

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 16926-63:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-63 February 2020

ICS 35.200; 35.240.15; 35.240.40
English version Extensions for Financial Services (XFS) interface specification Release 3.40 - Part 63: Identification Card Device Class Interface - Migration from version 3.30 (CWA 16926) to Version 3.40 (this CWA) - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

2

Table of Contents

European Foreword .. 4

1. Migration Information .. 8

2. Identification Card Readers and Writers ... 9

2.1 Support for EMV Intelligent Contactless Card Readers... 10

3. References ... 12

4. Info Commands ... 13

4.1 WFS_INF_IDC_STATUS ... 13

4.2 WFS_INF_IDC_CAPABILITIES .. 19

4.3 WFS_INF_IDC_FORM_LIST ... 24

4.4 WFS_INF_IDC_QUERY_FORM .. 25

4.5 WFS_INF_IDC_QUERY_IFM_IDENTIFIER .. 27

4.6 WFS_INF_IDC_EMVCLESS_QUERY_APPLICATIONS ... 28

5. Execute Commands .. 29

5.1 WFS_CMD_IDC_READ_TRACK .. 29

5.2 WFS_CMD_IDC_WRITE_TRACK .. 31

5.3 WFS_CMD_IDC_EJECT_CARD ... 33

5.4 WFS_CMD_IDC_RETAIN_CARD ... 35

5.5 WFS_CMD_IDC_RESET_COUNT .. 36

5.6 WFS_CMD_IDC_SETKEY .. 37
5.7 WFS_CMD_IDC_READ_RAW_DATA .. 38

5.8 WFS_CMD_IDC_WRITE_RAW_DATA .. 42

5.9 WFS_CMD_IDC_CHIP_IO .. 44

5.10 WFS_CMD_IDC_RESET ... 46

5.11 WFS_CMD_IDC_CHIP_POWER .. 47

5.12 WFS_CMD_IDC_PARSE_DATA .. 48
5.13 WFS_CMD_IDC_SET_GUIDANCE_LIGHT ... 49

5.14 WFS_CMD_IDC_POWER_SAVE_CONTROL ... 51

5.15 WFS_CMD_IDC_PARK_CARD .. 52

5.16 WFS_CMD_IDC_EMVCLESS_CONFIGURE ... 54

5.17 WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION .. 56

5.18 WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE .. 62
5.19 WFS_CMD_IDC_SYNCHRONIZE_COMMAND ... 64

6. Events ... 65

6.1 WFS_EXEE_IDC_INVALIDTRACKDATA .. 65

6.2 WFS_EXEE_IDC_MEDIAINSERTED ... 66

6.3 WFS_SRVE_IDC_MEDIAREMOVED ... 67

CWA 16926-63:2020 (E)

3

6.4 WFS_EXEE_IDC_MEDIARETAINED ... 68

6.5 WFS_EXEE_IDC_INVALIDMEDIA ... 69

6.6 WFS_SRVE_IDC_CARDACTION ... 70

6.7 WFS_USRE_IDC_RETAINBINTHRESHOLD ... 71

6.8 WFS_SRVE_IDC_MEDIADETECTED .. 72
6.9 WFS_SRVE_IDC_RETAINBINREMOVED ... 73

6.10 WFS_SRVE_IDC_RETAINBININSERTED ... 74

6.11 WFS_EXEE_IDC_INSERTCARD .. 75

6.12 WFS_SRVE_IDC_DEVICEPOSITION .. 76

6.13 WFS_SRVE_IDC_POWER_SAVE_CHANGE .. 77

6.14 WFS_EXEE_IDC_TRACKDETECTED ... 78
6.15 WFS_EXEE_IDC_EMVCLESSREADSTATUS ... 79

6.16 WFS_SRVE_IDC_MEDIARETAINED ... 80

7. Form Description ... 81

8. C-Header file .. 84

9. Intelligent Contactless Card Sequence Diagrams .. 95

9.1 Single Tap Transaction Without Issuer Update Processing ... 96

9.2 Double Tap Transaction With Issuer Update Processing .. 97

9.3 Card Removed Before Completion .. 98

Appendix A. Diagram Source .. 99

CWA 16926-63:2020 (E)

4

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations – Part 2. It was approved by a Workshop of representatives of interested
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• ATM Japan LTD

• AURIGA SPA

• BANK OF AMERICA

• CASHWAY TECHNOLOGY

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO.

• CIMA SPA

• CLEAR2PAY SCOTLAND LIMITED

• DIEBOLD NIXDORF

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM

• FINANZ INFORMATIK

• FUJITSU FRONTECH LIMITED

• FUJITSU TECHNOLOGY

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HESS CASH SYSTEMS GMBH & CO. KG

• HITACHI OMRON TS CORP.

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA AG

• NCR FSG

• NEC CORPORATION

• OKI ELECTRIC INDUSTRY SHENZHEN

CWA 16926-63:2020 (E)

5

• OKI ELECTRONIC INDUSTRY CO

• PERTO S/A

• REINER GMBH & CO KG

• SALZBURGER BANKEN SOFTWARE

• SIGMA SPA

• TEB

• ZIJIN FULCRUM TECHNOLOGY CO

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-63, but this does not guarantee, either explicitly or implicitly, its correctness.
Users of CWA 16926-63 should be aware that neither the Workshop participants, nor CEN can be held liable for
damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-63 do so on
their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

CWA 16926-63:2020 (E)

6

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to
Version 3.40 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -

CWA 16926-63:2020 (E)

7

Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx

CWA 16926-63:2020 (E)

8

1. Migration Information

XFS 3.40 has been designed to minimize backwards compatibility issues. This document highlights the changes
made to the IDC device class between version 3.30 and 3.40, by highlighting the additions and deletions to the text.

CWA 16926-63:2020 (E)

9

2. Identification Card Readers and Writers

This section describes the functions provided by a generic identification card reader/writer service (IDC). These
descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute,
WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This service allows for the operation of the following categories of units:

• motor driven card reader/writer

• pull through card reader (writing facilities only partially included)

• dip reader

• contactless chip card readers

• permanent chip card readers (each chip is accessed through a unique logical service)

Some motor driven card reader/writers have parking stations inside and can place identification cards there. Once a
card is in its parking station another card can be accepted by the card reader. Cards may only be moved out of a
parking station if there is no other card present in the media read/write position, the chip I/O position, the transport,
or the entry/exit slot.

The following tracks/chips and the corresponding international standards are taken into account in this document:

• Track 1 ISO 7811

• Track 2 ISO 7811

• Track 3 ISO 7811 / ISO 4909

• Cash Transfer Card Track 1 (JIS I: 8 bits/char) Japan

• Cash Transfer Card Track 3 (JIS I: 8 bits/char) Japan

• Front Track 1 (JIS II) Japan

• Watermark Sweden

• Chip (contacted) ISO 7816

• Chip (contactless) ISO 10536, ISO 14443 and ISO 18092

National standards like Transac for France are not considered, but can be easily included via the forms mechanism
(see Section 7, Form Definition).

In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check
the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that
are able to check some other information on the card and compare it with the track data.

Persistent values are maintained through power failures, open sessions, close session and system resets.

When the service controls a permanently connected chip card, WFS_ERR_UNSUPP_COMMAND will be returned
to all commands except WFS_INF_IDC_STATUS, WFS_INF_IDC_CAPABILITIES,
WFS_CMD_IDC_CHIP_POWER, WFS_CMD_IDC_CHIP_IO and WFS_CMD_IDC_RESET.

The following defines the roles and responsibilities of an application within EMV: A distinction needs to be made
between EMV Contact support and EMV Contactless support.

When defining an EMV Contact implementation

• EMV Level 2 interaction is handled above the XFS API

• EMV Level 1 interaction is handled below the XFS API

All EMV status information that is defined as a Level 1 responsibility in the EMV specification should be handled
below the XFS API.

EMVCo grants EMV Level 1 Approvals to contact IFMs and EMVCo Level 2 Approvals to Application Kernels.

When defining an EMV Contactless implementation

CWA 16926-63:2020 (E)

10

The responsibilities will depend on the type of EMV Contactless Product being implemented.

There are different EMVCo defined product types, they can be found in the EMVCo Type Approval – Contactless
Product – Administrative Process document.

• In this specification when referring to the Contactless Product Type – Intelligent Card Reader :

The following must be included and handled below the XFS API:

• An EMVCo Approved Level 1 Contactless PCD

• Entry Point and POS System Architecture according to Book A and B

• EMV Kernels according to Book C1 to C7 (minimum one kernel needs to be supported)

The Network Interface & the Consumer, Merchant Interfaces will be managed above the XFS API.

2.1 Support for EMV Intelligent Contactless Card Readers

In relation to contactless transactions, the terminology used in this document is based on the EMV Contactless
Specifications for Payment Systems, see the Error! Reference source not found. section.

There are a number of types of payment systems (or EMV) compliant contactless card readers, from the intelligent
reader device; where the reader device handles most of the transaction processing and only returns the result, to a
transparent card reader; where the contactless card reader device provides a generic communication channel to the
card without having any in-built transaction processing capabilities.

A contactless payment system transaction can be performed in two different ways, magnetic stripe emulation;
where the data returned from the chip is formatted as if it was read from the magnetic stripe, and EMV-like; where,
in a similar way to a contact EMV transaction, the chip returns a full set of BER-TLV (Basic Encoding Rules-Tag
Length Value) data. Each payment system defines when each type, or profile, is used for a transaction, but it is
usually dependent on both the configuration of the terminal and contactless card being tapped.

This document will use “magnetic stripe emulation” and “EMV-like” to identify the two profiles of contactless
transactions.

Support for a generic contactless communication channel to the card is provided via the
WFS_CMD_IDC_CHIP_IO command. This is suitable for use with a transparent contactless card reader or with an
intelligent contactless card reader device operating in a pass through mode.

The WFS_CMD_IDC_READ_RAW_DATA command can be used with an intelligent contactless card reader
device to provide magnetic track emulation transactions. Only magnetic track emulation transactions can be
supported using this command.

When using an intelligent contactless card reader to support both EMV-like and magnetic track emulation
transactions a number of commands are required. The WFS_CMD_IDC_EMVCLESS_CONFIGURE command
allows the exchange of data to configure the reader for card acceptance and the
WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION command enables the reader and performs the
transaction with the card when it is tapped. In most cases all the transaction steps involving the card are completed
within the initial card tap. Section Error! Reference source not found., Appendix provides a sequence diagram
showing the expected IDC command sequences, as well as the cardholder and application actions when performing
a contactless card based transaction.

Some contactless payment systems allow a 2nd tap of the contactless card. For example a 2nd tap can be used to
process authorization data received from the host. In the case of issuer update data this second tap is performed via
the WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE command. Section 9, Appendix provides a sequence
diagram showing the expected IDC command sequences, as well as the cardholder and application actions. The
WFS_INF_IDC_EMVCLESS_QUERY_APPLICATIONS and WFS_CMD_IDC_EMVCLESS_CONFIGURE
commands specified later in this document refer to the EMV terminology “Application Identifier (AID) - Kernel
Combinations”. A detailed explanation can be found in Reference [2] and Reference [3] documents.

This document refers to BER-TLV tags. These are defined by each individual payment systems and contain the data
exchanged between the application, contactless card and an intelligent contactless card reader. They are used to
configure and prepare the intelligent contactless card reader for a transaction and are also part of the data that is
returned by the reader on completion of the cards tap.

Based on the applicable payment system the application is expected to know which tags are required to be
configured, what values to use for the tags and how to interpret the tags returned. Intelligent readers are expected to

CWA 16926-63:2020 (E)

11

know the BER-TLV tag definitions supported per payment system application. The tags provided in this document
are examples of the types of tags applicable to each command. They are not intended to be a definite list.

CWA 16926-63:2020 (E)

12

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.40.
2. EMVCo Integrated Circuit Card Specifications for Payment Systems Version 4.3
3. EMVCo Contactless Specifications for Payment Systems, Version 2.4
4. EMVCo Contactless Type Approval Administrative Process Version 2.4

CWA 16926-63:2020 (E)

13

4. Info Commands

4.1 WFS_INF_IDC_STATUS

Description This command reports the full range of information available, including the information that is
provided either by the Service Provider or, if present, by any of the security modules. In addition
to that, the number of cards retained is transmitted for motor driven card reader/writer (for devices
of the other categories this number is always set to zero).

Input Param None.

Output Param LPWFSIDCSTATUS lpStatus;
typedef struct _wfs_idc_status
 {
 WORD fwDevice;
 WORD fwMedia;
 WORD fwRetainBin;
 WORD fwSecurity;
 USHORT usCards;
 WORD fwChipPower;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_IDC_GUIDLIGHTS_SIZE];
 WORD fwChipModule;
 WORD fwMagReadModule;
 WORD fwMagWriteModule;
 WORD fwFrontImageModule;
 WORD fwBackImageModule;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 LPWORD lpwParkingStationMedia;
 WORD wAntiFraudModule;
 } WFSIDCSTATUS, *LPWFSIDCSTATUS;

fwDevice
Specifies the state of the ID card device as one of the following flags:

Value Meaning
WFS_IDC_DEVONLINE The device is present, powered on and online

(i.e. operational, not busy processing a
request and not in an error state).

WFS_IDC_DEVOFFLINE The device is offline (e.g. the operator has
taken the device offline by turning a switch).

WFS_IDC_DEVPOWEROFF The device is powered off or physically not
connected.

WFS_IDC_DEVNODEVICE There is no device intended to be there; e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_IDC_DEVHWERROR The device is present but inoperable due to a
hardware fault that prevents it from being
used.

WFS_IDC_DEVUSERERROR The device is present but a person is
preventing proper device operation. The
application should suspend the device
operation or remove the device from service
until the Service Provider generates a device
state change event indicating the condition
of the device has changed e.g. the error is
removed (WFS_IDC_DEVONLINE) or a
permanent error condition has occurred
(WFS_IDC_DEVHWERROR).

CWA 16926-63:2020 (E)

14

WFS_IDC_DEVBUSY The device is busy and unable to process an
Execute command at this time.

WFS_IDC_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_IDC_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

fwMedia
Specifies the state of the ID card unit as one of the following values. This status is independent of
any media in the parking stations.

Value Meaning
WFS_IDC_MEDIAPRESENT Media is present in the device, not in the

entering position and not jammed. A card in
a parking station is not considered to be
present. On the latched dip device, this
indicates that the card is present in the
device and the card is unlatched.

WFS_IDC_MEDIANOTPRESENT Media is not present in the device and not at
the entering position.

WFS_IDC_MEDIAJAMMED Media is jammed in the device; operator
intervention is required.

WFS_IDC_MEDIANOTSUPP Capability to report media position is not
supported by the device (e.g. a typical swipe
reader or contactless chip card reader).

WFS_IDC_MEDIAUNKNOWN The media state cannot be determined with
the device in its current state (e.g. the value
of fwDevice is
WFS_IDC_DEVNODEVICE,
WFS_IDC_DEVPOWEROFF,
WFS_IDC_DEVOFFLINE, or
WFS_IDC_DEVHWERROR).

WFS_IDC_MEDIAENTERING Media is at the entry/exit slot of a motorized
device.

WFS_IDC_MEDIALATCHED Media is present & latched in a latched dip
card unit. This means the card can be used
for chip card dialog.

fwRetainBin
Specifies the state of the ID card unit retain bin as one of the following values:

Value Meaning
WFS_IDC_RETAINBINOK The retain bin of the ID card unit is in a good

state.
.WFS_IDC_RETAINNOTSUPP The ID card unit does not support retain

capability.
WFS_IDC_RETAINBINFULL The retain bin of the ID card unit is full.
WFS_IDC_RETAINBINHIGH The retain bin of the ID card unit is nearly

full.
WFS_IDC_RETAINBINMISSING The retain bin of the ID card unit is missing.

fwSecurity
Specifies the state of the security unit as one of the following values:

Value Meaning
WFS_IDC_SECNOTSUPP No security module is available.
WFS_IDC_SECNOTREADY The security module is not ready to process

cards or is inoperable.
WFS_IDC_SECOPEN The security module is open and ready to

process cards.

CWA 16926-63:2020 (E)

15

usCards
The number of cards retained; applicable only to motor driven ID card units for non-motorized
card units this value is zero. This value is persistent it is reset to zero by the
WFS_CMD_IDC_RESET_COUNT command.

fwChipPower
Specifies the state of the chip controlled by this service. Depending on the value of fwType within
the WFS_INF_IDC_CAPABILITIES structure, this can either be the chip on the currently
inserted user card or the chip on a permanently connected chip card. The state of the chip is one of
the following flags:

Value Meaning
WFS_IDC_CHIPONLINE The chip is present, powered on and online

(i.e. operational, not busy processing a
request and not in an error state).

WFS_IDC_CHIPPOWEREDOFF The chip is present, but powered off (i.e. not
contacted).

WFS_IDC_CHIPBUSY The chip is present, powered on, and busy
(unable to process an Execute command at
this time).

WFS_IDC_CHIPNODEVICE A card is currently present in the device, but
has no chip.

WFS_IDC_CHIPHWERROR The chip is present, but inoperable due to a
hardware error that prevents it from being
used (e.g. MUTE, if there is an unresponsive
card in the reader).

WFS_IDC_CHIPNOCARD There is no card in the device.
WFS_IDC_CHIPNOTSUPP Capability to report the state of the chip is

not supported by the ID card unit device.
This value is returned for contactless chip
card readers.

WFS_IDC_CHIPUNKNOWN The state of the chip cannot be determined
with the device in its current state.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_IDC_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as
WFS_IDC_GUIDANCE_NOT_AVAILABLE, WFS_IDC_GUIDANCE_OFF or a combination
of the following flags consisting of one type B, optionally one type C and optionally one type D.

