidLights [WFS_CHK_GUIDANCE_CHECKUNIT]
Specifies whether the guidance light indicator on the check processing unit is available.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

lpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The font names are standardized so that applications can check for standard literals, e.g.: CMC7,
E13B. Reserved OCR font names are TBD due to numerous local variants (i.e. OCRA and OCRB
are not enough).

Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

CWA 16926-7:2020 (E)

18

4.3 WFS_INF_CHK_FORM_LIST

Description This function is used to retrieve the list of forms available to the service.

Input Param None.

Output Param LPSTR lpszFormList;

lpszFormList
Points to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

CWA 16926-7:2020 (E)

19

4.4 WFS_INF_CHK_MEDIA_LIST

Description This command is used to retrieve the list of media definitions available on the device.

Input Param None.

Output Param LPSTR lpszMediaList;

lpszMediaList
Pointer to a list of null-terminated media names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 10] can be generated by this command.

Comments None.

CWA 16926-7:2020 (E)

20

4.5 WFS_INF_CHK_QUERY_FORM

Description This function is used to retrieve the details on the definition of a specified form.

Input Param LPSTR lpszFormName;

lpszFormName
Specifies the null-terminated name of the form on which to retrieve details.

Output Param LPWFSCHKFRMHEADER lpFormHeader;
typedef struct _wfs_chk_frm_header

 {
 LPSTR lpszFormName;
 WORD wBase;
 WORD wUnitX;
 WORD wUnitY;
 WORD wWidth;
 WORD wHeight;
 WORD wAlignment;
 WORD wOffsetX;
 WORD wOffsetY;
 WORD wVersionMajor;
 WORD wVersionMinor;
 WORD fwCharSupport;
 LPSTR lpszFields;
 } WFSCHKFRMHEADER, *LPWFSCHKFRMHEADER;

lpszFormName
Specifies the null-terminated name of the form.

wBase
Specifies the base unit of measurement of the form and can be one of the following:

Value Meaning
WFS_CHK_INCH The base unit is inches.
WFS_CHK_MM The base unit is millimeters.
WFS_CHK_ROWCOLUMN The base unit is rows and columns.

wUnitX
Specifies the horizontal resolution of the base units as a fraction of the wBase value. For example,
a value of 16 applied to the base unit WFS_CHK_INCH means that the base horizontal resolution
is 1/16".

wUnitY
Specifies the vertical resolution of the base units as a fraction of the wBase value. For example, a
value of 10 applied to the base unit WFS_CHK_MM means that the base vertical resolution is 0.1
mm.

wWidth
Specifies the width of the form in terms of the base horizontal resolution.

wHeight
Specifies the height of the form in terms of the base vertical resolution.

wAlignment
Specifies the relative alignment of the form on the media and can be one of the following:

Value Meaning
WFS_CHK_TOPLEFT The form is aligned relative to the top and

left edges of the media.
WFS_CHK_TOPRIGHT The form is aligned relative to the top and

right edges of the media.
WFS_CHK_BOTTOMLEFT The form is aligned relative to the bottom

and left edges of the media.
WFS_CHK_BOTTOMRIGHT The form is aligned relative to the bottom

and right edges of the media.

CWA 16926-7:2020 (E)

21

wOffsetX
Specifies the horizontal offset of the position of the top-left corner of the form, relative to the left
or right edge specified by wAlignment. This value is specified in terms of the base horizontal
resolution and is always positive.

wOffsetY
Specifies the vertical offset of the position of the top-left corner of the form, relative to the top or
bottom edge specified by wAlignment. This value is specified in terms of the base vertical
resolution and is always positive.

wVersionMajor
Specifies the major version of the form.

wVersionMinor
Specifies the minor version of the form.

fwCharSupport
A single flag specifying the Character Set in which the form is encoded:

Value Meaning
WFS_CHK_ASCII ASCII is supported for XFS forms initial

data values and FORMAT strings.
WFS_CHK_UNICODE UNICODE is supported for XFS forms

initial data values and FORMAT strings.

lpszFields
Pointer to a list of null-terminated field names, with the final name terminating with two null
characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_CHK_FORMINVALID The specified form is invalid.

CWA 16926-7:2020 (E)

22

4.6 WFS_INF_CHK_QUERY_MEDIA

Description This command is used to retrieve details of the definition of a specified media.

Input Param LPSTR lpszMediaName;

lpszMediaName
Pointer to the null-terminated media name about which to retrieve details.

Output Param LPWFSCHKFRMMEDIA lpFormMedia;
typedef struct _wfs_chk_frm_media

 {
 WORD fwMediaType;
 WORD wBase;
 WORD wUnitX;
 WORD wUnitY;
 WORD wSizeWidth;
 WORD wSizeHeight;
 WORD wCheckAreaX;
 WORD wCheckAreaY;
 WORD wCheckAreaWidth;
 WORD wCheckAreaHeight;
 WORD wRestrictedAreaX;
 WORD wRestrictedAreaY;
 WORD wRestrictedAreaWidth;
 WORD wRestrictedAreaHeight;
 } WFSCHKFRMMEDIA, *LPWFSCHKFRMMEDIA;

fwMediaType
Specifies the type of media as one of the following flags:

Value Meaning
WFS_CHK_MEDIACHECK Check media.

wBase
Specifies the base unit of measurement of the form and can be one of the following:

Value Meaning
WFS_CHK_INCH The base unit is inches.
WFS_CHK_MM The base unit is millimeters.
WFS_CHK_ROWCOLUMN The base unit is rows and columns.

wUnitX
Specifies the horizontal resolution of the base units as a fraction of the wBase value. For example,
a value of 16 applied to the base unit WFS_CHK_INCH means that the base horizontal resolution
is 1/16".

wUnitY
Specifies the vertical resolution of the base units as a fraction of the wBase value. For example, a
value of 10 applied to the base unit WFS_CHK_MM means that the base vertical resolution is 0.1
mm.

wSizeWidth
Specifies the width of the media in terms of the base horizontal resolution.

wSizeHeight
Specifies the height of the media in terms of the base vertical resolution.

wCheckAreaX
Specifies the horizontal offset of the Check area relative to the top left corner of the media in
terms of the base horizontal resolution.

wCheckAreaY
Specifies the vertical offset of the Check area relative to the top left corner of the media in terms
of the base vertical resolution.

wCheckAreaWidth
Specifies the Check area width of the media in terms of the base horizontal resolution.

CWA 16926-7:2020 (E)

23

wCheckAreaHeight
Specifies the Check area height of the media in terms of the base vertical resolution.

wRestrictedAreaX
Specifies the horizontal offset of the restricted area relative to the top left corner of the media in
terms of the base horizontal resolution.

wRestrictedAreaY
Specifies the vertical offset of the restricted area relative to the top left corner of the media in
terms of the base vertical resolution.

wRestrictedAreaWidth
Specifies the restricted area width of the media in terms of the base horizontal resolution.

wRestrictedAreaHeight
Specifies the restricted area height of the media in terms of the base vertical resolution.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_MEDIANOTFOUND The specified media definition cannot be

found.
WFS_ERR_CHK_MEDIAINVALID The specified media definition is invalid.

Comments None.

CWA 16926-7:2020 (E)

24

4.7 WFS_INF_CHK_QUERY_FIELD

Description This function is used to retrieve details on the definition of a single or all fields on a specified
form.

