
 

 

  

 EUROPEAN COMMITTEE FOR STANDARDIZATION  C O M I T É  E U R O P É E N  D E  N O R M A L I S A T I O N E U R O P Ä I S C H E S  K O M I T E E  F Ü R  N O R M U N G    
CEN-CENELEC Management Centre:  Rue de la Science 23,  B-1040 Brussels 

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.   Ref. No.:CWA 16926-15:2020 E

CEN  

WORKSHOP  

AGREEMENT  

  
 CWA 16926-15   February 2020     

ICS 35.200; 35.240.15; 35.240.40 
English version   Extensions for Financial Services (XFS) interface specification Release 3.40 - Part 15: Cash-In Module Device Class Interface - Programmer's Reference 

 
This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement.  The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.  This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.  This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.  CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.  



CWA 16926-15:2020 (E) 

2 

Table of Contents 

European Foreword ...................................................................................................... 6 

1. Introduction ........................................................................................................ 10 

1.1 Background to Release 3.40 ..................................................................................................... 10 

1.2 XFS Service-Specific Programming ......................................................................................... 10 

2. Cash-In Module .................................................................................................. 12 

3. References ......................................................................................................... 13 

4. Note Classification ............................................................................................ 14 

5. Info Commands ................................................................................................. 15 

5.1 WFS_INF_CIM_STATUS ............................................................................................................ 15 

5.2 WFS_INF_CIM_CAPABILITIES .................................................................................................. 21 

5.3 WFS_INF_CIM_CASH_UNIT_INFO ........................................................................................... 28 

5.4 WFS_INF_CIM_TELLER_INFO .................................................................................................. 38 
5.5 WFS_INF_CIM_CURRENCY_EXP ............................................................................................. 40 

5.6 WFS_INF_CIM_BANKNOTE_TYPES ........................................................................................ 41 

5.7 WFS_INF_CIM_CASH_IN_STATUS .......................................................................................... 42 

5.8 WFS_INF_CIM_GET_P6_INFO .................................................................................................. 44 

5.9 WFS_INF_CIM_GET_P6_SIGNATURE...................................................................................... 45 

5.10 WFS_INF_CIM_GET_ITEM_INFO .............................................................................................. 47 
5.11 WFS_INF_CIM_POSITION_CAPABILITIES .............................................................................. 49 

5.12 WFS_INF_CIM_REPLENISH_TARGET ..................................................................................... 51 

5.13 WFS_INF_CIM_DEVICELOCK_STATUS................................................................................... 52 

5.14 WFS_INF_CIM_CASH_UNIT_CAPABILITIES ........................................................................... 53 

5.15 WFS_INF_CIM_DEPLETE_SOURCE......................................................................................... 55 
5.16 WFS_INF_CIM_GET_ALL_ITEMS_INFO................................................................................... 56 

5.17 WFS_INF_CIM_GET_BLACKLIST ............................................................................................. 60 

5.18 WFS_INF_CIM_GET_CLASSIFICATION_LIST ......................................................................... 61 

5.19 WFS_INF_CIM_CASH_UNIT_COUNT_STATUS ....................................................................... 63 

5.20 WFS_INF_CIM_PRESENT_STATUS ......................................................................................... 65 

6. Execute Commands .......................................................................................... 67 

6.1 WFS_CMD_CIM_CASH_IN_START .......................................................................................... 67 
6.2 WFS_CMD_CIM_CASH_IN ........................................................................................................ 69 

6.3 WFS_CMD_CIM_CASH_IN_END ............................................................................................... 72 

6.4 WFS_CMD_CIM_CASH_IN_ROLLBACK .................................................................................. 74 

6.5 WFS_CMD_CIM_RETRACT ....................................................................................................... 76 

6.6 WFS_CMD_CIM_OPEN_SHUTTER ........................................................................................... 79 

6.7 WFS_CMD_CIM_CLOSE_SHUTTER ......................................................................................... 81 



CWA 16926-15:2020 (E) 

3 

6.8 WFS_CMD_CIM_SET_TELLER_INFO....................................................................................... 82 

6.9 WFS_CMD_CIM_SET_CASH_UNIT_INFO ................................................................................ 83 

6.10 WFS_CMD_CIM_START_EXCHANGE ...................................................................................... 85 

6.11 WFS_CMD_CIM_END_EXCHANGE .......................................................................................... 88 

6.12 WFS_CMD_CIM_OPEN_SAFE_DOOR...................................................................................... 89 
6.13 WFS_CMD_CIM_RESET ............................................................................................................ 90 

6.14 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS .................................................................... 92 

6.15 WFS_CMD_CIM_CONFIGURE_NOTETYPES ........................................................................... 94 

6.16 WFS_CMD_CIM_CREATE_P6_SIGNATURE ............................................................................ 95 

6.17 WFS_CMD_CIM_SET_GUIDANCE_LIGHT ............................................................................... 98 

6.18 WFS_CMD_CIM_CONFIGURE_NOTE_READER ................................................................... 100 
6.19 WFS_CMD_CIM_COMPARE_P6_SIGNATURE ...................................................................... 101 

6.20 WFS_CMD_CIM_POWER_SAVE_CONTROL ......................................................................... 103 

6.21 WFS_CMD_CIM_REPLENISH .................................................................................................. 104 

6.22 WFS_CMD_CIM_SET_CASH_IN_LIMIT .................................................................................. 107 

6.23 WFS_CMD_CIM_CASH_UNIT_COUNT ................................................................................... 110 

6.24 WFS_CMD_CIM_DEVICE_LOCK_CONTROL ......................................................................... 112 
6.25 WFS_CMD_CIM_SET_MODE .................................................................................................. 115 

6.26 WFS_CMD_CIM_PRESENT_MEDIA ........................................................................................ 116 

6.27 WFS_CMD_CIM_DEPLETE ...................................................................................................... 118 

6.28 WFS_CMD_CIM_SET_BLACKLIST ......................................................................................... 120 

6.29 WFS_CMD_CIM_SYNCHRONIZE_COMMAND ....................................................................... 121 
6.30 WFS_CMD_CIM_SET_CLASSIFICATION_LIST ..................................................................... 122 

6.31 WFS_CMD_CIM_PREPARE_PRESENT .................................................................................. 123 

7. Events ............................................................................................................... 124 

7.1 WFS_SRVE_CIM_SAFEDOOROPEN ...................................................................................... 124 

7.2 WFS_SRVE_CIM_SAFEDOORCLOSED ................................................................................. 125 

7.3 WFS_USRE_CIM_CASHUNITTHRESHOLD ........................................................................... 126 

7.4 WFS_SRVE_CIM_CASHUNITINFOCHANGED ....................................................................... 127 
7.5 WFS_SRVE_CIM_TELLERINFOCHANGED ............................................................................ 128 

7.6 WFS_EXEE_CIM_CASHUNITERROR ..................................................................................... 129 

7.7 WFS_SRVE_CIM_ITEMSTAKEN ............................................................................................. 130 

7.8 WFS_SRVE_CIM_COUNTS_CHANGED ................................................................................. 131 

7.9 WFS_EXEE_CIM_INPUTREFUSE ........................................................................................... 132 

7.10 WFS_SRVE_CIM_ITEMSPRESENTED.................................................................................... 133 
7.11 WFS_SRVE_CIM_ITEMSINSERTED ....................................................................................... 134 

7.12 WFS_EXEE_CIM_NOTEERROR .............................................................................................. 135 

7.13 WFS_EXEE_CIM_SUBCASHIN ............................................................................................... 136 

7.14 WFS_SRVE_CIM_MEDIADETECTED ...................................................................................... 137 

7.15 WFS_EXEE_CIM_INPUT_P6 .................................................................................................... 138 

7.16 WFS_EXEE_CIM_INFO_AVAILABLE...................................................................................... 139 



CWA 16926-15:2020 (E) 

4 

7.17 WFS_EXEE_CIM_INSERTITEMS ............................................................................................. 140 

7.18 WFS_SRVE_CIM_DEVICEPOSITION ...................................................................................... 141 

7.19 WFS_SRVE_CIM_POWER_SAVE_CHANGE ......................................................................... 142 

7.20 WFS_EXEE_CIM_INCOMPLETEREPLENISH ........................................................................ 143 

7.21 WFS_EXEE_CIM_INCOMPLETEDEPLETE ............................................................................ 144 
7.22 WFS_SRVE_CIM_SHUTTERSTATUSCHANGED ................................................................... 145 

7.23 WFS_SRVE_CIM_COUNTACCURACYCHANGED ................................................................. 146 

8. ATM Cash-In Transaction Flow - Application Guidelines ............................ 147 

8.1 OK Transaction (Explicit Shutter Control) ............................................................................ 148 

8.2 Cancellation by Customer (Explicit Shutter Control) ........................................................... 149 

8.3 Stacker Becomes Full (Explicit Shutter Control) .................................................................. 150 

8.4 Bill Recognition Error (Explicit Shutter Control) .................................................................. 152 
8.5 OK Transaction (Explicit Shutter Control) - Level 2 and 3 Note classification Supported153 

8.6 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused Notes (Explicit 
Shutter Control) ................................................................................................................................. 154 

8.7 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (Explicit 
Shutter Control) ................................................................................................................................. 156 

8.8 OK Transaction (Implicit Shutter Control) ............................................................................. 158 
8.9 Customer Initiates Returning Of Previously Recognized Items (Implicit Shutter Control)159 

8.10 OK Transaction - (Implicit Shutter Control and WFS_EXEE_CIM_SUBCASHIN event 
supported) .......................................................................................................................................... 160 

8.11 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN (Implicit Shutter Control 
and Implicit Present Control) ........................................................................................................... 161 
8.12 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (Implicit 
Shutter Control and Implicit Present Control)................................................................................ 163 

8.13 Retracting Items When Multiple Bunches Are Returned During WFS_CMD_CIM_CASH_IN 
(Implicit Shutter Control and Implicit Present Control) ................................................................. 165 

8.14 Bill Recognition Error (WFS_CMD_CIM_PRESENT_MEDIA Command Supported) ......... 166 

8.15 Cancellation by Customer (Implicit Shutter Control and 
WFS_CMD_CIM_PRESENT_MEDIA Command Supported) .......................................................... 167 

8.16 Multiple Bunch Timeout Handling .......................................................................................... 168 
8.16.1 No Items Inserted ..............................................................................................................................168 
8.16.2 First Bunch Not Taken ......................................................................................................................168 
8.16.3 Last Bunch Taken .............................................................................................................................169 

8.17 Exchange using DEPOSITINTO (Implicit Shutter Control) .................................................. 171 
8.18 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused Notes (using 
WFS_CMD_CIM_PREPARE_PRESENT) .......................................................................................... 173 

8.19 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (using 
WFS_CMD_CIM_PREPARE_PRESENT) .......................................................................................... 175 

9. ATM Mixed Media Transaction Flow – Application Guidelines.................... 177 

9.1 Mixed Media OK Transaction .................................................................................................. 179 
9.2 Mixed Media Cancellation by Customer ................................................................................ 181 

9.3 Mixed Media Cancellation by Customer on Cash Part Only ................................................ 182 

9.4 Mixed Media Multiple Refused Items ..................................................................................... 183 



CWA 16926-15:2020 (E) 

5 

10. Rules for Cash Unit Exchange ....................................................................... 185 

11. Events Associated with Cash Unit Status Changes ..................................... 188 

11.1 One Physical Cash Unit Goes HIGH....................................................................................... 188 

11.2 Last Physical Cash Unit Goes HIGH ...................................................................................... 189 

11.3 One Physical Cash Unit Goes INOP ....................................................................................... 190 

11.4 Last Physical Cash Unit Goes FULL ...................................................................................... 191 

12. C - Header file .................................................................................................. 192 



CWA 16926-15:2020 (E) 

6 

European Foreword 

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29 
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of 
CEN/CENELEC Internal Regulations - Part 2. It was approved by a Workshop of representatives of interested 
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for 
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not 
necessarily include all relevant stakeholders.  
The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12. 
The following organizations and individuals developed and approved this CEN Workshop Agreement:  
• ATM Japan LTD 

• AURIGA SPA 

• BANK OF AMERICA 

• CASHWAY TECHNOLOGY 

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO. 

• CIMA SPA 

• CLEAR2PAY SCOTLAND LIMITED 

• DIEBOLD NIXDORF 

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM 

• FINANZ INFORMATIK 

• FUJITSU FRONTECH LIMITED 

• FUJITSU TECHNOLOGY 

• GLORY LTD 

• GRG BANKING EQUIPMENT HK CO LTD 

• HESS CASH SYSTEMS GMBH & CO. KG 

• HITACHI OMRON TS CORP. 

• HYOSUNG TNS INC 

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY 

• KAL 

• KEBA AG 

• NCR FSG 

• NEC CORPORATION 

• OKI ELECTRIC INDUSTRY SHENZHEN 

• OKI ELECTRONIC INDUSTRY CO 

• PERTO S/A 



CWA 16926-15:2020 (E) 

7 

• REINER GMBH & CO KG 

• SALZBURGER BANKEN SOFTWARE 

• SIGMA SPA 

• TEB 

• ZIJIN FULCRUM TECHNOLOGY CO 

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on 
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on 
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for 
identifying any or all such patent rights.  
The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-15, but this does not guarantee, either explicitly or implicitly, its correctness. 
Users of CWA 16926-15 should be aware that neither the Workshop participants, nor CEN can be held liable for 
damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-15 do so on 
their own responsibility and at their own risk. 

The CWA is published as a multi-part document, consisting of: 

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference 

Part 2: Service Classes Definition - Programmer's Reference 

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference 

Part 4: Identification Card Device Class Interface - Programmer's Reference 

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference 

Part 6: PIN Keypad Device Class Interface - Programmer's Reference 

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference 

Part 8: Depository Device Class Interface - Programmer's Reference 

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference 

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference 

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference 

Part 12: Camera Device Class Interface - Programmer's Reference 

Part 13: Alarm Device Class Interface - Programmer's Reference 

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference 

Part 15: Cash-In Module Device Class Interface - Programmer's Reference 

Part 16: Card Dispenser Device Class Interface - Programmer's Reference 

Part 17: Barcode Reader Device Class Interface - Programmer's Reference 

Part 18: Item Processing Module Device Class Interface - Programmer's Reference 

Part 19: Biometrics Device Class Interface - Programmer's Reference 

Parts 20 - 28: Reserved for future use. 

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP 
standard and the set of status and statistical information exported by the Service Providers. 

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference 

Part 30: XFS MIB Device Specific Definitions - Printer Device Class 

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class 

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class 

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class 



CWA 16926-15:2020 (E) 

8 

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class 

Part 35: XFS MIB Device Specific Definitions - Depository Device Class 

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class 

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class 

Part 38: XFS MIB Device Specific Definitions - Camera Device Class 

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class 

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class 

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class 

Part 42: Reserved for future use. 

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class 

Part 44: XFS MIB Application Management 

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class 

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class 

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class 

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class 

Parts 49 - 60 are reserved for future use. 

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40 
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference 

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 
(this CWA) - Programmer's Reference 

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 
(this CWA) - Programmer's Reference 

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this 
CWA) - Programmer's Reference 

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this 
CWA) - Programmer's Reference 

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 
3.40 (this CWA) - Programmer's Reference 

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this 
CWA) - Programmer's Reference 

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 
(this CWA) - Programmer's Reference 

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to 
Version 3.40 (this CWA) - Programmer's Reference 

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 
3.40 (this CWA) - Programmer's Reference 

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) - 
Programmer's Reference 

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) - 
Programmer's Reference 

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 
(this CWA) - Programmer's Reference 

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this 
CWA) - Programmer's Reference 

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this 
CWA) - Programmer's Reference 



CWA 16926-15:2020 (E) 

9 

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this 
CWA) - Programmer's Reference 

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 
3.40 (this CWA) - Programmer's Reference 

 

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a 
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the 
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is 
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx. 

The information in this document represents the Workshop's current views on the issues discussed as of the date of 
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no 
warranty, express or implied, with respect to this document. 

 

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx


CWA 16926-15:2020 (E) 

10 

1. Introduction 

1.1 Background to Release 3.40 

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software 
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed 
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop 
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN 
Workshop Agreement (CWA). 

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to 
create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working 
electronically and meeting quarterly. 

Release 3.40 of the XFS specification is based on a C API and is delivered with the continued promise for the 
protection of technical investment for existing applications. This release of the specification extends the 
functionality and capabilities of the existing devices covered by the specification. Notable enhancements include: 

1. Common API level based ‘Service Information’ command to report Service Provider information, 
data and versioning. 

2. Common API level based events to report changes in status and invalid parameters. 

3. Support for Advanced Encryption Standard (AES) in PIN. 

4. VDM Entry Without Closing XFS Service Providers. 

5. Addition of a Biometrics device class. 

6. CDM/CIM Note Classification List handling. 

7. Support for Derived Unique Key Per Transaction (DUKPT) in PIN. 

8. Addition of Transaction Start/End commands. 

9. Addition of explicit CIM Prepare/Present commands. 

 

1.2 XFS Service-Specific Programming 

The service classes are defined by their service-specific commands and the associated data structures, error codes, 
messages, etc. These commands are used to request functions that are specific to one or more classes of Service 
Providers, but not all of them, and therefore are not included in the common API for basic or administration 
functions. 

When a service-specific command is common among two or more classes of Service Providers, the syntax of the 
command is as similar as possible across all services, since a major objective of XFS is to standardize function 
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the 
commands to read data from various services are as similar as possible to each other in their syntax and data 
structures. 

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to 
be provided by the developers of the services of that class; thus any particular device will normally support only a 
subset of the defined command set. 

There are three cases in which a Service Provider may receive a service-specific command that it does not support: 

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor 
implementation of that service does not support it, and the unsupported capability is not considered to be 
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation. 
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service 
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the 
Service Provider does no operation and returns a successful completion to the application. 

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor 
implementation of that service does not support it, and the unsupported capability is considered to be fundamental 
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or 
WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example 



CWA 16926-15:2020 (E) 

11 

would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not 
have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is 
unable to fulfil the request, returns this error. 

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a 
WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error 
for Info commands is returned to the calling application. 

This design allows implementation of applications that can be used with a range of services that provide differing 
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and 
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify 
their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how 
to use the service. 



CWA 16926-15:2020 (E) 

12 

2. Cash-In Module 

This specification describes the functionality of an XFS compliant Cash-In Module (CIM) Service Provider. It 
defines the service-specific commands that can be issued to the Service Provider using the WFSGetInfo, 
WFSAsyncGetInfo, WFSExecute and WFSAsyncExecute functions. 

Persistent values are maintained through power failures, open sessions, close session and system resets. 

This specification covers the acceptance of items. An “item” is defined as any media that can be accepted and 
includes coupons, documents, bills and coins. However, if coins and bills are both to be accepted separate Service 
Providers must be implemented for each. 

All currency parameters in this specification are expressed as a quantity of minimum dispense units, as defined in 
the description of the WFS_INF_CIM_CURRENCY_EXP command. 

There are two types of CIM: Self-Service CIM and Teller CIM. A Self-Service CIM operates in an automated 
environment, while a Teller CIM has an operator present. The functionality provided by the following commands is 
only applicable to a Teller CIM: 

WFS_CMD_CIM_SET_TELLER_INFO 
WFS_INF_CIM_SET_TELLER_INFO 

It is possible for the CIM to be part of a compound device with the Cash Dispenser Module (CDM). This 
CIM\CDM combination is referred to throughout this specification as a “cash recycler”. For details of the CDM 
interface see [Ref. 3]. 

If the device is a cash recycler then, if cash unit exchanges are required on both interfaces, the exchanges cannot be 
performed concurrently. An exchange on one interface must be complete (the 
WFS_CMD_CIM_END_EXCHANGE must have completed) before an exchange can start on the other interface. 
The WFS_ERR_CIM_EXCHANGEACTIVE error code will be returned if the correct sequence is not adhered to. 