Value Meaning Type
WFS_IDC_GUIDANCE_NOT_AVAILABLE The status is not available. A
WFS_IDC_GUIDANCE_OFF The light is turned off. A
WFS_IDC_GUIDANCE_SLOW_FLASH The light is blinking slowly. B
WFS_IDC_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.
WFS_IDC_GUIDANCE_QUICK_FLASH The light is blinking quickly. B
WFS_IDC_GUIDANCE_CONTINUOUS The light is turned on B

continuous (steady).
WFS_IDC_GUIDANCE_RED The light is red. C
WFS_IDC_GUIDANCE_GREEN The light is green. C
WFS_IDC_GUIDANCE_YELLOW The light is yellow. C
WFS_IDC_GUIDANCE_BLUE The light is blue. C

CWA 16926-63:2020 (E)

16

WFS_IDC_GUIDANCE_CYAN The light is cyan. C
WFS_IDC_GUIDANCE_MAGENTA The light is magenta. C
WFS_IDC_GUIDANCE_WHITE The light is white. C
WFS_IDC_GUIDANCE_ENTRY The light is in the entry state. D
WFS_IDC_GUIDANCE_EXIT The light is in the exit state. D

dwGuidLights [WFS_IDC_GUIDANCE_CARDUNIT]
Specifies the state of the guidance light indicator on the card unit.

fwChipModule
Specifies the state of the chip card module reader as one of the following values:

Value Meaning
WFS_IDC_CHIPMODOK The chip card module is in a good state.
WFS_IDC_CHIPMODINOP The chip card module is inoperable.
WFS_IDC_CHIPMODUNKNOWN The state of the chip card module cannot be

determined.
WFS_IDC_CHIPMODNOTSUPP Reporting the chip card module status is not

supported.

fwMagReadModule
Specifies the state of the magnetic card reader as one of the following values:

Value Meaning
WFS_IDC_MAGMODOK The magnetic card reading module is in a

good state.
WFS_IDC_MAGMODINOP The magnetic card reading module is

inoperable.
WFS_IDC_MAGMODUNKNOWN The state of the magnetic reading module

cannot be determined.
WFS_IDC_MAGMODNOTSUPP Reporting the magnetic reading module

status is not supported.

fwMagWriteModule
Specifies the state of the magnetic card writer as one of the following values:

Value Meaning
WFS_IDC_MAGMODOK The magnetic card writing module is in a

good state.
WFS_IDC_MAGMODINOP The magnetic card writing module is

inoperable.
WFS_IDC_MAGMODUNKNOWN The state of the magnetic card writing

module cannot be determined.
WFS_IDC_MAGMODNOTSUPP Reporting the magnetic writing module

status is not supported.

fwFrontImageModule
Specifies the state of the front image reader as one of the following values:

Value Meaning
WFS_IDC_IMGMODOK The front image reading module is in a good

state.
WFS_IDC_IMGMODINOP The front image reading module is

inoperable.
WFS_IDC_IMGMODUNKNOWN The state of the front image reading module

cannot be determined.
WFS_IDC_IMGMODNOTSUPP Reporting the front image reading module

status is not supported.

fwBackImageModule
Specifies the state of the back image reader as one of the following values:

Value Meaning
WFS_IDC_IMGMODOK The back image reading module is in a good

state.

CWA 16926-63:2020 (E)

17

WFS_IDC_IMGMODINOP The back image reading module is
inoperable.

WFS_IDC_IMGMODUNKNOWN The state of the back image reading module
cannot be determined.

WFS_IDC_IMGMODNOTSUPP Reporting the back image reading module
status is not supported.

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_IDC_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_IDC_DEVONLINE or
WFS_IDC_DEVOFFLINE). If the device is not in its normal operating position (i.e.
WFS_IDC_DEVICEINPOSITION) then media may not be presented through the normal
customer interface. This value is one of the following values:

Value Meaning
WFS_IDC_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_IDC_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_IDC_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_IDC_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

lpwParkingStationMedia
Pointer to a zero terminated array of WORDs which contains the states of the parking stations or
card stacker module. The lpwParkingStationMedia is NULL if no parking station and no card
stacker module is supported. The value is specified as one of the following values:

Value Meaning
WFS_IDC_MEDIAPRESENT Media is present in the parking station, and

not jammed.
WFS_IDC_MEDIANOTPRESENT Media is not present in the parking station.
WFS_IDC_MEDIAJAMMED The parking station is jammed; operator

intervention is required.
WFS_IDC_MEDIANOTSUPP Reporting the media status in a parking

station is not supported by the device.
WFS_IDC_MEDIAUNKNOWN The media state cannot be determined.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_IDC_AFMNOTSUPP No anti-fraud module is available.
WFS_IDC_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_IDC_AFMINOP Anti-fraud module is inoperable.
WFS_IDC_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_IDC_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

CWA 16926-63:2020 (E)

18

The fwDevice field can indicate that the device is still available (i.e. WFS_IDC_DEVONLINE)
even if one of the detailed device status fields (fwSecurity, fwChipModule, fwMagReadModule,
fwMagWriteModule or wAntiFraudModule) indicates that there is a problem with one or more
modules. In this case, only the functionality provided by modules that do not have a fault should
be used.

In the case where communications with the device has been lost, the fwDevice field will report
WFS_IDC_DEVPOWEROFF when the device has been removed or
WFS_IDC_DEVHWERROR if the communications are unexpectedly lost. All other fields should
contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16926-63:2020 (E)

19

4.2 WFS_INF_IDC_CAPABILITIES

Description This command is used to retrieve the capabilities of the ID card unit.

Input Param None.

Output Param LPWFSIDCCAPS lpCaps;
typedef struct _wfs_idc_caps
 {
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 WORD fwReadTracks;
 WORD fwWriteTracks;
 WORD fwChipProtocols;
 USHORT usCards;
 WORD fwSecType;
 WORD fwPowerOnOption;
 WORD fwPowerOffOption;
 BOOL bFluxSensorProgrammable;
 BOOL bReadWriteAccessFollowingEject;
 WORD fwWriteMode;
 WORD fwChipPower;
 LPSTR lpszExtra;
 WORD fwDIPMode;
 LPWORD lpwMemoryChipProtocols;
 DWORD dwGuidLights[WFS_IDC_GUIDLIGHTS_SIZE];
 WORD fwEjectPosition;
 BOOL bPowerSaveControl;
 USHORT usParkingStations;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
 } WFSIDCCAPS, *LPWFSIDCCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_IDC.

fwType
Specifies the type of the ID card unit as one of the following values:

Value Meaning
WFS_IDC_TYPEMOTOR The ID card unit is a motor driven card unit.
WFS_IDC_TYPESWIPE The ID card unit is a swipe (pull-through)

card unit.
WFS_IDC_TYPEDIP The ID card unit is a dip card unit. This dip

type is not capable of latching cards entered.
WFS_IDC_TYPECONTACTLESS The ID card unit is a contactless card unit,

i.e. no insertion of the card is required.
WFS_IDC_TYPELATCHEDDIP The ID card unit is a latched dip card unit.

This device type is used when a dip IDC
device supports chip communication. The
latch ensures the consumer cannot remove
the card during chip communication. Any
card entered will automatically latch when a
request to initiate a chip dialog is made (via
the WFS_CMD_IDC_READ_RAW_DATA
command). The
WFS_CMD_IDC_EJECT_CARD command
is used to unlatch the card.

WFS_IDC_TYPEPERMANENT The ID card unit is dedicated to a
permanently housed chip card (no user
interaction is available with this type of
card).

CWA 16926-63:2020 (E)

20

WFS_IDC_TYPEINTELLIGENTCONTACTLESS
The ID card unit is an intelligent contactless
card unit, i.e. no insertion of the card is
required and the card unit has built-in EMV
or smart card application functionality that
adheres to the EMVCo Contactless
Specifications or individual payment
system's specifications. The ID card unit is
capable of performing both magnetic stripe
emulation and EMV-like transactions.

bCompound
Specifies whether the logical device is part of a compound physical device.

fwReadTracks
Specifies the tracks that can be read by the ID card unit as a combination of the following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit cannot access any track.
WFS_IDC_TRACK1 The ID card unit can access track 1.
WFS_IDC_TRACK2 The ID card unit can access track 2.
WFS_IDC_TRACK3 The ID card unit can access track 3.
WFS_IDC_TRACK_WM The ID card unit can access the Swedish

Watermark track.
WFS_IDC_FRONT_TRACK_1 The ID card unit can access the front track 1.

In some countries this track is known as JIS
II track.

WFS_IDC_FRONTIMAGE The ID card unit can read the front image of
a card.

WFS_IDC_BACKIMAGE The ID card unit can read the back image of
a card.

WFS_IDC_TRACK1_JIS1 The ID card unit can access JIS I track 1.
WFS_IDC_TRACK3_JIS1 The ID card unit can access JIS I track 3.
WFS_IDC_DDI The ID card unit can provide dynamic digital

identification of the magnetic strip.

fwWriteTracks
Specifies the tracks that can be written by the ID card unit (as a combination of the flags specified
in the description of fwReadTracks except WFS_IDC_TRACK_WM,
WFS_IDC_FRONTIMAGE, WFS_IDC_BACKIMAGE and WFS_IDC_DDI).

fwChipProtocols
Specifies the chip card protocols that are supported by the Service Provider as a combination of
the following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit cannot handle chip cards.
WFS_IDC_CHIPT0 The ID card unit can handle the T=0

protocol.
WFS_IDC_CHIPT1 The ID card unit can handle the T=1

protocol.
WFS_IDC_CHIP_PROTOCOL_NOT_REQUIRED

The ID card unit is capable of
communicating with a chip card without
requiring the application to specify any
protocol.

WFS_IDC_CHIPTYPEA_PART3 The ID card unit can handle the ISO 14443
(Part3) Type A contactless chip card
protocol.

WFS_IDC_CHIPTYPEA_PART4 The ID card unit can handle the ISO 14443
(Part4) Type A contactless chip card
protocol.

CWA 16926-63:2020 (E)

21

WFS_IDC_CHIPTYPEB The ID card unit can handle the ISO 14443
Type B contactless chip card protocol.

WFS_IDC_CHIPNFC The ID card unit can handle the ISO 18092
(106/212/424kbps) contactless chip card
protocol.

usCards
Specifies the maximum numbers of cards that the retain bin and card stacker module bin can hold
(zero if not available).

fwSecType
Specifies the type of security module used as one of the following values:

Value Meaning
WFS_IDC_SECNOTSUPP Device has no security module.
WFS_IDC_SECMMBOX Security module of device is MMBox.
WFS_IDC_SECCIM86 Security module of device is CIM86.

fwPowerOnOption
Specifies the power-on capabilities of the device hardware as one of the following values
(applicable only to motor driven ID card units):

Value Meaning
WFS_IDC_NOACTION No power on actions are supported by the

device.
WFS_IDC_EJECT The card will be ejected on power-on (or off,

see fwPowerOffOption below).
WFS_IDC_RETAIN The card will be retained on power-on (off).
WFS_IDC_EJECTTHENRETAIN The card will be ejected for a specified time

on power-on (off), then retained if not taken.
The time for which the card is ejected is
vendor dependent.

WFS_IDC_READPOSITION The card will be moved into the read
position on power-on (off).

fwPowerOffOption
Specifies the power-off capabilities of the device hardware, as one of the flags specified for
fwPowerOnOption; applicable only to motor driven ID card units.

bFluxSensorProgrammable
Specifies whether the Flux Sensor on the card unit is programmable, this can either be TRUE or
FALSE.

bReadWriteAccessFollowingEject
Specifies whether a card may be read or written after having been pushed to the exit slot with an
eject command. The card will be retracted back into the IDC.

fwWriteMode
A combination of the following flags specify the write capabilities, with respect to whether the
device can write low coercivity (loco) and/or high coercivity (hico) magnetic stripes:

Value Meaning
WFS_IDC_NOTSUPP Does not support writing of magnetic stripes.
WFS_IDC_LOCO Supports writing of loco magnetic stripes.
WFS_IDC_HICO Supports writing of hico magnetic stripes.
WFS_IDC_AUTO Service Provider is capable of automatically

determining whether loco or hico magnetic
stripes should be written.

fwChipPower
Specifies the capabilities of the ID card unit (in relation to the user or permanent chip controlled
by the service), for chip power management as a combination of the following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit cannot handle chip power

management.

CWA 16926-63:2020 (E)

22

WFS_IDC_CHIPPOWERCOLD The ID card unit can power on the chip and
reset it (Cold Reset).

WFS_IDC_CHIPPOWERWARM The ID card unit can reset the chip (Warm
Reset).

WFS_IDC_CHIPPOWEROFF The ID card unit can power off the chip.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

fwDIPMode
Specifies whether data track data is read on entry or exit from the dip card unit as one of the
following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit is not a dip type.
WFS_IDC_DIP_EXIT The dip ID card unit reads card track data on

exit only.
WFS_IDC_DIP_ENTRY The dip ID card unit reads card track data on

entry only.
WFS_IDC_DIP_ENTRY_EXIT The dip ID card unit reads card track data

both on entry and exit.
WFS_IDC_DIP_UNKNOWN Unknown whether track data is read on entry

or exit.

lpwMemoryChipProtocols
Pointer to a zero terminated list of WORD values which represent the memory card protocols that
are supported by the Service Provider as an array of constants. If this parameter is NULL then the
Service Provider does not support any memory card protocols. Valid Memory Card Identifiers
are:

Value Meaning
WFS_IDC_MEM_SIEMENS4442 The device supports the Siemens 4442 Card

Protocol (also supported by the Gemplus
GPM2K card).

WFS_IDC_MEM_GPM896 The device supports the Gemplus GPM 896
Card Protocol.

dwGuidLights [...]
Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_IDC_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the
capability to show directional movement representing “entry” and “exit”. The “entry” state gives
the impression of leading a user to place a card into the device. The “exit” state gives the
impression of ejection from a device to a user and would be used for retrieving a card from the
device.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B) , colors (type C) and directions (type D) that the guidance light
indicator is capable of handling. If the guidance light indicator only supports one color then no
value of type C is returned. If the guidance light indicator does not support direction then no value
of type D is returned. A value of WFS_IDC_GUIDANCE_NOT_AVAILABLE indicates that the
device has no guidance light indicator or the device controls the light directly with no application
control possible.

Value Meaning Type
WFS_IDC_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.
WFS_IDC_GUIDANCE_OFF The light can be off. B

CWA 16926-63:2020 (E)

23

WFS_IDC_GUIDANCE_SLOW_FLASH The light can blink slowly. B
WFS_IDC_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.
WFS_IDC_GUIDANCE_QUICK_FLASH The light can blink quickly. B
WFS_IDC_GUIDANCE_CONTINUOUS The light can be B

continuous (steady).
WFS_IDC_GUIDANCE_RED The light can be red. C
WFS_IDC_GUIDANCE_GREEN The light can be green. C
WFS_IDC_GUIDANCE_YELLOW The light can be yellow. C
WFS_IDC_GUIDANCE_BLUE The light can be blue. C
WFS_IDC_GUIDANCE_CYAN The light can be cyan. C
WFS_IDC_GUIDANCE_MAGENTA The light can be magenta. C
WFS_IDC_GUIDANCE_WHITE The light can be white. C
WFS_IDC_GUIDANCE_ENTRY The light can be in the entry state. D
WFS_IDC_GUIDANCE_EXIT The light can be in the exit state. D

dwGuidLights [WFS_IDC_GUIDANCE_CARDUNIT]
Specifies whether the guidance light indicator on the card unit is available.

fwEjectPosition
Specifies the target position that is supported for the eject operation, as a combination of the
following flags:

Value Meaning
WFS_IDC_EXITPOSITION The device can eject a card to the exit

position, from which the user can remove it.
WFS_IDC_TRANSPORTPOSITION The device can eject a card to the transport

just behind the exit position, from which the
user cannot remove it. The device which
supports this flag must also support the
WFS_IDC_EXITPOSITION flag.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

usParkingStations
Specifies the number of supported parking stations or card stackers. If a zero value is specified
there is no parking station and no card stacker module supported.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

lpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

CWA 16926-63:2020 (E)

24

4.3 WFS_INF_IDC_FORM_LIST

Description This command is used to retrieve the list of forms available on the device.

Input Param None.

Output Param LPSTR lpszFormList;

lpszFormList
Pointer to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-63:2020 (E)

25

4.4 WFS_INF_IDC_QUERY_FORM

Description This command is used to retrieve details of the definition of a specified form.

Input Param LPSTR lpszFormName;

lpszFormName
Points to the null-terminated form name on which to retrieve details.

Output Param LPWFSIDCFORM lpForm;
typedef struct _wfs_idc_form
 {
 LPSTR lpszFormName;
 char cFieldSeparatorTrack1;
 char cFieldSeparatorTrack2;
 char cFieldSeparatorTrack3;
 WORD fwAction;
 LPSTR lpszTracks;
 BOOL bSecure;
 LPSTR lpszTrack1Fields;
 LPSTR lpszTrack2Fields;
 LPSTR lpszTrack3Fields;
 LPSTR lpszFrontTrack1Fields;
 char cFieldSeparatorFrontTrack1;
 LPSTR lpszJIS1Track1Fields;
 LPSTR lpszJIS1Track3Fields;
 CHAR cFieldSeparatorJIS1Track1;
 CHAR cFieldSeparatorJIS1Track3;
 } WFSIDCFORM, *LPWFSIDCFORM;

lpszFormName
Specifies the null-terminated name of the form.

cFieldSeparatorTrack1
Specifies the value of the field separator of Track 1.

cFieldSeparatorTrack2
Specifies the value of the field separator of Track 2.

cFieldSeparatorTrack3
Specifies the value of the field separator of Track 3.

fwAction
Specifies the form action; can be one of the following flags:

Value Meaning
WFS_IDC_ACTIONREAD The form reads the card.
WFS_IDC_ACTIONWRITE The form writes the card.

lpszTracks
Specifies the read algorithm or the track to write.

bSecure
Specifies whether or not to do a security check.

lpszTrack1Fields
Pointer to a list of null-terminated field names of Track 1, with the final name terminating with
two null characters.

lpszTrack2Fields
Pointer to a list of null-terminated field names of Track 2, with the final name terminating with
two null characters.

lpszTrack3Fields
Pointer to a list of null-terminated field names of Track 3, with the final name terminating with
two null characters.

CWA 16926-63:2020 (E)

26

lpszFrontTrack1Fields
Pointer to a list of null-terminated field names of Front Track 1, with the final name terminating
with two null characters.

cFieldSeparatorFrontTrack1
Specifies the value of the field separator of Front Track 1.

lpszJIS1Track1Fields
Pointer to a list of null-terminated field names of JIS I Track 1, with the final name terminating
with two null characters.

lpszJIS1Track3Fields
Pointer to a list of null-terminated field names of JIS I Track 3, with the final name terminating
with two null characters.

cFieldSeparatorJIS1Track1
Specifies the value of the field separator of JIS I Track 1.

cFieldSeparatorJIS1Track3
Specifies the value of the field separator of JIS I Track 3.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_IDC_FORMINVALID The specified form is invalid.

Comments None.

CWA 16926-63:2020 (E)

27

4.5 WFS_INF_IDC_QUERY_IFM_IDENTIFIER

Description This command is used to retrieve the complete list of registration authority Interface Module
(IFM) identifiers. The primary registration authority is EMVCo but other organizations are also
supported for historical or local country requirements.

New registration authorities may be added in the future so applications should be able to handle
the return of new (as yet undefined) IFM identifiers.

Input Param None.