Input Param LPWFSCHKQUERYFIELD lpQueryField;
typedef struct _wfs_chk_query_field
 {
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
 } WFSCHKQUERYFIELD, *LPWFSCHKQUERYFIELD;

lpszFormName
Points to the null-terminated form name.

lpszFieldName
Pointer to the null-terminated name of the field about which to retrieve details.

If the value of lpszFieldName is a NULL pointer, then details are retrieved for all fields on the
form. Depending upon whether the form is encoded in UNICODE representation either the
lpszInitialValue or lpszUNICODEInitialValue output fields are used to retrieve the field Initial
Value.

Output Param LPWFSCHKFRMFIELD *lppFields;

lppFields
Pointer to a null-terminated array of pointers to WFSCHKFRMFIELD structures:
typedef struct _wfs_chk_frm_field
 {
 LPSTR lpszFieldName;
 WORD fwType;
 WORD fwClass;
 WORD fwAccess;
 WORD fwOverflow;
 LPSTR lpszInitialValue;
 LPWSTR lpszUNICODEInitialValue;
 LPSTR lpszFormat;
 LPWSTR lpszUNICODEFormat;
 } WFSCHKFRMFIELD, *LPWFSCHKFRMFIELD;

lpszFieldName
Pointer to the null-terminated field name.

fwType
Specifies the type of field and can be one of the following:

Value Meaning
WFS_CHK_FIELDTEXT A text field.
WFS_CHK_FIELDMICR A Magnetic Ink Character Recognition

(MICR) field.
WFS_CHK_FIELDOCR An Optical Character Recognition (OCR)

field.
WFS_CHK_FIELDGRAPHIC A graphic field.

fwClass
Specifies the class of the field and can be one of the following:

Value Meaning
WFS_CHK_CLASSSTATIC The field data cannot be set by the

application.
WFS_CHK_CLASSOPTIONAL The field data can be set by the application.
WFS_CHK_CLASSREQUIRED The field data must be set by the application.

fwAccess
Specifies whether the field is to be used for input, output, or both and can be a combination of the
following bit-flags:

CWA 16926-7:2020 (E)

25

Value Meaning
WFS_CHK_ACCESSREAD The field is used for input.
WFS_CHK_ACCESSWRITE The field is used for output.

fwOverflow
Specifies how an overflow of field data should be handled and can be one of the following:

Value Meaning
WFS_CHK_OVFTERMINATE Return an error and terminate printing of the

form.
WFS_CHK_OVFTRUNCATE Truncate the field data to fit in the field.
WFS_CHK_OVFBESTFIT Fit the text in the field.
WFS_CHK_OVFOVERWRITE Print the field data beyond the extents of the

field boundary.
WFS_CHK_OVFWORDWRAP If the field can hold more than one line the

text is wrapped around.

lpszInitialValue
The initial value of the field when the field is written as output.

lpszUNICODEInitialValue
The initial value of the field when form is encoded in UNICODE.

lpszFormat
Format string as defined in the form for this field.

lpszUNICODEFormat
Format string as defined in the form for this field when form is encoded in UNICODE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_CHK_FORMINVALID The specified form is invalid.
WFS_ERR_CHK_FIELDNOTFOUND The specified field cannot be found.
WFS_ERR_CHK_FIELDINVALID The specified field is invalid.
WFS_ERR_CHK_CHARSETDATA The character set(s) found is not supported

by the Service Provider.

CWA 16926-7:2020 (E)

26

5. Execute Commands

5.1 WFS_CMD_CHK_PROCESS_FORM

Description This function initiates feeding and processing of a check. Based on the form definition and
dwOptions field, the MICR/OCR data is read, check image is scanned, check is endorsed, and
MICR/OCR is written. Depending upon the check reader/scanner unit, for each
WFS_CMD_CHK_PROCESS_FORM command executed, a single feed/eject of the check will
usually occur.

If the invoking application needs to read the check MICR/OCR data prior to knowing what to
write to the check in the form of endorsement data or MICR/OCR data then a
WFS_CMD_CHK_PROCESS_FORM command must first be executed with a NULL
lpszOutputFields field or dwOptions field set to WFS_CHK_OPT_NO_WRITE followed by
another WFS_CMD_CHK_PROCESS_FORM command with appropriate lpszOutputFields field
content to be written.

Input Param LPWFSCHKINPROCESSFORM lpChkInProcessForm;
typedef struct _wfs_chk_in_process_form
 {
 LPSTR lpszFormName;
 LPSTR lpszMediaName;
 LPSTR lpszInputFields;
 LPSTR lpszOutputFields;
 LPWSTR lpszUNICODEOutputFields;
 DWORD dwOptions;
 } WFSCHKINPROCESSFORM, *LPWFSCHKINPROCESSFORM;

lpszFormName
Points to the null-terminated name of the form.

lpszMediaName
Points to the null-terminated media name.

lpszInputFields
Pointer to a list of null-terminated field names from which to read input data, with the final name
terminating with two null characters. If lpszInputFields contains two null characters then no data
is read (no MICR/OCR fields are read).

lpszOutputFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the entire field string terminating with two null characters. If lpszOutputFields contains two
null characters then no data is written (no data is endorsed and no MICR/OCR is written).

lpszUNICODEOutputFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters.

The lpszUNICODEOutputFields field should only be used if the form is encoded in UNICODE
representation. This can be determined with the WFS_INF_CHK_QUERY_FORM command.

dwOptions
One or more of the following flags are set:

Value Meaning
WFS_CHK_OPT_AUTOFEED Auto feed check (Check automatically feed

and ejected).
WFS_CHK_OPT_ICAPFRONT Image capture (scan image) front of check.
WFS_CHK_OPT_ICAPBACK Image capture (scan image) back of check.
WFS_CHK_OPT_NO_MICR_OCR Do not read MICR/OCR fields.
WFS_CHK_OPT_NO_WRITE Do not write text or graphic output fields.

Output Param LPWFSCHKOUTPROCESSFORM lpOutProcessForm;

CWA 16926-7:2020 (E)

27

typedef struct _wfs_chk_out_process_form
 {
 LPSTR lpszInputFields;
 LPWSTR lpszUNICODEInputFields;
 WORD wFrontImageType;
 ULONG ulFrontImageSize;
 LPBYTE lpFrontImage;
 WORD wBackImageType;
 ULONG ulBackImageSize;
 LPBYTE lpBackImage;
 } WFSCHKOUTPROCESSFORM, *LPWFSCHKOUTPROCESSFORM;

lpszInputFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the entire input field string terminating with two null characters.