The CIM interface can be used for all exchange operations on cash recycle devices, and this interface should be 
used for cash units of multiple currencies and/or denominations (including multiple note identifiers associated with 
the same denomination). 

The event WFS_SRVE_CIM_COUNTS_CHANGED will be posted if an operation on the CDM interface affects 
the recycle cash unit counts which are available through the CIM interface. 

The following commands on the CDM interface may affect the CIM counts: 

 WFS_CMD_CDM_DISPENSE 
 WFS_CMD_CDM_PRESENT 
 WFS_CMD_CDM_RETRACT 
 WFS_CMD_CDM_COUNT 
 WFS_CMD_CDM_REJECT 
 WFS_CMD_CDM_SET_CASH_UNIT_INFO 
 WFS_CMD_CDM_END_EXCHANGE 
 WFS_CMD_CDM_CALIBRATE_CASH_UNIT 
 WFS_CMD_CDM_RESET 
 WFS_CMD_CDM_TEST_CASH_UNITS 



CWA 16926-15:2020 (E) 

13 

3. References 

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference 
Revision 3.40 
2. ISO 4217 at http://www.iso.org 
3. XFS Cash Dispenser Device Class Interface, Programmer’s Reference, Revision 3.40 
4. Paragraph 6 of the EU council regulation 1338/2001. Terms of reference for the adaptation of paragraph 6 on 
cash-in and cash-recycling machines (18.04.2002) at: 
http://www.ecb.int/pub/pdf/other/recyclingeurobanknotes2005en.pdf 
5. Extensions for Financial Services (XFS) interface specification, Release 3.40, Part 18: Item Processing Module 
Device Class Interface Programmer's Reference. 

http://www.iso.org/
http://www.ecb.int/pub/pdf/other/recyclingeurobanknotes2005en.pdf


CWA 16926-15:2020 (E) 

14 

4. Note Classification 

Notes are classified by the XFS CIM specification according to the following definitions: 

1. Level 1 – Note not recognized. 

2. Level 2 – Recognized counterfeit note. 

3. Level 3 – Suspected counterfeit note. 

4. Level 4 – Recognized note that is identified as genuine. This includes notes which are fit or unfit for 
recycling. 

This definition allows support for legislative note handling standards that may exist in various countries and 
economic regions. Local requirements or device capability may dictate that notes are not classified as level 2 and 
level 3; the P6 string reported by WFS_INF_CIM_CAPABILITIES lpszExtra reports whether notes are classified 
into all 4 levels and whether level 2 or 3 notes can be returned to the customer. 

The above classification levels can be used to support note handling functionality which includes: 

1. The ability to remove counterfeit notes from circulation. 

2. Reporting of recognized, counterfeit and suspected counterfeit notes. 

3. Creating and reporting of note signatures in order to allow back-tracing of notes. 

A note’s classification can be changed based on the note’s serial number, currency and value by specifying a 
blacklist or classification list. A blacklist reclassifies a matching note as level 2, whereas a classification list can be 
used to re-classify a matching note to a lower level, including classifying a genuine note as unfit for dispensing. 
Once reclassified, the note will be automatically handled according to the local country specific note handling 
standard or legislation for the note’s new note classification, including any level 2 or 3 note retention rules. Any 
reclassification will result in the normal events and behavior, for example a 
WFS_EXEE_CIM_INFO_AVAILABLE event will reflect the note’s reclassification. Reclassification can be used 
to make dynamic changes to note handling procedures without a software upgrade, enabling functionality such as 
taking older notes out of circulation or handling of counterfeit notes on a local basis. 

Reclassification cannot be used to change a note’s classification to a higher level, for example, a note recognized as 
counterfeit by the device cannot be reclassified as genuine. In addition, it is not possible to re-classify a level 2 note 
as level 1. No particular use case has been identified for reclassifying Level 3 and 4 notes as level 1, but there is no 
reason to restrict this reclassification. 

Blacklists can be specified using WFS_CMD_CIM_SET_BLACKLIST and retrieved using 
WFS_INF_CIM_GET_BLACKLIST. Classification lists can be specified using 
WFS_CMD_CIM_SET_CLASSIFICATION_LIST and retrieved using 
WFS_INF_CIM_GET_CLASSIFICATION_LIST. A classification list is a superset of the blacklist; any items 
specified as level 2 in the classification list are considered part of the blacklist. However, it is not recommended 
that both sets of commands are used by a single application, as it may lead to overlap and confusion. 

The blacklist or classification list functionality can use a mask to specify serial numbers. The mask is defined as 
follows: A '?' character (0x003F) is the wildcard used to match a single Unicode character, and a '*' character 
(0x002A) is the wildcard used to match one or more Unicode characters. 

For example, “S8H9??16?4” would represent a match for the serial numbers “S8H9231654” and “S8H9761684”. A 
mask of “HD90*2” would be used in order to match serial numbers that begin with “HD90” and end with “2”, for 
example “HD9028882”, “HD9083276112”. Note that the mask can only use one asterisk, and if a real character is 
required then it must be preceded by a backslash, for example: '\\' for a backslash, '\*' for an asterisk or '\?' for a 
question mark. Note that this flexibility means that it is possible to overlap definitions, for example “HD90*” and 
“HD902*” would both match on the serial number HD9028882”. 



CWA 16926-15:2020 (E) 

15 

5. Info Commands 

5.1 WFS_INF_CIM_STATUS 

Description This command is used to obtain the status of the CIM. It may also return vendor-specific status 
information. 

Input Param None. 

Output Param LPWFSCIMSTATUS lpStatus; 
typedef struct _wfs_cim_status 
 { 
 WORD     fwDevice; 
 WORD     fwSafeDoor; 
 WORD     fwAcceptor; 
 WORD     fwIntermediateStacker; 
 WORD     fwStackerItems; 
 WORD     fwBanknoteReader; 
 BOOL     bDropBox; 
 LPWFSCIMINPOS   *lppPositions; 
 LPSTR     lpszExtra; 
 DWORD     dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE]; 
 WORD     wDevicePosition; 
 USHORT    usPowerSaveRecoveryTime; 
 WORD     wMixedMode; 
 WORD     wAntiFraudModule; 
 } WFSCIMSTATUS, *LPWFSCIMSTATUS; 

fwDevice 
Supplies the state of the CIM. However, an fwDevice status of WFS_CIM_DEVONLINE does 
not necessarily imply that accepting can take place: the value of the fwAcceptor field must be 
taken into account and - for some vendors - the state of the safe door (fwSafeDoor) may also be 
relevant. The state of the CIM will have one of the following values: 

Value Meaning 
WFS_CIM_DEVONLINE The device is online. This is returned when 

the acceptor is present and operational. 
WFS_CIM_DEVOFFLINE The device is offline (e.g. the operator has 

taken the device offline by turning a switch). 
WFS_CIM_DEVPOWEROFF The device is powered off or physically not 

connected. 
WFS_CIM_DEVNODEVICE The device is not intended to be there, e.g. 

this type of self service machine does not 
contain such a device or it is internally not 
configured. 

WFS_CIM_DEVHWERROR The device is inoperable due to a hardware 
error. 

WFS_CIM_DEVUSERERROR The device is present but a person is 
preventing proper device operation. 

WFS_CIM_DEVBUSY The device is busy and unable to process an 
execute command at this time. 

WFS_CIM_DEVFRAUDATTEMPT The device is present but is inoperable 
because it has detected a fraud attempt. 

WFS_CIM_DEVPOTENTIALFRAUD The device has detected a potential fraud 
attempt and is capable of remaining in 
service. In this case the application should 
make the decision as to whether to take the 
device offline. 

fwSafeDoor 
Supplies the state of the safe door as one of the following values: 



CWA 16926-15:2020 (E) 

16 

Value Meaning 
WFS_CIM_DOORNOTSUPPORTED Physical device has no safe door or safe door 

state reporting is not supported. 
WFS_CIM_DOOROPEN Safe door is open. 
WFS_CIM_DOORCLOSED Safe door is closed. 
WFS_CIM_DOORUNKNOWN Due to a hardware error or other condition, 

the state of the safe door cannot be 
determined. 

fwAcceptor 
Supplies the state of the acceptor cash units as one of the following values. Note that fwAcceptor 
may change value during a cash-in transaction: 

Value Meaning 
WFS_CIM_ACCOK All cash units present are in a good state. 
WFS_CIM_ACCCUSTATE One or more of the cash units is in a high, 

full, inoperative or manipulated condition. 
Items can still be accepted into at least one 
of the cash units. 

WFS_CIM_ACCCUSTOP Due to a cash unit failure accepting is 
impossible. No items can be accepted 
because all of the cash units are in a full, 
inoperative or manipulated condition. 
This state may also occur when a retract cash 
unit is full or no retract cash unit is present, 
or when an application lock is set on every 
cash unit, or when Level 2/3 notes are to be 
automatically retained within cash units, but 
all of the designated cash units for storing 
them are full or inoperative. 

WFS_CIM_ACCCUUNKNOWN Due to a hardware error or other condition, 
the state of the cash units cannot be 
determined. 

fwIntermediateStacker 
Supplies the state of the intermediate stacker as one of the following values: 

Value Meaning 
WFS_CIM_ISEMPTY The intermediate stacker is empty. 
WFS_CIM_ISNOTEMPTY The intermediate stacker is not empty. 
WFS_CIM_ISFULL The intermediate stacker is full. This may 

also be reported during a cash-in transaction 
where a limit specified by 
WFS_CMD_CIM_SET_CASH_IN_LIMIT 
has been reached. 

WFS_CIM_ISUNKNOWN Due to a hardware error or other condition, 
the state of the intermediate stacker cannot 
be determined. 

WFS_CIM_ISNOTSUPPORTED The physical device has no intermediate 
stacker. 

fwStackerItems 
This field informs the application whether items on the intermediate stacker have been in 
customer access. Possible values are: 

Value Meaning 
WFS_CIM_CUSTOMERACCESS Items on the intermediate stacker have been 

in customer access. If the device is a cash 
recycler then the items on the intermediate 
stacker may be there as a result of a previous 
cash-out operation. 

WFS_CIM_NOCUSTOMERACCESS Items on the intermediate stacker have not 
been in customer access. 



CWA 16926-15:2020 (E) 

17 

WFS_CIM_ACCESSUNKNOWN It is not known if the items on the 
intermediate stacker have been in customer 
access. 

WFS_CIM_NOITEMS There are no items on the intermediate 
stacker or the physical device has no 
intermediate stacker. 

fwBanknoteReader 
Supplies the state of the banknote reader as one of the following values: 

Value Meaning 
WFS_CIM_BNROK The banknote reader is in a good state. 
WFS_CIM_BNRINOP The banknote reader is inoperable. 
WFS_CIM_BNRUNKNOWN Due to a hardware error or other condition, 

the state of the banknote reader cannot be 
determined. 

WFS_CIM_BNRNOTSUPPORTED The physical device has no banknote reader. 

bDropBox 
The drop box is an area within the CIM where items which have caused a problem during an 
operation are stored. This field specifies the status of the drop box. TRUE means that some items 
are stored in the drop box due to a cash-in transaction which caused a problem. FALSE indicates 
that the drop box is empty. 

lppPositions 
Pointer to a NULL-terminated array of pointers to WFSCIMINPOS structures (one for each 
supported input or output position): 

typedef struct _wfs_cim_inpos 
 { 
 WORD     fwPosition; 
 WORD     fwShutter; 
 WORD     fwPositionStatus; 
 WORD     fwTransport; 
 WORD     fwTransportStatus; 
 WORD     fwJammedShutterPosition; 
 } WFSCIMINPOS, *LPWFSCIMINPOS; 

fwPosition 
Specifies the input or output position as one of the following values: 

Value Meaning 
WFS_CIM_POSINLEFT Left input position. 
WFS_CIM_POSINRIGHT Right input position. 
WFS_CIM_POSINCENTER Center input position. 
WFS_CIM_POSINTOP Top input position. 
WFS_CIM_POSINBOTTOM Bottom input position. 
WFS_CIM_POSINFRONT Front input position. 
WFS_CIM_POSINREAR Rear input position. 
WFS_CIM_POSOUTLEFT Left output position. 
WFS_CIM_POSOUTRIGHT Right output position. 
WFS_CIM_POSOUTCENTER Center output position. 
WFS_CIM_POSOUTTOP Top output position. 
WFS_CIM_POSOUTBOTTOM Bottom output position. 
WFS_CIM_POSOUTFRONT Front output position. 
WFS_CIM_POSOUTREAR Rear output position. 

fwShutter 
Specifies the state of the shutter as one of the following values: 

Value Meaning 
WFS_CIM_SHTCLOSED The shutter is operational and is closed. 
WFS_CIM_SHTOPEN The shutter is operational and is open. 
WFS_CIM_SHTJAMMED The shutter is jammed and is not 

operational. The field 
fwJammedShutterPosition provides the 
positional state of the shutter. 



CWA 16926-15:2020 (E) 

18 

WFS_CIM_SHTUNKNOWN Due to a hardware error or other 
condition, the state of the shutter cannot 
be determined. 

WFS_CIM_SHTNOTSUPPORTED The physical device has no shutter or 
shutter state reporting is not supported. 

fwPositionStatus 
The status of the input or output position. This field specifies the state of the position as one of 
the following values: 

Value Meaning 
WFS_CIM_PSEMPTY The position is empty. 
WFS_CIM_PSNOTEMPTY The position is not empty. 
WFS_CIM_PSUNKNOWN Due to a hardware error or other 

condition, the state of the position cannot 
be determined. 

WFS_CIM_PSNOTSUPPORTED The device is not capable of reporting 
whether or not items are at the position. 

WFS_CIM_PSFOREIGNITEMS Foreign items have been detected in the 
position. 

fwTransport 
Specifies the state of the transport mechanism as one of the following values. The transport is 
defined as any area leading to or from the position: 

Value Meaning 
WFS_CIM_TPOK The transport is in a good state. 
WFS_CIM_TPINOP The transport is inoperative due to a 

hardware failure or media jam. 
WFS_CIM_TPUNKNOWN Due to a hardware error or other 

condition, the state of the transport 
cannot be determined. 

WFS_CIM_TPNOTSUPPORTED The physical device has no transport or 
transport state reporting is not supported. 

fwTransportStatus 
Returns information regarding items which may be on the transport. If the device is a cash 
recycler it is possible that items will be on the transport due to a previous dispense operation, 
in which case the status will be WFS_CIM_TPSTATNOTEMPTY. The possible values of this 
field are: 

Value Meaning 
WFS_CIM_TPSTATEMPTY The transport is empty. 
WFS_CIM_TPSTATNOTEMPTY The transport is not empty, the items 

have not been in customer access. 
WFS_CIM_TPSTATNOTEMPTYCUST Items which a customer has had access to 

are on the transport. 
WFS_CIM_TPSTATNOTEMPTY_UNK Due to a hardware error or other 

condition it is not known whether there 
are items on the transport. 

WFS_CIM_TPSTATNOTSUPPORTED The device is not capable of reporting 
whether or not items are on the transport. 

fwJammedShutterPosition 
Returns information regarding the position of the jammed shutter. The possible values of this 
field are: 

Value Meaning 
WFS_CIM_SHUTTERPOS_NOTSUPPORTED The physical device has no shutter or 

the reporting of the position of a 
jammed shutter is not supported. 

WFS_CIM_SHUTTERPOS_NOTJAMMED The shutter is not jammed. 
WFS_CIM_SHUTTERPOS_OPEN The shutter is jammed, but fully open. 
WFS_CIM_SHUTTERPOS_PARTIALLY_OPEN The shutter is jammed, but partially 

open. 



CWA 16926-15:2020 (E) 

19 

WFS_CIM_SHUTTERPOS_CLOSED The shutter is jammed, but fully 
closed. 

WFS_CIM_SHUTTERPOS_UNKNOWN The position of the shutter is 
unknown. 

lpszExtra 
Pointer to a list of vendor-specific, or any other extended, information. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

dwGuidLights [...] 
Specifies the state of the guidance light indicators. The elements of this array can be accessed by 
using the predefined index values specified for the dwGuidLights [   ] field in the capabilities. 
Vendor specific guidance lights are defined starting from the end of the array. The maximum 
guidance light index is WFS_CIM_GUIDLIGHTS_MAX. 

Specifies the state of the guidance light indicator as 
WFS_CIM_GUIDANCE_NOT_AVAILABLE, WFS_CIM_GUIDANCE_OFF or a combination 
of the following flags consisting of one type B, optionally one type C and optionally one type D. 

Value Meaning Type 
WFS_CIM_GUIDANCE_NOT_AVAILABLE The status is not available. A 
WFS_CIM_GUIDANCE_OFF The light is turned off. A 
WFS_CIM_GUIDANCE_SLOW_FLASH The light is blinking slowly. B 
WFS_CIM_GUIDANCE_MEDIUM_FLASH The light is blinking medium B 

frequency. 
WFS_CIM_GUIDANCE_QUICK_FLASH The light is blinking quickly. B 
WFS_CIM_GUIDANCE_CONTINUOUS The light is turned on B 

continuous (steady). 
WFS_CIM_GUIDANCE_RED The light is red. C 
WFS_CIM_GUIDANCE_GREEN The light is green. C 
WFS_CIM_GUIDANCE_YELLOW The light is yellow. C 
WFS_CIM_GUIDANCE_BLUE The light is blue. C 
WFS_CIM_GUIDANCE_CYAN The light is cyan. C 
WFS_CIM_GUIDANCE_MAGENTA The light is magenta. C 
WFS_CIM_GUIDANCE_WHITE The light is white. C  
WFS_CIM_GUIDANCE_ENTRY The light is in the entry state. D 
WFS_CIM_GUIDANCE_EXIT The light is in the exit state. D 

wDevicePosition 
Specifies the device position. The device position value is independent of the fwDevice value, e.g. 
when the device position is reported as WFS_CIM_DEVICENOTINPOSITION, fwDevice can 
have any of the values defined above (including WFS_CIM_DEVONLINE or 
WFS_CIM_DEVOFFLINE). If the device is not in its normal operating position (i.e. 
WFS_CIM_DEVICEINPOSITION) then media may not be accepted / presented through the 
normal customer interface. This value is one of the following values: 

Value Meaning 
WFS_CIM_DEVICEINPOSITION The device is in its normal operating 

position, or is fixed in place and cannot be 
moved. 

WFS_CIM_DEVICENOTINPOSITION The device has been removed from its 
normal operating position. 

WFS_CIM_DEVICEPOSUNKNOWN Due to a hardware error or other condition, 
the position of the device cannot be 
determined. 

WFS_CIM_DEVICEPOSNOTSUPP The physical device does not have the 
capability of detecting the position. 

usPowerSaveRecoveryTime 
Specifies the actual number of seconds required by the device to resume its normal operational 
state from the current power saving mode. This value is zero if either the power saving mode has 
not been activated or no power save control is supported. 



CWA 16926-15:2020 (E) 

20 

wMixedMode 
Reports if Mixed Media mode is active. See section WFS_CMD_CIM_SET_MODE for a 
description of the modes. This flag can also be set/reset by the command 
WFS_CMD_IPM_SET_MODE on the IPM interface. This value is one of the following values: 

Value Meaning 
WFS_CIM_MIXEDMEDIANOTACTIVE Mixed Media transactions are not supported 

by the device or Mixed Media mode is not 
activated. 

WFS_CIM_IPMMIXEDMEDIA Mixed Media mode using the CIM and IPM 
interfaces is activated. 

wAntiFraudModule 
Specifies the state of the anti-fraud module as one of the following values: 

Value Meaning 
WFS_CIM_AFMNOTSUPP No anti-fraud module is available. 
WFS_CIM_AFMOK Anti-fraud module is in a good state and no 

foreign device is detected. 
WFS_CIM_AFMINOP Anti-fraud module is inoperable. 
WFS_CIM_AFMDEVICEDETECTED Anti-fraud module detected the presence of a 

foreign device. 
WFS_CIM_AFMUNKNOWN The state of the anti-fraud module cannot be 

determined. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent. 