Output Param LPWFSIDCIFMIDENTIFIER *lppIFMIdentifier;

Pointer to a NULL terminated array of pointers to data structures. There is one array element for
each IFM identifier supported by the Service Provider (in no particular order). If there is no IFM
identifier available for one of the defined IFM authorities then no element is returned in the array
for that authority. If there are no IFM identifiers for the device then the output parameter
lppIFMIdentifier will be NULL.
typedef struct _wfs_idc_ifm_identifier
 {
 WORD wIFMAuthority;
 LPSTR lpszIFMIdentifier;
 } WFSIDCIFMIDENTIFIER, *LPWFSIDCIFMIDENTIFIER;

wIFMAuthority
Specifies the IFM authority that issued the IFM identifier:

Value Meaning
WFS_IDC_IFMEMV The Level 1 Type Approval IFM identifier

assigned by EMVCo.
WFS_IDC_IFMEUROPAY The Level 1 Type Approval IFM identifier

assigned by Europay.
WFS_IDC_IFMVISA The Level 1 Type Approval IFM identifier

assigned by VISA.
WFS_IDC_IFMGIECB The IFM identifier assigned by GIE Cartes

Bancaires.

lpszIFMIdentifier
Returns an ASCII string containing the IFM Identifier of the chip card reader (or IFM) as
assigned by the specified authority.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments If this command is not supported then this does not necessarily mean that the device is not
certified by one or more certification authorities.

CWA 16926-63:2020 (E)

28

4.6 WFS_INF_IDC_EMVCLESS_QUERY_APPLICATIONS

Description This command is used to retrieve the supported payment system applications available within an
intelligent contactless card unit. The payment system application can either be identified by an
AID or by the AID in combination with a Kernel Identifier. The Kernel Identifier has been
introduced by the EMVCo specifications; see Reference [3].

Input Param None.

Output Param LPWFSIDCAPPDATA *lppAppData;

lppAppData
Pointer to a NULL terminated array of pointers to the following data structure, each of which
specifies a supported application identifier (AID) and the associated Kernel Identifier.
typedef struct wfs_idc_app_data
 {
 LPWFSIDCHEXDATA lpAID;
 LPWFSIDCHEXDATA lpKernelIdentifier;
 } WFSIDCAPPDATA, *LPWFSIDCAPPDATA;

lpAID
Contains the payment system application identifier (AID) supported by the intelligent contactless
card unit.

lpKernelIdentifier
Contains the Kernel Identifier associated with the lpAID. This data may return NULL if the reader
does not support Kernel Identifiers for example in the case of legacy approved contactless readers.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-63:2020 (E)

29

5. Execute Commands

5.1 WFS_CMD_IDC_READ_TRACK

Description For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, the
tracks are read immediately as described in the form specified by the lpstrFormName parameter.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. Again the next step is reading the tracks specified in the form (see Section 7, Form
Definition, for a more detailed description of the forms mechanism). When the SECURE tag is
specified in the associated form, the results of a security check via a security module (i.e. MM,
CIM86) are specified and added to the track data.

The WFS_EXEE_IDC_INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

If the security check fails however this should not stop valid data being returned. The error
WFS_ERR_IDC_SECURITYFAIL will be returned if the form specifies only security data to be
read and the security check could not be executed, in all other cases WFS_SUCCESS will be
returned with the security field of the output parameter set to the relevant value including
WFS_IDC_SEC_HWERROR.

Input Param LPSTR lpstrFormName;

lpstrFormName
Points to the name of the form that defines the behavior for the reading of tracks (see Section 7,
Form Definition).

Output Param LPSTR lpstrTrackData;

lpstrTrackData
Points to the data read successfully from the selected tracks (and value of security module if
available).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

WFS_ERR_IDC_INVALIDDATA The read operation specified by the forms
definition could not be completed
successfully due to invalid track data. This is
returned if all tracks in an ‘or’ (|) operation
cannot be read or if any track in an ‘and’ (&)
operation cannot be read. lpstrTrackData
points to data from the successfully read
tracks (if any). One
WFS_EXEE_IDC_INVALIDTRACKDAT
A execute event is generated for each
specified track which could not be read
successfully. See the form description for the
rules defining how tracks are specified.

CWA 16926-63:2020 (E)

30

WFS_ERR_IDC_NOMEDIA The card was removed before completion of
the read action (the event
WFS_EXEE_IDC_MEDIAINSERTED has
been generated). For motor driven devices,
the read is disabled; i.e. another command
has to be issued to enable the reader for card
entry.

WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted
or pulled through the wrong way.

WFS_ERR_IDC_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g.

syntax error).
WFS_ERR_IDC_SECURITYFAIL The security module failed reading the cards

security sign.
WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When

this error occurs the card remains at the exit
slot.

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_INVALIDTRACKDATA One event is generated for each blank track

(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

WFS_EXEE_IDC_INSERTCARD Device is ready to accept a card from the
user.

WFS_EXEE_IDC_TRACKDETECTED Track data has been detected during the
insertion of the card.

Comments The track data is preceded by the keyword for the track, separated by a ‘:’. The field data is
always preceded by the corresponding keyword, separated by a ‘=’. The fields are separated by
0x00. The data of the different tracks is separated by an additional 0x00. The end of the buffer is
marked by another additional 0x00 (see example below). Data encoding is defined in Section 7,
Form Definition.

Example of lpstrTrackData:
TRACK2:ALL=47..\0\0TRACK3:MII=59\0PAN=500..\0\0\0

CWA 16926-63:2020 (E)

31

5.2 WFS_CMD_IDC_WRITE_TRACK

Description For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the track as described in the form specified by the lpstrFormName parameter,
and the other parameters.

If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data defined by the form and the parameters to the respective track
(see Section 7, Form Definition, for a more detailed description of the forms mechanism).

This procedure is followed by data verification.

The WFS_EXEE_IDC_INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

If power fails during a write the outcome of the operation will be vendor specific, there is no
guarantee that the write will have succeeded.

Input Param LPWFSIDCWRITETRACK lpWriteTrack;
typedef struct _wfs_idc_write_track
 {
 LPSTR lpstrFormName;
 LPSTR lpstrTrackData;
 WORD fwWriteMethod;
 } WFSIDCWRITETRACK, *LPWFSIDCWRITETRACK;

lpstrFormName
Points to the name of the form to be used.

lpstrTrackData
Points to the data to be used in the form.

fwWriteMethod
Indicates whether a low coercivity or high coercivity magnetic stripe is being written.

Value Meaning
WFS_IDC_LOCO Low coercivity magnetic stripe is being

written.
WFS_IDC_HICO High coercivity magnetic stripe is being

written.
WFS_IDC_AUTO Service Provider will determine whether low

or high coercivity stripe is to be written.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

WFS_ERR_IDC_NOMEDIA The card was removed before completion of
the write action (the event
WFS_EXEE_IDC_MEDIAINSERTED has
been generated). For motor driven devices,
the write is disabled; i.e. another command
has to be issued to enable the reader for card
entry.

WFS_ERR_IDC_INVALIDDATA An error occurred while writing the track.

CWA 16926-63:2020 (E)

32

WFS_ERR_IDC_DATASYNTAX The syntax of the data pointed to by
lpstrTrackData is in error, or does not
conform to the form definition.

WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted
or pulled through the wrong way.

WFS_ERR_IDC_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g.

syntax error).
WFS_ERR_IDC_WRITE_METHOD The fwWriteMethod value is inconsistent

with device capabilities.
WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When

this error occurs the card remains at the exit
slot.

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_INVALIDTRACKDATA One event is generated for each blank track

(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a write
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

WFS_EXEE_IDC_INSERTCARD Device is ready to accept a card from the
user.

Comments The field data is always preceded by the corresponding keyword, separated by an ‘=’. This
keyword could be one of the fields defined in the form or the predefined keyword ‘ALL’. Fields
are separated by 0x00. The end of the buffer is marked with an additional 0x00. (See the example
below and Section 7, Form Definition.). This specification means that only one track can be
written in the same command. This is a fundamental capability of an ID card unit; thus if a write
request is received by a device with no write capability, the WFS_ERR_UNSUPP_COMMAND
error is returned.

Example of lpstrTrackData:
RETRYCOUNT=3\0DATE=3132\0\0

CWA 16926-63:2020 (E)

33

5.3 WFS_CMD_IDC_EJECT_CARD

Description This command is only applicable to motor driven card readers and latched dip card readers. For
motorized card readers the default operation is that the card is driven to the exit slot from where
the user can remove it. After successful completion of this command, a service event message is
generated to inform the application when the card is taken. The card remains in position for
withdrawal until either it is taken or another command is issued that moves the card.

For latched dip readers, this command causes the card to be unlatched (if not already unlatched),
enabling removal.

After successful completion of this command, a WFS_SRVE_IDC_MEDIAREMOVED event is
generated to inform the application when the card is taken.

Input Param LPWFSIDCEJECTCARD lpEjectCard;
typedef struct _wfs_idc_eject_card
 {
 WORD wEjectPosition;
 } WFSIDCEJECTCARD, *LPWFSIDCEJECTCARD;

wEjectPosition
Specifies the destination of the card ejection for motorized card readers. Possible values are one
of the following:

Value Meaning
WFS_IDC_EXITPOSITION The card will be transferred to the exit slot

from where the user can remove it. In the
case of a latched dip the card will be
unlatched, enabling removal.

WFS_IDC_TRANSPORTPOSITION The card will be transferred to the transport
just behind the exit slot. If a card is already
at this position then WFS_SUCCESS will be
returned. Another
WFS_CMD_IDC_EJECT_CARD command
is required with the wEjectPosition set to
WFS_IDC_EXITPOSITION in order to
present the card to the user for removal.

If lpEjectCard is a NULL pointer, the card will be transferred to the exit slot from where the user
can remove it. In the case of a latched dip the card will be unlatched, enabling removal. This
action is the same as when WFS_IDC_EXITPOSITION is specified for wEjectPosition.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required. A possible scenario is also when an
attempt to retain the card was made during
attempts to eject it. The retain bin is full; no
more cards can be retained. The current card
is still in the device.

WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to
manipulation or hardware error. Operator
intervention is required.

WFS_ERR_IDC_NOMEDIA No card is present.
WFS_ERR_IDC_MEDIARETAINED The card has been retained during attempts

to eject it. The device is clear and can be
used.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

CWA 16926-63:2020 (E)

34

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED The card has been taken by the user.
WFS_USRE_IDC_RETAINBINTHRESHOLD The retain bin reached a threshold value.

Comments This is a fundamental capability of an ID card unit; thus if an eject request is received by a device
with no eject capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

CWA 16926-63:2020 (E)

35

5.4 WFS_CMD_IDC_RETAIN_CARD

Description The card is removed from its present position (card inserted into device, card entering, unknown
position) and stored in the retain bin; applicable to motor-driven card readers only. The ID card
unit sends an event, if the storage capacity of the retain bin is reached. If the storage capacity has
already been reached, and the command cannot be executed, an error is returned and the card
remains in its present position.

Input Param None.

Output Param LPWFSIDCRETAINCARD lpRetainCard;
typedef struct _wfs_idc_retain_card
 {
 USHORT usCount;
 WORD fwPosition;
 } WFSIDCRETAINCARD, *LPWFSIDCRETAINCARD;

usCount
Total number of ID cards retained up to and including this operation, since the last
WFS_CMD_IDC_RESET_COUNT command was executed.

fwPosition
Position of card; only relevant if card could not be retained. Possible positions:

Value Meaning
WFS_IDC_MEDIAUNKNOWN The position of the card cannot be

determined with the device in its current
state.

WFS_IDC_MEDIAPRESENT The card is present in the reader.
WFS_IDC_MEDIAENTERING The card is in the entering position (shutter).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_NOMEDIA No card has been inserted. The fwPosition

parameter has the value
WFS_IDC_MEDIAUNKNOWN.

WFS_ERR_IDC_RETAINBINFULL The retain bin is full; no more cards can be
retained. The current card is still in the
device.

WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to
manipulation or hardware error. Operator
intervention is required.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IDC_RETAINBINTHRESHOLD The retain bin reached a threshold value.
WFS_SRVE_IDC_MEDIAREMOVED The card has been taken by the user.
WFS_EXEE_IDC_MEDIARETAINED The card has been retained. This event is

only fired if the command completes
successfully (with WFS_SUCCESS).

Comments This is a fundamental capability of an ID card unit; thus if a retain request is received by a device
with no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

CWA 16926-63:2020 (E)

36

5.5 WFS_CMD_IDC_RESET_COUNT

Description This function resets the present value for number of cards retained to zero. The function is
possible for motor-driven card readers only.

The number of cards retained is controlled by the service and can be requested before resetting via
the WFS_INF_IDC_STATUS.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IDC_RETAINBINTHRESHOLD The retain bin was emptied.

Comments This is a fundamental capability of an ID card unit; thus if this request is received by a device
with no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

CWA 16926-63:2020 (E)

37

5.6 WFS_CMD_IDC_SETKEY

Description This command is used for setting the DES key that is necessary for operating a CIM86 module.
The command must be executed before the first read command is issued to the card reader.

Input Param LPWFSIDCSETKEY lpSetkey;
typedef struct _wfs_idc_setkey
 {
 USHORT usKeyLen;
 LPBYTE lpbKeyValue;
 } WFSIDCSETKEY, *LPWFSIDCSETKEY;

usKeyLen
Specifies the length of the following key value.

lpbKeyValue
Pointer to a byte array containing the CIM86 DES key. This key is supplied by the vendor of the
CIM86 module.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_INVALIDKEY The key does not fit to the security module.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-63:2020 (E)

38

5.7 WFS_CMD_IDC_READ_RAW_DATA

Description For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, all
specified tracks are read immediately. If reading the chip is requested, the chip will be contacted
and reset and the ATR (Answer To Reset) data will be read. When this command completes the
chip will be in contacted position. This command can also be used for an explicit cold reset of a
previously contacted chip.

This command should only be used for user cards and should not be used for permanently
connected chips.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. The next step is trying to read all tracks specified.

The WFS_EXEE_IDC_INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

If the magnetic stripe track data is not already in 8 bit form, the data is converted from its 5 or 7
bit character form to 8 bit ASCII form. The parity bit from each 5 or 7 bit magnetic stripe
character is discarded. Start and end sentinel characters are not returned to the application. Field
separator characters are returned to the application, and are also converted to 8 bit ASCII form.

In addition to that, a security check via a security module (i.e. MM, CIM86) can be requested. If
the security check fails however this should not stop valid data being returned. The error
WFS_ERR_IDC_SECURITYFAIL will be returned if the command specifies only security data
to be read and the security check could not be executed, in all other cases WFS_SUCCESS will
be returned with the lpbData field of the output parameter set to the relevant value including
WFS_IDC_SEC_HWERROR.

For non-motorized Card Readers which read track data on card exit, the
WFS_ERR_INVALID_DATA error code is returned when a call to
WFS_CMD_IDC_READ_RAW_DATA is made to read both track data and chip data.

If the card unit is a latched dip unit then the device will latch the card when the chip card will be
read, i.e. WFS_IDC_CHIP is specified (see below). The card will remain latched until a call to
WFS_CMD_IDC_EJECT_CARD is made.

For contactless chip card readers a collision of two or more card signals may happen. In this case,
if the device is not able to pick the strongest signal, the WFS_ERR_IDC_CARDCOLLISION
error code will be returned.

Input Param LPWORD lpwReadData;

lpwReadData
If lpwReadData points to a zero value any previously ejected card will be moved back inside the
device and no data will be returned. Otherwise, lpwReadData specifies the data that should be
read as a combination of the following flags:

Value Meaning
WFS_IDC_TRACK1 Track 1 of the magnetic stripe will be read.
WFS_IDC_TRACK2 Track 2 of the magnetic stripe will be read.
WFS_IDC_TRACK3 Track 3 of the magnetic stripe will be read.
WFS_IDC_CHIP The chip will be read.
WFS_IDC_SECURITY A security check will be performed.
WFS_IDC_FLUXINACTIVE If the IDC Flux Sensor is programmable it

will be disabled in order to allow chip data to
be read on cards which have no magnetic
stripes.

WFS_IDC_TRACK_WM The Swedish Watermark track will be read.
WFS_IDC_MEMORY_CHIP The memory chip will be read.
WFS_IDC_FRONT_TRACK_1 Track 1 data is read from the magnetic stripe

located on the front of the card. In some
countries this track is known as JIS II track.

CWA 16926-63:2020 (E)

39

WFS_IDC_FRONTIMAGE The front image of the card will be read in
BMP format.

WFS_IDC_BACKIMAGE The back image of the card will be read in
BMP format.

WFS_IDC_TRACK1_JIS1 Track 1 of Japanese cash transfer card will
be read. In some countries this track is
known as JIS I track 1 (8bits/char).

WFS_IDC_TRACK3_JIS1 Track 3 of Japanese cash transfer card will
be read. In some countries this track is
known as JIS I track 3 (8bits/char).

WFS_IDC_DDI Dynamic Digital Identification data of the
magnetic stripe will be read.

Output Param LPWFSIDCCARDDATA *lppCardData;

lppCardData
Pointer to a NULL terminated array of pointers to card data structures or if no data has been
requested lppCardData will be NULL:
typedef struct _wfs_idc_card_data
 {
 WORD wDataSource;
 WORD wStatus;
 ULONG ulDataLength;
 LPBYTE lpbData;
 WORD fwWriteMethod;
 } WFSIDCCARDDATA, *LPWFSIDCCARDDATA;

wDataSource
Specifies the source of the card data as one of the following flags:

Value Meaning
WFS_IDC_TRACK1 lpbData contains data read from track 1.
WFS_IDC_TRACK2 lpbData contains data read from track 2.
WFS_IDC_TRACK3 lpbData contains data read from track 3.
WFS_IDC_CHIP lpbData contains ATR data read from the

chip. For contactless chip card readers,
multiple identification information can be
returned if the card reader detects more than
one chip. Each chip identification
information is returned as an individual
lppCardData array element.

WFS_IDC_SECURITY lpbData contains the value returned by the
security module.

WFS_IDC_TRACK_WM lpbData contains data read from the Swedish
Watermark track.

WFS_IDC_MEMORY_CHIP lpbData contains Memory Card
Identification data read from the memory
chip.

WFS_IDC_FRONT_TRACK_1 lpbData contains data read from the front
track 1. In some countries this track is
known as JIS II track.

WFS_IDC_FRONTIMAGE lpbData contains a null-terminated string
containing the full path and file name of the
BMP image file for the front of the card.

WFS_IDC_BACKIMAGE lpbData contains a null-terminated string
containing the full path and file name of the
BMP image file for the back of the card.

WFS_IDC_TRACK1_JIS1 lpbData contains data read from JIS I track 1
(8bits/char).

WFS_IDC_TRACK3_JIS1 lpbData contains data read from JIS I track 3
(8bits/char).

WFS_IDC_DDI lpbData contains dynamic digital
identification data read from magnetic stripe.

CWA 16926-63:2020 (E)

40

wStatus
Status of reading the card data. Possible values are:

Value Meaning
WFS_IDC_DATAOK The data is OK.
WFS_IDC_DATAMISSING The track/chip/memory chip is blank.
WFS_IDC_DATAINVALID The data contained on the

track/chip/memory chip is invalid. This will
typically be returned when lpbData reports
WFS_IDC_SEC_BADREADLEVEL or
WFS_IDC_SEC_DATAINVAL.