Contains a sequence such as (given a U.S. personal check):

ROUTETRANS=021203501\0ACCOUNT=370361\0TRANCODE=2199\0AMOUNT=00000
01000\0\0

lpszUNICODEInputFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire input field string terminating with two null characters.

wFrontImageType
Specifies the format of the front of the check image returned by this command as one of the
following flags:

Value Meaning
WFS_CHK_IMAGETIF The returned image is in TIF format.
WFS_CHK_IMAGEMTF The returned image is in MTF format

(Metafile format).
WFS_CHK_IMAGEBMP The returned image is in BMP format.

ulFrontImageSize
Count of bytes of front of check image data.

lpFrontImage
Points to the front of check image data.

wBackImageType
Specifies the format of the back of the check image returned by this command as one of the
following flags:

Value Meaning
WFS_CHK_IMAGETIF The returned image is in TIF format.
WFS_CHK_IMAGEMTF The returned image is in MTF format

(Metafile format).
WFS_CHK_IMAGEBMP The returned image is in BMP format.

ulBackImageSize
Count of bytes of back of check image data.

lpBackImage
Points to the back of check image data.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_REQDFIELDMISSING A required field is missing on the check.
WFS_ERR_CHK_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_CHK_FORMINVALID The specified form definition is invalid.
WFS_ERR_CHK_MEDIANOTFOUND The specified media definition cannot be

found.
WFS_ERR_CHK_MEDIAINVALID The specified media definition is invalid.
WFS_ERR_CHK_MEDIAOVERFLOW The form overflowed the media.
WFS_ERR_CHK_FIELDSPECFAILURE The syntax of the lpszInputFields or

lpszOutputFields member is invalid.

CWA 16926-7:2020 (E)

28

WFS_ERR_CHK_FIELDERROR An error occurred while processing a field,
causing termination of the read request. An
execute event
WFS_EXEE_CHK_FIELDERROR is
posted with the details.

WFS_ERR_CHK_CHARSETDATA Character set(s) supported by Service
Provider is inconsistent with use of
lpszOutputField or
lpszUNICODEOutputField.

WFS_ERR_CHK_MEDIAJAM The media is jammed. Operator intervention
is required.

WFS_ERR_CHK_SHUTTERFAIL The device is unable to open and/or close its
shutter.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CHK_NOMEDIA No check has been inserted in the (manual

mode) check reader; to be used by the
application to generate a message to the
operator to insert a check.

WFS_EXEE_CHK_MEDIAINSERTED A check was inserted; this is only issued
following the above event.

WFS_EXEE_CHK_FIELDERROR A fatal error occurred while processing a
field.

WFS_EXEE_CHK_FIELDWARNING A non-fatal error occurred while processing
a field.

WFS_USRE_CHK_INKTHRESHOLD The toner or ink supply is low or empty or
the printing contrast with ribbon is weak or
not sufficient, operator intervention is
required. Note that this event is sent only
once, at the point at which the toner becomes
low or empty. It is sent with
WFS_CHK_INKLOW or
WFS_CHK_INKOUT status.

Comments. The timeout parameter (dwTimeOut) in the WFSExecute request that passes this command
should always be large enough to accommodate prompting the operator to insert a check, having
the operator do so, and processing the check.

The application will use lpszOutputField or lpszUNICODEOutputField as an input parameter,
depending upon the Service Provider capabilities. Legacy (non-UNICODE aware) applications
will only use the lpszOutputField field. UNICODE applications can use either the
lpszOutputField or lpszUNICODEOutputField fields, provided the Service Provider is UNICODE
compliant.

CWA 16926-7:2020 (E)

29

5.2 WFS_CMD_CHK_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the CHK device to a known good state. This command does not over-ride a lock obtained by
another application or service handle.

The device will attempt to either retain, eject or will perform no action on any media found in the
CHK as specified in the lpwResetIn parameter. It may not always be possible to retain or eject the
media as specified because of hardware problems. If a media is found inside the device the
WFS_SRVE_CHK_MEDIADETECTED event will inform the application where media was
actually moved to. If no action is specified the media will not be moved even if this means that
the CHK cannot be recovered.

Input Param LPWORD lpwResetIn;

Specifies the action to be performed on any media found within the CHK as one of the following
values:

Value Meaning
WFS_CHK_RESET_EJECT Eject any media found.
WFS_CHK_RESET_CAPTURE Retain any media found.
WFS_CHK_RESET_NOACTION No Action should be performed on any

media found.

If lpwResetIn is a NULL pointer the Service Provider will determine where to move any media
found.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_MEDIAJAM The media is jammed. Operator intervention

is required.
WFS_ERR_CHK_SHUTTERFAIL The device is unable to open and/or close its

shutter.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CHK_MEDIADETECTED This event is generated when a media is

detected during a reset.

Comments None.

CWA 16926-7:2020 (E)

30

5.3 WFS_CMD_CHK_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the CHK guidance lights. This includes defining the
flash rate, the color and the direction. When an application tries to use a color or direction that is
not supported then the Service Provider will return the generic error
WFS_ERR_UNSUPP_DATA.

Input Param LPWFSCHKSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_chk_set_guidlight
 }
 WORD wGuidLight;
 DWORD dwCommand;
 } WFSCHKSETGUIDLIGHT, *LPWFSCHKSETGUIDLIGHT;

wGuidLight
Specifies the index of the guidance light to set as one of the values defined within the capabilities
section.

dwCommand
Specifies the state of the guidance light indicator as WFS_CHK_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
one type D. If no value of type C is specified then the default color is used. The Service Provider
determines which color is used as the default color.

Value Meaning Type
WFS_CHK_GUIDANCE_OFF The light indicator is turned off. A
WFS_CHK_GUIDANCE_SLOW_FLASH The light indicator is set to B

flash slowly.
WFS_CHK_GUIDANCE_MEDIUM_FLASH The light indicator is set to B

flash medium frequency.
WFS_CHK_GUIDANCE_QUICK_FLASH The light indicator is set to B

flash quickly.
WFS_CHK_GUIDANCE_CONTINUOUS The light indicator is turned B

on continuously (steady).
WFS_CHK_GUIDANCE_RED The light indicator C

color is set to red.
WFS_CHK_GUIDANCE_GREEN The light indicator C

color is set to green.
WFS_CHK_GUIDANCE_YELLOW The light indicator C

color is set to yellow.
WFS_CHK_GUIDANCE_BLUE The light indicator C

color is set to blue.
WFS_CHK_GUIDANCE_CYAN The light indicator C

color is set to cyan.
WFS_CHK_GUIDANCE_MAGENTA The light indicator C

color is set to magenta.
WFS_CHK_GUIDANCE_WHITE The light indicator C

color is set to white.
WFS_CHK_GUIDANCE_ENTRY The light indicator is set D

to the entry state.
WFS_CHK_GUIDANCE_EXIT The light indicator is set D

to the exit state.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light
does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

CWA 16926-7:2020 (E)

31

Comments Guidance light support was added into the CHK primarily to support guidance lights for
workstations where more than one instance of a CHK is present. The original SIU guidance light
mechanism was not able to manage guidance lights for workstations with multiple CHKs. This
command can also be used to set the status of the CHK guidance lights when only one instance of
a CHK is present.

The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

CWA 16926-7:2020 (E)

32

5.4 WFS_CMD_CHK_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSCHKPOWERSAVECONTROL lpPowerSaveControl;
typedef struct _wfs_chk_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSCHKPOWERSAVECONTROL, *LPWFSCHKPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR_CHK_POWERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the
device.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CHK_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-7:2020 (E)

33

5.5 WFS_CMD_CHK_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in
the lpdwSynchronizableCommands parameter of the WFS_INF_CHK_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command other than the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the
WFS_CMD_CHK_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSCHKSYNCHRONIZECOMMAND lpSynchronizeCommand;
typedef struct _wfs_chk_synchronize_command
 {
 DWORD dwCommand;
 LPVOID lpCmdData;
 } WFSCHKSYNCHRONIZECOMMAND, *LPWFSCHKSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

lpCmdData
Pointer to data or a data structure that represents the parameter that is normally associated with
the command that is specified in dwCommand. For example, if dwCommand is
WFS_CMD_CHK_PROCESS_FORM then lpCmdData will point to a
WFSCHKINPROCESSFORM structure. This parameter can be NULL if no command input
parameter is needed or if this detail is not needed to synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
not result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CHK_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service
Provider.