In the case where communications with the device has been lost, the fwDevice field will report 
WFS_CIM_DEVPOWEROFF when the device has been removed or 
WFS_CIM_DEVHWERROR if the communications are unexpectedly lost. All other fields 
should contain a value based on the following rules and priority: 

1. Report the value as unknown. 

2. Report the value as a general h/w error. 

3. Report the value as the last known value. 



CWA 16926-15:2020 (E) 

21 

5.2 WFS_INF_CIM_CAPABILITIES 

Description This command is used to retrieve the capabilities of the cash acceptor. 

Input Param None. 

Output Param LPWFSCIMCAPS lpCaps; 
typedef struct _wfs_cim_caps 
 { 
 WORD     wClass; 
 WORD     fwType; 
 WORD     wMaxCashInItems; 
 BOOL     bCompound; 
 BOOL     bShutter; 
 BOOL     bShutterControl; 
 BOOL     bSafeDoor; 
 BOOL     bCashBox; 
 BOOL     bRefill; 
 WORD     fwIntermediateStacker; 
 BOOL     bItemsTakenSensor; 
 BOOL     bItemsInsertedSensor; 
 WORD     fwPositions; 
 WORD     fwExchangeType; 
 WORD     fwRetractAreas; 
 WORD     fwRetractTransportActions; 
 WORD     fwRetractStackerActions; 
 LPSTR     lpszExtra; 
 DWORD     dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE]; 
 DWORD     dwItemInfoTypes; 
 BOOL     bCompareSignatures; 
 BOOL     bPowerSaveControl; 
 BOOL     bReplenish; 
 WORD     fwCashInLimit; 
 WORD     fwCountActions; 
 BOOL     bDeviceLockControl; 
 WORD     wMixedMode; 
 BOOL     bMixedDepositAndRollback; 
 BOOL     bAntiFraudModule; 
 BOOL     bDeplete; 
 BOOL     bBlacklist; 
 LPDWORD    lpdwSynchronizableCommands; 
 BOOL     bClassificationList; 
 BOOL     bPhysicalNoteList; 
 } WFSCIMCAPS, *LPWFSCIMCAPS; 

wClass 
Specifies the logical service class as WFS_SERVICE_CLASS_CIM. 

fwType 
Supplies the type of CIM as one of the following values: 

Value Meaning 
WFS_CIM_TELLERBILL The CIM is a Teller Bill Acceptor. 
WFS_CIM_SELFSERVICEBILL The CIM is a Self-Service Bill Acceptor. 
WFS_CIM_TELLERCOIN The CIM is a Teller Coin Acceptor. 
WFS_CIM_SELFSERVICECOIN The CIM is a Self-Service Coin Acceptor. 

wMaxCashInItems 
Supplies the maximum number of items that can be accepted in a single 
WFS_CMD_CIM_CASH_IN command. This value reflects the hardware limitations of the device 
and therefore it does not change as part of the WFS_CMD_CIM_CASH_IN_LIMIT command. 

bCompound 
Specifies whether or not the logical device is part of a compound physical device. 



CWA 16926-15:2020 (E) 

22 

bShutter 
If this flag is TRUE then the device has a shutter and explicit shutter control through the 
commands WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER is 
supported. The definition of a shutter will depend on the h/w implementation. On some devices 
where items are automatically detected and accepted then a shutter is simply a latch that is opened 
and closed, usually under implicit control by the Service Provider. On other devices, the term 
shutter refers to a door, which is opened and closed to allow the customer to place the items onto 
a tray. If a Service Provider cannot detect when items are inserted and there is a shutter on the 
device, then it must provide explicit application control of the shutter. 

bShutterControl 
If set to TRUE the shutter is controlled implicitly by the Service Provider. If set to FALSE the 
shutter must be controlled explicitly by the application using the 
WFS_CMD_CIM_OPEN_SHUTTER and the WFS_CMD_CIM_CLOSE_SHUTTER 
commands. In either case the WFS_CMD_CIM_PRESENT_MEDIA command may be used if 
the bPresentControl field is reported as FALSE. The bShutterControl field is always set to TRUE 
if the device has no shutter. This field applies to all shutters and all positions. 

bSafeDoor 
Specifies whether the WFS_CMD_CIM_OPEN_SAFE_DOOR command is supported. 

bCashBox 
This field is only applicable to CIM types WFS_CIM_TELLERBILL and 
WFS_CIM_TELLERCOIN. It specifies whether or not the tellers have been assigned a cash box. 

bRefill 
This field is not used. 

fwIntermediateStacker 
Specifies the number of items the intermediate stacker for cash-in can hold. Zero means that there 
is no intermediate stacker for cash-in available. 

bItemsTakenSensor 
Specifies whether or not the CIM can detect when items at the exit position are taken by the user. 
If set to TRUE the Service Provider generates an accompanying 
WFS_SRVE_CIM_ITEMSTAKEN event. If set to FALSE this event is not generated. This field 
relates to all output positions. 

bItemsInsertedSensor 
Specifies whether the CIM has the ability to detect when items have actually been inserted by the 
user. If set to TRUE the Service Provider generates an accompanying 
WFS_SRVE_CIM_ITEMSINSERTED event. If set to FALSE this event is not generated. This 
field relates to all input positions. This flag should not be reported as TRUE unless item insertion 
can be detected. 

fwPositions 
Specifies the CIM input and output positions which are available as a combination of the 
following flags: 

Value Meaning 
WFS_CIM_POSINLEFT Left input position. 
WFS_CIM_POSINRIGHT Right input position. 
WFS_CIM_POSINCENTER Center input position. 
WFS_CIM_POSINTOP Top input position. 
WFS_CIM_POSINBOTTOM Bottom input position. 
WFS_CIM_POSINFRONT Front input position. 
WFS_CIM_POSINREAR Rear input position. 
WFS_CIM_POSOUTLEFT Left output position. 
WFS_CIM_POSOUTRIGHT Right output position. 
WFS_CIM_POSOUTCENTER Center output position. 
WFS_CIM_POSOUTTOP Top output position. 
WFS_CIM_POSOUTBOTTOM Bottom output position. 
WFS_CIM_POSOUTFRONT Front output position. 
WFS_CIM_POSOUTREAR Rear output position. 



CWA 16926-15:2020 (E) 

23 

fwExchangeType 
Specifies the type of cash unit exchange operations supported by the CIM. Values are a 
combination of the following flags: 

Value Meaning 
WFS_CIM_EXBYHAND The CIM supports manual replenishment 

either by emptying the cash unit by hand or 
by replacing the cash unit. 

WFS_CIM_EXTOCASSETTES The CIM supports moving items from the 
replenishment cash unit to the bill cash units. 

WFS_CIM_CLEARRECYCLER The CIM supports the emptying of recycle 
cash units. 

WFS_CIM_DEPOSITINTO The CIM supports moving items from the 
deposit entrance to the bill cash units. 

fwRetractAreas 
Specifies the areas to which items may be retracted. If the device does not have a retract 
capability this field will be WFS_CIM_RA_NOTSUPP. Otherwise this field will be set to a 
combination of the following flags: 

Value Meaning 
WFS_CIM_RA_RETRACT Items may be retracted to a retract cash unit. 
WFS_CIM_RA_REJECT Items may be retracted to a reject cash unit. 
WFS_CIM_RA_TRANSPORT Items may be retracted to the transport. 
WFS_CIM_RA_STACKER Items may be retracted to the intermediate 

stacker. 
WFS_CIM_RA_BILLCASSETTES Items may be retracted to item cassettes, 

i.e. cash-in and recycle cash units. 
WFS_CIM_RA_CASHIN Items may be retracted to a cash-in cash unit. 

fwRetractTransportActions 
Specifies the actions which may be performed on items which have been retracted to the 
transport. If the device does not have the capability to retract items to or from the transport this 
field will be WFS_CIM_NOTSUPP. Otherwise this field will be set to a combination of the 
following flags: 

Value Meaning 
WFS_CIM_PRESENT The items may be moved to the exit position. 
WFS_CIM_RETRACT The items may be retracted to a retract cash 

unit. 
WFS_CIM_REJECT The items may be retracted to a reject cash 

unit. 
WFS_CIM_BILLCASSETTES The items may be retracted to item cassettes, 

i.e. cash-in and recycle cash units. 
WFS_CIM_CASHIN The items may be retracted to a cash-in cash 

unit. 

fwRetractStackerActions 
Specifies the actions which may be performed on items which have been retracted to the stacker. 
If the device does not have the capability to retract items to or from the stacker this field will be 
WFS_CIM_NOTSUPP. Otherwise this field will be set to a combination of the following flags: 

Value Meaning 
WFS_CIM_PRESENT The items may be moved to the exit position. 
WFS_CIM_RETRACT The items may be retracted to a retract cash 

unit. 
WFS_CIM_REJECT The items may be retracted to a reject cash 

unit. 
WFS_CIM_BILLCASSETTES The items may be retracted to item cassettes, 

i.e. cash-in and recycle cash units. 
WFS_CIM_CASHIN The items may be retracted to a cash-in cash 

unit. 



CWA 16926-15:2020 (E) 

24 

lpszExtra 
Pointer to a list of vendor-specific, or any other extended, information. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

The parameter that reports how notes are classified and handled is reported in lpszExtra as 
follows. If level 2/3 notes are not to be returned to the customer by these rules, they will not be 
returned regardless of whether their specific note type is configured to not be accepted by 
WFS_CMD_CIM_CONFIGURE_NOTETYPES: 

P6=1 Notes are classified as level 1, 2, 3 or 4 and 
only level 2 notes will not be returned to the 
customer in a cash-in transaction. 

P6=2 Notes are classified as level 1, 2, 3 or 4 and 
level 2 and level 3 notes will not be returned 
to the customer in a cash-in transaction. 

dwGuidLights [...] 
Specifies which guidance light positions are available. A number of guidance light positions are 
defined below. Vendor specific guidance lights are defined starting from the end of the array. The 
maximum guidance light index is WFS_CIM_GUIDLIGHTS_MAX.  

In addition to supporting specific flash rates and colors, some guidance lights also have the 
capability to show directional movement representing “entry” and “exit”. The “entry” state gives 
the impression of leading a user to place media into the device. The “exit” state gives the 
impression of ejection from a device to a user and would be used for retrieving media from the 
device. 

The elements of this array are specified as a combination of the following flags and indicate all of 
the possible flash rates (type B), colors (type C) and directions (type D) that the guidance light 
indicator is capable of handling. If the guidance light indicator only supports one color then no 
value of type C is returned. If the guidance light indicator does not support direction then no value 
of type D is returned. A value of WFS_CIM_GUIDANCE_NOT_AVAILABLE indicates that the 
device has no guidance light indicator or the device controls the light directly with no application 
control possible. 

Value Meaning Type 
WFS_CIM_GUIDANCE_NOT_AVAILABLE There is no guidance light control A 

available at this position. 
WFS_CIM_GUIDANCE_OFF The light can be off. B 
WFS_CIM_GUIDANCE_SLOW_FLASH The light can blink slowly. B 
WFS_CIM_GUIDANCE_MEDIUM_FLASH The light can blink medium B 

frequency. 
WFS_CIM_GUIDANCE_QUICK_FLASH The light can blink quickly. B 
WFS_CIM_GUIDANCE_CONTINUOUS The light can be continuous B 

(steady). 
WFS_CIM_GUIDANCE_RED The light can be red. C 
WFS_CIM_GUIDANCE_GREEN The light can be green. C 
WFS_CIM_GUIDANCE_YELLOW The light can be yellow. C 
WFS_CIM_GUIDANCE_BLUE The light can be blue. C 
WFS_CIM_GUIDANCE_CYAN The light can be cyan. C 
WFS_CIM_GUIDANCE_MAGENTA The light can be magenta. C 
WFS_CIM_GUIDANCE_WHITE The light can be white. C  
WFS_CIM_GUIDANCE_ENTRY The light can be in the entry state. D 
WFS_CIM_GUIDANCE_EXIT The light can be in the exit state. D 

Each array index represents an input/output position in the CIM. The elements are accessed using 
the following definitions for the index value: 

Value Meaning 
WFS_CIM_GUIDANCE_POSINNULL The default input position. 
WFS_CIM_GUIDANCE_POSINLEFT Left input position. 
WFS_CIM_GUIDANCE_POSINRIGHT Right input position. 
WFS_CIM_GUIDANCE_POSINCENTER Center input position. 



CWA 16926-15:2020 (E) 

25 

WFS_CIM_GUIDANCE_POSINTOP Top input position. 
WFS_CIM_GUIDANCE_POSINBOTTOM Bottom input position. 
WFS_CIM_GUIDANCE_POSINFRONT Front input position. 
WFS_CIM_GUIDANCE_POSINREAR Rear input position. 
WFS_CIM_GUIDANCE_POSOUTLEFT Left output position. 
WFS_CIM_GUIDANCE_POSOUTRIGHT Right output position. 
WFS_CIM_GUIDANCE_POSOUTCENTER Center output position. 
WFS_CIM_GUIDANCE_POSOUTTOP Top output position. 
WFS_CIM_GUIDANCE_POSOUTBOTTOM Bottom output position. 
WFS_CIM_GUIDANCE_POSOUTFRONT Front output position. 
WFS_CIM_GUIDANCE_POSOUTREAR Rear output position. 
WFS_CIM_GUIDANCE_POSOUTNULL The default output position. 

dwItemInfoTypes 
Specifies the types of information that can be retrieved through the 
WFS_INF_CIM_GET_ITEM_INFO command. This field will either be set to 
WFS_CIM_ITEM_NOTSUPP or a combination of the following flags: 

Value Meaning 
WFS_CIM_ITEM_SERIALNUMBER Serial Number of the item. 
WFS_CIM_ITEM_SIGNATURE Signature of the item. 
WFS_CIM_ITEM_IMAGEFILE Image file of the item. 

bCompareSignatures 
Specifies if the Service Provider has the ability to compare signatures through command 
WFS_CMD_CIM_COMPARE_P6_SIGNATURE. If this field is set to FALSE, the 
WFS_CMD_CIM_COMPARE_P6_SIGNATURE command returns 
WFS_ERR_UNSUPP_COMMAND. 

bPowerSaveControl 
Specifies whether power saving control is available. This can either be TRUE if available or 
FALSE if not available. 

bReplenish 
If set to TRUE the WFS_INF_CIM_REPLENISH_TARGET and 
WFS_CMD_CIM_REPLENISH commands are supported. If set to FALSE the 
WFS_INF_CIM_REPLENISH_TARGET command returns WFS_ERR_UNSUPP_CATEGORY 
and the WFS_CMD_CIM_REPLENISH command returns WFS_ERR_UNSUPP_COMMAND. 

fwCashInLimit 
Specifies whether the cash-in limitation is supported or not for the 
WFS_CMD_CIM_SET_CASH_IN_LIMIT command. If the device does not have the capability 
to limit the amount or the number of items during cash-in operations then this field will be 
WFS_CIM_LIMITNOTSUPP. Otherwise this field will be set to a combination of the following 
flags: 

Value Meaning 
WFS_CIM_LIMITBYTOTALITEMS The number of successfully processed cash-

in items can be limited by specifying the 
total number of items. 

WFS_CIM_LIMITBYAMOUNT The number of successfully processed cash-
in items can be limited by specifying the 
maximum amount of a specific currency. 

WFS_CIM_LIMITMULTIPLE WFS_CMD_CIM_SET_CASH_IN_LIMIT 
may be called multiple times in a cash-in 
transaction to update previously specified 
amount limits. Only valid if combined with 
WFS_CIM_LIMITBYAMOUNT. 

WFS_CIM_LIMITREFUSEOTHER If multiple currencies can be accepted and an 
amount limit is specified for one or more 
currencies, any other unspecified currencies 
are refused. If not specified, there is no 
amount limit for unspecified currencies. 
Only valid if specified with 
WFS_CIM_LIMITBYAMOUNT. 



CWA 16926-15:2020 (E) 

26 

fwCountActions 
Specifies the count action supported by the WFS_CMD_CIM_CASH_UNIT_COUNT command. 
If the device does not support counting then this field will be WFS_CIM_COUNTNOTSUPP. 
Otherwise this field will be set to a combination of the following flags: 

Value Meaning 
WFS_CIM_COUNTINDIVIDUAL The counting of individual cash units via the 

input structure of the 
WFS_CMD_CIM_CASH_UNIT_COUNT 
command is supported. 

WFS_CIM_COUNTALL The counting of all cash units via the NULL 
pointer input parameter of the 
WFS_CMD_CIM_CASH_UNIT_COUNT 
command is supported. 

bDeviceLockControl 
Specifies whether the CIM supports physical lock/unlock control of the CIM device and/or the 
cash units. If this value is set to TRUE, the device and/or the cash units can be locked and 
unlocked by the WFS_CMD_CIM_DEVICE_LOCK_CONTROL command, and the lock status 
can be retrieved by the WFS_INF_CIM_DEVICELOCK_STATUS command. If this value is set 
to FALSE, the CIM will not support the physical lock/unlock control of the CIM device or the 
cash units; the WFS_CMD_CIM_DEVICE_LOCK_CONTROL command will return 
WFS_ERR_UNSUPP_COMMAND and the WFS_INF_CIM_DEVICELOCK_STATUS 
command will return WFS_ERR_UNSUPP_CATEGORY. 

wMixedMode 
Specifies whether the device supports accepting and processing items other than the types defined 
in the CIM specification. For a description of Mixed Media transactions see section ATM Mixed 
Media Transaction Flow – Application Guidelines. If the device does not support Mixed Media 
processing this field will be WFS_CIM_MIXEDMEDIANOTSUPP. Otherwise this field will be 
set to the following value: 

Value Meaning 
WFS_CIM_IPMMIXEDMEDIA Mixed Media transactions are supported 

using the CIM and IPM interfaces. 

bMixedDepositAndRollback 
Specifies whether the device can deposit one type of media and rollback the other in the same 
Mixed Media transaction. Where bMixedDepositAndRollback is TRUE the Service Provider can 
accept WFS_CMD_CIM_CASH_IN_END and WFS_CMD_IPM_MEDIA_IN_ROLLBACK or 
WFS_CMD_CIM_CASH_IN_ROLLBACK and WFS_CMD_IPM_MEDIA_IN_END to 
complete the current transaction. This value can only be TRUE where wMixedMode == 
WFS_CIM_IPMMIXEDMEDIA. When bMixedDepositAndRollback is FALSE applications must 
either deposit or return ALL items to complete a transaction. Where Mixed Media transactions are 
not supported bMixedDepositAndRollback is FALSE. 

bAntiFraudModule 
Specifies whether the anti-fraud module is available. This can either be TRUE if available or 
FALSE if not available. 

bDeplete 
If set to TRUE the WFS_CMD_CIM_DEPLETE command is supported. If set to FALSE the 
WFS_CMD_CIM_DEPLETE command returns WFS_ERR_UNSUPP_COMMAND. 

bBlacklist 
Specifies whether the device has the capability to maintain a blacklist of serial numbers as well as 
supporting the associated operations. This can either be TRUE if the device has the capability or 
FALSE if it does not. 

lpdwSynchronizableCommands 
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can 
be synchronized. If no execute command can be synchronized then this parameter will be NULL. 

bClassificationList 
Specifies whether the device has the capability to maintain a classification list of serial numbers 
as well as supporting the associated operations. This can either be TRUE if the device has the 
capability or FALSE if it does not.  



CWA 16926-15:2020 (E) 

27 

bPhysicalNoteList 
Specifies whether the Service Provider supports note number lists on physical cash units (see 
lpszExtra in WFSCIMPHCU) This can either be TRUE if the Service Provider has the capability 
or FALSE if it does not. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent. The 
table below defines the valid combinations of bShutter, bShutterControl and 
WFSCIMPOSCAPS.bPresentControl. 

 
bShutter bShutterControl WFSCIMPOSCAPS 

.bPresentControl 
Description 

TRUE TRUE TRUE Service Provider implicitly opens the shutter, 
presents items and closes the shutter when all 
items are taken. 