WFS_IDC_DATATOOLONG The data contained on the
track/chip/memory chip is too long.

WFS_IDC_DATATOOSHORT The data contained on the
track/chip/memory chip is too short.

WFS_IDC_DATASRCNOTSUPP The data source to read from is not
supported by the Service Provider.

WFS_IDC_DATASRCMISSING The data source to read from is missing on
the card, or is unable to be read due to a
hardware problem, or the module has not
been initialized. For example, this will be
returned on a request to read a Memory Card
and the customer has entered a magnetic
card without associated memory chip. This
will also be reported when lpbData reports
WFS_IDC_SEC_NODATA,
WFS_IDC_SEC_NOINIT or
WFS_IDC_SEC_HWERROR. This will also
be reported when the image reader could not
create a BMP file due to the state of the
image reader or due to a failure.

ulDataLength
Specifies the length of the following field lpbData.

lpbData
Points to the data read from the track/chip, the value returned by the security module or a null-
terminated string containing the full path and file name of the BMP image file. This value is
terminated with a single null character and cannot contain UNICODE characters.

The security module can return one of the following values:

Value Meaning
WFS_IDC_SEC_READLEVEL1 The security data readability level is 1.
WFS_IDC_SEC_READLEVEL2 The security data readability level is 2.
WFS_IDC_SEC_READLEVEL3 The security data readability level is 3.
WFS_IDC_SEC_READLEVEL4 The security data readability level is 4.
WFS_IDC_SEC_READLEVEL5 The security data readability level is 5.
WFS_IDC_SEC_BADREADLEVEL The security data reading quality is not

acceptable.
WFS_IDC_SEC_NODATA There are no security data on the card.
WFS_IDC_SEC_DATAINVAL The validation of the security data with the

specific data on the magnetic stripe was not
successful.

WFS_IDC_SEC_HWERROR The security module could not be used
because of a hardware error.

WFS_IDC_SEC_NOINIT The security module could not be used
because it was not initialized (e.g. CIM key
is not loaded).

CWA 16926-63:2020 (E)

41

The memory card returns the memory card protocol used to communicate with the card in the first
WORD of the buffer, with the actual data following the protocol WORD. See
lpwMemoryChipProtocols from WFS_INF_IDC_CAPABILITIES for a description of possible
memory card protocols.

fwWriteMethod
Ignored for this command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

WFS_ERR_IDC_NOMEDIA The card was removed before completion of
the read action (the event
WFS_EXEE_IDC_MEDIAINSERTED has
been generated). For motor driven devices,
the read is disabled; i.e. another command
has to be issued to enable the reader for card
entry.

WFS_ERR_IDC_INVALIDMEDIA No track or chip found; card may have been
inserted or pulled through the wrong way.

WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When
this error occurs the card remains at the exit
slot.

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

WFS_ERR_IDC_SECURITYFAIL The security module failed reading the cards
security sign.

WFS_ERR_IDC_CARDCOLLISION There was an unresolved collision of two or
more contactless card signals.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

WFS_EXEE_IDC_INSERTCARD Device is ready to accept a card from the
user.

WFS_EXEE_IDC_TRACKDETECTED Track data has been detected during the
insertion of the card.

Comments None.

CWA 16926-63:2020 (E)

42

5.8 WFS_CMD_IDC_WRITE_RAW_DATA

Description For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the tracks.

If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data to the respective tracks.

The WFS_EXEE_IDC_INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

The application must pass the magnetic stripe data in ASCII without any sentinels. The data will
be converted by the Service Provider (ref WFS_CMD_IDC_READ_RAW_DATA). If the data
passed in is too long the WFS_ERR_INVALID_DATA error code will be returned.

This procedure is followed by data verification.

If power fails during a write the outcome of the operation will be vendor specific, there is no
guarantee that the write will have succeeded.

Input Param LPWFSIDCCARDDATA *lppCardData;

Pointer to a NULL terminated array of pointers to card data structures:
typedef struct _wfs_idc_card_data
 {
 WORD wDataSource;
 WORD wStatus;
 ULONG ulDataLength;
 LPBYTE lpbData;
 WORD fwWriteMethod;
 } WFSIDCCARDDATA, *LPWFSIDCCARDDATA;

wDataSource
Specifies the source of the card data as one of the following flags:

Value Meaning
WFS_IDC_TRACK1 lpbData contains the data to be written to

track 1.
WFS_IDC_TRACK2 lpbData contains the data to be written to

track 2.
WFS_IDC_TRACK3 lpbData contains the data to be written to

track 3.
WFS_IDC_FRONT_TRACK_1 lpbData contains the data to be written to the

front track 1. In some countries this track is
known as JIS II track.

WFS_IDC_TRACK1_JIS1 lpbData contains the data to be written to JIS
I track 1 (8bits/char).

WFS_IDC_TRACK3_JIS1 lpbData contains the data to be written to JIS
I track 3 (8bits/char).

wStatus
This parameter is ignored by this command.

ulDataLength
Specifies the length of the following field lpbData.

lpbData
Points to the data to be written to the track.

fwWriteMethod
Indicates whether a loco or hico magnetic stripe is being written.

Value Meaning
WFS_IDC_LOCO Low coercivity magnetic stripe is being

written.

CWA 16926-63:2020 (E)

43

WFS_IDC_HICO High coercivity magnetic stripe is being
written.

WFS_IDC_AUTO Service Provider will determine whether low
or high coercivity stripe is to be written.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

WFS_ERR_IDC_NOMEDIA The card was removed before completion of
the write action (the event
WFS_EXEE_IDC_MEDIAINSERTED has
been generated). For motor driven devices,
the write is disabled; i.e. another command
has to be issued to enable the reader for card
entry.

WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted
or pulled through the wrong way.

WFS_ERR_IDC_WRITE_METHOD The fwWriteMethod value is inconsistent
with device capabilities.

WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When
this error occurs the card remains at the exit
slot.

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a write
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

WFS_EXEE_IDC_INSERTCARD Device is ready to accept a card from the
user.

Comments This is a fundamental capability of an ID card unit; thus if a write request is received by a device
with no write capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

CWA 16926-63:2020 (E)

44

5.9 WFS_CMD_IDC_CHIP_IO

Description This command is used to communicate with the chip. Transparent data is sent from the
application to the chip and the response of the chip is returned transparently to the application.

The identification information e.g. ATR of the chip must be obtained before issuing this
command. The identification information for a user card or the Memory Card Identification (when
available) must initially be obtained through WFS_CMD_IDC_READ_RAW_DATA. The
identification information for subsequent resets of a user card can be obtained either through
WFS_CMD_IDC_READ_RAW_DATA command or through WFS_CMD_IDC_CHIP_POWER.
The ATR for permanent connected chips is always obtained through
WFS_CMD_IDC_CHIP_POWER.

For contactless chip card readers, applications need to specify which chip to contact with, as part
of lpbChipData, if more than one chip has been detected and multiple identification data has been
returned by the WFS_CMD_IDC_READ_RAW_DATA command.

For contactless chip card readers a collision of two or more card signals may happen. In this case,
if the device is not able to pick the strongest signal, the WFS_ERR_IDC_CARDCOLLISION
error code will be returned.

Input Param LPWFSIDCCHIPIO lpChipIoIn;
typedef struct _wfs_idc_chip_io
 {
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 } WFSIDCCHIPIO, *LPWFSIDCCHIPIO;

wChipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are those
described in WFS_INF_IDC_CAPABILITIES. This field is ignored in communications with
Memory Cards. The Service Provider knows which memory card type is currently inserted and
therefore there is no need for the application to manage this.

ulChipDataLength
Specifies the length of the following field lpbChipData.

lpbChipData
Points to the data sent to the chip.

Output Param LPWFSIDCCHIPIO lpChipIoOut;
typedef struct _wfs_idc_chip_io
 {
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 } WFSIDCCHIPIO, *LPWFSIDCCHIPIO;

wChipProtocol
Identifies the protocol that is used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure. This field should be ignored in Memory
Card dialogs and will contain WFS_IDC_NOTSUPP when returned for any Memory Card dialog.

ulChipDataLength
Specifies the length of the following field lpbChipData.

lpbChipData
Points to the data responded from the chip.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.

CWA 16926-63:2020 (E)

45

WFS_ERR_IDC_NOMEDIA There is no card inside the device.
WFS_ERR_IDC_INVALIDMEDIA No chip found; card may have been inserted

the wrong way.
WFS_ERR_IDC_INVALIDDATA An error occurred while communicating with

the chip.
WFS_ERR_IDC_PROTOCOLNOTSUPP The protocol used was not supported by the

Service Provider.
WFS_ERR_IDC_ATRNOTOBTAINED The ATR has not been obtained.
WFS_ERR_IDC_CARDCOLLISION There was an unresolved collision of two or

more contactless card signals.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is

removed before completion of an operation.

Comments None.

CWA 16926-63:2020 (E)

46

5.10 WFS_CMD_IDC_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the IDC device to a known good state. This command does not over-ride a lock obtained by
another application or service handle.

If the device is a user ID card unit, the device will attempt to either retain, eject or will perform no
action on any user cards found in the IDC as specified in the lpwResetIn parameter. It may not
always be possible to retain or eject the items as specified because of hardware problems. If a user
card is found inside the device the WFS_SRVE_IDC_MEDIADETECTED event will inform the
application where card was actually moved to. If no action is specified the user card will not be
moved even if this means that the IDC cannot be recovered.

If the device is a permanent chip card unit, this command will power-off the chip.

For devices with parking station capability there will be one
WFS_SRVE_IDC_MEDIADETECTED event for each card found.

Input Param LPWORD lpwResetIn;

Specifies the action to be performed on any user card found within the ID card unit as one of the
following values:

Value Meaning
WFS_IDC_EJECT Eject any card found.
WFS_IDC_RETAIN Retain any card found.
WFS_IDC_NOACTION No action should be performed on any card

found.

If lpwResetIn is NULL the Service Provider will determine where to move any card found.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_SHUTTERFAIL The device is unable to open and close its

shutter.
WFS_ERR_IDC_RETAINBINFULL The retain bin is full; no more cards can be

retained. The current card is still in the
device.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIADETECTED This event is generated when a media is

detected during a reset. For devices with
parking station capability there will be one
event for each card found.

WFS_SRVE_IDC_MEDIAREMOVED The card has been taken by the user.
WFS_USRE_IDC_RETAINBINTHRESHOLD The retain bin reached a threshold value.

Comments None.

CWA 16926-63:2020 (E)

47

5.11 WFS_CMD_IDC_CHIP_POWER

Description This command handles the power actions that can be done on the chip.

For user chips, this command is only used after the chip has been contacted for the first time using
the WFS_CMD_IDC_READ_RAW_DATA command. For contactless user chips, this command
may be used to deactivate the contactless card communication.

For permanently connected chip cards, this command is the only way to control the chip power.

Input Param LPWORD lpwChipPower;

lpwChipPower
Specifies the action to perform as one of the following flags:

Value Meaning
WFS_IDC_CHIPPOWERCOLD The chip is powered on and reset (Cold

Reset).
WFS_IDC_CHIPPOWERWARM The chip is reset (Warm Reset).
WFS_IDC_CHIPPOWEROFF The chip is powered off.

Output Param NULL or LPWFSIDCCHIPPOWEROUT lpChipPowerOut;
typedef struct _wfs_idc_chip_power_out
 {
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 } WFSIDCCHIPPOWEROUT, *LPWFSIDCCHIPPOWEROUT;

ulChipDataLength
Specifies the length of the following field lpbChipData.

lpbChipData
Points to the ATR data responded from the chip. NULL if the action was not a power on.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_CHIPPOWERNOTSUPP The specified action is not supported by the

hardware device.
WFS_ERR_IDC_MEDIAJAM The card is jammed (only applies to contact

user chips). Operator intervention is
required.

WFS_ERR_IDC_NOMEDIA There is no card inside the device (may not
apply for contactless user chips).

WFS_ERR_IDC_INVALIDMEDIA No chip found; card may have been inserted
or pulled through the wrong way.

WFS_ERR_IDC_INVALIDDATA An error occurred while communicating with
the chip.

WFS_ERR_IDC_ATRNOTOBTAINED The ATR has not been obtained (only
applies to user chips).

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is

removed before completion of the operation.

Comments The NULL return value for the output parameter is provided for backwards compatibility and is
only valid for user cards. Permanent chips must return the ATR in the output parameter. User
cards should return the ATR in the output parameter.

CWA 16926-63:2020 (E)

48

5.12 WFS_CMD_IDC_PARSE_DATA

Description This command takes form name and the output of a successful
WFS_CMD_IDC_READ_RAW_DATA command and returns the parsed string.

Input Param LPWFSIDCPARSEDATA lpParseData;
typedef struct _wfs_idc_parse_data
 {
 LPSTR lpstrFormName;
 LPWFSIDCCARDDATA *lppCardData;
 } WFSIDCPARSEDATA, *LPWFSIDCPARSEDATA;

lpstrFormName
Points to the name of the form that defines the behavior for the reading of tracks (see Section 7,
Form Description).

lppCardData
Points to a NULL terminated array of pointers to card data structures, as returned from the
WFS_CMD_IDC_READ_RAW_DATA command.

Output Param LPSTR lpstrTrackData;

lpstrTrackData
Points to the data read successfully from the selected tracks (and value of security module if
available).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_INVALIDDATA The read operation specified by the forms

definition could not be completed
successfully due to invalid or incomplete
track data being passed in. This is returned if
none of the tracks in an ‘or’ (|) operation is
contained in the lppCardData array or if any
track in an ‘and’ (&) operation is not found
in the input. One execute event
(WFS_EXEE_IDC_INVALIDTRACKDAT
A) is generated for each specified track
which could not be parsed successfully. See
the form description for the rules defining
how tracks are specified.

WFS_ERR_IDC_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g.

syntax error).

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_INVALIDTRACKDATA One event is generated for each blank track

(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

Comments The track data is preceded by the keyword for the track, separated by a ‘:’. The field data is
always preceded by the corresponding keyword, separated by a ‘=’. The fields are separated by
0x00. The data of the different tracks is separated by an additional 0x00. The end of the buffer is
marked by another additional 0x00 (see example below). Data encoding is defined in Section 7,
Form Definition.

Example of lpstrTrackData:
TRACK2:ALL=47..\0\0TRACK3:MII=59\0PAN=500..\0\0\0

CWA 16926-63:2020 (E)

49

5.13 WFS_CMD_IDC_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the IDC guidance lights. This includes defining the flash
rate, the color and the direction. When an application tries to use a color or direction that is not
supported then the Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

Input Param LPWFSIDCSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_idc_set_guidlight
 {
 WORD wGuidLight;
 DWORD dwCommand;
 } WFSIDCSETGUIDLIGHT, *LPWFSIDCSETGUIDLIGHT;

wGuidLight
Specifies the index of the guidance light to set as one of the values defined within the capabilities
section.

dwCommand
Specifies the state of the guidance light indicator as WFS_IDC_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
one type D. If no value of type C is specified then the default color is used. The Service Provider
determines which color is used as the default color.

Value Meaning Type
WFS_IDC_GUIDANCE_OFF The light indicator is turned off. A
WFS_IDC_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.
WFS_IDC_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B

medium frequency.
WFS_IDC_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.
WFS_IDC_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).
WFS_IDC_GUIDANCE_RED The light indicator color is set C

to red.
WFS_IDC_GUIDANCE_GREEN The light indicator color is set C

to green.
WFS_IDC_GUIDANCE_YELLOW The light indicator color is set C

to yellow.
WFS_IDC_GUIDANCE_BLUE The light indicator color is set C

to blue.
WFS_IDC_GUIDANCE_CYAN The light indicator color is set C

to cyan.
WFS_IDC_GUIDANCE_MAGENTA The light indicator color is set C

to magenta.
WFS_IDC_GUIDANCE_WHITE The light indicator color is set C

to white.
WFS_IDC_GUIDANCE_ENTRY The light indicator is set D

to the entry state.
WFS_IDC_GUIDANCE_EXIT The light indicator is set D

to the exit state.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light
does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command:

CWA 16926-63:2020 (E)

50

Comments Guidance light support was added into the IDC primarily to support guidance lights for
workstations where more than one instance of an IDC is present. The original SIU guidance light
mechanism was not able to manage guidance lights for workstations with multiple IDCs. This
command can also be used to set the status of the IDC guidance lights when only one instance of
an IDC is present.
The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

CWA 16926-63:2020 (E)

51

5.14 WFS_CMD_IDC_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSIDCPOWERSAVECONTROL lpPowerSaveControl;
typedef struct _wfs_idc_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSIDCPOWERSAVECONTROL, *LPWFSIDCPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR_IDC_POWERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the
device.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-63:2020 (E)

52

5.15 WFS_CMD_IDC_PARK_CARD

Description This command is used to move a card that is present in the reader to a parking station. A parking
station is defined as an area in the IDC, which can be used to temporarily store the card while the
device performs operations on another card. This command is also used to move a card from the
parking station to the read/write, chip I/O or transport position. When a card is moved from the
parking station to the read/write, chip I/O or transport position
(WFSIDCPARKCARD.wDirection = PARK_OUT), the read/write, chip I/O or transport position
must not be occupied with another card, otherwise the error WFS_ERR_IDC_CARDPRESENT
will be returned.

After moving a card to a parking station, another card can be inserted and read by calling e.g. the
WFS_CMD_IDC_READ_RAW_DATA or WFS_CMD_IDC_READ_TRACK command.

Cards in parking stations will not be affected by any IDC commands until they are removed from
the parking station using this command, except for the WFS_CMD_IDC_RESET command. The
WFS_CMD_IDC_RESET command will move the cards in the parking stations as specified in its
lpwResetIn parameter as part of the reset action if possible.

Input Param LPWFSIDCPARKCARD lpParkCard;
typedef struct _wfs_idc_park_card
 {
 WORD wDirection;
 USHORT usParkingStation;
 } WFSIDCPARKCARD, *LPWFSIDCPARKCARD;

wDirection
Specifies which way to move the card as one of the following values:

Value Meaning
WFS_IDC_PARK_IN The card is moved to the parking station

from the read/write, chip I/O or transport
position.

WFS_IDC_PARK_OUT The card is moved from the parking station
to the read/write, chip I/O or transport
position. Once the card has been moved any
command can be executed e.g.
WFS_CMD_IDC_EJECT_CARD or
WFS_CMD_IDC_READ_RAW_DATA.

usParkingStation
Specifies which parking station should be used for this command. This value is the same index as
is identified in the lpwParkingStationMedia array of the WFS_INF_IDC_STATUS query.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_NOMEDIA No card is present at the read/write, chip I/O

or transport position and the
WFS_IDC_PARK_IN option has been
selected. Or no card is in the parking station
and the WFS_IDC_PARK_OUT option has
been selected.