WFS_ERR_CHK_SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the lpCmdData is not supported
by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-7:2020 (E)

34

6. Events

6.1 WFS_EXEE_CHK_NOMEDIA

Description This event specifies that the physical check must be inserted into the device in order for the
execute command to proceed.

Event Param LPSTR lpszUserPrompt;

lpszUserPrompt
Points to a null-terminated string which identifies the prompt string which is configured for the
form (the USERPROMPT attribute of the XFSFORM section).

Comments The application may use the lpszUserPrompt in any manner it sees fit. For example, it might
display the string to the operator, along with a message that the check should be inserted.

CWA 16926-7:2020 (E)

35

6.2 WFS_EXEE_CHK_MEDIAINSERTED

Description This event specifies that the physical check has been inserted into the device.

Event Param None.

Comments The application may use this event to, for example, remove a message box from the screen telling
the user to insert the next check.

CWA 16926-7:2020 (E)

36

6.3 WFS_SRVE_CHK_MEDIAINSERTED

Description This event specifies that the physical check media has been inserted into the device without any
read execute command being executed. This event is only generated when media is entered in an
unsolicited manner.

Event Param None.

Comments None.

CWA 16926-7:2020 (E)

37

6.4 WFS_EXEE_CHK_FIELDERROR

Description This event specifies that a fatal error has occurred while processing a field.

Event Param LPWFSCHKFIELDFAIL lpFieldFail;
typedef struct _wfs_chk_field_failure
 {
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
 WORD wFailure;
 } WFSCHKFIELDFAIL, *LPWFSCHKFIELDFAIL;

lpszFormName
Points to the null-terminated form name.

lpszFieldName
Points to the null-terminated field name.

wFailure
Specifies the type of failure and can be one of the following:

Value Meaning
WFS_CHK_FIELDREQUIRED The specified field must be supplied by the

application.
WFS_CHK_FIELDSTATICOVWR The specified field is static and thus cannot

be overwritten by the application.
WFS_CHK_FIELDOVERFLOW The value supplied for the specified fields is

too long.
WFS_CHK_FIELDNOTFOUND The specified field does not exist.
WFS_CHK_FIELDNOTREAD The specified field is not an input field.
WFS_CHK_FIELDNOTWRITE An attempt was made to write to an input

field.
WFS_CHK_FIELDHWERROR The specified field uses special hardware

(e.g. OCR) and an error occurred.
WFS_CHK_FIELDTYPENOTSUPPORTED The form field type is not supported with

device.

CWA 16926-7:2020 (E)

38

6.5 WFS_EXEE_CHK_FIELDWARNING

Description This event is used to specify that a non-fatal error has occurred while processing a field.

Event Param LPWFSCHKFIELDFAIL lpFieldFail;

As defined in the section describing WFS_EXEE_CHK_FIELDERROR.

Comments None.

CWA 16926-7:2020 (E)

39

6.6 WFS_USRE_CHK_INKTHRESHOLD

Description This user event is used to specify that the state of the ink reached a threshold.

Event Param LPWORD lpwInkThreshold;

lpwInkThreshold
Specified as one of the following flags:

Value Meaning
WFS_CHK_INKFULL The ink is in a good state.
WFS_CHK_INKLOW The ink is low.
WFS_CHK_INKOUT The ink is out.

Comments None.

CWA 16926-7:2020 (E)

40

6.7 WFS_SRVE_CHK_MEDIADETECTED

Description This service event is generated if media is detected during a reset (WFS_CMD_CHK_RESET).
The parameter on the event informs the application of the position of the media on the completion
of the reset.

Event Param LPWORD lpwResetOut;

lpwResetOut
Specifies the position of any media found within the CHK as one of the following values:

Value Meaning
WFS_CHK_MEDIAEJECTED The media was ejected.
WFS_CHK_MEDIARETAINED The media was retained.
WFS_CHK_MEDIAJAMMED The media is jammed in the device.

Comments None.

CWA 16926-7:2020 (E)

41

6.8 WFS_SRVE_CHK_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSCHKDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_chk_device_position
 {
 WORD wPosition;
 } WFSCHKDEVICEPOSITION, *LPWFSCHKDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_CHK_DEVICEINPOSITION The device is in its normal operating

position.
WFS_CHK_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_CHK_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-7:2020 (E)

42

6.9 WFS_SRVE_CHK_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSCHKPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_chk_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSCHKPOWERSAVECHANGE, *LPWFSCHKPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode this device
will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-7:2020 (E)

43

7. Forms Language Usage

This section covers the usage of the forms language to accommodate check readers.

The forms language contains the FORMAT attribute in the XFSFIELD section. For check readers, the formatstring
is used to generate the delimiters for the check fields. For forms intended for use with check readers, the FORMAT
attribute is required. The FORMAT keyword is application defined, however may be interpreted by the Service
Provider. The following illustrates the use of the FORMAT keyword:

field Amount FORMAT ":NNNNNNNNNN:"

field AccountNum FORMAT "0000NNNNNN<"

field RouteTransit FORMAT ";NNNNNNNNN;"

Field names are not limited to the sample field names above. Punctuation marks are used in place of the standard
field separators. A capital N means a number to be read and returned. A zero (“0”) means an optional number
which, if present, is read and returned. Note that all fields on a check encoder line that have optional numbers
should place the zeros on the same end of the format string as an aid to the Service Provider in parsing the code line
(for instance, most check readers read the MICR line right to left, so optional numbers should always be on the left
side of fields which have them.).

Fields are processed in the order that they appear within the Form definition. If the device supports reading multiple
fonts, the FONT attribute of the XFSFIELD section might be significant. The name of the font (e.g. CMC7, E13B,
etc), given here, will cause the check reader to use the appropriate font.

For endorsing checks, the field description specifies the “front” or “back” of the check using the SIDE attribute, and
position relative to the trailing or (usually) leading edge of the check.

CWA 16926-7:2020 (E)

44

7.1 Definition Syntax

The syntactic rules for form, field and media definitions are as follows:

• White space - space, tab

• Line continuation - backslash (\)

• Line termination - CR, LF, CR/LF; line termination ends a “keyword section” (a keyword and its value[s])

• Keywords - must be all upper case

• Names - (field/media/font names) any case; case is preserved; Service Providers are case sensitive

• Strings - all strings must be enclosed in double quote characters ("); standard C escape sequences are
allowed

• Comments - start with two forward slashes (//), end at line termination

Other notes:

• The values of a keyword are separated by commas.

• If a keyword is present, all its values must be specified; default values are used only if the keyword is
absent.

• Values that are character strings are marked with asterisks in the definitions below, and must be quoted as
specified above.

• All forms can be represented using either ISO 646 (ANSI) or UNICODE character encoding. If the
UNICODE representation is used then all Names and Strings are restricted to an internal representation of
ISO 646 (ANSI) characters. Only the INITIALVALUE and FORMAT keyword values can have double
byte values outside of the ISO 646 (ANSI) character set.