TRUE TRUE FALSE Service Provider implicitly opens the shutter for 
input. Application required to present items using 
WFS_CMD_CIM_PRESENT_MEDIA. 

TRUE FALSE TRUE Application is required to present items using 
WFS_CMD_CIM_OPEN_SHUTTER and then 
call WFS_CMD_CIM_CLOSE_SHUTTER when 
all items are taken. 

TRUE FALSE FALSE Application is required to present items either by 
using WFS_CMD_CIM_PRESENT_MEDIA or 
by using WFS_CMD_CIM_OPEN_SHUTTER 
and then WFS_CMD_CIM_CLOSE_SHUTTER 
when all items are taken. 

FALSE TRUE TRUE Service Provider implicitly opens the shutter, 
presents items and closes the shutter when all 
items taken. 

FALSE TRUE FALSE Service Provider implicitly opens the shutter for 
input. Application required to present items using 
WFS_CMD_CIM_PRESENT_MEDIA. 

FALSE FALSE TRUE Not Supported. 
FALSE FALSE FALSE Application required to present items using 

WFS_CMD_CIM_PRESENT_MEDIA. 



CWA 16926-15:2020 (E) 

28 

5.3 WFS_INF_CIM_CASH_UNIT_INFO 

Description This command is used to obtain information about the status and contents of the cash units and 
recycle units in the CIM. 

Where a logical cash unit or recycle unit is configured but there is no corresponding physical cash 
unit currently present in the device, information about the missing cash unit or recycle unit will 
still be returned in the lppCashIn field of the output parameter. The status of the cash unit or 
recycle unit will be reported as WFS_CIM_STATCUMISSING. 

It is possible that one logical cash unit may be associated with more than one physical cash unit. 
In this case, the number of cash unit structures returned in lpCashInfo will reflect the number of 
logical cash units in the CIM. That is, if a system contains four physical cash units but two of 
these are treated as one logical cash unit, lpCashInfo will contain information about the three 
logical cash units and a usCount of 3. Information about the physical cash unit(s) associated with 
a logical cash unit is contained in the WFSCIMCASHUNIT structure representing the logical 
cash unit. 

It is also possible that multiple logical cash units may be associated with one physical cash unit. 
This should only occur if the physical cash unit is capable of handling this situation, i.e. if it can 
store multiple denominations and report meaningful count and replenishment information for each 
denomination. In this case the information returned in lpCashInfo will again reflect the number of 
logical cash units in the CIM. 

Counts 

Item counts are typically based on software counts and therefore may not represent the actual 
number of items in the cash unit. 

Persistent values are maintained through power failures, open sessions, close session and system 
resets. 

If a cash unit is shared between the CDM and CIM device class, then CDM operations will result 
in count changes in the CIM cash unit structure and vice versa. All counts are reported 
consistently on both interfaces at all times. 

Exchanges 

If a physical cash unit is inserted (including removal followed by a reinsertion) when the device is 
not in the exchange state the usPStatus of the physical cash unit will be set to 
WFS_CIM_STATCUMANIP and the values of the physical cash unit prior to its’ removal will be 
returned in any subsequent WFS_INF_CIM_CASH_UNIT_INFO command. The physical cash 
unit will not be used in any operation. The application must perform an exchange operation 
specifying the new values for the physical cash unit in order to recover the situation. 

On recycle and retract cash units the counts and status reflect the physical status of the cassette 
and therefore are consistently reported on both the CDM and CIM interfaces. When a value is 
changed through an exchange on one interface it is also changed on the other. 

Recyclers 

The CIM interface reports all cash units including cash-out only cash units. The CDM interface 
does not report cash-in only cash units but does report cash units used on both interfaces, i.e. 
recycle cash units (WFS_CIM_TYPERECYCLING) and reject/retract cash units 
(WFS_CIM_TYPEREJECT / WFS_CIM_TYPERETRACTCASSETTE). 

Input Param None. 

Output Param LPWFSCIMCASHINFO lpCashInfo; 
typedef struct _wfs_cim_cash_info 
 { 
 USHORT    usCount; 
 LPWFSCIMCASHIN   *lppCashIn; 
 } WFSCIMCASHINFO, *LPWFSCIMCASHINFO; 

usCount 
Number of WFSCIMCASHIN structures returned in lppCashIn. 



CWA 16926-15:2020 (E) 

29 

lppCashIn 
Pointer to an array of pointers to WFSCIMCASHIN structures: 

typedef struct _wfs_cim_cash_in 
 { 
 USHORT    usNumber; 
 DWORD     fwType; 
 DWORD     fwItemType; 
 CHAR     cUnitID[5]; 
 CHAR     cCurrencyID[3]; 
 ULONG     ulValues; 
 ULONG     ulCashInCount; 
 ULONG     ulCount; 
 ULONG     ulMaximum; 
 USHORT    usStatus; 
 BOOL     bAppLock; 
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList; 
 USHORT    usNumPhysicalCUs; 
 LPWFSCIMPHCU   *lppPhysical; 
 LPSTR     lpszExtra; 
 LPUSHORT    lpusNoteIDs; 
 WORD     usCDMType; 
 LPSTR     lpszCashUnitName; 
 ULONG     ulInitialCount; 
 ULONG     ulDispensedCount; 
 ULONG     ulPresentedCount; 
 ULONG     ulRetractedCount; 
 ULONG     ulRejectCount; 
 ULONG     ulMinimum; 
 } WFSCIMCASHIN, *LPWFSCIMCASHIN; 

usNumber 
Index number of the cash unit structure. Each structure has a unique logical number starting 
with a value of one (1) for the first structure, and incrementing by one for each subsequent 
structure. 

fwType 
Specifies the type of cash unit as one of the following values: 

Value Meaning 
WFS_CIM_TYPERECYCLING Recycle cash unit. This type of cash unit 

is present only when the device is a cash 
recycler. It can be used for cash 
dispensing. 

WFS_CIM_TYPECASHIN Cash-in cash unit. 
WFS_CIM_TYPEREPCONTAINER Replenishment container. A cash unit can 

be refilled from or emptied to a 
replenishment container. 

WFS_CIM_TYPERETRACTCASSETTE Retract cash unit. 
WFS_CIM_TYPEREJECT Reject cash unit. 
WFS_CIM_TYPECDMSPECIFIC A cash unit that is only applicable to the 

CDM interface. This value is used to 
report CDM cash units of the following 
types: WFS_CDM_TYPENA, 
WFS_CDM_TYPEBILLCASSETTE, 
WFS_CDM_TYPECOINCYLINDER, 
WFS_CDM_TYPECOINDISPENSER, 
WFS_CDM_TYPECOUPON and 
WFS_CDM_TYPEDOCUMENT. See 
the usCDMType field for details of the 
cash unit type. 

fwItemType 
Specifies the type of items the cash unit takes as a combination of the following flags. The 
table in the Comments section of this command defines how to interpret the combination of 
these flags: 



CWA 16926-15:2020 (E) 

30 

Value Meaning 
WFS_CIM_CITYPALL The cash unit takes all fit banknote types. 

These are level 4 notes which are fit for 
recycling. 

WFS_CIM_CITYPUNFIT The cash unit takes all unfit banknotes. 
These are level 4 notes which are unfit 
for recycling. 

WFS_CIM_CITYPINDIVIDUAL The cash unit takes all types of fit 
banknotes specified in an individual list. 
These are level 4 notes which are fit for 
recycling. 

WFS_CIM_CITYPLEVEL1 Level 1 note types are stored in this cash 
unit. 

WFS_CIM_CITYPLEVEL2 If notes can be classified as level 2, then 
level 2 note types are stored in this cash 
unit. 

WFS_CIM_CITYPLEVEL3 If notes can be classified as level 3, then 
level 3 note types are stored in this cash 
unit. 

WFS_CIM_CITYPIPM The cash unit can accept items on the 
IPM interface.  

WFS_CIM_CITYPUNFITINDIVIDUAL The cash unit takes all types of unfit 
banknotes specified in an individual list. 
These are level 4 notes which are unfit 
for recycling. 

Support for classifying validated notes as 'unfit' is hardware dependent. On h/w that cannot 
classify notes as 'unfit', all validated banknotes will be treated as 'fit' and accepted by cash 
units of type WFS_CIM_CITYPALL and/or WFS_CIM_CITYPINDIVIDUAL. On such h/w 
the value WFS_CIM_CITYPUNFIT will not be used. 

On h/w that can classify notes as 'unfit', validated 'fit' banknotes will be accepted by cash units 
of type WFS_CIM_CITYPALL and/or WFS_CIM_CITYPINDIVIDUAL. If the cash unit is 
configured as a combination of WFS_CIM_CITYPALL or WFS_CIM_CITYPINDIVIDUAL 
with WFS_CIM_CITYPUNFIT then the cash unit accepts valid 'fit' and 'unfit' banknote types. 
If the cash unit is configured as a combination of WFS_CIM_CITYPINDIVIDUAL with 
WFS_CIM_CITYPUNFITINDIVIDUAL then the cash unit accepts valid 'fit' and 'unfit' 
banknote types of the note types specified in an individual list. 

This value is zero for cash units that cannot accept media items, i.e. cash units that can only 
dispense, or for cash units that are configured not to accept any items. It may be possible to 
use the command WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS to configure the cash 
unit to accept media. 

cUnitID 
The Cash Unit Identifier. 

cCurrencyID 
A three character array storing the ISO format currency ID [Ref. 2]. This value will be an 
array of three ASCII 0x20h characters for cash units which contain items of more than one 
currency type or items to which currency is not applicable. If the usStatus field for this cash 
unit is WFS_CIM_STATCUNOVAL it is the responsibility of the application to assign a 
value to this field. This value is persistent. 

ulValues 
Supplies the value of a single item in the cash unit. This value is expressed in minimum 
dispense units (see section WFS_INF_CIM_CURRENCY_EXP). If the cCurrencyID field for 
this cash unit is an array of three ASCII 0x20h characters or the cash unit is configured to 
accept more than one denomination of note then this field will contain zero. The value of the 
notes stored in the cash unit can be calculated from the contents of lpNoteNumberList and the 
data returned from the WFS_INF_CIM_BANKNOTE_TYPES command. If the usStatus field 
for this cash unit is WFS_CIM_STATCUNOVAL it is the responsibility of the application to 
assign a value to this field. This value is persistent. 



CWA 16926-15:2020 (E) 

31 

ulCashInCount 
Count of items that have entered the logical cash unit. This counter is incremented whenever 
an item enters a physical cash unit that belongs to this logical cash unit for any reason, unless 
it originated from this cash unit but was returned without being accessible to a customer. For a 
retract cash unit this value represents the total number of items of all types in the cash unit, or 
if the device cannot count items during a retract operation this value will be zero. If fwType is 
WFS_CIM_TYPECDMSPECIFIC then this value is zero. This value is persistent. 

ulCount 
The meaning of this count depends on the type of cash unit. This value is persistent. 

For all cash units except retract cash units (fwType is not 
WFS_CIM_TYPERETRACTCASSETTE) this value reports the total number of banknotes, 
checks or coins of all types in the cash unit. 

For cash units supporting the fwItemType WFS_CIM_CITYPIPM the number of banknotes or 
coins contained in the cash unit can be determined from lpNoteNumberList. 

If the cash unit is a recycle cash unit (fwType is WFS_CIM_TYPERECYCLING) then this 
value may not be the same as the value of ulCashInCount. This value will be decremented as a 
result of a dispense transaction on the CDM interface. During dispense transactions on the 
CDM, this value includes any items that have been dispensed but not yet presented to the 
customer. This count is only decremented when these items are either known to be in customer 
access, successfully rejected or moved to another cash unit. 

If the cash unit is a retract cash unit (fwType is WFS_CIM_TYPERETRACTCASSETTE) 
then this value will not normally be the same as the value of ulCashInCount. This value 
specifies the number of retract operations (CIM commands, CDM commands and error 
recovery) which result in items entering the cash unit. 

If the cash unit is CDM specific (fwType is WFS_CIM_TYPECDMSPECIFIC) then this value 
will be reported as defined in the CDM interface specification. 

ulMaximum 
When the ulCount reaches this value the threshold event 
WFS_USRE_CIM_CASHUNITTHRESHOLD (WFS_CIM_STATCUHIGH) will be 
generated. If this value is non-zero then hardware sensors in the device do not trigger 
threshold events. If this value is zero then hardware sensors will trigger threshold events if 
bHardwareSensors is TRUE. 

usStatus 
Describes the status of the cash unit as one of the following values: 

Value Meaning 
WFS_CIM_STATCUOK The cash unit is in a good state. 
WFS_CIM_STATCUFULL The cash unit is full. This value is not 

used for CDM specific cash units 
(fwType == 
WFS_CIM_TYPECDMSPECIFIC). 

WFS_CIM_STATCUHIGH The cash unit is almost full (i.e. reached 
or exceeded the threshold defined by 
ulMaximum). This value is not used for 
CDM specific cash units (fwType == 
WFS_CIM_TYPECDMSPECIFIC). 

WFS_CIM_STATCULOW The cash unit is almost empty (i.e. 
reached or below the threshold defined 
by ulMinimum). This value is only 
reported for cash units which can 
dispense media items. It is not mandatory 
to report this for recycle cash units 
(fwType == 
WFS_CIM_TYPERECYCLING). 

WFS_CIM_STATCUEMPTY The cash unit is empty. On a dispensing 
cash unit on a recycler this can be caused 
by insufficient items in the cash unit 
preventing further dispense operations. 



CWA 16926-15:2020 (E) 

32 

WFS_CIM_STATCUINOP The cash unit is inoperative. 
WFS_CIM_STATCUMISSING The cash unit is missing. 
WFS_CIM_STATCUNOVAL The values of the specified cash unit are 

not available. This can be the case when 
the cash unit is changed without using 
the operator functions. 

WFS_CIM_STATCUNOREF There is no reference value available for 
the notes in this cash unit. The cash unit 
has not been configured. This value has 
no meaning on the CIM and is not used. 

WFS_CIM_STATCUMANIP The cash unit has been inserted 
(including removal followed by a 
reinsertion) when the device was not in 
the exchange state. Items cannot be 
accepted into this cash unit. 

bAppLock 
If this value is TRUE items cannot be accepted into the cash unit. This parameter is ignored if 
the hardware does not support this. This value is persistent. 

lpNoteNumberList 
Pointer to a WFSCIMNOTENUMBERLIST structure. The content of this structure is 
persistent. 

If the cash unit is a CDM specific cash unit (fwType == WFS_CIM_TYPECDMSPECIFIC) 
with usCDMType == WFS_CDM_TYPEBILLCASSETTE this pointer will be NULL. 

If the cash unit is not a retract cash unit (fwType is not 
WFS_CIM_TYPERETRACTCASSETTE), then the lpNoteNumberList will point to the list of 
cash items inside the cash unit. Additionally if the contents of the cash unit are not known then 
this pointer will be NULL. 

If the cash unit is a retract cash unit (fwType == WFS_CIM_TYPERETRACTCASSETTE) 
this pointer will be NULL except for the following cases: 

• If the retract cash unit is configured to accept level 2 notes then the number and type 
of level 2 notes is returned in the lpNoteNumberList and ulCount contains the number 
of retract operations. ulCashInCount contains the actual number of level 2 notes. 

• If items are recognized during retract operations then the number and type of notes 
retracted is returned in lpNoteNumberList and ulCount contains the number of retract 
operations. ulCashInCount contains the actual number of retracted items. 

If both cases apply then the number and type of level 2 notes and notes retracted is returned in 
the lpNoteNumberList and ulCount contains the number of retract operations. 
ulCashInCount contains the actual number of level 2 notes and retracted items. 

typedef struct _wfs_cim_note_number_list 
 { 
 USHORT    usNumOfNoteNumbers; 
 LPWFSCIMNOTENUMBER  *lppNoteNumber; 
 } WFSCIMNOTENUMBERLIST, *LPWFSCIMNOTENUMBERLIST; 

usNumOfNoteNumbers 
Number of banknote types the cash unit contains, i.e. the size of the lppNoteNumber list. 

lppNoteNumber 
List of banknote numbers the cash unit contains. A pointer to an array of pointers to 
WFSCIMNOTENUMBER structures: 

typedef struct _wfs_cim_note_number 
 { 
 USHORT    usNoteID; 
 ULONG     ulCount; 
 } WFSCIMNOTENUMBER, *LPWFSCIMNOTENUMBER; 



CWA 16926-15:2020 (E) 

33 

usNoteID 
Identification of note type. The Note ID represents the note identifiers reported by the 
WFS_INF_CIM_BANKNOTE_TYPES command. If this value is zero then the note 
type is unknown. 

ulCount 
Actual count of cash items. The value is incremented each time cash items are moved 
to a cash unit by a WFSExecute command. In the case of recycle cash units this count 
is decremented as defined in the description of the logical ulCount field. 

usNumPhysicalCUs 
This value indicates the number of physical cash unit structures returned. It must be at least 1. 

lppPhysical 
Pointer to an array of pointers to WFSCIMPHCU structures: 

typedef struct _wfs_cim_physicalcu 
 { 
 LPSTR     lpPhysicalPositionName; 
 CHAR     cUnitID[5]; 
 ULONG     ulCashInCount; 
 ULONG     ulCount; 
 ULONG     ulMaximum; 
 USHORT    usPStatus; 
 BOOL     bHardwareSensors; 
 LPSTR     lpszExtra; 
 ULONG     ulInitialCount; 
 ULONG     ulDispensedCount; 
 ULONG     ulPresentedCount; 
 ULONG     ulRetractedCount; 
 ULONG     ulRejectCount; 
 } WFSCIMPHCU, *LPWFSCIMPHCU; 

lpPhysicalPositionName 
A name identifying the physical location of the cash unit within the CIM. This field can be 
used by CIMs which are compound with a CDM or IPM to identify shared cash 
units/media bins. 

cUnitID 
A 5 character array uniquely identifying the physical cash unit. 

ulCashInCount 
As defined by the logical ulCashInCount description but applies to a single physical cash 
unit. This value is persistent. 

ulCount 
As defined by the logical ulCount description but applies to a single physical cash unit. 
The one exception is that during dispense transactions on the CDM, this value does not 
include any items that have been dispensed but not yet presented. This value is persistent. 

ulMaximum 
Maximum count of items in the physical cash unit. No threshold event will be generated 
when this value is reached. This value is persistent. This field is deprecated. The value for 
ulMaximum is reported using the WFS_INF_CIM_CASH_UNIT_CAPABILITIES 
command. 

usPStatus 
Supplies the status of the physical cash unit as one of the following values: 

Value Meaning 
WFS_CIM_STATCUOK The cash unit is in a good state. 
WFS_CIM_STATCUFULL The cash unit is full. This value is not 

used for CDM specific cash units 
(fwType == 
WFS_CIM_TYPECDMSPECIFIC). 



CWA 16926-15:2020 (E) 

34 

WFS_CIM_STATCUHIGH The cash unit is almost full (reached 
or exceeded the threshold defined by 
ulMaximum in physical structure). 
This value is not used for CDM 
specific cash units (fwType == 
WFS_CIM_TYPECDMSPECIFIC). 

WFS_CIM_STATCULOW The cash unit is almost empty. This 
value is only reported for cash units 
which can dispense media items. It is 
not mandatory to report this for 
recycle cash units (fwType == 
WFS_CIM_TYPERECYCLING). 

WFS_CIM_STATCUEMPTY The cash unit is empty. On a 
dispensing cash unit on a recycler this 
can be caused by insufficient items in 
the cash unit preventing further 
dispense operations. 