WFS_ERR_IDC_CARDPRESENT Another card is present and is preventing
successful movement of the card specified
by usParkingStation.

WFS_ERR_IDC_POSITIONINVALID The specified parking station is invalid.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

CWA 16926-63:2020 (E)

53

Comments None.

CWA 16926-63:2020 (E)

54

5.16 WFS_CMD_IDC_EMVCLESS_CONFIGURE

Description This command is used to configure an intelligent contactless card reader before performing a
contactless transaction. This command sets terminal related data elements, the list of terminal
acceptable applications with associated application specific data and any encryption key data
required for offline data authentication.

This command should be used prior to the
WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION command. It may be called once
on application start up or when any of the configuration parameters require to be changed. The
configuration set by this command is persistent.

This command should be called with a complete list of acceptable payment system applications as
any previous configurations will be replaced.

Input Param LPWFSIDCEMVCLESSCONFIGDATA lpClessConfigData;
typedef struct _wfs_idc_emvcless_config_data
 {
 LPWFSIDCHEXDATA lpTerminalData;
 LPWFSIDCAIDDATA *lppAIDData;
 LPWFSIDCKEYDATA *lppKeyData;
 } WFSIDCEMVCLESSCONFIGDATA, *LPWFSIDCEMVCLESSCONFIGDATA;

lpTerminalData
Specifies the BER-TLV formatted data for the terminal e.g. Terminal Type, Transaction Category
Code, Merchant Name & Location etc. Any terminal based data elements referenced in the
Payment Systems Specifications or EMVCo Contactless Payment Systems Specifications Books
may be included (see References [2] to [14] section for more details).

lppAIDData
Pointer to a NULL terminated array of pointers to data structures.

This data structure specifies the list of acceptable payment system applications. For EMVCo
approved contactless card readers each AID is associated with a Kernel Identifier and a
Transaction Type. Legacy approved contactless readers may use only the AID.

Each AID-Transaction Type or each AID-Kernel-Transaction Type combination will have its own
unique set of configuration data. See References [2] and [3] for more details.

typedef struct _wfs_idc_aid_data
 {
 LPWFSIDCHEXDATA lpAID;
 BOOL bPartialSelection;
 ULONG ulTransactionType;
 LPWFSIDCHEXDATA lpKernelIdentifier;
 LPWFSIDCHEXDATA lpConfigData;
 } WFSIDCAIDDATA, *LPWFSIDCAIDDATA;

lpAID
Specifies the application identifier to be accepted by the contactless chip card reader. The
WFS_INF_IDC_EMVCLESS_QUERY_APPLICATIONS command will return the list of
supported application identifiers.

bPartialSelection
If bPartialSelection is TRUE, partial name selection of the specified AID is enabled. If
bPartialSelection is FALSE, partial name selection is disabled. A detailed explanation for
partial name selection is given in EMV 4.3 Book 1, Section 11.3.5.

ulTransactionType
Specifies the transaction type supported by the AID. This indicates the type of financial
transaction represented by the first two digits of the ISO 8583:1987 Processing Code.

lpKernelIdentifier
Specifies the EMVCo defined kernel identifier associated with the lpAID. This field will be
ignored if the reader does not support kernel identifiers.

CWA 16926-63:2020 (E)

55

lpConfigData
Contains the list of BER-TLV formatted configuration data, applicable to the specific AID-
Kernel ID-Transaction Type combination. The appropriate payment systems specifications
define the BER-TLV tags to be configured.

lppKeyData
A pointer to a NULL terminated array of pointers to data structures, each includes encryption key
information required by an intelligent contactless chip card reader for offline data authentication.

typedef struct _wfs_idc_key_data
 {
 LPWFSIDCHEXDATA lpRID;
 WORD wCAPublicKeyIndex;
 WORD wAPublicKeyAlgorithmIndicator;
 LPWFSIDCHEXDATA lpCAPublicKeyExponent;
 LPWFSIDCHEXDATA lpCAPublicKeyModulus;
 LPBYTE lpbCAPublicKeyCheckSum;
 } WFSIDCKEYDATA, *LPWFSIDCKEYDATA;

lpRID
Specifies the payment system's Registered Identifier (RID). RID is the first 5 bytes of the AID
and identifies the payments system.

wCAPublicKeyIndex
Specifies the CA Public Key Index for the specific RID.

wAPublicKeyAlgorithmIndicator
Specifies the algorithm used in the calculation of the CA Public Key checksum. A detailed
description of secure hash algorithm values is given in EMV Book 2, Annex B3; see reference
[2]. For example, if the EMV specification indicates the algorithm is ‘01’, the value of the
algorithm is coded as 0x01.

lpCAPublicKeyExponent
Specifies the CA Public Key Exponent for the specific RID. This value is represented by the
minimum number of bytes required. A detailed description of public key exponent values is
given in EMV Book 2, Annex B2; see reference [2]. For example, representing value ‘216 + 1’
requires 3 bytes in hexadecimal (0x01, 0x00, 0x01), while value ‘3’ is coded as 0x03.

lpCAPublicKeyModulus
Specifies the CA Public Key Modulus for the specific RID.

lpbCAPublicKeyChecksum
Specifies the 20 byte checksum value for the CA Public Key.

Output Param None

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_INVALIDTERMINALDATA Input data lpTerminalData was invalid.

Contactless chip card reader could not be
configured successfully.

WFS_ERR_IDC_INVALIDAIDDATA Input data lppAIDData was invalid.
Contactless chip card reader could not be
configured successfully.

WFS_ERR_IDC_INVALIDKEYDATA Input data lppKeyData was invalid.
Contactless chip card reader could not be
configured successfully.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-63:2020 (E)

56

5.17 WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION

Description This command is used to enable an intelligent contactless card reader. The transaction will start as
soon as the card tap is detected.

Based on the configuration of the contactless chip card and the reader device, this command could
return data formatted either as magnetic stripe information or as a set of BER-TLV encoded EMV
tags.

This command supports magnetic stripe emulation cards and EMV-like contactless cards but
cannot be used on storage contactless cards. The latter must be managed using the
WFS_CMD_IDC_READ_RAW_DATA and WFS_CMD_IDC_CHIP_IO commands.

For specific payment system's card profiles an intelligent card reader could return a set of EMV
tags along with magnetic stripe formatted data. In this case, two contactless card data structures
will be returned, one containing the magnetic stripe like data and one containing BER-TLV
encoded tags.

If no card has been tapped, the contactless chip card reader waits for the period of time specified
in the WFSExecute call for a card to be tapped.

For intelligent contactless card readers, any in-built audio/visual feedback such as Beep/LEDs,
need to be controlled directly by the reader. These indications should be implemented based on
the EMVCo and payment system's specifications.

Input Param LPWFSIDCEMVCLESSTXDATA lpClessTxData;
typedef struct _wfs_idc_emvcless_tx_data
 {
 LPWFSIDCHEXDATA lpData;
 } WFSIDCEMVCLESSTXDATA, *LPWFSIDCEMVCLESSTXDATA;

lpData
Supplies EMV data elements in a BER-TLV format required to perform a transaction.
The types of object that could be listed in the lpData are:

• Transaction Type (9C)
• Amount Authorized (9F02)
• Transaction Date (9A)*
• Transaction Time (9F21)*
• Transaction Currency Code (5F2A)

Individual payment systems could define further data elements.

Tags are not mandatory with this command and this value can be NULL.

* Tags 9A and 9F21 could be managed internally by the reader. If tags are not supplied, tag
values may be used from the configuration sent previously in the
WFS_CMD_IDC_EMVCLESS_CONFIGURE command.

Output Param LPWFSIDCEMVCLESSTXDATAOUTPUT *lppClessTxDataOutput;

lppClessTxDataOutput
Pointer to a NULL terminated array of pointers to contactless card data structures.If no data has
been returned lppClessTxDataOutput will be NULL:
typedef struct _wfs_idc_emvcless_tx_data_output
 {
 WORD wDataSource;
 WORD wTxOutcome;
 WORD wCardholderAction;
 LPWFSIDCHEXDATA lpDataRead;
 LPWFSIDCEMVCLESSOUTCOME lpClessOutcome;
 } WFSIDCEMVCLESSTXDATAOUTPUT, *LPWFSIDCEMVCLESSTXDATAOUTPUT;

wDataSource
The flag is set according to whether the contactless chip transaction has been completed in a mag-
stripe mode or an EMV mode. Specifies the source of the card data as one of the following flags :

CWA 16926-63:2020 (E)

57

Value Meaning
WFS_IDC_TRACK1 lpDataRead contains the chip returned data

formatted in as track 1. This value is set after
the contactless transaction has been
completed with mag-stripe mode.

WFS_IDC_TRACK2 lpDataRead contains the chip returned data
formatted in as track 2. This value is set after
the contactless transaction has been
completed with mag-stripe mode.

WFS_IDC_TRACK3 lpDataRead contains the chip returned data
formatted in as track 3. This value is set after
the contactless transaction has been
completed with mag-stripe mode.

WFS_IDC_CHIP lpDataRead contains the BER-TLV
formatted data read from the chip. This value
is set after the contactless transaction has
been completed with EMV mode or mag-
stripe mode.

wTxOutcome
If multiple data sources are returned, this parameter should be the same for each one.

Specifies the contactless transaction outcome as one of the following flags:

Value Meaning
WFS_IDC_CLESS_MULTIPLECARDS Transaction could not be completed as more

than one contactless card was tapped.
WFS_IDC_CLESS_APPROVE Transaction was approved offline.
WFS_IDC_CLESS_DECLINE Transaction was declined offline.
WFS_IDC_CLESS_ONLINEREQUEST Transaction was requested for online

authorization.
WFS_IDC_CLESS_ONLINEREQUESTCOMPLETIONREQUIRED

Transaction requested online authorization
and will be completed after a re-tap of the
card. Transaction should be completed by
issuing the
WFS_CMD_IDC_EMVCLESS_ISSUERUP
DATE command.

WFS_IDC_CLESS_TRYAGAIN Transaction could not be completed due to a
card read error. The contactless card could
be tapped again to re-attempt the transaction.

WFS_IDC_CLESS_TRYANOTHERINTERFACE
Transaction could not be completed over the
contactless interface. Another interface may
be suitable for this transaction (for example
contact).

WFS_IDC_CLESS_ENDAPPLICATION Transaction cannot be completed on the
contactless card due to an irrecoverable
error.

WFS_IDC_CLESS_CONFIRMATIONREQUIRED
Transaction was not completed as a result of
a requirement to allow entry of confirmation
code on a mobile device. Transaction should
be completed by issuing the
WFS_CMD_IDC_EMVCLESS_PERFORM
_TRANSACTION after a card removal and
a re-tap of the card.

NOTE: The values for wTxOutcome have been mapped against the EMV Entry Point Outcome
structure values defined in the EMVCo Specifications for Contactless Payment Systems (Book A
and B).

CWA 16926-63:2020 (E)

58

wCardholderAction
If multiple data sources are returned, this parameter should be the same for each one.

Specifies the cardholder action as one of the following flags:

Value Meaning
WFS_IDC_CLESS_NOACTION Transaction was completed. No further

action is required.
WFS_IDC_CLESS_RETAP The contactless card should be re-tapped to

complete the transaction. This value can be
returned when wTxOutcome is
WFS_IDC_CLESS_ONLINEREQUESTCO
MPLETIONREQUIRED or
WFS_IDC_CLESS_CONFIRMATIONREQ
UIRED.

WFS_IDC_CLESS_HOLDCARD The contactless card should not be removed
from the field until the transaction is
completed.

lpDataRead
Points to the data read from the chip after a contactless transaction has been completed
successfully. If the value of wDataSource is equal to WFS_IDC_CHIP, the BER-TLV formatted
data contains cryptogram tag (9F26) after a contactless chip transaction has been completed
successfully. If the value of wDataSource is equal to WFS_IDC_TRACK1, WFS_IDC_TRACK2
or WFS_IDC_TRACK3, lpDataRead points to the data read from the chip, i.e the value returned
by the card reader device and no cryptogram tag (9F26). This value is terminated with a single
null character and cannot contain UNICODE characters.

lpClessOutcome
Pointer to a structure that represents the Entry Point Outcome structure specified in EMVCo
Specifications for Contactless Payment Systems (Book A and B). The lpClessOutcome can be
NULL for contactless chip card readers that do not follow EMVCo Entry Point Specifications.

typedef struct _wfs_idc_emvcless_outcome
 {
 WORD wCVM;
 WORD wAlternateInterface;
 BOOL bReceipt;
 LPWFSIDCEMVCLESSUI lpClessUIOutcome;
 LPWFSIDCEMVCLESSUI lpClessUIRestart;
 ULONG ulClessFieldOffHoldTime;
 ULONG ulCardRemovalTimeoutValue;
 LPWFSIDCHEXDATA lpDiscretionaryData;
} WFSIDCEMVCLESSOUTCOME, *LPWFSIDCEMVCLESSOUTCOME;

wCVM
Specifies the cardholder verification method (CVM) to be performed as one of the following
flags:

Value Meaning
WFS_IDC_CLESS_ONLINEPIN Online PIN should be entered by the

cardholder.
WFS_IDC_CLESS_CONFIRMATIONCODEVERIFIED

A confirmation code entry has been
successfully done on a mobile device.

WFS_IDC_CLESS_SIGN Application should obtain cardholder
signature.

WFS_IDC_CLESS_NOCVM No CVM is required for this transaction.
WFS_IDC_CLESS_NOCVMPREFERENCE There is no CVM preference, but

application can follow the payment
system's rules to process the transaction.

CWA 16926-63:2020 (E)

59

wAlternateInterface
If wTxOutcome is not WFS_IDC_CLESS_TRYANOTHERINTERFACE, this should be
ignored. If wTxOutcome is WFS_IDC_CLESS_TRYANOTHERINTERFACE, this specifies
the alternative interface to be used to complete a transaction as one of the following flags:

Value Meaning
WFS_IDC_CLESS_CONTACT Contact chip interface should be used to

complete a transaction.
WFS_IDC_CLESS_MAGNETICSTRIPE Magnetic stripe interface should be used to

complete a transaction.

bReceipt
Specifies whether a receipt should be printed. TRUE indicates that a receipt is required.

lpClessUIOutcome
Pointer to a structure representing the user interface details required to be displayed to the
cardholder after processing the outcome of a contactless transaction. If no user interface
details are required, this will be NULL. Please refer to EMVCo Contactless Specifications for
Payment Systems Book A, Section 6.2 for details of the data within this structure:

typedef struct _wfs_idc_emvcless_ui
 {
 WORD wMessageId;
 WORD wStatus;
 ULONG ulHoldTime;
 WORD wValueQualifier;
 LPSTR lpszValue;
 LPSTR lpszCurrencyCode;
 LPSTR lpszLanguagePreferenceData;
 } WFSIDCEMVCLESSUI, *LPWFSIDCEMVCLESSUI;

wMessageId
A single byte hexadecimal value which represents the EMVCo defined message identifier
that indicates the text string to be displayed e.g. 0x1B is the “Authorising Please Wait”
message (see EMVCo Contactless Specifications for Payment Systems Book A, Section
9.4).

wStatus
Represents the EMVCo defined transaction status value to be indicated through the
Beep/LEDs as one of the following flags:

Value Meaning
WFS_IDC_CLESS_NOT_READY Contactless card reader is not able to

communicate with a card. This status
occurs towards the end of a
contactless transaction or if the reader
is not powered on.

WFS_IDC_CLESS_IDLE Contactless card reader is powered
on, but the reader field is not yet
active for communication with a card.

WFS_IDC_CLESS_READYTOREAD Contactless card reader is powered on
and attempting to initiate
communication with a card.

WFS_IDC_CLESS_PROCESSING Contactless card reader is in the
process of reading the card.

WFS_IDC_CLESS_CARDREADOK Contactless card reader was able to
read a card successfully.

WFS_IDC_CLESS_PROCESSINGERROR Contactless card reader was not able
to process the card successfully.

ulHoldTime
Represents the hold time in units of 100 milliseconds for which the application should
display the message before processing the next user interface data.

CWA 16926-63:2020 (E)

60

wValueQualifier
If lpszValue is NULL, this should be ignored as the Value Qualifier is not present., If the
Value Qualifier is present, it will be specified as one of the following flags:

Value Meaning
WFS_IDC_CLESS_AMOUNT Value Qualifier is Amount.
WFS_IDC_CLESS_BALANCE Value Qualifier is Balance.

lpszValue
Represents the value of the amount or balance to be displayed when a Value Qualifier is
present. If no Value Qualifier is present, this will be NULL.

lpszCurrencyCode
Represents the numeric value of currency code as per ISO 4217. This will be NULL if the
Currency Code is not available.

lpszLanguagePreferenceData
Represents the language preference (EMV Tag ‘5F2D’) if returned by the card. If not
returned, this will be NULL. The application should use this data to display all messages in
the specified language until the transaction concludes.

lpClessUIRestart
Pointer to a structure representing the user interface details required to be displayed to the
cardholder when a transaction needs to be completed with a re-tap. If no user interface details
are required, this will be NULL. For structure description see the lpClessUIOutcome field
description.

ulClessFieldOffHoldTime
The application should wait for this specific hold time in units of 100 milliseconds, before re-
enabling the contactless card reader by issuing either the
WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION command or the
WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE command depending on the value of
wTxOutcome. For intelligent contactless card readers, the completion of this command ensures
that the contactless chip card reader field is automatically turned off, so there is no need for
the application to disable the field.

ulCardRemovalTimeoutValue
Specifies a timeout value in units of 100milliseconds for prompting the user to remove the
card.

lpDiscretionaryData
Points to the payment system's specific discretionary data read from the chip, in a BER-TLV
format, after a contactless transaction has been completed. If discretionary data is not present,
this will be NULL.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_NOMEDIA The card was removed before completion of

the read operation.
WFS_ERR_IDC_INVALIDMEDIA No track or chip was found or the card

tapped cannot be used with this command
(e.g. contactless storage cards).

WFS_ERR_IDC_READERNOTCONFIGURED
This command was issued before calling
WFS_CMD_IDC_EMVCLESS_CONFIGU
RE command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

CWA 16926-63:2020 (E)

61

Value Meaning
WFS_EXEE_IDC_EMVCLESSREADSTATUS

This event is generated to notify the
application that the card reader is ready for a
contactless card tap and the status after the
contactless card tap.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when the card is
removed before completion of the read
operation.

Comments For example scenarios of events that can be generated from this command, see section 9,
Intelligent Contactless Card Sequence Diagrams.

CWA 16926-63:2020 (E)

62

5.18 WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE

Description This command performs the post authorization processing on payment systems contactless cards.