• If forms character encoding is UNICODE then, consistent with the UNICODE standard, the file prefix
must be in Little Endian (xFFFE) or Big Endian (xFEFF) notation, such that UNICODE encoding is
recognized.

CWA 16926-7:2020 (E)

45

7.2 XFS form/media definition files in multi-vendor environments

Although for most Service Providers directory location and extension of XFS form/media definition files are
configurable through the registry, the capabilities of Service Providers and or actual hardware may vary. Therefore
the following considerations should be taken into account when applications use XFS form definition files with the
purpose of running in a multi-vendor environment:

• Physical dimensions of checks are not identical.

• Just-in-time form loading may not be supported by all Service Providers, which makes it impossible to
create dynamic form files just before scanning.

• Some form/media definition keywords may not be supported due to limitations of the hardware or
software.

CWA 16926-7:2020 (E)

46

7.3 Form and Media Measurements

The UNIT keyword sections of the form and media definitions specify the base horizontal and vertical resolution as
follows:

• The base value specifies the base unit of measurement.

• The x and y values specify the horizontal and vertical resolution as fractions of the base value (e.g. an x
value of 10 and a base value of MM means that the base horizontal resolution is 0.1mm).

The base resolutions thus defined by the UNIT keyword section of the XFSFORM definition are used as the units
of the form definition keyword sections:

• SIZE (width and height values)

• ALIGNMENT (xoffset and yoffset values)

and of the field definition keyword sections:

• POSITION (x and y values)

• SIZE (width and height values)

The base resolutions thus defined by the UNIT keyword section of the XFSMEDIA definition are used as the units
of the media definition keyword sections:

• SIZE (width and height values)

• CHECKAREA (x, y, width and height values)

• RESTRICTED (x, y, width and height values)

CWA 16926-7:2020 (E)

47

7.4 Form Definition

XFSFORM formname
BEGIN
(required) UNIT base, Base resolution unit for form definition

 MM
 INCH
 ROWCOLUMN

 x, Horizontal base unit fraction
 y Vertical base unit fraction
(required) SIZE width, Width of form
 height Height of form
 ALIGNMENT alignment, Alignment of the form on the physical medium:

 TOPLEFT (default)
 TOPRIGHT
 BOTTOMLEFT
 BOTTOMRIGHT

 xoffset, Horizontal offset relative to the horizontal alignment
specified by alignment. Always specified as a positive
value (i.e. if aligned to the right side of the medium, means
offset the form to the left). (default = 0)

 yoffset Vertical offset relative to the vertical alignment specified
by alignment. Always specified as a positive value (i.e. if
aligned to the bottom of the medium, means offset the form
upward). (default = 0)

 VERSION major, Major version number
 minor, Minor version number
 date*, Creation/modification date
 author* Author of form
(required) LANGUAGE languageID Language used in this form - a 16 bit value (LANGID)

which is a combination of a primary (10 bits) and a
secondary (6 bits) language ID (This is the standard
language ID in the Win32 API; standard macros support
construction and decomposition of this composite ID)

 COPYRIGHT copyright* Copyright entry
 TITLE title* Title of form
 COMMENT comment* Comment section
 USERPROMPT prompt* Prompt string for user interaction
 [XFSFIELD fieldname One field definition (as defined in the next section) for each

field in the form
 BEGIN

 . . .
 END]

END

CWA 16926-7:2020 (E)

48

7.5 Field Definition

XFSFIELD fieldname
BEGIN
(required) POSITION x, Horizontal position (relative to left or right side of form,

depending upon HPOSITION keyword)
 y Vertical position (relative to top or bottom of form,

depending upon VPOSITION keyword)
 HPOSITION Horizontal field positioning relative to:

 LEFT (default)
 RIGHT

 VPOSITION Vertical field positioning relative to:
 TOP
 BOTTOM (default)

 TYPE fieldtype Type of field:
 GRAPHIC
 MICR (default)
 OCR
 TEXT

 LANGUAGE languageID Language used in this field – a 16 bit value (LANGID)
which is a combination of a primary (10 bits) and a
secondary (6 bits) language ID (This is the standard
language ID in the Win32 API; standard macros support
construction and decomposition of this composite ID)
If unspecified defaults to form definition LANGUAGE
specification.

 SIDE Side of check.
 FRONT (default)
 BACK

 CLASS class Field class
 OPTIONAL (default)
 STATIC
 REQUIRED

 ACCESS access Access rights of field
 WRITE (default)
 READ

 OVERFLOW overflow Action on field overflow:
 TERMINATE (default)
 TRUNCATE
 BESTFIT (the Service Provider fits the data
 into the field as well as it can)
 OVERWRITE (a contiguous write)
 WORDWRAP

 CASE case Convert field contents to
 NOCHANGE (default)
 UPPER
 LOWER

 HORIZONTAL justify Horizontal alignment of field contents
 LEFT (default)
 RIGHT
 CENTER
 JUSTIFY

 VERTICAL justify Vertical alignment of field contents
 BOTTOM (default)
 CENTER
 TOP

(required) SIZE width, Field width
 height Field height

CWA 16926-7:2020 (E)

49

 STYLE style

Display attributes as a combination of the following,
ORed together using the "|" operator:
 NORMAL (default)
 BOLD
 ITALIC
 UNDER (single underline)
 DOUBLEUNDER (double underline)
 DOUBLE (double width)
 TRIPLE (triple width)
 QUADRUPLE (quadruple width)
 STRIKETHROUGH
 ROTATE90 (rotate 90 degrees clockwise)
 ROTATE270 (rotate 270 degrees clockwise)
 UPSIDEDOWN (upside down)
 PROPORTIONAL (proportional spacing)
 DOUBLEHIGH
 TRIPLEHIGH
 QUADRUPLEHIGH
 CONDENSED
 SUPERSCRIPT
 SUBSCRIPT
 OVERSCORE
 LETTERQUALITY
 NEARLETTERQUALITY
 DOUBLESTRIKE
 OPAQUE (If omitted then default attribute is
 transparent)
Some of these Styles may be mutually exclusive, or
may combine to provide unexpected results.

 SCALING scalingtype Information on how to size the GRAPHIC within the
field:
 BESTFIT (default) scale to size indicated
 ASIS render at native size
 MAINTAINASPECT
 scale as close as possible to size indicated
 while maintaining the aspect ratio and not
 losing graphic information.
SCALING is only relevant for GRAPHIC field types.

 FONT fontname* For MICR or OCR WRITE field, in some cases this
predefines the following parameters:
 CMC7
 E13B
For TEXT field, font name is interpreted by the Service
Provider. In some cases it may indicate printer resident
fonts, and in others it may indicate the name of a
downloadable font.