WFS_CIM_STATCUINOP The cash unit is inoperative. 
WFS_CIM_STATCUMISSING The cash unit is missing (the cash unit 

has been removed and is physically 
not present in the machine). 

WFS_CIM_STATCUNOVAL The values of the specified cash unit 
are not available. 

WFS_CIM_STATCUNOREF There is no reference value available 
for the notes in this cash unit. The 
cash unit has not been configured. 
This value is only reported for CDM 
specific cash units (fwType == 
WFS_CIM_TYPECDMSPECIFIC). 

WFS_CIM_STATCUMANIP The cash unit has been inserted 
(including removal followed by a 
reinsertion) when the device was not 
in the exchange state. 

bHardwareSensors 
Specifies whether or not threshold events can be generated based on hardware sensors in 
the device. If this value is TRUE for any of the physical cash units related to a logical cash 
unit then threshold events may be generated based on hardware sensors as opposed to 
logical counts. This field is deprecated. The value for bHardwareSensors is reported using 
the WFS_INF_CIM_CASH_UNIT_CAPABILITIES command. 

lpszExtra 
Pointer to a list of vendor-specific information about the physical cash unit. The 
information is returned as a series of “key=value” strings so that it is easily extensible by 
Service Providers. Each string is null-terminated, with the final string terminating with two 
null characters. An empty list may be indicated by either a NULL pointer or a pointer to 
two consecutive null characters.  

If the bPhysicalNoteList capability is TRUE, the breakdown of notes within the physical 
cash unit may be specified or reported using an optional string of the following format 
which can be mapped onto a WFSCIMNOTENUMBERLIST structure. It is not mandatory 
to specify this string during a replenishment operation even if the bPhysicalNoteList 
capability is TRUE. See Rules for Cash Unit Exchange for an example and details of how 
this can be used: 

NOTENUMBERLIST=<semi-colon separated list of note numbers> 

Where each note number (compare with WFSCIMNOTENUMBER) is represented by 

<Note ID>,<Count> 

Where 

<Note ID> is the Note ID in decimal (see WFSCIMNOTENUMBER::usNoteID) 



CWA 16926-15:2020 (E) 

35 

<Count> is the number of notes in decimal of Note ID <Note ID> (see 
WFSCIMNOTENUMBER::ulCount) 

For example if a physical cash unit contains 30 notes of note ID 1 and 100 notes of note ID 
5, this would be represented with the following key/value pair 

NOTENUMBERLIST=1,30;5,100 

ulInitialCount 
Initial number of items contained in this physical cash unit. This value is persistent. 

ulDispensedCount 
The number of items dispensed from this physical cash unit. This value is persistent. See 
the CDM interface specification for details. 

ulPresentedCount 
The number of items from this physical cash unit that have been presented to the customer 
by the CDM interface. This value is persistent. See the CDM interface specification for 
details. 

ulRetractedCount 
The number of items that have been that have been accessible to a customer and retracted 
into this physical cash unit. This value is persistent. 

ulRejectCount 
The number of items from this physical cash unit which have been rejected. This value is 
persistent. See the CDM interface specification for details. 

lpszExtra 
Pointer to a list of vendor-specific information about the logical cash unit. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

lpusNoteIDs 
Pointer to a zero-terminated list of unsigned shorts which contains the note IDs of the 
banknotes the cash-in cash unit or recycle cash unit can take. This field only applies to 
WFS_CIM_CITYPINDIVIDUAL cassette types. If there are no note IDs defined for the 
cassette or the cassette is not defined as WFS_CIM_CITYPINDIVIDUAL then lpusNoteIDs 
will contain NULL. 

usCDMType 
The type of cash unit reported for the corresponding cash unit on the CDM interface. See the 
CDM interface specification for details. For CIM only cash units this value is zero. 

lpszCashUnitName 
An application defined name to help identify the content of the cash unit. This value can be 
NULL. 

ulInitialCount 
Initial number of items contained in the logical cash unit. This value is persistent. 

ulDispensedCount 
The number of items dispensed from all the physical cash units associated with this logical 
cash unit. This value is persistent. See the CDM interface specification for details. 

ulPresentedCount 
The number of items from all the physical cash units associated with this logical cash unit that 
have been presented to the customer by the CDM interface. This value is persistent. See the 
CDM interface specification for details. 

ulRetractedCount 
The number of items that have been that have been accessible to a customer and retracted into 
all physical cash units associated with this logical cash unit. This value is persistent. 

ulRejectCount 
The number of items from this logical cash unit which have been rejected. This value is 
persistent. See the CDM interface specification for details. 



CWA 16926-15:2020 (E) 

36 

ulMinimum 
This field is only applicable to CDM cash units which can dispense media items. This value is 
persistent. See the CDM interface specification for details. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments The following table defines the interpretation of the fwItemType flag for single values and a sub-
set of possible combinations (many of which may not actually be possible on physical hardware 
implementations). The check mark means that the corresponding flag is set, empty means that the 
corresponding flag is not set. 

For a definition of the terms 'fit' and 'unfit' see the description of fwItemType itself. The 
combinations not included in this table can be interpolated from this table. 

 
ALL UNFIT INDIVIDUAL LEVEL 

3 
LEVEL 

2 
LEVEL 

1 
UNFITINDIVIDUAL Description 

√       Fit notes for all note 
ids 

 √      Unfit notes for all note 
ids 

  √     Fit notes from the 
Individual note list 

   √    Level 3 notes for all 
note ids 

    √   Level 2 notes for all 
note ids 

√ √      Fit notes for all note 
ids & unfit notes for 
all note ids 

√   √    Fit notes for all note 
ids & level 3 notes for 
all note ids 

√    √   Fit notes for all note 
ids & level 2 notes for 
all note ids 

√   √ √   Fit notes for all note 
ids & level 3 notes for 
all note ids & level 2 
notes for all note ids 

√ √  √ √   Fit notes for all note 
ids & unfit notes for 
all note ids & level 3 
notes for all note ids & 
level 2 notes for all 
note ids 

 √ √     Fit notes from the 
Individual note list & 
unfit notes for all note 
ids 

  √ √    Fit notes from the 
Individual note list & 
level 3 notes for all 
note ids. 

  √  √   Fit notes from the 
Individual note list & 
level 2 notes for all 
note ids. 

  √ √ √   Fit notes from the 
Individual note list & 
level 3 notes for all 
note ids & level 2 
notes for all note ids. 



CWA 16926-15:2020 (E) 

37 

 √ √ √ √   Fit notes from the 
Individual note list & 
unfit notes for all note 
ids & level 3 notes for 
all note ids & level 2 
notes for all note ids. 

     √  Unrecognized notes. 
  √    √ Fit & unfit notes from 

the individual note list 
      √ Unfit notes from the 

individual note list 

 

Note: WFS_CIM_CITYPALL always overrides WFS_CIM_CITYPINDIVIDUAL when these 
values are combined. 
WFS_CIM_CITYPIPM can be combined with any other combination and indicates non-note 
items can be stored in this cash unit.  

WFS_CIM_CITYPUNFIT always overrides WFS_CIM_CITYPUNFITINDIVIDUAL when 
these values are combined. 



CWA 16926-15:2020 (E) 

38 

5.4 WFS_INF_CIM_TELLER_INFO 

Description This command allows the application to obtain counts for each currency assigned to the teller. It 
also enables the application to obtain the position assigned to each teller. If the input parameter is 
NULL, this command will return information for all tellers and all currencies. The teller 
information is persistent. 

Input Param LPWFSCIMTELLERINFO lpTellerInfo; 
typedef struct _wfs_cim_teller_info 
 { 
 USHORT    usTellerID; 
 CHAR     cCurrencyID[3]; 
 } WFSCIMTELLERINFO, *LPWFSCIMTELLERINFO; 

usTellerID 
Identification of teller. If the value of usTellerID is not valid the error 
WFS_ERR_CIM_INVALIDTELLERID is reported. 

cCurrencyID 
Three character ISO format currency identifier [Ref. 2]. 

This parameter can be an array of three ASCII 0x20 characters. In this case information on all 
currencies will be returned. 

Output Param LPWFSCIMTELLERDETAILS *lppTellerDetails; 

Pointer to a NULL-terminated array of pointers to WFSCIMTELLERDETAILS structures. 
typedef struct _wfs_cim_teller_details 
 { 
 USHORT    usTellerID; 
 WORD     fwInputPosition; 
 WORD     fwOutputPosition; 
 LPWFSCIMTELLERTOTALS  *lppTellerTotals; 
 } WFSCIMTELLERDETAILS, *LPWFSCIMTELLERDETAILS; 

usTellerID 
Identification of teller. 

fwInputPosition 
The input position assigned to the teller for cash entry. The value is set to one of the following 
values: 

Value Meaning 
WFS_CIM_POSNULL No position is assigned to the teller. 
WFS_CIM_POSINLEFT The left position is assigned to the teller. 
WFS_CIM_POSINRIGHT The right position is assigned to the teller. 
WFS_CIM_POSINCENTER The center position is assigned to the teller. 
WFS_CIM_POSINTOP The top position is assigned to the teller. 
WFS_CIM_POSINBOTTOM The bottom position is assigned to the teller. 
WFS_CIM_POSINFRONT The front position is assigned to the teller. 
WFS_CIM_POSINREAR The rear position is assigned to the teller. 

fwOutputPosition 
The output position from which cash is presented to the teller. The value is set to one of the 
following values: 

Value Meaning 
WFS_CIM_POSNULL No position is assigned to the teller. 
WFS_CIM_POSOUTLEFT The left position is assigned to the teller. 
WFS_CIM_POSOUTRIGHT The right position is assigned to the teller. 
WFS_CIM_POSOUTCENTER The center position is assigned to the teller. 
WFS_CIM_POSOUTTOP The top position is assigned to the teller. 
WFS_CIM_POSOUTBOTTOM The bottom position is assigned to the teller. 
WFS_CIM_POSOUTFRONT The front position is assigned to the teller. 
WFS_CIM_POSOUTREAR The rear position is assigned to the teller. 



CWA 16926-15:2020 (E) 

39 

lppTellerTotals 
Pointer to a NULL-terminated array of pointers to WFSCIMTELLERTOTALS structures. 

typedef struct _wfs_cim_teller_totals 
 { 
 CHAR     cCurrencyID[3]; 
 ULONG     ulItemsReceived; 
 ULONG     ulItemsDispensed; 
 ULONG     ulCoinsReceived; 
 ULONG     ulCoinsDispensed; 
 ULONG     ulCashBoxReceived; 
 ULONG     ulCashBoxDispensed; 
 } WFSCIMTELLERTOTALS, *LPWFSCIMTELLERTOTALS; 

cCurrencyID 
Three character ISO format currency identifier [Ref. 2]. 

ulItemsReceived 
The total amount of item currency (excluding coins) accepted. The amount is expressed in 
minimum dispense units (see section WFS_INF_CIM_CURRENCY_EXP). 

ulItemsDispensed 
The total amount of item currency (excluding coins) dispensed. The amount is expressed in 
minimum dispense units (see section WFS_INF_CIM_CURRENCY_EXP). 

ulCoinsReceived 
The total amount of coin currency accepted. The amount is expressed in minimum dispense 
units (see section WFS_INF_CIM_CURRENCY_EXP). 

ulCoinsDispensed 
The total amount of coin currency dispensed. The amount is expressed in minimum dispense 
units (see section WFS_INF_CIM_CURRENCY_EXP). 

ulCashBoxReceived 
The total amount of cash box currency accepted. The amount is expressed in minimum 
dispense units (see section WFS_INF_CIM_CURRENCY_EXP). 

ulCashBoxDispensed 
The total amount of cash box currency dispensed. The amount is expressed in minimum 
dispense units (see section WFS_INF_CIM_CURRENCY_EXP). 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALIDCURRENCY Specified currency not currently available. 
WFS_ERR_CIM_INVALIDTELLERID Invalid teller ID. 

Comments None. 



CWA 16926-15:2020 (E) 

40 

5.5 WFS_INF_CIM_CURRENCY_EXP 

Description This command returns each exponent assigned to each currency known to the Service Provider. 

Input Param None. 

Output Param LPWFSCIMCURRENCYEXP *lppCurrencyExp; 

Pointer to a NULL-terminated array of pointers to WFSCIMCURRENCYEXP structures: 
typedef struct _wfs_cim_currency_exp 
 { 
 CHAR     cCurrencyID[3]; 
 SHORT     sExponent; 
 } WFSCIMCURRENCYEXP, *LPWFSCIMCURRENCYEXP; 

cCurrencyID 
Currency identifier in ISO 4217 format [Ref. 2]. 

sExponent 
Currency exponent in ISO 4217 format [Ref. 2]. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments For each currency ISO 4217 defines the currency identifier (a three character code) and a currency 
unit (e.g. European Euro, Japanese Yen). In the interface defined by this specification, every 
money amount is specified in terms of multiples of the minimum dispense unit, which is equal to 
the currency unit times ten to the power of the currency exponent. Thus an amount parameter 
relates to the actual cash amount as follows: 

<cash_amount> = <money_amount_parameter> * 10^<sExponent> 

Example #1 - Euro 
Currency identifier is ‘EUR’ 
Currency unit is 1 Euro (= 100 Cent) 

A Service Provider is developed for an ATM that can dispense coins down to one Cent. The 
currency exponent (sExponent) is set to -2 (minus two), so the minimum dispense unit is one Cent 
(1 * 10^-2 Euro); all amounts at the XFS interface are in Cent. Thus a money amount parameter 
of 10050 is 100 Euro and 50 Cent. 

Example #2 - Japan 
Currency identifier is ‘JPY’ 
Currency unit is 1 Japanese Yen 

A Service Provider is required to dispense a minimum amount of 1000 Yen. The currency 
exponent (sExponent) is set to +3 (plus three), so the minimum dispense unit is 1000 Yen; all 
amounts at the XFS interface are in multiples of 1000 Yen. Thus an amount parameter of 15 is 
15000 Yen. 



CWA 16926-15:2020 (E) 

41 

5.6 WFS_INF_CIM_BANKNOTE_TYPES 

Description This command is used to obtain information about the banknote types that can be detected by the 
banknote reader. 

Input Param None. 

Output Param LPWFSCIMNOTETYPELIST lpNoteTypeList; 
typedef struct _wfs_cim_note_type_list 
 { 
 USHORT    usNumOfNoteTypes; 
 LPWFSCIMNOTETYPE  *lppNoteTypes; 
 } WFSCIMNOTETYPELIST, *LPWFSCIMNOTETYPELIST; 

usNumOfNoteTypes 
Number of banknote types the banknote reader supports, i.e. the size of the lppNoteTypes list. 

lppNoteTypes 
List of banknote types the banknote reader supports. A pointer to an array of pointers to 
WFSCIMNOTETYPE structures: 

typedef struct _wfs_cim_note_type 
 { 
 USHORT    usNoteID; 
 CHAR     cCurrencyID[3]; 
 ULONG     ulValues; 
 USHORT    usRelease; 
 BOOL     bConfigured; 
 } WFSCIMNOTETYPE, *LPWFSCIMNOTETYPE; 

usNoteID 
Identification of note type. 

cCurrencyID 
Currency ID in ISO 4217 format [Ref. 2]. 

ulValues 
The value of a single item expressed in minimum dispense units. 

usRelease 
The release of the banknote type. The higher this number is, the newer the release. Zero means 
that there is only one release of that banknote type. This value has not been standardized and 
therefore a release number of the same banknote will not necessarily have the same value in 
different systems. 

bConfigured 
If TRUE the banknote reader will accept this note type during a cash-in operation, if FALSE 
the banknote reader will refuse this note type unless it must be retained by note classification 
rules. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

42 

5.7 WFS_INF_CIM_CASH_IN_STATUS 

Description This command is used to get information about the status of the currently active cash-in 
transaction or in the case where no cash-in transaction is active the status of the most recently 
ended cash-in transaction. This value is persistent and is valid until the next command 
WFS_CMD_CIM_CASH_IN_START. 

Input Param None. 

Output Param LPWFSCIMCASHINSTATUS lpCashInStatus; 
typedef struct _wfs_cim_cash_in_status 
 { 
 WORD     wStatus; 
 USHORT    usNumOfRefused; 
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList; 
 LPSTR     lpszExtra; 
 LPWFSCIMNOTENUMBERLIST lpUnfitNoteNumberList; 
 } WFSCIMCASHINSTATUS, *LPWFSCIMCASHINSTATUS; 

wStatus 
Status of the currently active or most recently ended cash-in transaction. Possible values are: 

Value Meaning 
WFS_CIM_CIOK The cash-in transaction is complete and has 

ended with a 
WFS_CMD_CIM_CASH_IN_END 
command call. 

WFS_CIM_CIROLLBACK The cash-in transaction was has ended with a 
WFS_CMD_CIM_CASH_IN_ROLLBACK 
command call. 

WFS_CIM_CIACTIVE There is a cash-in transaction active. See the 
WFS_CMD_CIM_CASH_IN_START 
command description for a definition of an 
active cash-in transaction. 

WFS_CIM_CIRETRACT The cash-in transaction ended with a 
WFS_CMD_CIM_RETRACT command 
call, or a retract command call on a 
compound device class. 

WFS_CIM_CIUNKNOWN The state of the cash-in transaction is 
unknown. This status is also set if the 
lpNoteNumberList details are not known or 
are not reliable. 

WFS_CIM_CIRESET The cash-in transaction ended with a 
WFS_CMD_CIM_RESET command call, or 
a reset command call on a compound device 
class. 

usNumOfRefused 
Specifies the number of items refused during the currently active or most recently ended cash-in 
transaction period. 

lpNoteNumberList 
List of banknote types that were inserted, identified and accepted during the currently active or 
most recently ended cash-in transaction period. The WFSCIMNOTENUMBER.ulCount value 
within this structure is the count of items of identified and accepted notes during the cash-in 
transaction period. If items have been rolled back (wStatus is WFS_CIM_CIROLLBACK) they 
will be included in this list. If wStatus is WFS_CIM_CIRETRACT or WFS_CIM_CIRESET then 
identified and accepted items moved to Cash-In or Recycle cash units are included in this list, but 
items moved to the Retract or Reject cash units are not included. For a description of the 
WFSCIMNOTENUMBERLIST structure see the definition of the command 
WFS_INF_CIM_CASH_UNIT_INFO. 

lpNoteNumberList includes any level 2 or level 3 notes, and all level 4 fit and unfit notes. 



CWA 16926-15:2020 (E) 

43 

lpszExtra 
Pointer to a list of vendor-specific, or any other extended, information. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

lpUnfitNoteNumberList 
List of level 4 unfit banknote types that were inserted, identified and accepted during the currently 
active or most recently ended cash-in transaction period. The WFSCIMNOTENUMBER.ulCount 
value within this structure is the count of items of identified and accepted level 4 unfit notes 
during the cash-in transaction period. If items have been rolled back (wStatus is 
WFS_CIM_CIROLLBACK) they will be included in this list. If wStatus is 
WFS_CIM_CIRETRACT or WFS_CIM_CIRESET then identified and accepted items moved to 
Cash-In units are included in this list, but items moved to the Retract or Reject cash units are not 
included. For a description of the WFSCIMNOTENUMBERLIST structure see the definition of 
the command WFS_INF_CIM_CASH_UNIT_INFO. 

lpUnfitNoteNumberList is a subset of lpNoteNumberList where all the accepted notes are listed. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

44 

5.8 WFS_INF_CIM_GET_P6_INFO 

Description This command is used to get information about the number of level 2 / level 3 notes detected and 
the number of level 2 / level 3 signatures created. The level 2 / level 3 information is available 
from the point where the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) 
event is generated until one of the following CIM commands is executed: 

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, 
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, 
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, 
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, 
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, 
WFS_CMD_CIM_CASH_UNIT_COUNT. 

Additionally for a recycler, the following CDM commands will also invalidate the information: 

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, 
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, 
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, 
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, 
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, 
WFS_CMD_CDM_TEST_CASH_UNITS. 