Before an online authorized transaction is considered complete, further chip processing may be
requested by the issuer. This is only required when the authorization response includes issuer
update data; either issuer scripts or issuer authentication data.

The command enables the contactless card reader and waits for the customer to re-tap their card.

The contactless chip card reader waits for the period of time specified in the WFSExecute call for
a card to be tapped.

Input Param LPWFSIDCEMVCLESSTXDATA lpClessTxData;
typedef struct _wfs_idc_emvcless_tx_data
 {
 LPWFSIDCHEXDATA lpData;
 } WFSIDCEMVCLESSTXDATA, *LPWFSIDCEMVCLESSTXDATA;

lpData
Supplies BER-TLV formatted EMV data elements received from the authorization response that
are required to complete the transaction processing.

The types of object that could be listed in lpData are:
• Authorization Code (if present)
• Issuer Authentication Data (if present)
• Issuer Scripts or proprietary payment system's data elements (if present) and any other

data elements if required.

Output Param LPWFSIDCEMVCLESSTXDATAOUTPUT lpClessTxDataOutput;

lpClessTxDataOutput
Pointer to the contactless card data structure or if no data has been returned lpClessTxDataOutput
will be NULL:
typedef struct _wfs_idc_emvcless_tx_data_output
 {
 WORD wDataSource;
 WORD wTxOutcome;
 WORD wCardholderAction;
 LPWFSIDCHEXDATA lpDataRead;
 LPWFSIDCEMVCLESSOUTCOME lpClessOutcome;
 } WFSIDCEMVCLESSTXDATAOUTPUT, *LPWFSIDCEMVCLESSTXDATAOUTPUT;

wDataSource
Specifies the source of the card data as the following flag:

Value Meaning
WFS_IDC_CHIP lpDataRead contains the BER-TLV

formatted data read from the chip.

wTxOutcome
Specifies the contactless transaction outcome as one of the following flags:

Value Meaning
WFS_IDC_CLESS_MULTIPLECARDS Transaction could not be completed as more

than one contactless card was tapped.
WFS_IDC_CLESS_ENDAPPLICATION Post authorization processing has been

completed on the contactless card.
WFS_IDC_CLESS_APPROVE Transaction was approved offline.
WFS_IDC_CLESS_DECLINE Transaction was declined offline.
WFS_IDC_CLESS_TRYAGAIN Transaction could not be completed due to a

card read error. The contactless card could
be tapped again to re-attempt the transaction.

CWA 16926-63:2020 (E)

63

WFS_IDC_CLESS_TRYANOTHERINTERFACE
Transaction could not be completed over the
contactless interface. Another interface may
be suitable for this transaction (for example
contact).

wCardholderAction
Specifies the cardholder action as the following flag:

Value Meaning
WFS_IDC_CLESS_NOACTION Transaction was completed. No further

action required.

lpDataRead
Points to the data read from the chip or issuer script results after a contactless transaction has been
completed successfully.

lpClessOutcome
Pointer to a structure that represents the Entry Point Outcome structure specified in EMVCo
Specifications for Contactless Payment Systems (Book A and B). The lpClessOutcome can be
NULL for contactless chip card readers that do not follow EMVCo Entry Point Specifications.
See the outcome parameter of WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION
command for details of lpClessOutcome data structure.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_NOMEDIA The card was removed before completion of

the read action.
WFS_ERR_IDC_INVALIDMEDIA No track or chip found or card tapped cannot

be used with this command (e.g. contactless
storage cards or a different card than what
was used to complete the
WFS_CMD_IDC_EMVCLESS_PERFORM
_TRANSACTION command).

WFS_ERR_IDC_TRANSACTIONNOTINITIATED
This command was issued before calling the
WFS_CMD_IDC_EMVCLESS_PERFORM
_TRANSACTION command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_EMVCLESSREADSTATUS

This event is generated to notify the
application that the card reader is ready for a
contactless card tap and the status after the
contactless card tap.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

Comments For example scenarios of events that can be generated from this command, see section 9,
Intelligent Contactless Card Sequence Diagrams.

CWA 16926-63:2020 (E)

64

5.19 WFS_CMD_IDC_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in
the lpdwSynchronizableCommands parameter of the WFS_INF_IDC_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command other than the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the
WFS_CMD_IDC_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSIDCSYNCHRONIZECOMMAND lpSynchronizeCommand;
typedef struct _wfs_idc_synchronize_command
 {
 DWORD dwCommand;
 LPVOID lpCmdData;
 } WFSIDCSYNCHRONIZECOMMAND, *LPWFSIDCSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

lpCmdData
Pointer to data or a data structure that represents the parameter that is normally associated with
the command that is specified in dwCommand. For example, if dwCommand is
WFS_CMD_CIP_IO then lpCmdData will point to a WFSIDCCHIPIO structure. This parameter
can be NULL if no command input parameter is needed or if this detail is not needed to
synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
not result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service
Provider.

WFS_ERR_IDC_SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the lpCmdData is not supported
by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

CWA 16926-63:2020 (E)

65

6. Events

6.1 WFS_EXEE_IDC_INVALIDTRACKDATA

Description This execute event specifies that a track contained invalid or no data.

Event Param LPWFSIDCTRACKEVENT lpTrackEvent;
typedef struct _wfs_idc_track_event
 {
 WORD fwStatus;
 LPSTR lpstrTrack;
 LPSTR lpstrData;
 } WFSIDCTRACKEVENT, *LPWFSIDCTRACKEVENT;

fwStatus
Status of reading the track. Possible values are:

Value Meaning
WFS_IDC_DATAMISSING The track is blank.
WFS_IDC_DATAINVALID The data contained on the track is invalid.
WFS_IDC_DATATOOLONG The data contained on the track is too long.
WFS_IDC_DATATOOSHORT The data contained on the track is too short.

lpstrTrack
Points to the keyword of the track on which the error occurred.

lpstrData
Points to the data that could be read (that may be only a fragment of the track), terminated by a
null character. This data is simply a stream of characters; it does not contain keywords.

Comments None.

CWA 16926-63:2020 (E)

66

6.2 WFS_EXEE_IDC_MEDIAINSERTED

Description This execute event specifies that a card was inserted into the device.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

67

6.3 WFS_SRVE_IDC_MEDIAREMOVED

Description This service event specifies that the inserted card was manually removed by the user during the
processing of a read/write command, during the processing of a chip_io/power command, during
or after a retain/reset operation, after an eject operation or after the card is removed by the user in
a latched dip card unit.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

68

6.4 WFS_EXEE_IDC_MEDIARETAINED

Description This execute event specifies that the card was retained.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

69

6.5 WFS_EXEE_IDC_INVALIDMEDIA

Description This execute event specifies that the media the user is attempting to insert is not a valid card or it
is a card but it is in the wrong orientation.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

70

6.6 WFS_SRVE_IDC_CARDACTION

Description This service event specifies that a card has been retained or ejected by either the automatic power
on or power off action of the device.

Event Param LPWFSIDCCARDACT lpCardAct;
typedef struct _wfs_idc_card_act
 {
 WORD wAction;
 WORD wPosition;
 } WFSIDCCARDACT, *LPWFSIDCCARDACT;

wAction
Specifies which action has been performed with the card. Possible values are:

Value Meaning
WFS_IDC_CARDRETAINED The card has been retained.
WFS_IDC_CARDEJECTED The card has been ejected.
WFS_IDC_CARDREADPOSITION The card has been moved to the read

position.

wPosition
Position of card before being retained or ejected. Possible values are:

Value Meaning
WFS_IDC_MEDIAUNKNOWN The position of the card cannot be

determined.
WFS_IDC_MEDIAPRESENT The card was present in the reader.
WFS_IDC_MEDIAENTERING The card was entering the reader.

Comments None.

CWA 16926-63:2020 (E)

71

6.7 WFS_USRE_IDC_RETAINBINTHRESHOLD

Description This user event specifies that the retain bin holding the retained cards has reached a threshold
condition or the threshold condition is removed.

Event Param LPWORD lpfwRetainBin;

lpfwRetainBin
Specifies the state of the ID card unit retain bin as one of the following values:

Value Meaning
WFS_IDC_RETAINBINOK The retain bin of the ID card unit was

emptied.
WFS_IDC_RETAINBINFULL The retain bin of the ID card unit is full.
WFS_IDC_RETAINBINHIGH The retain bin of the ID card unit is nearly

full.

Comments None.

CWA 16926-63:2020 (E)

72

6.8 WFS_SRVE_IDC_MEDIADETECTED

Description This service event is generated if media is detected during a reset (WFS_CMD_IDC_RESET).
The parameter on the event informs the application of the position of the card on the completion
of the reset. For devices with parking station capability there will be one event for each card
found.

Event Param LPWORD lpwResetOut;

lpwResetOut
Specifies the action that was performed on any card found within the IDC as one of the following
values:

Value Meaning
WFS_IDC_CARDEJECTED The card was ejected.
WFS_IDC_CARDRETAINED The card was retained.
WFS_IDC_CARDREADPOSITION The card is in read position.
WFS_IDC_CARDJAMMED The card is jammed in the device.

Comments None.

CWA 16926-63:2020 (E)

73

6.9 WFS_SRVE_IDC_RETAINBINREMOVED

Description This event specifies that the retain bin has been removed.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

74

6.10 WFS_SRVE_IDC_RETAINBININSERTED

Description This event specifies that the retain bin has been inserted.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

75

6.11 WFS_EXEE_IDC_INSERTCARD

Description This mandatory event notifies the application when the device is ready for the user to insert a
card.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

76

6.12 WFS_SRVE_IDC_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSIDCDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_idc_device_position
 {
 WORD wPosition;
 } WFSIDCDEVICEPOSITION, *LPWFSIDCDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_IDC_DEVICEINPOSITION The device is in its normal operating

position.
WFS_IDC_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_IDC_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-63:2020 (E)

77

6.13 WFS_SRVE_IDC_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSIDCPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_idc_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSIDCPOWERSAVECHANGE, *LPWFSIDCPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compound with this device enters into a power saving mode this device
will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-63:2020 (E)

78

6.14 WFS_EXEE_IDC_TRACKDETECTED

Description This execute event notifies the application what track data the inserted card has, before the
reading of the data has completed. This event will be posted once when tracks are detected during
card insertion.

Event Param LPWFSIDCTRACKDETECTED lpTrackDetected;
typedef struct _wfs_idc_track_detected
 {
 WORD fwTracks;
 } WFSIDCTRACKDETECTED, *LPWFSIDCTRACKDETECTED;

fwTracks
Specifies which tracks are on the card, as a combination of the following flags (zero if there is no
track on the inserted card):

Value Meaning
WFS_IDC_TRACK1 The card has track 1.
WFS_IDC_TRACK2 The card has track 2.
WFS_IDC_TRACK3 The card has track 3.
WFS_IDC_TRACK_WM The card has the Swedish Watermark track.
WFS_IDC_FRONT_TRACK_1 The card has the front track 1.

Comments None.

CWA 16926-63:2020 (E)

79

6.15 WFS_EXEE_IDC_EMVCLESSREADSTATUS

Description This execute event notifies the application that the intelligent contactless card reader is ready for a
contactless card tap and the status after the contactless card tap when communication (i.e. the
commands exchanged linked to the tap) between the card and the intelligent contactless card
reader are complete. The application can use this event to display intermediate messages, progress
of card read, audio signals or anything else that might be required. The intelligent contactless card
reader will continue the processing and the result of the processing will be returned in the out
parameters of the WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION command.

Event Param LPWFSIDCMVCLESSREADSTATUS lpReadStatus;
typedef struct _wfs_idc_emv_cless_read_status
 {
 LPWFSIDCEMVCLESSUI lpClessUI;
 } WFSIDCMVCLESSREADSTATUS, *LPWFSIDCMVCLESSREADSTATUS;

lpClessUI
For details of this structure, see definition in the
WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION command.

Comments For example scenarios illustrating when this event can be generated during a
WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION or
WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE command, see section 9, Intelligent
Contactless Card Sequence Diagrams.

CWA 16926-63:2020 (E)

80

6.16 WFS_SRVE_IDC_MEDIARETAINED

Description This service event is generated if the device is a compound device and a card has been retained as
a result of an operation on another device class. For example, the
WFS_CMD_CRD_RETAIN_CARD command on the CRD.

Event Param None.

Comments None.

CWA 16926-63:2020 (E)

81

7. Form Description

This section describes the forms mechanism used to define the tracks to be read or written. Forms are contained in a
single file, with one section for each defined form. The name of each section is the form name parameter in the
WFS_CMD_IDC_READ_TRACK and WFS_CMD_IDC_WRITE_TRACK commands.

The way to specify the location of a form file is vendor dependent.

As an example the following registry information can be used:

WOSA/XFS_ROOT
 FORMS
 IDCU
 formfile=<path><filename>

The read form defines which tracks should be read in the WFS_CMD_IDC_READ_TRACK command and what
the response should be to a read failure. The read form can also be used to define logical track data, i.e. fields like
“account number”, “issuer identifier”, and their position within the physical track data. For example, the output
parameter of the WFS_CMD_IDC_READ_TRACK command with input parameter lpstrFormName =
READTRACK3GERMAN could look like (see example 1 below):

"TRACK3:MII=59\0COUNTRY=280\0ISSUERID=50050500\0ACCOUNT=1234567890\0LUHNT3=1\0EXPIR
ATION=9912\0SECURE=1\0\0\0"

The write form defines which track is to be written, the logical track data that is handed over in the
WFS_CMD_IDC_WRITE_TRACK command, and how the write data is to be converted to the physical data to be
written.

Reserved Keywords/Operands 1 Meaning
[] Form name delimiters.
TRACK1 Keyword to identify track 1.
TRACK2 Keyword to identify track 2.
TRACK3 Keyword to identify track 3.
TRACK1_JIS1 Keyword to identify JIS I track 1.
TRACK3_JIS1 Keyword to identify JIS I track 3.
FRONTTRACK1 Keyword to identify front track 1 (in some

countries this track is known as JIS II track).
FIELDSEPT1 Value of field separator of track 1.
FIELDSEPT2 Value of field separator of track 2.
FIELDSEPT3 Value of field separator of track 3.
FIELDSEPTFRONT1 Value of field separator of front track 1.
FIELDSEPT1_JIS1 Value of field separator of JIS I track 1.
FIELDSEPT3_JIS1 Value of field separator of JIS I track 3.
READ Description of read action; the track

identifier keywords are processed left to
right.

WRITE Description of write action.
ALL Read or write the complete track.
SECURE Do the security check via the security

module (CIM86 or MM). This check is done
on Track 3 only.

& Read/write all tracks specified, abort reading
on read failure.

1 Attributes are not required in any mandatory order.

CWA 16926-63:2020 (E)

82

| Read/write at least one of the tracks
specified, continue reading on read failure.

FIELDSEPPOSn Position of the nth occurrence of field
separator on track. FIELDSEPPOS0
specifies the beginning of the data.

, Separator in a list of logical fields.
DEFAULT String for default substitution of track data to

be written, that is not defined explicitly by
the form fields. DEFAULT also allows an
application to input fewer fields than those
defined by the form.

? Reserved value for DEFAULT keyword:
substitute track data to write with its value
read before.

ENDTRACK Represents the end of the data. It is used to
identify fields positioned after the last field
separator.

Notes

The & and | operands may be combined in a single READ statement; for example:

• read track3 or track2, trying track3 first:
 READ= TRACK3 | TRACK2

• read track 3 and at least one of track2 or track1:
 READ= TRACK3 & (TRACK2 | TRACK1)
 or:
 READ= TRACK2 | TRACK1 & TRACK3

The keywords FIELDSEPPOS0 and ENDTRACK are used as follows:

• read the first 2 bytes of a track:
 FIRST= FIELDSEPPOS0 + 1, FIELDSEPPOS0 + 2

• read the last 2 bytes of a track:
 LAST= ENDTRACK – 2, ENDTRACK – 1

Use of field separators in track layouts is to replace optional fields and terminate variable length
fields.

Write forms are designed for updating specific fields without altering the position of the field
separators.

The application may alter the position of the field separators by rewriting the card tracks (ALL
option or DEFAULT option with default track data).

It is valid to define a field that spans another field separator, e.g. FIELDSEPPOS1+1,
FIELDSEPPOS3+1 is valid as is FIELDSEPPOS3-4, FIELDSEPPOS3-1 where a field separator
(e.g. FIELDSEPPOS2) lies within this range on the data read from the card. During a read track
the field separator is returned within the track data. During a write track the application must
ensure the correct number of field separators at the correct location with the correct spacing is
included in the data, otherwise a WFS_ERR_IDC_DATASYNTAX error will be returned.

Example 1 Reading tracks:
[READTRACK3GERMAN]
FIELDSEPT1= = /* field separator of track 1 */
FIELDSEPT2= = /* field separator of track 2 */
FIELDSEPT3= = /* field separator of track 3 */

READ= TRACK3 & TRACK1 & TRACK2 /* all tracks must be read */

/* read logical fields as defined below; also check the security */
TRACK3= MII, COUNTRY, ISSUERID, ACCOUNT, LUHNT3, EXPIRATION, SECURE
MII= FIELDSEPPOS0 + 3, FIELDSEPPOS0 + 4
ISSUERID= FIELDSEPPOS0 + 5, FIELDSEPPOS1 - 1
ACCOUNT= FIELDSEPPOS1 + 1, FIELDSEPPOS2 - 2

CWA 16926-63:2020 (E)

83

LUHNT3= FIELDSEPPOS2 - 1, FIELDSEPPOS2 – 1
TRACK2= ALL /* return track 2 complete, don’t return logical fields*/
TRACK1= ALL /* return track 1 complete, don’t return logical fields*/

All tracks must be read (‘READ’), that is, the read fails if an error occurs on reading any one of
the tracks (the ‘&’ operand). The field “major industry identifier” (‘MII’) is located after the first
field separator (‘FIELDSEPPOS1’) and its length is two bytes. The “issuer identifier” field
(‘ISSUERID’) is located after the MII field, with a length of eight bytes. The next field, “account
number” (‘ACCOUNT’) is variable length; it ends before the luhn digit field (‘LUHNT3’) that is
the last digit in front of the second field separator (‘FIELDSEPPOS2’).

Example 2 Write a track:
[WRITETRACK3]
FIELDSEPT3= =
DEFAULT= ? /* fields not specified in the write form are to be left
unchanged, i.e. read and the same data written back to them */
WRITE= TRACK3
TRACK3= RETRYCOUNT, DATE
RETRYCOUNT= FIELDSEPPOS2 + 22, FIELDSEPPOS2 + 22
DATE= FIELDSEPPOS5 + 1, FIELDSEPPOS5 + 4

Track 3 is to be written. In the example only the retry counter and the date of the last transaction
are updated, the other fields are unchanged.