 POINTSIZE pointsize Point size
 CPI cpi Characters per inch
 LPI lpi Lines per inch

CWA 16926-7:2020 (E)

50

(required) FORMAT formatstring* For MICR or OCR READ field, the formatstring is used
to generate the delimiters for the check fields; its usage
is application defined. The FORMAT keyword may
also be interpreted by the Service Provider.
To have the MICR/OCR check line fields parsed, the
field names must be defined. The FORMAT keyword
for three fields are illustrated as follows:
 Amount FORMAT “;NNNNNNNNNN;”
 AccountNum FORMAT “0000NNNNNN<”
 RouteTransit FORMAT “;NNNNNNNNN;”
Field names are not limited to the above sample field
names.
To define the entire MICR/OCR check line as an
unparsed field to be returned to the application, a field
must be defined with the name “MICROCRDATA”.
Punctuation marks are used in place of the standard
field separators. A capital N means a number is to be
read and returned. A zero (“0”) means an optional
number which, if present, is read and returned.
Note that all fields on a check encoder line that have
optional numbers should place the zeros on the same
end of the format string as an aid to the Service
Provider in parsing the code line (for instance, most
check readers read the MICR line right to left, so
optional numbers should always be on the left side of
fields which have them.).
For TEXT field, This is an application defined input
field describing how the application should format the
data. This may be interpreted by the Service Provider.

 INITIALVALUE value* Initial value, for GRAPHIC type fields, this value may
contain the filename of the graphic image. The type of
this graphic will be determined by the file extension
(e.g. BMP for Windows Bitmap). Graphic file name
may be full or partial path.
For example “C:\XFS\XFSLOGO.BMP” illustrates use
of full path name.
A file name specification of “LOGO.BMP” illustrates
partial path name. In this instance file is obtained from
current directory.

END

CWA 16926-7:2020 (E)

51

7.6 Media Definition

The media definition determines those characteristics that result from the combination of a particular media type
together with a particular check. The aim is to make it easy to move forms between different checks which might
have different constraints on how they handle a specific media type. It is the Service Provider's responsibility to
ensure that the form definition does not specify the reading/writing of any fields that conflict with the media
definition. An example of such a conflict might be that the form definition asks for a field to be read/written in an
area that the media definition defines as a restricted area.

XFSMEDIA medianame*
BEGIN
 TYPE type Predefined media types are:

CHECK
(required) UNIT base, Base resolution unit for media definition

 MM
 INCH
 ROWCOLUMN

 x, Horizontal base unit fraction
 y Vertical base unit fraction
(required) SIZE width, Width of physical media
 height Height of physical media
 CHECKAREA x, Check area relative
 y, to top left corner
 width, of physical media
 height (default = physical size of media)
 RESTRICTED x, Restricted area relative to
 y, to top left corner
 width, of physical media
 height (default = no restricted area)
END

CWA 16926-7:2020 (E)

52

8. C - Header file

/**
* *
* xfschk.h XFS - Check reader/scanner (CHK) definitions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __INC_XFSCHK__H
#define __INC_XFSCHK__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* value of WFSCHKCAPS.wClass */

#define WFS_SERVICE_CLASS_CHK (5)
#define WFS_SERVICE_VERSION_CHK (0x2803) /* Version 3.40 */
#define WFS_SERVICE_NAME_CHK "CHK"

#define CHK_SERVICE_OFFSET (WFS_SERVICE_CLASS_CHK * 100)

/* CHK Info Commands */

#define WFS_INF_CHK_STATUS (CHK_SERVICE_OFFSET + 1)
#define WFS_INF_CHK_CAPABILITIES (CHK_SERVICE_OFFSET + 2)
#define WFS_INF_CHK_FORM_LIST (CHK_SERVICE_OFFSET + 3)
#define WFS_INF_CHK_MEDIA_LIST (CHK_SERVICE_OFFSET + 4)
#define WFS_INF_CHK_QUERY_FORM (CHK_SERVICE_OFFSET + 5)
#define WFS_INF_CHK_QUERY_MEDIA (CHK_SERVICE_OFFSET + 6)
#define WFS_INF_CHK_QUERY_FIELD (CHK_SERVICE_OFFSET + 7)

/* CHK Command Verbs */

#define WFS_CMD_CHK_PROCESS_FORM (CHK_SERVICE_OFFSET + 1)
#define WFS_CMD_CHK_RESET (CHK_SERVICE_OFFSET + 2)
#define WFS_CMD_CHK_SET_GUIDANCE_LIGHT (CHK_SERVICE_OFFSET + 3)
#define WFS_CMD_CHK_POWER_SAVE_CONTROL (CHK_SERVICE_OFFSET + 4)
#define WFS_CMD_CHK_SYNCHRONIZE_COMMAND (CHK_SERVICE_OFFSET + 5)

/* CHK Messages */

#define WFS_EXEE_CHK_NOMEDIA (CHK_SERVICE_OFFSET + 1)
#define WFS_EXEE_CHK_MEDIAINSERTED (CHK_SERVICE_OFFSET + 2)
#define WFS_SRVE_CHK_MEDIAINSERTED (CHK_SERVICE_OFFSET + 3)
#define WFS_EXEE_CHK_FIELDERROR (CHK_SERVICE_OFFSET + 4)
#define WFS_EXEE_CHK_FIELDWARNING (CHK_SERVICE_OFFSET + 5)
#define WFS_USRE_CHK_INKTHRESHOLD (CHK_SERVICE_OFFSET + 6)
#define WFS_SRVE_CHK_MEDIADETECTED (CHK_SERVICE_OFFSET + 7)
#define WFS_SRVE_CHK_DEVICEPOSITION (CHK_SERVICE_OFFSET + 8)
#define WFS_SRVE_CHK_POWER_SAVE_CHANGE (CHK_SERVICE_OFFSET + 9)

/* values of WFSCHKSTATUS.fwDevice */

#define WFS_CHK_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CHK_DEVOFFLINE WFS_STAT_DEVOFFLINE

CWA 16926-7:2020 (E)

53

#define WFS_CHK_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CHK_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CHK_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CHK_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CHK_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_CHK_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_CHK_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSCHKSTATUS.fwMedia,
 WFS_SRVE_CHK_MEDIADETECTED event */

#define WFS_CHK_MEDIANOTSUPP (0)
#define WFS_CHK_MEDIANOTPRESENT (1)
#define WFS_CHK_MEDIAREQUIRED (2)
#define WFS_CHK_MEDIAPRESENT (3)
#define WFS_CHK_MEDIAJAMMED (4)
#define WFS_CHK_MEDIAEJECTED (5)
#define WFS_CHK_MEDIARETAINED (6)

/* Size and max index of dwGuidLights array */

#define WFS_CHK_GUIDLIGHTS_SIZE (32)
#define WFS_CHK_GUIDLIGHTS_MAX (WFS_CHK_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSCHKSTATUS.dwGuidLights [...]
 WFSCHKCAPS.dwGuidLights [...]
*/

#define WFS_CHK_GUIDANCE_CHECKUNIT (0)

/* Values of WFSCHKSTATUS.dwGuidLights [...]
 WFSCHKCAPS.dwGuidLights [...]
*/

#define WFS_CHK_GUIDANCE_NOT_AVAILABLE (0x00000000)
#define WFS_CHK_GUIDANCE_OFF (0x00000001)
#define WFS_CHK_GUIDANCE_SLOW_FLASH (0x00000004)
#define WFS_CHK_GUIDANCE_MEDIUM_FLASH (0x00000008)
#define WFS_CHK_GUIDANCE_QUICK_FLASH (0x00000010)
#define WFS_CHK_GUIDANCE_CONTINUOUS (0x00000080)
#define WFS_CHK_GUIDANCE_RED (0x00000100)
#define WFS_CHK_GUIDANCE_GREEN (0x00000200)
#define WFS_CHK_GUIDANCE_YELLOW (0x00000400)
#define WFS_CHK_GUIDANCE_BLUE (0x00000800)
#define WFS_CHK_GUIDANCE_CYAN (0x00001000)
#define WFS_CHK_GUIDANCE_MAGENTA (0x00002000)
#define WFS_CHK_GUIDANCE_WHITE (0x00004000)
#define WFS_CHK_GUIDANCE_ENTRY (0x00100000)
#define WFS_CHK_GUIDANCE_EXIT (0x00200000)