Input Param None. 

Output Param LPWFSCIMP6INFO *lppP6Info; 

Pointer to a NULL-terminated array of pointers to WFSCIMP6INFO structures, one structure for 
every level: 
typedef struct _wfs_cim_P6_Info 
 { 
 USHORT    usLevel; 
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList; 
 USHORT    usNumOfSignatures; 
 } WFSCIMP6INFO, *LPWFSCIMP6INFO; 

usLevel 
Defines the note level. Possible values are: 

Value Meaning 
WFS_CIM_LEVEL_2 Information for level 2 notes. 
WFS_CIM_LEVEL_3 Information for level 3 notes. 

lpNoteNumberList 
List of banknote types that were recognized as level 2 or level 3 notes. The 
WFSCIMNOTENUMBER.ulCount values are the count of level 2 or level 3 notes. If the pointer 
is NULL, no level 2 or level 3 notes were recognized. For a description of the 
WFSCIMNOTENUMBERLIST structure see the definition of the command 
WFS_INF_CIM_CASH_UNIT_INFO. 

usNumOfSignatures 
Number of level 2 or level 3 signatures of this cash-in transaction. If it is zero no signatures are 
available. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments Note: Although this command can be used to get information about level 2 /level 3 notes, the 
information that it provides is limited. The more recent WFS_INF_CIM_GET_ITEM_INFO and 
WFS_INF_CIM_GET_ALL_ITEMS_INFO commands provide much more information. It is 
therefore recommended for future development that WFS_INF_CIM_GET_ITEM_INFO and 
WFS_INF_CIM_GET_ALL_ITEMS_INFO should be used in preference to this command in 
order to support the greatest functionality, and this command supported where backwards 
compatibility is necessary.. 



CWA 16926-15:2020 (E) 

45 

5.9 WFS_INF_CIM_GET_P6_SIGNATURE 

Description This command is used to get one specific signature. Signatures are available from the point where 
the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event is generated until 
one of the following CIM commands is executed: 

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, 
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, 
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, 
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, 
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, 
WFS_CMD_CIM_CASH_UNIT_COUNT. 

Additionally for a recycler, the following CDM commands will also invalidate the information: 

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, 
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, 
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, 
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, 
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, 
WFS_CMD_CDM_TEST_CASH_UNITS. 

This command is used to retrieve the required information on an individual item basis. 
Applications should loop retrieving the information for each index and for each level reported 
with the WFS_INF_CIM_GET_P6_INFO command. 

Input Param LPWFSCIMGETP6SIGNATURE lpGetP6Signature; 
typedef struct _wfs_cim_get_P6_signature 
 { 
 USHORT    usLevel; 
 USHORT    usIndex; 
 } WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE; 

usLevel 
Defines the level of the wanted signature. Possible values are: 

Value Meaning 
WFS_CIM_LEVEL_2 The application wants a level 2 signature. 
WFS_CIM_LEVEL_3 The application wants a level 3 signature. 

usIndex 
Specifies the index (zero to usNumOfSignatures-1) of the required signature. 

Note: Signatures may be returned in any order; there is no implied relationship between this index 
and the order in which items are reported in the lpNoteNumberList in 
WFS_INF_CIM_GET_P6_INFO. 

Output Param LPWFSCIMP6SIGNATURE lpP6Signature; 
typedef struct _wfs_cim_P6_signature 
 { 
 USHORT    usNoteId; 
 ULONG     ulLength; 
 DWORD     dwOrientation; 
 LPVOID    lpSignature; 
 } WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE; 

usNoteId 
Identification of note type. 

ulLength 
Length of the signature in bytes. 

dwOrientation 
Orientation of the entered banknote. Specified as one of the following flags: 



CWA 16926-15:2020 (E) 

46 

Value Meaning 
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading 

edge, the note was inserted with the front 
image facing up and the top edge of the note 
was inserted first. If the note is inserted short 
side as the leading edge, the note was 
inserted with the front image face up and the 
left edge was inserted first. 

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading 
edge, the note was inserted with the front 
image facing up and the bottom edge of the 
note was inserted first. If the note is inserted 
short side as the leading edge, the note was 
inserted with the front image face up and the 
right edge was inserted first. 

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading 
edge, the note was inserted with the back 
image facing up and the top edge of the note 
was inserted first. If the note is inserted short 
side as the leading edge, the note was 
inserted with the back image face up and the 
left edge was inserted first. 

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading 
edge, the note was inserted with the back 
image facing up and the bottom edge of the 
note was inserted first. If the note is inserted 
short side as the leading edge, the note was 
inserted with the back image face up and the 
right edge was inserted first. 

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not 
be determined. 

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the 
orientation. 

lpSignature 
Pointer to the returned signature. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments The application has to call this command multiple in a loop to get all signatures. 

Note: Although this command can be used to get information about level 2 /level 3 notes, the 
information that it provides is limited. The more recent WFS_INF_CIM_GET_ITEM_INFO and 
WFS_INF_CIM_GET_ALL_ITEMS_INFO commands provide much more information. It is 
therefore recommended for future development that WFS_INF_CIM_GET_ITEM_INFO and 
WFS_INF_CIM_GET_ALL_ITEMS_INFO should be used in preference to this command in 
order to support the greatest functionality, and this command supported where backwards 
compatibility is necessary. 



CWA 16926-15:2020 (E) 

47 

5.10 WFS_INF_CIM_GET_ITEM_INFO 

Description This command is used to get information about a single detected item. This information is 
available from the point where the first WFS_EXEE_CIM_INFO_AVAILABLE event is 
generated until one of the following CIM commands is executed: 

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, 
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, 
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, 
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, 
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, 
WFS_CMD_CIM_CASH_UNIT_COUNT. 

Additionally for a recycler, the following CDM commands will also invalidate the information: 

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, 
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, 
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, 
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, 
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, 
WFS_CMD_CDM_TEST_CASH_UNITS. This command is similar to the 
WFS_INF_CIM_GET_P6_SIGNATURE command but returns additional information for level 2 
/ level 3 notes and also returns information relating to level 4 notes. The 
WFS_INF_CIM_GET_P6_INFO command, the WFS_INF_CIM_GET_P6_SIGNATURE 
command and the WFS_EXEE_CIM_INPUT_P6 event only relate to level 2 and level 3 notes. 
The WFS_EXEE_CIM_INPUT_P6 event signals that a suspected forgery has been detected and 
is only generated when level 2 and/or level 3 notes are detected. 

This command is used to retrieve the required information on an individual item basis. 
Applications should loop retrieving the information for each index and for each level reported 
with the WFS_EXEE_CIM_INFO_AVAILABLE event. 

Input Param LPWFSCIMGETITEMINFO lpGetItemInfo; 
typedef struct _wfs_cim_get_item_info 
 { 
 USHORT    usLevel; 
 USHORT    usIndex; 
 DWORD     dwItemInfoType; 
 } WFSCIMGETITEMINFO, *LPWFSCIMGETITEMINFO; 

usLevel 
Defines the note level. Possible values are: 

Value Meaning 
WFS_CIM_LEVEL_1 Information for a level 1 note is required. 

Only an image file can be retrieved for level 
1 notes. 

WFS_CIM_LEVEL_2 Information for a level 2 note is required. On 
systems that do not classify notes as level 2 
this value cannot be used and 
WFS_ERR_INVALID_DATA will be 
returned. 

WFS_CIM_LEVEL_3 Information for a level 3 note is required. On 
systems that do not classify notes as level 3 
this value cannot be used and 
WFS_ERR_INVALID_DATA will be 
returned. 

WFS_CIM_LEVEL_4 Information for a level 4 note is required. 

usIndex 
Specifies the index for the item information required (zero to usNumOfItems-1 as reported in the 
WFS_EXEE_CIM_INFO_AVAILABLE event). 

dwItemInfoType 
Specifies the type of information required. This can be a combination of the following flags: 



CWA 16926-15:2020 (E) 

48 

Value Meaning 
WFS_CIM_ITEM_SERIALNUMBER Serial Number of the item. 
WFS_CIM_ITEM_SIGNATURE Signature of the item. 
WFS_CIM_ITEM_IMAGEFILE Image file of the item. 

Output Param LPWFSCIMITEMINFO lpItemInfo; 

The data returned by this command relates to a single item (usIndex). 
typedef struct _wfs_cim_item_info 
 { 
 USHORT    usNoteID; 
 LPWSTR    lpszSerialNumber; 
 LPWFSCIMP6SIGNATURE  lpP6Signature; 
 LPSTR     lpszImageFileName; 
 } WFSCIMITEMINFO, *LPWFSCIMITEMINFO; 

usNoteID 
Identification of note type. This value will be zero for level 1 items. 

lpszSerialNumber 
This field contains the serial number of the item as a Unicode string. A '?' character (0x003F) is 
used to represent any serial number character that cannot be recognized. If no serial number is 
available or has not been requested then lpszSerialNumber is NULL. 

lpP6Signature 
This field contains the signature for the item, see the WFS_INF_CIM_GET_P6_SIGNATURE 
command for a description of the contents. If no signature is available or has not been requested 
then this field is NULL. 

lpszImageFileName 
Full file path to an image file containing the serial number(s). The format for the file is vendor 
and/or device specific. The file extension (if any) may be used to determine its format. If the 
Service Provider does not support this function or the image file has not been requested then 
lpszImageFileName is NULL. The format for the file is vendor and/or device specific. The file 
extension (if any) may be used to determine its format. The application is responsible for the use 
and management of this file. For example, the application can transfer the image files to a 
directory which is managed by the application. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments The application has to call this command multiple times in a loop where there is multiple 
information to retrieve. In addition, since the item information is not cumulative and can be 
replaced by any command that can move notes, it is recommended that applications that are 
interested in the available information should query for it following the 
WFS_EXEE_CIM_INFO_AVAILABLE event but before any other command is executed. 



CWA 16926-15:2020 (E) 

49 

5.11 WFS_INF_CIM_POSITION_CAPABILITIES 

Description This command allows the application to get additional information about the use assigned to each 
position available in the device. 

Input Param None. 

Output Param LPWFSCIMPOSCAPABILITIES lpPosCaps; 
typedef struct _wfs_cim_pos_capabilities 
 { 
 LPWFSCIMPOSCAPS   *lppPosCapabilities; 
 } WFSCIMPOSCAPABILITIES, *LPWFSCIMPOSCAPABILITIES; 

lppPosCapabilities 
Pointer to a NULL-terminated array of pointers to WFSCIMPOSCAPS structures. There is one 
structure for each position configured in the Service Provider. 

typedef struct _wfs_cim_pos_caps 
 { 
 WORD     fwPosition; 
 WORD     fwUsage; 
 BOOL     bShutterControl; 
 BOOL     bItemsTakenSensor; 
 BOOL     bItemsInsertedSensor; 
 WORD     fwRetractAreas; 
 LPSTR     lpszExtra; 
 BOOL     bPresentControl; 
 BOOL     bPreparePresent; 
 } WFSCIMPOSCAPS, *LPWFSCIMPOSCAPS; 

fwPosition 
Specifies one of the CIM input or output positions as one of the following values: 

Value Meaning 
WFS_CIM_POSINLEFT Left input position. 
WFS_CIM_POSINRIGHT Right input position. 
WFS_CIM_POSINCENTER Center input position. 
WFS_CIM_POSINTOP Top input position. 
WFS_CIM_POSINBOTTOM Bottom input position. 
WFS_CIM_POSINFRONT Front input position. 
WFS_CIM_POSINREAR Rear input position. 
WFS_CIM_POSOUTLEFT Left output position. 
WFS_CIM_POSOUTRIGHT Right output position. 
WFS_CIM_POSOUTCENTER Center output position. 
WFS_CIM_POSOUTTOP Top output position. 
WFS_CIM_POSOUTBOTTOM Bottom output position. 
WFS_CIM_POSOUTFRONT Front output position. 
WFS_CIM_POSOUTREAR Rear output position. 

fwUsage 
Indicates if an output position is used to reject or rollback as a combination of the following 
flags: 

Value Meaning 
WFS_CIM_POSIN It is an input position. 
WFS_CIM_POSREFUSE It is an output position used to refuse 

items. 
WFS_CIM_POSROLLBACK It is an output position used to rollback 

items. 



CWA 16926-15:2020 (E) 

50 

bShutterControl 
If set to TRUE the shutter is controlled implicitly by the Service Provider. If set to FALSE the 
shutter must be controlled explicitly by the application using the 
WFS_CMD_CIM_OPEN_SHUTTER and the WFS_CMD_CIM_CLOSE_SHUTTER 
commands. In either case the WFS_CMD_CIM_PRESENT_MEDIA command may be used 
if the bPresentControl field is reported as FALSE. The bShutterControl field is always set to 
TRUE if the described position has no shutter. 

bItemsTakenSensor 
Specifies whether or not the described position can detect when items at the exit position are 
taken by the user. If set to TRUE the Service Provider generates an accompanying 
WFS_SRVE_CIM_ITEMSTAKEN event. If set to FALSE this event is not generated. This 
field relates to output and refused positions. 

bItemsInsertedSensor 
Specifies whether the described position has the ability to detect when items have been 
inserted by the user. If set to TRUE the Service Provider generates an accompanying 
WFS_SRVE_CIM_ITEMSINSERTED event. If set to FALSE this event is not generated. 
This field relates to all input positions. 

fwRetractAreas 
Specifies the areas to which items may be retracted from this position. If the device does not 
have a retract capability this field will be WFS_CIM_RA_NOTSUPP. Otherwise this field 
will be set to a combination of the following flags: 

Value Meaning 
WFS_CIM_RA_RETRACT Items may be retracted to a retract cash 

unit. 
WFS_CIM_RA_REJECT Items may be retracted to a reject cash 

unit. 
WFS_CIM_RA_TRANSPORT Items may be retracted to the transport. 
WFS_CIM_RA_STACKER Items may be retracted to the 

intermediate stacker. 
WFS_CIM_RA_BILLCASSETTES Items may be retracted to item cassettes, 

i.e. cash-in and recycle cash units. 
WFS_CIM_RA_CASHIN Items may be retracted to a cash-in cash 

unit. 

lpszExtra 
Pointer to a list of vendor-specific, or any other extended, information. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

bPresentControl 
Specifies how the presenting of media items is controlled. If bPresentControl is TRUE then 
the WFS_CMD_CIM_PRESENT_MEDIA command is not supported and items are moved to 
the output position for removal as part of the relevant command, e.g. 
WFS_CMD_CIM_CASH_IN or WFS_CMD_CIM_CASH_IN_ROLLBACK where there is 
implicit shutter control. If bPresentControl is FALSE then items returned or rejected can be 
moved to the output position using the WFS_CMD_CIM_PRESENT_MEDIA command, this 
includes items returned or rejected as part of a WFS_CMD_CIM_CASH_IN or 
WFS_CMD_CIM_CASH_IN_ROLLBACK operation. The 
WFS_CMD_CIM_PRESENT_MEDIA command will open and close the shutter implicitly. 

bPreparePresent 
Specifies how the presenting of items is controlled. If bPreparePresent is FALSE then items 
to be removed are moved to the output position as part of the relevant command e.g. 
WFS_CMD_CIM_OPEN_SHUTTER or WFS_CMD_CIM_PRESENT_MEDIA or 
WFS_CMD_CIM_CASH_IN_ROLLBACK. If bPreparePresent is TRUE then items are 
moved to the output position using the WFS_CMD_CIM_PREPARE_PRESENT command. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

51 

5.12 WFS_INF_CIM_REPLENISH_TARGET 

Description This command is used to determine which cash units can be specified as target cash units for a 
given source cash unit with the WFS_CMD_CIM_REPLENISH command. For example it can be 
used to determine which targets can be used for replenishment from a replenishment container or 
from a recycle cash unit. 

Input Param LPWFSCIMREPINFO lpReplenishInfo; 
typedef struct _wfs_cim_replenish_info 
 { 
 USHORT    usNumberSource; 
 } WFSCIMREPINFO, *LPWFSCIMREPINFO; 

usNumberSource 
Index number of the logical cash unit which would be used as the source of the replenishment 
operation. This is the index number identifier defined in the usNumber field of the 
WFSCIMCASHIN structure of the output data of the WFS_INF_CIM_CASH_UNIT_INFO 
command. 

Output Param LPWFSCIMREPINFORES lpReplenishInfoResult; 
typedef struct _wfs_cim_replenish_info_result 
 { 
 LPWFSCIMREPINFOTARGET  *lppReplenishTargets; 
 } WFSCIMREPINFORES, *LPWFSCIMREPINFORES; 

lppReplenishTargets 
Pointer to a NULL-terminated array of pointers to WFSCIMREPINFOTARGET structures. This 
output parameter will be NULL if no suitable target was found: 

typedef struct_wfs_cim_replenish_info_target 
 { 
 USHORT    usNumberTarget; 
 } WFSCIMREPINFOTARGET, *LPWFSCIMREPINFOTARGET; 

usNumberTarget 
Index number of the logical cash unit that can be used as a target. This is the index number 
identifier defined in the usNumber field of the WFSCIMCASHIN structure of the output data 
of the WFS_INF_CIM_CASH_UNIT_INFO command. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

52 

5.13 WFS_INF_CIM_DEVICELOCK_STATUS 

Description This command is used to retrieve the lock/unlock statuses of the CIM device and each of its cash 
units. If the physical lock/unlock of both the CIM device and the cash units are not supported then 
the WFS_ERR_UNSUPP_CATEGORY error will be returned. 

Input Param None. 

Output Param LPWFSCIMDEVICELOCKSTATUS lpDevLockStatus; 
typedef struct _wfs_cim_device_lock_status 
 { 
 WORD     wDeviceLockStatus; 
 LPWFSCIMCASHUNITLOCK  *lppCashUnitLock; 
 } WFSCIMDEVICELOCKSTATUS, *LPWFSCIMDEVICELOCKSTATUS; 

wDeviceLockStatus 
Specifies the physical lock/unlock status of the CIM device: 

Value Meaning 
WFS_CIM_LOCK The device is physically locked. 
WFS_CIM_UNLOCK The device is physically unlocked. 
WFS_CIM_LOCKUNKNOWN Due to a hardware error or other condition, 

the physical lock/unlock status of the device 
cannot be determined. 

WFS_CIM_LOCKNOTSUPPORTED The Service Provider does not support 
physical lock/unlock control of the device. 

lppCashUnitLock 
Pointer to a NULL-terminated array of pointers to WFSCIMCASHUNITLOCK structures, which 
specifies the physical lock/unlock status of cash units. Cash units that do not support the physical 
lock/unlock control are not contained in the array. If there are no cash units that support physical 
lock/unlock control this will be a NULL pointer. 

typedef struct _wfs_cim_cash_unit_lock 
 { 
 LPSTR     lpPhysicalPositionName; 
 WORD     wCashUnitLockStatus; 
 } WFSCIMCASHUNITLOCK, *LPWFSCIMCASHUNITLOCK; 

lpPhysicalPositionName 
A name identifying the physical location of the cash unit within the CIM. This name is the 
same as the lpPhysicalPositionName in the WFSCIMPHCU structure of the 
WFS_INF_CIM_CASH_UNIT_INFO command. 

wCashUnitLockStatus 
Specifies the physical lock/unlock status of cash units supported, as one of the following 
values: 

Value Meaning 
WFS_CIM_LOCK The cash unit is physically locked. 
WFS_CIM_UNLOCK The cash unit is physically unlocked. 
WFS_CIM_LOCKUNKNOWN Due to a hardware error or other 

condition, the physical lock/unlock status 
of the cash unit cannot be determined. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

53 

5.14 WFS_INF_CIM_CASH_UNIT_CAPABILITIES 

Description This command is used to retrieve information on cash unit capabilities. It does not provide 
information on status or counters of cash units. 

This command can be seen as an extension to the WFS_INF_CIM_CASH_UNIT_INFO 
command as it will always result in the same contents with regard to usNumber and the physical 
cash unit information. 