A sample of input data to be used with this form is as follows:

RETRYCOUNT=3\0DATE=3132\0\0

Example 3 Write a track:
[WRITETRACK3ALL]
WRITE= TRACK3
TRACK3= ALL

Track 3 is to be written. By specifying ALL, the data passed in the
WFS_CMD_IDC_WRITE_TRACK command is written to the physical track without formatting.

A sample of input data to be used with this form is as follows:

ALL=123456789123\0\0

Example 4 Reading tracks:
[READTRACK2ANDFRONTTRACK1]
READ= TRACK2&FRONTTRACK1 /* track 2 and front track 1 must be read */
TRACK2= ALL
FRONTTRACK1= ALL

Track 2 and Front track 1 are to be read by the WFS_CMD_IDC_READ_TRACK command. By
specifying ‘&’, reading is aborted if either track fails to read. By specifying ‘ALL’ the physical
track is read to the output data without field level formatting.

A sample of output data produced with this form is as follows:

TRACK2:ALL=123456789123\0\0FRONTTRACK1:ALL=123456789123\0\0\0

CWA 16926-63:2020 (E)

84

8. C-Header file

/**
* *
* xfsidc.h XFS - Identification card unit (IDC) definitions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __INC_XFSIDC__H
#define __INC_XFSIDC__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSIDCCAPS.wClass */

#define WFS_SERVICE_CLASS_IDC (2)
#define WFS_SERVICE_CLASS_NAME_IDC "IDC"
#define WFS_SERVICE_CLASS_VERSION_IDC (0x2803) /* Version 3.40 */

#define IDC_SERVICE_OFFSET (WFS_SERVICE_CLASS_IDC * 100)

/* IDC Info Commands */

#define WFS_INF_IDC_STATUS (IDC_SERVICE_OFFSET + 1)
#define WFS_INF_IDC_CAPABILITIES (IDC_SERVICE_OFFSET + 2)
#define WFS_INF_IDC_FORM_LIST (IDC_SERVICE_OFFSET + 3)
#define WFS_INF_IDC_QUERY_FORM (IDC_SERVICE_OFFSET + 4)
#define WFS_INF_IDC_QUERY_IFM_IDENTIFIER (IDC_SERVICE_OFFSET + 5)
#define WFS_INF_IDC_EMVCLESS_QUERY_APPLICATIONS (IDC_SERVICE_OFFSET + 6)

/* IDC Execute Commands */

#define WFS_CMD_IDC_READ_TRACK (IDC_SERVICE_OFFSET + 1)
#define WFS_CMD_IDC_WRITE_TRACK (IDC_SERVICE_OFFSET + 2)
#define WFS_CMD_IDC_EJECT_CARD (IDC_SERVICE_OFFSET + 3)
#define WFS_CMD_IDC_RETAIN_CARD (IDC_SERVICE_OFFSET + 4)
#define WFS_CMD_IDC_RESET_COUNT (IDC_SERVICE_OFFSET + 5)
#define WFS_CMD_IDC_SETKEY (IDC_SERVICE_OFFSET + 6)
#define WFS_CMD_IDC_READ_RAW_DATA (IDC_SERVICE_OFFSET + 7)
#define WFS_CMD_IDC_WRITE_RAW_DATA (IDC_SERVICE_OFFSET + 8)
#define WFS_CMD_IDC_CHIP_IO (IDC_SERVICE_OFFSET + 9)
#define WFS_CMD_IDC_RESET (IDC_SERVICE_OFFSET + 10)
#define WFS_CMD_IDC_CHIP_POWER (IDC_SERVICE_OFFSET + 11)
#define WFS_CMD_IDC_PARSE_DATA (IDC_SERVICE_OFFSET + 12)
#define WFS_CMD_IDC_SET_GUIDANCE_LIGHT (IDC_SERVICE_OFFSET + 13)
#define WFS_CMD_IDC_POWER_SAVE_CONTROL (IDC_SERVICE_OFFSET + 14)
#define WFS_CMD_IDC_PARK_CARD (IDC_SERVICE_OFFSET + 15)
#define WFS_CMD_IDC_EMVCLESS_CONFIGURE (IDC_SERVICE_OFFSET + 16)
#define WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION (IDC_SERVICE_OFFSET + 17)
#define WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE (IDC_SERVICE_OFFSET + 18)
#define WFS_CMD_IDC_SYNCHRONIZE_COMMAND (IDC_SERVICE_OFFSET + 19)

/* IDC Messages */

#define WFS_EXEE_IDC_INVALIDTRACKDATA (IDC_SERVICE_OFFSET + 1)
#define WFS_EXEE_IDC_MEDIAINSERTED (IDC_SERVICE_OFFSET + 3)
#define WFS_SRVE_IDC_MEDIAREMOVED (IDC_SERVICE_OFFSET + 4)
#define WFS_SRVE_IDC_CARDACTION (IDC_SERVICE_OFFSET + 5)

CWA 16926-63:2020 (E)

85

#define WFS_USRE_IDC_RETAINBINTHRESHOLD (IDC_SERVICE_OFFSET + 6)
#define WFS_EXEE_IDC_INVALIDMEDIA (IDC_SERVICE_OFFSET + 7)
#define WFS_EXEE_IDC_MEDIARETAINED (IDC_SERVICE_OFFSET + 8)
#define WFS_SRVE_IDC_MEDIADETECTED (IDC_SERVICE_OFFSET + 9)
#define WFS_SRVE_IDC_RETAINBININSERTED (IDC_SERVICE_OFFSET + 10)
#define WFS_SRVE_IDC_RETAINBINREMOVED (IDC_SERVICE_OFFSET + 11)
#define WFS_EXEE_IDC_INSERTCARD (IDC_SERVICE_OFFSET + 12)
#define WFS_SRVE_IDC_DEVICEPOSITION (IDC_SERVICE_OFFSET + 13)
#define WFS_SRVE_IDC_POWER_SAVE_CHANGE (IDC_SERVICE_OFFSET + 14)
#define WFS_EXEE_IDC_TRACKDETECTED (IDC_SERVICE_OFFSET + 15)
#define WFS_EXEE_IDC_EMVCLESSREADSTATUS (IDC_SERVICE_OFFSET + 16)
#define WFS_SRVE_IDC_MEDIARETAINED (IDC_SERVICE_OFFSET + 17)

/* values of WFSIDCSTATUS.fwDevice */

#define WFS_IDC_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_IDC_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_IDC_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_IDC_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_IDC_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_IDC_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_IDC_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_IDC_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_IDC_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSIDCSTATUS.fwMedia,
 WFSIDCRETAINCARD.fwPosition,
 WFSIDCCARDACT.wPosition,
 WFSIDCSTATUS.lpwParkingStationMedia */

#define WFS_IDC_MEDIAPRESENT (1)
#define WFS_IDC_MEDIANOTPRESENT (2)
#define WFS_IDC_MEDIAJAMMED (3)
#define WFS_IDC_MEDIANOTSUPP (4)
#define WFS_IDC_MEDIAUNKNOWN (5)
#define WFS_IDC_MEDIAENTERING (6)
#define WFS_IDC_MEDIALATCHED (7)

/* values of WFSIDCSTATUS.fwRetainBin */

#define WFS_IDC_RETAINBINOK (1)
#define WFS_IDC_RETAINNOTSUPP (2)
#define WFS_IDC_RETAINBINFULL (3)
#define WFS_IDC_RETAINBINHIGH (4)
#define WFS_IDC_RETAINBINMISSING (5)

/* values of WFSIDCSTATUS.fwSecurity */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECNOTREADY (2)
#define WFS_IDC_SECOPEN (3)

/* values of WFSIDCSTATUS.fwChipPower */

#define WFS_IDC_CHIPONLINE (0)
#define WFS_IDC_CHIPPOWEREDOFF (1)
#define WFS_IDC_CHIPBUSY (2)
#define WFS_IDC_CHIPNODEVICE (3)
#define WFS_IDC_CHIPHWERROR (4)
#define WFS_IDC_CHIPNOCARD (5)
#define WFS_IDC_CHIPNOTSUPP (6)
#define WFS_IDC_CHIPUNKNOWN (7)

/* Size and max index of dwGuidLights array */

#define WFS_IDC_GUIDLIGHTS_SIZE (32)
#define WFS_IDC_GUIDLIGHTS_MAX (WFS_IDC_GUIDLIGHTS_SIZE - 1)

CWA 16926-63:2020 (E)

86

/* Indices of WFSIDCSTATUS.dwGuidLights [...]
 WFSIDCCAPS.dwGuidLights [...] */

#define WFS_IDC_GUIDANCE_CARDUNIT (0)

/* Values of WFSIDCSTATUS.dwGuidLights [...]
 WFSIDCCAPS.dwGuidLights [...] */

#define WFS_IDC_GUIDANCE_NOT_AVAILABLE (0x00000000)
#define WFS_IDC_GUIDANCE_OFF (0x00000001)
#define WFS_IDC_GUIDANCE_SLOW_FLASH (0x00000004)
#define WFS_IDC_GUIDANCE_MEDIUM_FLASH (0x00000008)
#define WFS_IDC_GUIDANCE_QUICK_FLASH (0x00000010)
#define WFS_IDC_GUIDANCE_CONTINUOUS (0x00000080)
#define WFS_IDC_GUIDANCE_RED (0x00000100)
#define WFS_IDC_GUIDANCE_GREEN (0x00000200)
#define WFS_IDC_GUIDANCE_YELLOW (0x00000400)
#define WFS_IDC_GUIDANCE_BLUE (0x00000800)
#define WFS_IDC_GUIDANCE_CYAN (0x00001000)
#define WFS_IDC_GUIDANCE_MAGENTA (0x00002000)
#define WFS_IDC_GUIDANCE_WHITE (0x00004000)
#define WFS_IDC_GUIDANCE_ENTRY (0x00100000)
#define WFS_IDC_GUIDANCE_EXIT (0x00200000)

/* values of WFSIDCSTATUS.fwChipModule */

#define WFS_IDC_CHIPMODOK (1)
#define WFS_IDC_CHIPMODINOP (2)
#define WFS_IDC_CHIPMODUNKNOWN (3)
#define WFS_IDC_CHIPMODNOTSUPP (4)

/* values of WFSIDCSTATUS.fwMagReadModule and
 WFSIDCSTATUS.fwMagWriteModule */

#define WFS_IDC_MAGMODOK (1)
#define WFS_IDC_MAGMODINOP (2)
#define WFS_IDC_MAGMODUNKNOWN (3)
#define WFS_IDC_MAGMODNOTSUPP (4)

/* values of WFSIDCSTATUS.fwFrontImageModule and
 WFSIDCSTATUS.fwBackImageModule */

#define WFS_IDC_IMGMODOK (1)
#define WFS_IDC_IMGMODINOP (2)
#define WFS_IDC_IMGMODUNKNOWN (3)
#define WFS_IDC_IMGMODNOTSUPP (4)

/* values of WFSIDCSTATUS.wDevicePosition
 WFSIDCDEVICEPOSITION.wPosition */

#define WFS_IDC_DEVICEINPOSITION (0)
#define WFS_IDC_DEVICENOTINPOSITION (1)
#define WFS_IDC_DEVICEPOSUNKNOWN (2)
#define WFS_IDC_DEVICEPOSNOTSUPP (3)

/* values of WFSIDCCAPS.fwType */

#define WFS_IDC_TYPEMOTOR (1)
#define WFS_IDC_TYPESWIPE (2)
#define WFS_IDC_TYPEDIP (3)
#define WFS_IDC_TYPECONTACTLESS (4)
#define WFS_IDC_TYPELATCHEDDIP (5)
#define WFS_IDC_TYPEPERMANENT (6)
#define WFS_IDC_TYPEINTELLIGENTCONTACTLESS (7)

/* values of WFSIDCCAPS.fwReadTracks,
 WFSIDCCAPS.fwWriteTracks,
 WFSIDCCARDDATA.wDataSource,

CWA 16926-63:2020 (E)

87

 WFSIDCCAPS.fwChipProtocols,
 WFSIDCCAPS.fwWriteMode,
 WFSIDCCAPS.fwChipPower */

#define WFS_IDC_NOTSUPP 0x0000

/* values of WFSIDCCAPS.fwReadTracks,
 WFSIDCCAPS.fwWriteTracks,
 WFSIDCCARDDATA.wDataSource,
 WFS_CMD_IDC_READ_RAW_DATA */

#define WFS_IDC_TRACK1 0x0001
#define WFS_IDC_TRACK2 0x0002
#define WFS_IDC_TRACK3 0x0004
#define WFS_IDC_FRONT_TRACK_1 0x0080
#define WFS_IDC_TRACK1_JIS1 0x0400
#define WFS_IDC_TRACK3_JIS1 0x0800

/* further values of WFSIDCCARDDATA.wDataSource (except WFS_IDC_FLUXINACTIVE),
 WFS_CMD_IDC_READ_RAW_DATA */

#define WFS_IDC_CHIP 0x0008
#define WFS_IDC_SECURITY 0x0010
#define WFS_IDC_FLUXINACTIVE 0x0020
#define WFS_IDC_TRACK_WM 0x8000
#define WFS_IDC_MEMORY_CHIP 0x0040
#define WFS_IDC_FRONTIMAGE 0x0100
#define WFS_IDC_BACKIMAGE 0x0200
#define WFS_IDC_DDI 0x4000

/* values of WFSIDCCAPS.fwChipProtocols */

#define WFS_IDC_CHIPT0 0x0001
#define WFS_IDC_CHIPT1 0x0002
#define WFS_IDC_CHIP_PROTOCOL_NOT_REQUIRED 0x0004
#define WFS_IDC_CHIPTYPEA_PART3 0x0008
#define WFS_IDC_CHIPTYPEA_PART4 0x0010
#define WFS_IDC_CHIPTYPEB 0x0020
#define WFS_IDC_CHIPNFC 0x0040

/* values of WFSIDCCAPS.fwSecType */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECMMBOX (2)
#define WFS_IDC_SECCIM86 (3)

/* values of WFSIDCCAPS.fwPowerOnOption,
 WFSIDCCAPS.fwPowerOffOption*/

#define WFS_IDC_NOACTION (1)
#define WFS_IDC_EJECT (2)
#define WFS_IDC_RETAIN (3)
#define WFS_IDC_EJECTTHENRETAIN (4)
#define WFS_IDC_READPOSITION (5)

/* values of WFSIDCCAPS.fwWriteMode,
 WFSIDCWRITETRACK.fwWriteMethod,
 WFSIDCCARDDATA.fwWriteMethod */

/* Note: WFS_IDC_UNKNOWN was removed as it was an invalid value */
#define WFS_IDC_LOCO 0x0002
#define WFS_IDC_HICO 0x0004
#define WFS_IDC_AUTO 0x0008

/* values of WFSIDCCAPS.fwChipPower */

#define WFS_IDC_CHIPPOWERCOLD 0x0002
#define WFS_IDC_CHIPPOWERWARM 0x0004

CWA 16926-63:2020 (E)

88

#define WFS_IDC_CHIPPOWEROFF 0x0008

/* values of WFSIDCCAPS.fwDIPMode */

#define WFS_IDC_DIP_UNKNOWN 0x0001
#define WFS_IDC_DIP_EXIT 0x0002
#define WFS_IDC_DIP_ENTRY 0x0004
#define WFS_IDC_DIP_ENTRY_EXIT 0x0008

/* values of WFSIDCCAPS.lpwMemoryChipProtocols */

#define WFS_IDC_MEM_SIEMENS4442 0x0001
#define WFS_IDC_MEM_GPM896 0x0002

/* values of WFSIDCFORM.fwAction */

#define WFS_IDC_ACTIONREAD 0x0001
#define WFS_IDC_ACTIONWRITE 0x0002

/* values of WFSIDCTRACKEVENT.fwStatus,
 WFSIDCCARDDATA.wStatus */

#define WFS_IDC_DATAOK (0)
#define WFS_IDC_DATAMISSING (1)
#define WFS_IDC_DATAINVALID (2)
#define WFS_IDC_DATATOOLONG (3)
#define WFS_IDC_DATATOOSHORT (4)
#define WFS_IDC_DATASRCNOTSUPP (5)
#define WFS_IDC_DATASRCMISSING (6)

/* values of WFSIDCCARDACT.wAction */

#define WFS_IDC_CARDRETAINED (1)
#define WFS_IDC_CARDEJECTED (2)
#define WFS_IDC_CARDREADPOSITION (3)
#define WFS_IDC_CARDJAMMED (4)

/* values of WFSIDCCARDDATA.lpbData if security is read */

#define WFS_IDC_SEC_READLEVEL1 '1'
#define WFS_IDC_SEC_READLEVEL2 '2'
#define WFS_IDC_SEC_READLEVEL3 '3'
#define WFS_IDC_SEC_READLEVEL4 '4'
#define WFS_IDC_SEC_READLEVEL5 '5'
#define WFS_IDC_SEC_BADREADLEVEL '6'
#define WFS_IDC_SEC_NODATA '7'
#define WFS_IDC_SEC_DATAINVAL '8'
#define WFS_IDC_SEC_HWERROR '9'
#define WFS_IDC_SEC_NOINIT 'A'

/* values of WFSIDCIFMIDENTIFIER.wIFMAuthority */

#define WFS_IDC_IFMEMV (1)
#define WFS_IDC_IFMEUROPAY (2)
#define WFS_IDC_IFMVISA (3)
#define WFS_IDC_IFMGIECB (4)

/* values of WFSIDCCAPS.fwEjectPosition,
 WFSIDCEJECTCARD.wEjectPosition */

#define WFS_IDC_EXITPOSITION (0x0001)
#define WFS_IDC_TRANSPORTPOSITION (0x0002)

/* values of WFSIDCPARKCARD.wDirection */

#define WFS_IDC_PARK_IN 0x0001
#define WFS_IDC_PARK_OUT 0x0002

CWA 16926-63:2020 (E)

89

/* values of WFSIDCSTATUS.wAntiFraudModule */

#define WFS_IDC_AFMNOTSUPP (0)
#define WFS_IDC_AFMOK (1)
#define WFS_IDC_AFMINOP (2)
#define WFS_IDC_AFMDEVICEDETECTED (3)
#define WFS_IDC_AFMUNKNOWN (4)

/* values of WFSIDCEMVCLESSDATA.wTxOutcome */

#define WFS_IDC_CLESS_MULTIPLECARDS (0)
#define WFS_IDC_CLESS_APPROVE (1)
#define WFS_IDC_CLESS_DECLINE (2)
#define WFS_IDC_CLESS_ONLINEREQUEST (3)
#define WFS_IDC_CLESS_ONLINEREQUESTCOMPLETIONREQUIRED (4)
#define WFS_IDC_CLESS_TRYAGAIN (5)
#define WFS_IDC_CLESS_TRYANOTHERINTERFACE (6)
#define WFS_IDC_CLESS_ENDAPPLICATION (7)
#define WFS_IDC_CLESS_CONFIRMATIONREQUIRED (8)