/* Values of WFSCHKSTATUS.wDevicePosition
 WFSCHKDEVICEPOSITION.wPosition */

#define WFS_CHK_DEVICEINPOSITION (0)
#define WFS_CHK_DEVICENOTINPOSITION (1)
#define WFS_CHK_DEVICEPOSUNKNOWN (2)
#define WFS_CHK_DEVICEPOSNOTSUPP (3)

/* values of WFSCHKCAPS.fwType */

#define WFS_CHK_TYPECHK (1)

/* values of WFSCHKSTATUS.fwInk,
 lpwInkThreshold */

CWA 16926-7:2020 (E)

54

#define WFS_CHK_INKNOTSUPP (0)
#define WFS_CHK_INKFULL (1)
#define WFS_CHK_INKLOW (2)
#define WFS_CHK_INKOUT (3)

/* values of WFSCHKCAPS.fwStamp */

#define WFS_CHK_STAMPNONE (1)
#define WFS_CHK_STAMPFRONT (2)
#define WFS_CHK_STAMPBACK (3)
#define WFS_CHK_STAMPBOTH (4)

/* values of WFSCHKCAPS.wImageCapture */

#define WFS_CHK_ICAPNONE (1)
#define WFS_CHK_ICAPFRONT (2)
#define WFS_CHK_ICAPBACK (3)
#define WFS_CHK_ICAPBOTH (4)

/* values of WFSCHKCAPS.fwCharSupport,
 WFSCHKFRMHEADER.fwCharSupport */

#define WFS_CHK_ASCII (0x0001)
#define WFS_CHK_UNICODE (0x0002)

/* values of WFSCHKFRMHEADER.wBase,
 WFSCHKFRMMEDIA.wBase */

#define WFS_CHK_INCH (1)
#define WFS_CHK_MM (2)
#define WFS_CHK_ROWCOLUMN (3)

/* values of WFSCHKFRMHEADER.wAlignment */

#define WFS_CHK_TOPLEFT (1)
#define WFS_CHK_TOPRIGHT (2)
#define WFS_CHK_BOTTOMLEFT (3)
#define WFS_CHK_BOTTOMRIGHT (4)

/* values of WFSCHKFRMMEDIA.fwMediaType */

#define WFS_CHK_MEDIACHECK (1)

/* values of WFSCHKFRMFIELD.fwType */

#define WFS_CHK_FIELDTEXT (1)
#define WFS_CHK_FIELDMICR (2)
#define WFS_CHK_FIELDOCR (3)
#define WFS_CHK_FIELDGRAPHIC (4)

/* values of WFSCHKFRMFIELD.fwClass */

#define WFS_CHK_CLASSSTATIC (1)
#define WFS_CHK_CLASSOPTIONAL (2)
#define WFS_CHK_CLASSREQUIRED (3)

/* values of WFSCHKFRMFIELD.fwAccess */

#define WFS_CHK_ACCESSREAD (1)
#define WFS_CHK_ACCESSWRITE (2)

CWA 16926-7:2020 (E)

55

/* values of WFSCHKFRMFIELD.fwOverflow */

#define WFS_CHK_OVFTERMINATE (0)
#define WFS_CHK_OVFTRUNCATE (1)
#define WFS_CHK_OVFBESTFIT (2)
#define WFS_CHK_OVFOVERWRITE (3)
#define WFS_CHK_OVFWORDWRAP (4)

/* values of WFSCHKINPROCESSFORM.dwOptions */

#define WFS_CHK_OPT_AUTOFEED 0x0001
#define WFS_CHK_OPT_ICAPFRONT 0x0002
#define WFS_CHK_OPT_ICAPBACK 0x0004
#define WFS_CHK_OPT_NO_MICR_OCR 0x0008
#define WFS_CHK_OPT_NO_WRITE 0x0010

/* values of WFSCHKOUTPROCESSFORM.wFrontImageType,
 WFSCHKOUTPROCESSFORM.wBackImageType */

#define WFS_CHK_IMAGETIF (1)
#define WFS_CHK_IMAGEMTF (2)
#define WFS_CHK_IMAGEBMP (3)

/* input values to WFS_CMD_CHK_RESET */

#define WFS_CHK_RESET_EJECT (1)
#define WFS_CHK_RESET_CAPTURE (2)
#define WFS_CHK_RESET_NOACTION (3)

/* CHK Errors */

#define WFS_ERR_CHK_FORMNOTFOUND (-(CHK_SERVICE_OFFSET + 0))
#define WFS_ERR_CHK_FORMINVALID (-(CHK_SERVICE_OFFSET + 1))
#define WFS_ERR_CHK_MEDIANOTFOUND (-(CHK_SERVICE_OFFSET + 2))
#define WFS_ERR_CHK_MEDIAINVALID (-(CHK_SERVICE_OFFSET + 3))
#define WFS_ERR_CHK_MEDIAOVERFLOW (-(CHK_SERVICE_OFFSET + 4))
#define WFS_ERR_CHK_FIELDNOTFOUND (-(CHK_SERVICE_OFFSET + 5))
#define WFS_ERR_CHK_FIELDINVALID (-(CHK_SERVICE_OFFSET + 6))
#define WFS_ERR_CHK_FIELDERROR (-(CHK_SERVICE_OFFSET + 7))
#define WFS_ERR_CHK_REQDFIELDMISSING (-(CHK_SERVICE_OFFSET + 8))
#define WFS_ERR_CHK_FIELDSPECFAILURE (-(CHK_SERVICE_OFFSET + 9))
#define WFS_ERR_CHK_CHARSETDATA (-(CHK_SERVICE_OFFSET + 10))
#define WFS_ERR_CHK_MEDIAJAM (-(CHK_SERVICE_OFFSET + 11))
#define WFS_ERR_CHK_SHUTTERFAIL (-(CHK_SERVICE_OFFSET + 12))
#define WFS_ERR_CHK_INVALID_PORT (-(CHK_SERVICE_OFFSET + 13))
#define WFS_ERR_CHK_POWERSAVETOOSHORT (-(CHK_SERVICE_OFFSET + 14))
#define WFS_ERR_CHK_POWERSAVEMEDIAPRESENT (-(CHK_SERVICE_OFFSET + 15))
#define WFS_ERR_CHK_COMMANDUNSUPP (-(CHK_SERVICE_OFFSET + 16))
#define WFS_ERR_CHK_SYNCHRONIZEUNSUPP (-(CHK_SERVICE_OFFSET + 17))