Input Param None. 

Output Param LPWFSCIMCASHCAPABILITIES lpCashCaps; 
typedef struct _wfs_cim_cash_caps 
 { 
 USHORT     usCount; 
 LPWFSCIMCASHUNITCAPABILITIES *lppCashUnitCaps; 
 } WFSCIMCASHCAPABILITIES, *LPWFSCIMCASHCAPABILITIES; 

usCount 
Number of WFSCIMCASHUNITCAPABILITIES structures returned in lppCashUnitCaps. 

lppCashUnitCaps 
Pointer to an array of pointers to WFSCIMCASHUNITCAPABILITIES structures: 

typedef struct _wfs_cim_cash_unit_capabilities 
 { 
 USHORT    usNumber; 
 USHORT    usNumPhysicalCUs; 
 LPWFSCIMPHCUCAPABILITIES *lppPhysical; 
 BOOL     bRetractNoteCountThresholds; 
 LPSTR     lpszExtra; 
 DWORD     fwPossibleItemTypes; 
 } WFSCIMCASHUNITCAPABILITIES, *LPWFSCIMCASHUNITCAPABILITIES; 

usNumber 
Index number of the cash unit structure. Each structure has a unique logical number starting 
with a value of one (1) for the first structure, and incrementing by one for each subsequent 
structure. 

usNumPhysicalCUs 
This value indicates the number of physical cash unit structures returned. It must be at least 1. 

lppPhysical 
Pointer to an array of pointers to WFSCIMPHCUCAPABILITIES structures: 

typedef struct _wfs_cim_physicalcu_capabilities 
 { 
 LPSTR     lpPhysicalPositionName; 
 ULONG     ulMaximum; 
 BOOL     bHardwareSensors; 
 LPSTR     lpszExtra; 
 } WFSCIMPHCUCAPABILITIES, *LPWFSCIMPHCUCAPABILITIES; 

lpPhysicalPositionName 
A name identifying the physical location of the cash unit within the CIM. This field can be 
used by CIMs which are compound with a CDM or IPM to identify shared cash 
units/media bins. 

ulMaximum 
Maximum count of items in the physical cash unit. No threshold event will be generated 
when this value is reached. This value is persistent. 

bHardwareSensors 
Specifies whether or not threshold events can be generated based on hardware sensors in 
the device. If this value is TRUE for any of the physical cash units related to a logical cash 
unit then threshold events may be generated based on hardware sensors as opposed to 
logical counts. 



CWA 16926-15:2020 (E) 

54 

lpszExtra 
Pointer to a list of vendor-specific information about the physical cash unit. The 
information is returned as a series of “key=value” strings so that it is easily extensible by 
Service Providers. Each string is null-terminated, with the final string terminating with two 
null characters. An empty list may be indicated by either a NULL pointer or a pointer to 
two consecutive null characters. 

bRetractNoteCountThresholds 
This field is only valid for cash units of type WFS_CIM_TYPERETRACTCASSETTE. It 
specifies whether the CIM retract cassette capacity is based on the number of notes, and 
therefore whether threshold events are generated based on note counts or the number of retract 
operations. If this value is set to TRUE, threshold events for retract cassettes are generated 
based on the number of notes, when ulCashInCount reaches the ulMaximum value. If this 
value is set to FALSE, threshold events for retract cassettes are generated based on the number 
of retract operations, when ulCount reaches the ulMaximum value. 

lpszExtra 
Pointer to a list of vendor-specific information about the logical cash unit. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

fwPossibleItemTypes 
Specifies the type of items the cash unit can be configured to accept as a combination of flags. 
The flags are defined as the same values listed in the fwItemType field of the 
WFSCIMCASHIN structure (see section 5.3). The WFS_INF_CIM_CASH_UNIT_INFO 
command describes the item types currently configured for a cash unit. This field provides the 
possible item types values that can be configured for a cash unit using the 
WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS command. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

55 

5.15 WFS_INF_CIM_DEPLETE_SOURCE 

Description This command is used to determine which cash units can be specified as source cash units for a 
given target cash unit with the WFS_CMD_CIM_DEPLETE command. For example it can be 
used to determine which sources can be used for depletion to a replenishment container or to a 
cash-in cash unit. 

Input Param LPWFSCIMDEPINFO lpDepleteInfo; 
typedef struct _wfs_cim_deplete_info 
 { 
 USHORT    usNumberTarget; 
 } WFSCIMDEPINFO, *LPWFSCIMDEPINFO; 

usNumberTarget 
Index number of the logical cash unit which would be used as the target of the depletion 
operation. This is the index number identifier defined in the usNumber field of the 
WFSCIMCASHIN structure of the output data of the WFS_INF_CIM_CASH_UNIT_INFO 
command. 

Output Param LPWFSCIMDEPINFORES lpDepleteInfoResult; 
typedef struct _wfs_cim_deplete_info_result 
 { 
 LPWFSCIMDEPINFOSOURCE  *lppDepleteSources; 
 } WFSCIMDEPINFORES, *LPWFSCIMDEPINFORES; 

lppDepleteSources 
Pointer to a NULL-terminated array of pointers to WFSCIMDEPINFOSOURCE structures. This 
output parameter will be NULL if no suitable source was found: 

typedef struct_wfs_cim_deplete_info_source 
 { 
 USHORT    usNumberSource; 
 } WFSCIMDEPINFOSOURCE, *LPWFSCIMDEPINFOSOURCE; 

usNumberSource 
Index number of the logical cash unit that can be used as a source. This is the index number 
identifier defined in the usNumber field of the WFSCIMCASHIN structure of the output data 
of the WFS_INF_CIM_CASH_UNIT_INFO command. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

56 

5.16 WFS_INF_CIM_GET_ALL_ITEMS_INFO 

Description This command can be used to retrieve all item information available for all levels at once by 
specifying WFS_CIM_LEVEL_ALL in the usLevel parameter. Or this command can be used to 
retrieve all information for a particular level of banknote. This information is available from the 
point where the first WFS_EXEE_CIM_INFO_AVAILABLE event is generated until one of the 
following CIM commands is executed: 

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, 
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, 
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, 
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, 
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, 
WFS_CMD_CIM_CASH_UNIT_COUNT. 

Additionally for a recycler, the following CDM commands will also invalidate the information: 

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, 
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, 
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, 
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, 
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, 
WFS_CMD_CDM_TEST_CASH_UNITS. This command is similar to the 
WFS_INF_CIM_GET_P6_SIGNATURE command but returns additional information for level 2 
/ level 3 notes and also returns information relating to level 4 notes. The 
WFS_INF_CIM_GET_P6_INFO command, the WFS_INF_CIM_GET_P6_SIGNATURE 
command and the WFS_EXEE_CIM_INPUT_P6 event only relate to level 2 and level 3 notes. 
The WFS_EXEE_CIM_INPUT_P6 event is only generated when level 2 and/or level 3 notes are 
detected. 

Input Param LPWFSCIMGETALLITEMSINFO lpGetAllItemsInfo; 
typedef struct _wfs_cim_get_all_items_info 
 { 
 USHORT    usLevel; 
 } WFSCIMGETALLITEMSINFO, *LPWFSCIMGETALLITEMSINFO; 

usLevel 
Defines the note level. Possible values are: 

Value Meaning 
WFS_CIM_LEVEL_1 Information for a level 1 note is required. 

Only an image file can be retrieved for level 
1 notes. 

WFS_CIM_LEVEL_2 Information for level 2 notes is to be 
returned with the lpAllItemsInfo output 
parameter. On systems that do not classify 
notes as level 2 this value cannot be used and 
WFS_ERR_INVALID_DATA will be 
returned. 

WFS_CIM_LEVEL_3 Information for level 3 notes is to be 
returned with the lpAllItemsInfo output 
parameter. On systems that do not classify 
notes as level 3 this value cannot be used and 
WFS_ERR_INVALID_DATA will be 
returned. 

WFS_CIM_LEVEL_4 Information for level 4 notes is to be 
returned with the lpAllItemsInfo output 
parameter. 

WFS_CIM_LEVEL_ALL Information for all levels is to be returned 
with the lpAllItemsInfo output parameter. 

Output Param LPWFSCIMALLITEMSINFO lpAllItemsInfo; 



CWA 16926-15:2020 (E) 

57 

typedef struct _wfs_cim_all_items_info 
 { 
 USHORT    usCount; 
 LPWFSCIMITEMINFOALL  *lppItemsList; 
 } WFSCIMALLITEMSINFO, *LPWFSCIMALLITEMSINFO; 

usCount 
Number of WFSCIMITEMINFOALL structures returned in lppItemsList. 

lppItemsList 
Pointer to an array of pointers to WFSCIMITEMINFOALL structures: 

typedef struct _wfs_cim_item_info_all 
 { 
 USHORT    usLevel; 
 USHORT    usNoteID; 
 LPWSTR    lpszSerialNumber; 
 DWORD     dwOrientation; 
 LPSTR     lpszP6SignatureFileName; 
 LPSTR     lpszImageFileName; 
 WORD     wOnBlacklist; 
 WORD     wItemLocation; 
 USHORT    usNumber; 
 WORD     wOnClassificationList;  
 WORD     wItemDeviceLocation; 
 } WFSCIMITEMINFOALL, *LPWFSCIMITEMINFOALL; 

usLevel 
Defines the note level. Possible values are: 

Value Meaning 
WFS_CIM_LEVEL_1 A level 1 banknote. 
WFS_CIM_LEVEL_2 A level 2 banknote. 
WFS_CIM_LEVEL_3 A level 3 banknote. 
WFS_CIM_LEVEL_4 A level 4 banknote. 

usNoteID 
Identification of note type. This value will be zero for level 1 items. 

lpszSerialNumber 
This field contains the serial number of the item as a Unicode string. A '?' character (0x003F) 
is used to represent any serial number character that cannot be recognized. If no serial number 
is available then lpszSerialNumber is NULL. 

dwOrientation 
Orientation of the entered banknote. Specified as one of the following flags: 

Value Meaning 
WFS_CIM_ORFRONTTOP If note is inserted wide side as the 

leading edge, the note was inserted with 
the front image facing up and the top 
edge of the note was inserted first. If the 
note is inserted short side as the leading 
edge, the note was inserted with the front 
image face up and the left edge was 
inserted first. 

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the 
leading edge, the note was inserted with 
the front image facing up and the bottom 
edge of the note was inserted first. If the 
note is inserted short side as the leading 
edge, the note was inserted with the front 
image face up and the right edge was 
inserted first. 



CWA 16926-15:2020 (E) 

58 

WFS_CIM_ORBACKTOP If note is inserted wide side as the 
leading edge, the note was inserted with 
the back image facing up and the top 
edge of the note was inserted first. If the 
note is inserted short side as the leading 
edge, the note was inserted with the back 
image face up and the left edge was 
inserted first. 

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the 
leading edge, the note was inserted with 
the back image facing up and the bottom 
edge of the note was inserted first. If the 
note is inserted short side as the leading 
edge, the note was inserted with the back 
image face up and the right edge was 
inserted first. 

WFS_CIM_ORUNKNOWN The orientation for the inserted note can 
not be determined. 

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine 
the orientation. 

lpszP6SignatureFileName 
Full file path to a binary file containing only the vendor specific P6 signature data as returned 
with the lpSignature parameter of the WFSCIMP6SIGNATURE structure. If no P6 signature 
is available then this field is NULL. 

lpszImageFileName 
Full file path to an image file containing the serial number(s). The format for the file is vendor 
and/or device specific. The file extension (if any) may be used to determine its format. If the 
Service Provider does not support this function or the image file has not been requested then 
lpszImageFileName is NULL. The format for the file is vendor and/or device specific. The file 
extension (if any) may be used to determine its format. The application is responsible for the 
use and management of this file. For example, the application can transfer the image files to a 
directory which is managed by the application. 

wOnBlacklist 
Specifies if the serial number reported in the lpszSerialNumber field is on the blacklist. If the 
blacklist reporting capability is not supported this field will be zero. Otherwise, possible 
values are: 

Value Meaning 
WFS_CIM_ONBLACKLIST The serial number of the items is on the 

blacklist. 
WFS_CIM_NOTONBLACKLIST The serial number of the items is not on 

the blacklist. 
WFS_CIM_BLACKLISTUNKNOWN It is unknown if the serial number of the 

item is on the blacklist. 

wItemLocation 
Specifies the location of the item as one of the following values: 

Value Meaning 
WFS_CIM_LOCATION_DEVICE The item is inside the device in some 

position other than a cash unit. 
WFS_CIM_LOCATION_CASHUNIT The item is in a cash unit. The logical 

cash unit number is defined by 
usNumber. 

WFS_CIM_LOCATION_CUSTOMER The item has been returned to the 
customer. 

WFS_CIM_LOCATION_UNKNOWN The item location is unknown. 

usNumber 
If wItemLocation is WFS_CIM_LOCATION_CASHUNIT this parameter specifies the logical 
number of the cash unit which received the item. If wItemLocation is not 
WFS_CIM_LOCATION_CASHUNIT then usNumber will be zero. 



CWA 16926-15:2020 (E) 

59 

wOnClassificationList 
Specifies if the serial number reported in the lpszSerialNumber field is on the classification 
list. If the classification list reporting capability is not supported this field will be zero. 
Otherwise, possible values are: 

Value Meaning 
WFS_CIM_CLASSIFICATIONLIST_ON The serial number of the items is on the 

classification list. 
WFS_CIM_CLASSIFICATIONLIST_NOTON The serial number of the items is not on 

the classification list. 
WFS_CIM_CLASSIFICATIONLIST_UNKNOWN It is unknown if the serial 

number of the item is on the 
classification list. 

wItemDeviceLocation 
If wItemLocation is WFS_CIM_LOCATION_DEVICE this parameter specifies where the 
item is in the device. If wItemLocation is not WFS_CIM_LOCATION_DEVICE then 
wItemDeviceLocation will be zero: 

Value Meaning 
WFS_CIM_DEVLOC_STACKER The item is in the intermediate stacker. 
WFS_CIM_DEVLOC_OUTPUT The item is at the output position. The 

items have not been in customer access. 
WFS_CIM_DEVLOC_TRANSPORT The item is at another location in the 

device. 
WFS_CIM_DEVLOC_UNKNOWN The item is in the device but its location 

is unknown. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments In addition, since the item information is not cumulative and can be replaced by any command 
that can move notes, it is recommended that applications that are interested in the available 
information should query for it following the WFS_EXEE_CIM_INFO_AVAILABLE event but 
before any other command is executed. 



CWA 16926-15:2020 (E) 

60 

5.17 WFS_INF_CIM_GET_BLACKLIST 

Description This command is used to retrieve the entire blacklist information preset inside the device or set 
via the WFS_CMD_CIM_SET_BLACKLIST or 
WFS_CMD_CIM_SET_CLASSIFICATION_LIST command, or 
WFS_CMD_CDM_SET_BLACKLIST or WFS_CMD_CDM_SET_CLASSIFICATION_LIST in 
the case of a recycler. 

Input Param None. 

Output Param LPWFSCIMBLACKLIST lpBlacklist; 
typedef struct _wfs_cim_blacklist 
 { 
 LPWSTR    lpszVersion; 
 USHORT    usCount; 
 LPWFSCIMBLACKLISTELEMENT *lppBlacklistElements; 
 } WFSCIMBLACKLIST, *LPWFSCIMBLACKLIST; 

lpszVersion 
This is an application defined Unicode string that represents the version identifier of the blacklist. 
This can be NULL if it has no version identifier. 

usCount 
Number of pointers to WFSCIMBLACKLISTELEMENT structures returned in 
lppBlacklistElements. 

lppBlacklistElements 
Pointer to an array of pointers to WFSCIMBLACKLISTELEMENT structures. 

typedef struct _wfs_cim_blacklist_element 
 { 
 LPWSTR    lpszSerialNumber; 
 CHAR     cCurrencyID[3]; 
 ULONG     ulValue; 
 } WFSCIMBLACKLISTELEMENT, *LPWFSCIMBLACKLISTELEMENT; 

lpszSerialNumber 
This Unicode string defines the serial number or a mask of serial numbers of one blacklist 
item with the defined currency and value. For a definition of the mask see section 4. 

cCurrencyID 
The three character ISO format currency identifier [Ref. 2] of the blacklist element. 

ulValue 
The value of a blacklist element. This field can be zero to represent all values. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

61 

5.18 WFS_INF_CIM_GET_CLASSIFICATION_LIST 

Description This command is used to retrieve the entire note classification information pre-set inside the 
device or set via the WFS_CMD_CIM_SET_CLASSIFICATION_LIST or 
WFS_CMD_CIM_SET_BLACKLIST command, or 
WFS_CMD_CDM_SET_CLASSIFICATION_LIST or WFS_CMD_CDM_SET_BLACKLIST in 
the case of a recycler. 

This extends the functionality provided by the blacklist commands and allows additional 
flexibility, for example to specify that notes can be taken out of circulation by specifying them as 
unfit. Any items not returned in this list will be handled according to normal classification rules. 

Input Param None. 

Output Param LPWFSCIMCLASSIFICATIONLIST lpClassificationList; 
typedef struct _wfs_cim_classification_list 
 { 

 LPWSTR     lpszVersion; 
 USHORT     usCount; 
 LPWFSCIMCLASSIFICATIONELEMENT *lppClassificationElements; 
 } WFSCIMCLASSIFICATIONLIST, *LPWFSCIMCLASSIFICATIONLIST; 

lpszVersion 
This is an application defined Unicode string that sets the version identifier of the classification 
list. This can be set to NULL if it has no version identifier. 

usCount 
Number of pointers to WFSCIMCLASSIFICATIONELEMENT structures returned in 
lppClassificationElements. 

lppClassificationElements 
Pointer to an array of pointers to WFSCIMCLASSIFICATIONELEMENT structures. 

typedef struct _wfs_cim_classification_element 
 { 
 LPWSTR     lpszSerialNumber; 
 CHAR     cCurrencyID[3]; 
 ULONG     ulValue; 
 USHORT    usLevel; 
 BOOL     bUnfit; 
 } WFSCIMCLASSIFICATIONELEMENT, *LPWFSCIMCLASSIFICATIONELEMENT; 

lpszSerialNumber 
This Unicode string defines the serial number or a mask of serial numbers of one element with 
the defined currency and value. For a definition of the mask see Section 4. 

cCurrencyID 
The three character ISO format currency identifier [Ref. 2] of the element. 

ulValue 
The value of the element. This field can be zero to represent all values. 

usLevel 
Specifies the note level. Possible values are: 

Value Meaning 
WFS_CIM_LEVEL_1 The element specifies notes to be treated 

as level 1 notes. 
WFS_CIM_LEVEL_2 The element specifies notes to be treated 

as level 2 notes. 
WFS_CIM_LEVEL_3 The element specifies notes to be treated 

as level 3 notes. 
WFS_CIM_LEVEL_4 The element specifies notes to be treated 

as level 4 notes. 

bUnfit 
Specifies whether the item is to be treated as unfit for dispensing. Applies only where usLevel 
is WFS_CIM_LEVEL_4. 



CWA 16926-15:2020 (E) 

62 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

63 

5.19 WFS_INF_CIM_CASH_UNIT_COUNT_STATUS 

Description During normal processing it is possible that the ulCount of a cash unit can become inaccurate due 
to a jam, mis-pick or other error situation. In this case the 
WFS_INF_CIM_CASH_UNIT_COUNT_STATUS command could be used to report which cash 
units are known to have an inaccurate ulCount. The application can then issue a 
WFS_CMD_CIM_CASH_UNIT_COUNT command for only those cash units if supported. Or 
alternatively the notes could be manually counted as part of a replenishment operation. This 
command returns the cash unit count status of all cash units. 

Input Param None. 