/* values of WFSIDCEMVCLESSOUTCOME.wCardholderAction */

#define WFS_IDC_CLESS_NOACTION (0)
#define WFS_IDC_CLESS_RETAP (1)
#define WFS_IDC_CLESS_HOLDCARD (2)

/* values of WFSIDCEMVCLESSOUTCOME.wCVM */

#define WFS_IDC_CLESS_ONLINEPIN (0)
#define WFS_IDC_CLESS_CONFIRMATIONCODEVERIFIED (1)
#define WFS_IDC_CLESS_SIGN (2)
#define WFS_IDC_CLESS_NOCVM (3)
#define WFS_IDC_CLESS_NOCVMPREFERENCE (4)

/* values of WFSIDCEMVCLESSOUTCOME.wAlternateInterface */

#define WFS_IDC_CLESS_CONTACT (0)
#define WFS_IDC_CLESS_MAGNETICSTRIPE (1)

/* values of WFSIDCEMVCLESSUI.wStatus */

#define WFS_IDC_CLESS_NOT_READY (0)
#define WFS_IDC_CLESS_IDLE (1)
#define WFS_IDC_CLESS_READYTOREAD (2)
#define WFS_IDC_CLESS_PROCESSING (3)
#define WFS_IDC_CLESS_CARDREADOK (4)
#define WFS_IDC_CLESS_PROCESSINGERROR (5)

/* values of WFSIDCEMVCLESSUI.wValueQualifier */

#define WFS_IDC_CLESS_AMOUNT (0)
#define WFS_IDC_CLESS_BALANCE (1)

/* WOSA/XFS IDC Errors */

#define WFS_ERR_IDC_MEDIAJAM (-(IDC_SERVICE_OFFSET + 0))
#define WFS_ERR_IDC_NOMEDIA (-(IDC_SERVICE_OFFSET + 1))
#define WFS_ERR_IDC_MEDIARETAINED (-(IDC_SERVICE_OFFSET + 2))
#define WFS_ERR_IDC_RETAINBINFULL (-(IDC_SERVICE_OFFSET + 3))
#define WFS_ERR_IDC_INVALIDDATA (-(IDC_SERVICE_OFFSET + 4))
#define WFS_ERR_IDC_INVALIDMEDIA (-(IDC_SERVICE_OFFSET + 5))
#define WFS_ERR_IDC_FORMNOTFOUND (-(IDC_SERVICE_OFFSET + 6))
#define WFS_ERR_IDC_FORMINVALID (-(IDC_SERVICE_OFFSET + 7))
#define WFS_ERR_IDC_DATASYNTAX (-(IDC_SERVICE_OFFSET + 8))
#define WFS_ERR_IDC_SHUTTERFAIL (-(IDC_SERVICE_OFFSET + 9))
#define WFS_ERR_IDC_SECURITYFAIL (-(IDC_SERVICE_OFFSET + 10))
#define WFS_ERR_IDC_PROTOCOLNOTSUPP (-(IDC_SERVICE_OFFSET + 11))

CWA 16926-63:2020 (E)

90

#define WFS_ERR_IDC_ATRNOTOBTAINED (-(IDC_SERVICE_OFFSET + 12))
#define WFS_ERR_IDC_INVALIDKEY (-(IDC_SERVICE_OFFSET + 13))
#define WFS_ERR_IDC_WRITE_METHOD (-(IDC_SERVICE_OFFSET + 14))
#define WFS_ERR_IDC_CHIPPOWERNOTSUPP (-(IDC_SERVICE_OFFSET + 15))
#define WFS_ERR_IDC_CARDTOOSHORT (-(IDC_SERVICE_OFFSET + 16))
#define WFS_ERR_IDC_CARDTOOLONG (-(IDC_SERVICE_OFFSET + 17))
#define WFS_ERR_IDC_INVALID_PORT (-(IDC_SERVICE_OFFSET + 18))
#define WFS_ERR_IDC_POWERSAVETOOSHORT (-(IDC_SERVICE_OFFSET + 19))
#define WFS_ERR_IDC_POWERSAVEMEDIAPRESENT (-(IDC_SERVICE_OFFSET + 20))
#define WFS_ERR_IDC_CARDPRESENT (-(IDC_SERVICE_OFFSET + 21))
#define WFS_ERR_IDC_POSITIONINVALID (-(IDC_SERVICE_OFFSET + 22))
#define WFS_ERR_IDC_INVALIDTERMINALDATA (-(IDC_SERVICE_OFFSET + 23))
#define WFS_ERR_IDC_INVALIDAIDDATA (-(IDC_SERVICE_OFFSET + 24))
#define WFS_ERR_IDC_INVALIDKEYDATA (-(IDC_SERVICE_OFFSET + 25))
#define WFS_ERR_IDC_READERNOTCONFIGURED (-(IDC_SERVICE_OFFSET + 26))
#define WFS_ERR_IDC_TRANSACTIONNOTINITIATED (-(IDC_SERVICE_OFFSET + 27))
#define WFS_ERR_IDC_COMMANDUNSUPP (-(IDC_SERVICE_OFFSET + 28))
#define WFS_ERR_IDC_SYNCHRONIZEUNSUPP (-(IDC_SERVICE_OFFSET + 29))
#define WFS_ERR_IDC_CARDCOLLISION (-(IDC_SERVICE_OFFSET + 30))

/*===*/
/* IDC Info Command Structures and variables */
/*===*/

typedef struct _wfs_idc_status
{
 WORD fwDevice;
 WORD fwMedia;
 WORD fwRetainBin;
 WORD fwSecurity;
 USHORT usCards;
 WORD fwChipPower;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_IDC_GUIDLIGHTS_SIZE];
 WORD fwChipModule;
 WORD fwMagReadModule;
 WORD fwMagWriteModule;
 WORD fwFrontImageModule;
 WORD fwBackImageModule;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 LPWORD lpwParkingStationMedia;
 WORD wAntiFraudModule;
} WFSIDCSTATUS, *LPWFSIDCSTATUS;

typedef struct _wfs_idc_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 WORD fwReadTracks;
 WORD fwWriteTracks;
 WORD fwChipProtocols;
 USHORT usCards;
 WORD fwSecType;
 WORD fwPowerOnOption;
 WORD fwPowerOffOption;
 BOOL bFluxSensorProgrammable;
 BOOL bReadWriteAccessFollowingEject;
 WORD fwWriteMode;
 WORD fwChipPower;
 LPSTR lpszExtra;
 WORD fwDIPMode;
 LPWORD lpwMemoryChipProtocols;
 DWORD dwGuidLights[WFS_IDC_GUIDLIGHTS_SIZE];
 WORD fwEjectPosition;
 BOOL bPowerSaveControl;
 USHORT usParkingStations;

CWA 16926-63:2020 (E)

91

 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
} WFSIDCCAPS, *LPWFSIDCCAPS;

typedef struct _wfs_idc_form
{
 LPSTR lpszFormName;
 CHAR cFieldSeparatorTrack1;
 CHAR cFieldSeparatorTrack2;
 CHAR cFieldSeparatorTrack3;
 WORD fwAction;
 LPSTR lpszTracks;
 BOOL bSecure;
 LPSTR lpszTrack1Fields;
 LPSTR lpszTrack2Fields;
 LPSTR lpszTrack3Fields;
 LPSTR lpszFrontTrack1Fields;
 CHAR cFieldSeparatorFrontTrack1;
 LPSTR lpszJIS1Track1Fields;
 LPSTR lpszJIS1Track3Fields;
 CHAR cFieldSeparatorJIS1Track1;
 CHAR cFieldSeparatorJIS1Track3;
} WFSIDCFORM, *LPWFSIDCFORM;

typedef struct _wfs_idc_ifm_identifier
{
 WORD wIFMAuthority;
 LPSTR lpszIFMIdentifier;
} WFSIDCIFMIDENTIFIER, *LPWFSIDCIFMIDENTIFIER;

typedef struct _wfs_idc_hex_data
{
 ULONG ulLength;
 LPBYTE lpbData;
} WFSIDCHEXDATA, *LPWFSIDCHEXDATA;

typedef struct wfs_idc_app_data
{
 LPWFSIDCHEXDATA lpAID;
 LPWFSIDCHEXDATA lpKernelIdentifier;
} WFSIDCAPPDATA, *LPWFSIDCAPPDATA;

/*===*/
/* IDC Execute Command Structures */
/*===*/

typedef struct _wfs_idc_write_track
{
 LPSTR lpstrFormName;
 LPSTR lpstrTrackData;
 WORD fwWriteMethod;
} WFSIDCWRITETRACK, *LPWFSIDCWRITETRACK;

typedef struct _wfs_idc_retain_card
{
 USHORT usCount;
 WORD fwPosition;
} WFSIDCRETAINCARD, *LPWFSIDCRETAINCARD;

typedef struct _wfs_idc_setkey
{
 USHORT usKeyLen;
 LPBYTE lpbKeyValue;
} WFSIDCSETKEY, *LPWFSIDCSETKEY;

typedef struct _wfs_idc_card_data
{

CWA 16926-63:2020 (E)

92

 WORD wDataSource;
 WORD wStatus;
 ULONG ulDataLength;
 LPBYTE lpbData;
 WORD fwWriteMethod;
} WFSIDCCARDDATA, *LPWFSIDCCARDDATA;

typedef struct _wfs_idc_chip_io
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSIDCCHIPIO, *LPWFSIDCCHIPIO;

typedef struct _wfs_idc_chip_power_out
{
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSIDCCHIPPOWEROUT, *LPWFSIDCCHIPPOWEROUT;

typedef struct _wfs_idc_parse_data
{
 LPSTR lpstrFormName;
 LPWFSIDCCARDDATA *lppCardData;
} WFSIDCPARSEDATA, *LPWFSIDCPARSEDATA;

typedef struct _wfs_idc_set_guidlight
{
 WORD wGuidLight;
 DWORD dwCommand;
} WFSIDCSETGUIDLIGHT, *LPWFSIDCSETGUIDLIGHT;

typedef struct _wfs_idc_eject_card
{
 WORD wEjectPosition;
} WFSIDCEJECTCARD, *LPWFSIDCEJECTCARD;

typedef struct _wfs_idc_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSIDCPOWERSAVECONTROL, *LPWFSIDCPOWERSAVECONTROL;

typedef struct _wfs_idc_park_card
{
 WORD wDirection;
 USHORT usParkingStation;
} WFSIDCPARKCARD, *LPWFSIDCPARKCARD;

typedef struct _wfs_idc_aid_data
{
 LPWFSIDCHEXDATA lpAID;
 BOOL bPartialSelection;
 ULONG ulTransactionType;
 LPWFSIDCHEXDATA lpKernelIdentifier;
 LPWFSIDCHEXDATA lpConfigData;
} WFSIDCAIDDATA, *LPWFSIDCAIDDATA;

typedef struct _wfs_idc_key_data
{
 LPWFSIDCHEXDATA lpRID;
 WORD wCAPublicKeyIndex;
 WORD wAPublicKeyAlgorithmIndicator;
 LPWFSIDCHEXDATA lpCAPublicKeyExponent;
 LPWFSIDCHEXDATA lpCAPublicKeyModulus;
 LPBYTE lpbCAPublicKeyCheckSum;
} WFSIDCKEYDATA, *LPWFSIDCKEYDATA;

typedef struct _wfs_idc_emvcless_config_data

CWA 16926-63:2020 (E)

93

{
 LPWFSIDCHEXDATA lpTerminalData;
 LPWFSIDCAIDDATA *lppAIDData;
 LPWFSIDCKEYDATA *lppKeyData;
} WFSIDCEMVCLESSCONFIGDATA, *LPWFSIDCEMVCLESSCONFIGDATA;

typedef struct _wfs_idc_emvcless_tx_data
{
 LPWFSIDCHEXDATA lpData;
} WFSIDCEMVCLESSTXDATA, *LPWFSIDCEMVCLESSTXDATA;

typedef struct _wfs_idc_emvcless_ui
{
 WORD wMessageId;
 WORD wStatus;
 ULONG ulHoldTime;
 WORD wValueQualifier;
 LPSTR lpszValue;
 LPSTR lpszCurrencyCode;
 LPSTR lpszLanguagePreferenceData;
} WFSIDCEMVCLESSUI, *LPWFSIDCEMVCLESSUI;

typedef struct _wfs_idc_emvcless_outcome
{
 WORD wCVM;
 WORD wAlternateInterface;
 BOOL bReceipt;
 LPWFSIDCEMVCLESSUI lpClessUIOutcome;
 LPWFSIDCEMVCLESSUI lpClessUIRestart;
 ULONG ulClessFieldOffHoldTime;
 ULONG ulCardRemovalTimeoutValue;
 LPWFSIDCHEXDATA lpDiscretionaryData;
} WFSIDCEMVCLESSOUTCOME, *LPWFSIDCEMVCLESSOUTCOME;

typedef struct _wfs_idc_emvcless_tx_data_output
{
 WORD wDataSource;
 WORD wTxOutcome;
 WORD wCardholderAction;
 LPWFSIDCHEXDATA lpDataRead;
 LPWFSIDCEMVCLESSOUTCOME lpClessOutcome;
} WFSIDCEMVCLESSTXDATAOUTPUT, *LPWFSIDCEMVCLESSTXDATAOUTPUT;

typedef struct _wfs_idc_synchronize_command
{
 DWORD dwCommand;
 LPVOID lpCmdData;
} WFSIDCSYNCHRONIZECOMMAND, *LPWFSIDCSYNCHRONIZECOMMAND;

/*===*/
/* IDC Message Structures */
/*===*/

typedef struct _wfs_idc_track_event
{
 WORD fwStatus;
 LPSTR lpstrTrack;
 LPSTR lpstrData;
} WFSIDCTRACKEVENT, *LPWFSIDCTRACKEVENT;

typedef struct _wfs_idc_card_act
{
 WORD wAction;
 WORD wPosition;
} WFSIDCCARDACT, *LPWFSIDCCARDACT;

typedef struct _wfs_idc_device_position

CWA 16926-63:2020 (E)

94

{
 WORD wPosition;
} WFSIDCDEVICEPOSITION, *LPWFSIDCDEVICEPOSITION;

typedef struct _wfs_idc_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSIDCPOWERSAVECHANGE, *LPWFSIDCPOWERSAVECHANGE;

typedef struct _wfs_idc_track_detected
{
 WORD fwTracks;
} WFSIDCTRACKDETECTED, *LPWFSIDCTRACKDETECTED;

typedef struct _wfs_idc_emv_cless_read_status
{
 LPWFSIDCEMVCLESSUI lpClessUI;
} WFSIDCMVCLESSREADSTATUS, *LPWFSIDCMVCLESSREADSTATUS;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSIDC__H */

CWA 16926-63:2020 (E)

95

9. Intelligent Contactless Card Sequence Diagrams

This section illustrates the sequence diagrams of EMV-like intelligent contactless transactions.

CWA 16926-63:2020 (E)

96

9.1 Single Tap Transaction Without Issuer Update Processing

Figure 1 - Single tap transaction with no issuer update data received from host

CWA 16926-63:2020 (E)

97

9.2 Double Tap Transaction With Issuer Update Processing

Figure 2 - Double tap transaction with issuer update data received from host

CWA 16926-63:2020 (E)

98

9.3 Card Removed Before Completion

Figure 3 Card removed before completion

CWA 16926-63:2020 (E)

99

Appendix A. Diagram Source

Attached http://plantuml.com source for sequence diagrams in section 9. These can be loaded into various editors
(e.g. VSCode, Atom) with an appropriate PlantUML extension installed, or online (e.g. www.planttext.com) or
from the command line using the plantuml.jar file.

Diagram Source.zip

http://plantuml.com/
http://www.planttext.com/

	1. Migration Information
	2. Identification Card Readers and Writers
	2.1 Support for EMV Intelligent Contactless Card Readers

	3. References
	4. Info Commands
	4.1 WFS_INF_IDC_STATUS
	4.2 WFS_INF_IDC_CAPABILITIES
	4.3 WFS_INF_IDC_FORM_LIST
	4.4 WFS_INF_IDC_QUERY_FORM
	4.5 WFS_INF_IDC_QUERY_IFM_IDENTIFIER
	4.6 WFS_INF_IDC_EMVCLESS_QUERY_APPLICATIONS

	5. Execute Commands
	5.1 WFS_CMD_IDC_READ_TRACK
	5.2 WFS_CMD_IDC_WRITE_TRACK
	5.3 WFS_CMD_IDC_EJECT_CARD
	5.4 WFS_CMD_IDC_RETAIN_CARD
	5.5 WFS_CMD_IDC_RESET_COUNT
	5.6 WFS_CMD_IDC_SETKEY
	5.7 WFS_CMD_IDC_READ_RAW_DATA
	5.8 WFS_CMD_IDC_WRITE_RAW_DATA
	5.9 WFS_CMD_IDC_CHIP_IO
	5.10 WFS_CMD_IDC_RESET
	5.11 WFS_CMD_IDC_CHIP_POWER
	5.12 WFS_CMD_IDC_PARSE_DATA
	5.13 WFS_CMD_IDC_SET_GUIDANCE_LIGHT
	5.14 WFS_CMD_IDC_POWER_SAVE_CONTROL
	5.15 WFS_CMD_IDC_PARK_CARD
	5.16 WFS_CMD_IDC_EMVCLESS_CONFIGURE
	5.17 WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION
	5.18 WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE
	5.19 WFS_CMD_IDC_SYNCHRONIZE_COMMAND

	6. Events
	6.1 WFS_EXEE_IDC_INVALIDTRACKDATA
	6.2 WFS_EXEE_IDC_MEDIAINSERTED
	6.3 WFS_SRVE_IDC_MEDIAREMOVED
	6.4 WFS_EXEE_IDC_MEDIARETAINED
	6.5 WFS_EXEE_IDC_INVALIDMEDIA
	6.6 WFS_SRVE_IDC_CARDACTION
	6.7 WFS_USRE_IDC_RETAINBINTHRESHOLD
	6.8 WFS_SRVE_IDC_MEDIADETECTED
	6.9 WFS_SRVE_IDC_RETAINBINREMOVED
	6.10 WFS_SRVE_IDC_RETAINBININSERTED
	6.11 WFS_EXEE_IDC_INSERTCARD
	6.12 WFS_SRVE_IDC_DEVICEPOSITION
	6.13 WFS_SRVE_IDC_POWER_SAVE_CHANGE
	6.14 WFS_EXEE_IDC_TRACKDETECTED
	6.15 WFS_EXEE_IDC_EMVCLESSREADSTATUS
	6.16 WFS_SRVE_IDC_MEDIARETAINED

	7. Form Description
	8. C-Header file
	9. Intelligent Contactless Card Sequence Diagrams
	9.1 Single Tap Transaction Without Issuer Update Processing
	9.2 Double Tap Transaction With Issuer Update Processing
	9.3 Card Removed Before Completion