/* values of WFSCHKFIELDFAIL.wFailure */

#define WFS_CHK_FIELDREQUIRED (1)
#define WFS_CHK_FIELDSTATICOVWR (2)
#define WFS_CHK_FIELDOVERFLOW (3)
#define WFS_CHK_FIELDNOTFOUND (4)
#define WFS_CHK_FIELDNOTREAD (5)
#define WFS_CHK_FIELDNOTWRITE (6)
#define WFS_CHK_FIELDHWERROR (7)
#define WFS_CHK_FIELDTYPENOTSUPPORTED (8)

/* values of WFSCHKSTATUS.wAntiFraudModule */

#define WFS_CHK_AFMNOTSUPP (0)

CWA 16926-7:2020 (E)

56

#define WFS_CHK_AFMOK (1)
#define WFS_CHK_AFMINOP (2)
#define WFS_CHK_AFMDEVICEDETECTED (3)
#define WFS_CHK_AFMUNKNOWN (4)

/*===*/
/* CHK Info Command Structures */
/*===*/

typedef struct _wfs_chk_status
{
 WORD fwDevice;
 WORD fwMedia;
 WORD fwInk;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CHK_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
} WFSCHKSTATUS, *LPWFSCHKSTATUS;

typedef struct _wfs_chk_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 BOOL bMICR;
 BOOL bOCR;
 BOOL bAutoFeed;
 BOOL bEndorser;
 BOOL bEncoder;
 WORD fwStamp;
 WORD wImageCapture;
 LPSTR lpszFontNames;
 LPSTR lpszEncodeNames;
 WORD fwCharSupport;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CHK_GUIDLIGHTS_SIZE];
 BOOL bPowerSaveControl;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
} WFSCHKCAPS, *LPWFSCHKCAPS;

typedef struct _wfs_chk_frm_header
{
 LPSTR lpszFormName;
 WORD wBase;
 WORD wUnitX;
 WORD wUnitY;
 WORD wWidth;
 WORD wHeight;
 WORD wAlignment;
 WORD wOffsetX;
 WORD wOffsetY;
 WORD wVersionMajor;
 WORD wVersionMinor;
 WORD fwCharSupport;
 LPSTR lpszFields;
} WFSCHKFRMHEADER, *LPWFSCHKFRMHEADER;

typedef struct _wfs_chk_frm_media
{
 WORD fwMediaType;
 WORD wBase;
 WORD wUnitX;
 WORD wUnitY;
 WORD wSizeWidth;
 WORD wSizeHeight;

CWA 16926-7:2020 (E)

57

 WORD wCheckAreaX;
 WORD wCheckAreaY;
 WORD wCheckAreaWidth;
 WORD wCheckAreaHeight;
 WORD wRestrictedAreaX;
 WORD wRestrictedAreaY;
 WORD wRestrictedAreaWidth;
 WORD wRestrictedAreaHeight;
} WFSCHKFRMMEDIA, *LPWFSCHKFRMMEDIA;

typedef struct _wfs_chk_query_field
{
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
} WFSCHKQUERYFIELD, *LPWFSCHKQUERYFIELD;

typedef struct _wfs_chk_frm_field
{
 LPSTR lpszFieldName;
 WORD fwType;
 WORD fwClass;
 WORD fwAccess;
 WORD fwOverflow;
 LPSTR lpszInitialValue;
 LPWSTR lpszUNICODEInitialValue;
 LPSTR lpszFormat;
 LPWSTR lpszUNICODEFormat;
} WFSCHKFRMFIELD, *LPWFSCHKFRMFIELD;

/*===*/
/* CHK Execute Command Structures */
/*===*/

typedef struct _wfs_chk_in_process_form
{
 LPSTR lpszFormName;
 LPSTR lpszMediaName;
 LPSTR lpszInputFields;
 LPSTR lpszOutputFields;
 LPWSTR lpszUNICODEOutputFields;
 DWORD dwOptions;
} WFSCHKINPROCESSFORM, *LPWFSCHKINPROCESSFORM;

typedef struct _wfs_chk_out_process_form
{
 LPSTR lpszInputFields;
 LPWSTR lpszUNICODEInputFields;
 WORD wFrontImageType;
 ULONG ulFrontImageSize;
 LPBYTE lpFrontImage;
 WORD wBackImageType;
 ULONG ulBackImageSize;
 LPBYTE lpBackImage;
} WFSCHKOUTPROCESSFORM, *LPWFSCHKOUTPROCESSFORM;

typedef struct _wfs_chk_set_guidlight
{
 WORD wGuidLight;
 DWORD dwCommand;
} WFSCHKSETGUIDLIGHT, *LPWFSCHKSETGUIDLIGHT;

typedef struct _wfs_chk_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSCHKPOWERSAVECONTROL, *LPWFSCHKPOWERSAVECONTROL;

typedef struct _wfs_chk_synchronize_command
{
 DWORD dwCommand;

CWA 16926-7:2020 (E)

58

 LPVOID lpCmdData;
} WFSCHKSYNCHRONIZECOMMAND, *LPWFSCHKSYNCHRONIZECOMMAND;

/*===*/
/* CHK Message Structures */
/*===*/

typedef struct _wfs_chk_field_failure
{
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
 WORD wFailure;
} WFSCHKFIELDFAIL, *LPWFSCHKFIELDFAIL;

typedef struct _wfs_chk_device_position
{
 WORD wPosition;
} WFSCHKDEVICEPOSITION, *LPWFSCHKDEVICEPOSITION;

typedef struct _wfs_chk_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSCHKPOWERSAVECHANGE, *LPWFSCHKPOWERSAVECHANGE;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCHK__H */

	1. Introduction
	1.1 Background to Release 3.40
	1.2 XFS Service-Specific Programming

	2. Check Readers and Scanners
	3. References
	4. Info Commands
	4.1 WFS_INF_CHK_STATUS
	4.2 WFS_INF_CHK_CAPABILITIES
	4.3 WFS_INF_CHK_FORM_LIST
	4.4 WFS_INF_CHK_MEDIA_LIST
	4.5 WFS_INF_CHK_QUERY_FORM
	4.6 WFS_INF_CHK_QUERY_MEDIA
	4.7 WFS_INF_CHK_QUERY_FIELD

	5. Execute Commands
	5.1 WFS_CMD_CHK_PROCESS_FORM
	5.2 WFS_CMD_CHK_RESET
	5.3 WFS_CMD_CHK_SET_GUIDANCE_LIGHT
	5.4 WFS_CMD_CHK_POWER_SAVE_CONTROL
	5.5 WFS_CMD_CHK_SYNCHRONIZE_COMMAND

	6. Events
	6.1 WFS_EXEE_CHK_NOMEDIA
	6.2 WFS_EXEE_CHK_MEDIAINSERTED
	6.3 WFS_SRVE_CHK_MEDIAINSERTED
	6.4 WFS_EXEE_CHK_FIELDERROR
	6.5 WFS_EXEE_CHK_FIELDWARNING
	6.6 WFS_USRE_CHK_INKTHRESHOLD
	6.7 WFS_SRVE_CHK_MEDIADETECTED
	6.8 WFS_SRVE_CHK_DEVICEPOSITION
	6.9 WFS_SRVE_CHK_POWER_SAVE_CHANGE

	7. Forms Language Usage
	7.1 Definition Syntax
	7.2 XFS form/media definition files in multi-vendor environments
	7.3 Form and Media Measurements
	7.4 Form Definition
	7.5 Field Definition
	7.6 Media Definition

	8. C - Header file