Output Param LPWFSCIMCASHCOUNTSTATUS lpCashCountStatus; 
typedef struct _wfs_cim_cash_count_status 
 { 

 USHORT     usCount; 
 LPWFSCIMCASHUNITCOUNTSTATUS *lppCashUnitStatus; 
 } WFSCIMCASHCOUNTSTATUS, *LPWFSCIMCASHCOUNTSTATUS; 

usCount 
Number of WFSCIMCASHUNITCOUNTSTATUS structures returned in lppCashUnitStatus. 
This value is the same as the usCount in the WFSCIMCASHINFO structure of the 
WFS_INF_CIM_CASH_UNIT_INFO command. 

lppCashUnitStatus 
Pointer to an array of pointers to WFSCIMCASHUNITCOUNTSTATUS structures: 

typedef struct _wfs_cim_cash_unit_count_status 
 { 
 USHORT    usNumber; 
 USHORT    usAccuracy;  
 USHORT    usNumPhysicalCUs; 
 LPWFSCIMPHCUCOUNTSTATUS *lppPhCashUnitStatus; 
 LPSTR     lpszExtra;  
 } WFSCIMCASHUNITCOUNTSTATUS, *LPWFSCIMCASHUNITCOUNTSTATUS; 

usNumber 
Index number of the logical cash unit. 

usAccuracy 
Describes the accuracy of ulCount as one of the following values: 

Value Meaning 
WFS_CIM_ACCURACYNOTSUPPORTED The hardware is not capable to determine 

the accuracy of ulCount. 
WFS_CIM_COUNTACCURATE The ulCount is expected to be accurate. 

The notes were previously counted or 
replenished and there have since been no 
events that might have introduced 
inaccuracy. This value will be reported as 
a result of the following commands: 
WFS_CMD_CIM_REPLENISH and 
WFS_CMD_CIM_CASH_UNIT_COUN
T. 

WFS_CIM_COUNTACCURATESET The ulCount is expected to be accurate.  
The notes were previously set and there 
have since been no events that might 
have introduced inaccuracy. 

WFS_CIM_COUNTINACCURATE The ulCount is likely to be inaccurate.  A 
jam, picking fault, or some other event 
may have resulted in a counting 
inaccuracy. 



CWA 16926-15:2020 (E) 

64 

WFS_CIM_ACCURACYUNKNOWN The accuracy of ulCount cannot be 
determined.  This may be due to cash 
unit insertion or some other hardware 
event. 

usNumPhysicalCUs 
This value indicates the number of WFSCIMPHCUCOUNTSTATUS structures returned. It 
must be at least 1. 

lppPhCashUnitStatus 
Pointer to an array of pointers to WFSCIMPHCUCOUNTSTATUS structures: 

typedef struct _wfs_cim_phcu_count_status 
 { 
 LPSTR  lpPhysicalPositionName; 
 USHORT  usAccuracy;  
 LPSTR  lpszExtra; 
 } WFSCIMPHCUCOUNTSTATUS, *LPWFSCIMPHCUCOUNTSTATUS; 

lpPhysicalPositionName 
A name identifying the physical location of the cash unit within the CIM. This field can be 
used by CIM Service Providers which are compounded with a CDM or IPM to identify 
shared cash units/media bins. 

usAccuracy 
Describes the accuracy of ulCount of a physical cash unit. See the description in 
lppCashUnitStatus. 

lpszExtra 
Pointer to a list of vendor-specific, or any other extended information. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service 
Providers. Each string is null-terminated, with the final string terminating with two null 
characters. An empty list may be indicated by either a NULL pointer or a pointer to two 
consecutive null characters. 

lpszExtra 
Pointer to a list of vendor-specific, or any other extended information. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

65 

5.20 WFS_INF_CIM_PRESENT_STATUS 

Description This command is used to obtain the status of the most recent attempt to present or return items to 
the customer. This information includes the number of items previously moved to the output 
position and the number of items which have yet to be returned as a result of the following 
commands. 

WFS_CMD_CIM_CASH_IN 
WFS_CMD_CIM_CASH_IN_ROLLBACK 
WFS_CMD_CIM_PREPARE_PRESENT 
WFS_CMD_CIM_PRESENT_MEDIA 
WFS_CMD_CIM_OPEN_SHUTTER (In the case of returning multiple bunches) 

Input Param None. 

Output Param LPWFSCIMPRESENTSTATUS lpPresentStatus; 
typedef struct _wfs_cim_present_status 
 { 
 WORD      fwPosition; 
 WORD      wPresentState; 
 WORD      wAdditionalBunches; 
 USHORT    usBunchesRemaining; 
 LPWFSCIMNOTENUMBERLIST  lpReturnedItems; 
 LPWFSCIMNOTENUMBERLIST  lpTotalReturnedItems; 
 LPWFSCIMNOTENUMBERLIST  lpRemainingItems; 
 LPSTR     lpszExtra; 
 } WFSCIMPRESENTSTATUS, *LPWFSCIMPRESENTSTATUS; 

fwPosition 
Specifies the output position as one of the following values: 

Value Meaning 
WFS_CIM_POSOUTLEFT Left output position. 
WFS_CIM_POSOUTRIGHT Right output position. 
WFS_CIM_POSOUTCENTER Center output position. 
WFS_CIM_POSOUTTOP Top output position. 
WFS_CIM_POSOUTBOTTOM Bottom output position. 
WFS_CIM_POSOUTFRONT Front output position. 
WFS_CIM_POSOUTREAR Rear output position. 

wPresentState 
Supplies the status of the items that were to be presented by the most recent attempt to present or 
return items to the customer as one of the following values: 

Value Meaning 
WFS_CIM_PRESENTED The items were presented. This status is set 

as soon as the customer has access to the 
items. 

WFS_CIM_NOTPRESENTED The customer has not had access to the 
items. 

WFS_CIM_UNKNOWN It is not known if the customer had access to 
the items. 

wAdditionalBunches 
Specifies whether or not additional bunches of items are remaining to be presented as a result of 
the most recent operation, set to one of the following values: 

Value Meaning 
WFS_CIM_ADDBUNCHNONE No additional bunches remain. 
WFS_CIM_ADDBUNCHONEMORE At least one additional bunch remains. 
WFS_CIM_ADDBUNCHUNKNOWN It is unknown whether additional bunches 

remain. 



CWA 16926-15:2020 (E) 

66 

usBunchesRemaining 
If wAdditionalBunches is WFS_CIM_ADDBUNCHONEMORE, specifies the number of 
additional bunches of items remaining to be presented as a result of the current operation. If the 
number of additional bunches is at least one, but the precise number is unknown, 
usBunchesRemaining will be WFS_CIM_NUMBERUNKNOWN. For any other value of 
wAdditionalBunches, usBunchesRemaining will be zero. 

lpReturnedItems 
Pointer to a WFSCIMNOTENUMBERLIST structure holding a list of banknote numbers which 
have been moved to the output position as a result of the most recent operation. 

lpTotalReturnedItems 
Pointer to a WFSCIMNOTENUMBERLIST structure holding a list of cumulative banknote 
numbers which have been moved to the output position. This value will be reset when the 
WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, 
WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET 
or WFS_CMD_CIM_CASH_IN_ROLLBACK command is executed. 

lpRemainingItems 
Pointer to a WFSCIMNOTENUMBERLIST structure holding a list of banknote numbers on the 
intermediate stacker or transport which have not been yet moved to the output position. 

lpszExtra 
Pointer to a list of vendor-specific, or any other extended, information. The information is 
returned as a series of “key=value” strings so that it is easily extensible by Service Providers. 
Each string is null-terminated, with the final string terminating with two null characters. An 
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null 
characters. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

67 

6. Execute Commands 

6.1 WFS_CMD_CIM_CASH_IN_START 

Description Before initiating a cash-in operation, an application must issue the 
WFS_CMD_CIM_CASH_IN_START command to begin a cash-in transaction. During a cash-in 
transaction any number of WFS_CMD_CIM_CASH_IN commands may be issued. The 
transaction is ended when either a WFS_CMD_CIM_CASH_IN_ROLLBACK, 
WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT or WFS_CMD_CIM_RESET 
command is sent. Where WFSCIMCAPS.bShutterControl == FALSE this command precedes any 
explicit operation of the shutters. 

WFS_CMD_CIM_RETRACT will terminate a transaction. In this case 
WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_CASH_IN_ROLLBACK and 
WFS_CMD_CIM_CASH_IN will report WFS_ERR_CIM_NOCASHINACTIVE. If an 
application wishes to determine where the notes went during a transaction it can execute a 
WFS_INF_CIM_CASH_UNIT_INFO before and after the transaction and then derive the 
difference. 

A hardware failure during the cash-in transaction does not reset the note number list information; 
instead the note number list information will include items that could be accepted and identified 
up to the point of the hardware failure.  

Exchange: This command can be used during an Exchange (fwExchangeType == 
WFS_CIM_DEPOSITINTO) to deposit items accepted from the input position. See section 8.16 
for an example flow. Note that WFS_ERR_CIM_EXCHANGEACTIVE would not be generated 
in this case. 

Input Param LPWFSCIMCASHINSTART lpCashInStart; 
typedef struct _wfs_cim_cash_in_start 
 { 
 USHORT    usTellerID; 
 BOOL     bUseRecycleUnits; 
 WORD     fwOutputPosition; 
 WORD     fwInputPosition; 
 } WFSCIMCASHINSTART, *LPWFSCIMCASHINSTART; 

usTellerID 
Identification of teller. This field is not applicable to Self-Service CIMs and should be set to zero. 

bUseRecycleUnits 
Specifies whether or not the recycle cash units should be used when items are cashed in on a 
successful WFS_CMD_CIM_CASH_IN_END command. This parameter will be ignored if there 
are no recycle cash units or the hardware does not support this. 

fwOutputPosition 
The output position where the items will be presented to the customer in the case of a rollback. 
The position is set to one of the following values: 

Value Meaning 
WFS_CIM_POSNULL The items will be presented to the default 

configuration. 
WFS_CIM_POSOUTLEFT The items will be presented to the left output 

position. 
WFS_CIM_POSOUTRIGHT The items will be presented to the right 

output position. 
WFS_CIM_POSOUTCENTER The items will be presented to the center 

output position. 
WFS_CIM_POSOUTTOP The items will be presented to the top output 

position. 
WFS_CIM_POSOUTBOTTOM The items will be presented to the bottom 

output position. 
WFS_CIM_POSOUTFRONT The items will be presented to the front 

output position. 



CWA 16926-15:2020 (E) 

68 

WFS_CIM_POSOUTREAR The items will be presented to the rear 
output position. 

fwInputPosition 
Specifies from which position the cash should be inserted. The position is set to one of the 
following values: 

Value Meaning 
WFS_CIM_POSNULL The cash is inserted from the default 

configuration. 
WFS_CIM_POSINLEFT The cash is inserted from the left input 

position. 
WFS_CIM_POSINRIGHT The cash is inserted from the right input 

position. 
WFS_CIM_POSINCENTER The cash is inserted from the center input 

position. 
WFS_CIM_POSINTOP The cash is inserted from the top input 

position. 
WFS_CIM_POSINBOTTOM The cash is inserted from the bottom input 

position. 
WFS_CIM_POSINFRONT The cash is inserted from the front input 

position. 
WFS_CIM_POSINREAR The cash is inserted from the rear input 

position. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALIDTELLERID The teller ID is invalid. This error will never 

be generated by a Self-Service CIM. 
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state. 
WFS_ERR_CIM_CASHINACTIVE The CIM is already in the cash-in state due 

to a previous 
WFS_CMD_CIM_CASH_IN_START 
command. 

WFS_ERR_CIM_SAFEDOOROPEN The safe door is open. This device requires 
the safe door to be closed in order to perform 
a WFS_CMD_CIM_CASH_IN_START 
command. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

69 

6.2 WFS_CMD_CIM_CASH_IN 

Description This command moves items into the CIM from an input position. 

On devices with implicit shutter control, the WFS_EXEE_CIM_INSERTITEMS event will be 
generated when the device is ready to start accepting media. 

The items may pass through the banknote reader for identification. Failure to identify items does 
not mean that the command has failed - even if some or all of the items are rejected by the 
banknote reader, the command may return WFS_SUCCESS. In this case one or more 
WFS_EXEE_CIM_INPUTREFUSE events will be sent to report the rejection. See also paragraph 
below regarding returning refused items. 

If the device does not have a banknote reader then the output parameter will be NULL. 

If the device has a cash-in stacker then this command will cause inserted level 4 items to be 
moved there after validation. Level 2 and level 3 items may also be moved to the cash-in stacker, 
but some devices may immediately move them to a designated cash unit. Items on the stacker will 
remain there until the current cash-in transaction is either cancelled by the 
WFS_CMD_CIM_CASH_IN_ROLLBACK command or confirmed by the 
WFS_CMD_CIM_CASH_IN_END command. These commands will cause any level 2 or level 3 
items on the cash-in stacker to be moved to the appropriate cash unit. If there is no cash-in stacker 
then this command will move items directly to the cash units and the 
WFS_CMD_CIM_CASH_IN_ROLLBACK command will not be supported. Cash unit 
information will be updated accordingly whenever notes are moved to a cash unit during this 
command. 

Note that the fwAcceptor status field may change value during a cash-in transaction. If media has 
been retained to cash units during a cash-in transaction, it may mean that fwAcceptor is set to 
WFS_CIM_ACCCUSTOP, which means subsequent cash-in operations may not be possible. In 
this case, the subsequent command fails with error code WFS_ERR_CIM_CASHUNITERROR. 

The bShutterControl field of the WFSCIMCAPS structure returned from the 
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled 
implicitly by this command or whether the application must explicitly open and close the shutter 
using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER 
commands, or the WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is 
FALSE then this command does not operate the shutter in any way, the application is responsible 
for all shutter control. If bShutterControl is TRUE this command opens the shutter at the start of 
the command and closes it once bills are inserted. 

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the 
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary 
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output 
position. If bPresentControl is TRUE then all items are moved immediately to the correct output 
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the 
case of explicit shutter control). If bPresentControl is FALSE then items are not returned 
immediately and must be presented to the correct output position for removal using the 
WFS_CMD_CIM_PRESENT_MEDIA command. 

It is possible that a device may divide bill or coin accepting into a series of sub-operations under 
hardware control. In this case a WFS_EXEE_CIM_SUBCASHIN event may be sent after each 
sub-operation, if the hardware capabilities allow it. 

Returning items (single bunch): 

If bShutterControl is TRUE, and a single bunch of items is returned then this command will 
complete once the notes have been returned. A WFS_SRVE_CIM_ITEMSPRESENTED event 
will be generated. 

If bShutterControl is FALSE, and a single bunch of items is returned then this command will 
complete without generating a WFS_SRVE_CIM_ITEMSPRESENTED event, instead the 
WFS_SRVE_CIM_ITEMSPRESENTED event will be generated by the subsequent 
WFS_CMD_CIM_OPEN_SHUTTER or WFS_CMD_CIM_PRESENT_MEDIA command. 

Returning items (multiple bunches): 



CWA 16926-15:2020 (E) 

70 

It is possible that a device will in certain situations return refused items in multiple bunches. In 
this case, this command will not complete until the final bunch has been presented and after the 
last WFS_SRVE_CIM_ITEMSPRESENTED event has been generated. For these devices 
bShutterControl and bPresentControl fields of the WFSCIMCAPS / WFSCIMPOSCAPS 
structure returned from the WFS_INF_CIM_CAPABILITIES / 
WFS_INF_CIM_POSITION_CAPABILITIES query must both be TRUE otherwise it will not be 
possible to return multiple bunches. Additionally it may be possible to request the completion of 
this command with WFSCancelAsyncRequest before the final bunch is presented so that after the 
completion of this command the WFS_CMD_CIM_RETRACT or WFS_CMD_CIM_RESET 
command can be used to move the remaining bunches, although the ability to do this will be 
hardware dependent. 

Mixed Media Mode: If the device is operating in Mixed Media mode 
(WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) the Service Provider will 
not perform any operation unless the WFS_CMD_IPM_MEDIA_IN command is called or has 
already been called on the IPM interface.  

Exchange: This command can be used during an Exchange (fwExchangeType == 
WFS_CIM_DEPOSITINTO) to accept items from the input position. See section 8.16 for an 
example flow. Note that WFS_ERR_CIM_EXCHANGEACTIVE would not be generated in this 
case. 

Input Param None. 

Output Param LPWFSCIMNOTENUMBERLIST lpNoteNumberList; 

lpNoteNumberList 
List of banknote numbers which have been identified and accepted during execution of this 
command. Refused items are not included in this lpNoteNumberList field. If the whole input was 
refused then this field will be NULL and one or more WFS_EXEE_CIM_INPUTREFUSE events 
will be generated. If only part of the input was refused then this field will contain the banknote 
numbers of the accepted items and one or more WFS_EXEE_CIM_INPUTREFUSE events will 
be generated. For a description of the WFSCIMNOTENUMBERLIST structure see the 
WFS_INF_CIM_CASH_UNIT_INFO command. 

The lpNoteNumberList field contains all notes accepted, including any level 2 or level 3 notes 
accepted during the cash-in operation. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A 

WFS_EXEE_CIM_CASHUNITERROR 
event will be sent with the details. 

WFS_ERR_CIM_TOOMANYITEMS There were too many items inserted 
previously. The cash-in stacker is full at the 
beginning of this command. This may also 
be reported where a limit specified by 
WFS_CMD_CIM_SET_CASH_IN_LIMIT 
has already been reached at the beginning of 
this command. 

WFS_ERR_CIM_NOITEMS There were no items to cash-in. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close. In the case of explicit 

shutter control the application should close 
the shutter first. 

WFS_ERR_CIM_NOCASHINACTIVE There is no cash-in transaction active. 
WFS_ERR_CIM_POSITION_NOT_EMPTY The output position is not empty so a cash-in 

is not possible. 
WFS_ERR_CIM_SAFEDOOROPEN The safe door is open. This device requires 

the safe door to be closed in order to perform 
a WFS_CMD_CIM_CASH_IN command. 

WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED 
Foreign items have been detected inside the 
input position. 



CWA 16926-15:2020 (E) 

71 

WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit. 
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected. 
WFS_EXEE_CIM_INPUTREFUSE A part or all of the amount of the cash-in 

order was refused. 
WFS_EXEE_CIM_NOTEERROR An item detection error occurred. 
WFS_EXEE_CIM_SUBCASHIN A cash-in sub-operation has completed. If 

the cash-in operation has been divided up 
into a series of sub-operations under 
hardware control this event is generated each 
time one of the sub-cash-in operations 
completes successfully. It may be used for 
progress reporting. 

WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash-in 
position by the user. 

WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user. 
This event is only generated if the 
bItemsTakenSensor field returned in the 
capabilities information is TRUE. 

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be 
taken. 

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected 
during the cash processing operation. 

WFS_EXEE_CIM_INSERTITEMS Device is ready to accept items from the 
user. 

WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 
the cash units. 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

72 

6.3 WFS_CMD_CIM_CASH_IN_END 

Description This command ends a cash-in transaction. If cash items are on the stacker as a result of a 
WFS_CMD_CIM_CASH_IN command these items are moved to the appropriate cash units. 

The cash-in transaction is ended even if this command does not complete successfully. 

Mixed Media Mode: 

If the device is operating in Mixed Media mode (WFSCIMSTATUS.wMixedMode == 
WFS_CIM_IPMMIXEDMEDIA) non-cash items, e.g. checks may be moved to an output 
position or media bin specified by the IPM interface. Additionally, the Service Provider will not 
perform any operation unless the WFS_CMD_IPM_MEDIA_IN_END command is called or has 
already been called on the IPM. Alternatively, if WFSCIMCAPS.bMixedDepositAndRollback is 
TRUE, then the WFS_CMD_IPM_MEDIA_IN_ROLLBACK command could be used instead of 
the WFS_CMD_IPM_MEDIA_IN_END command in order to deposit the bills and return the 
checks. 

Where IPM items may be presented the bPresentControl field of the WFSCIMPOSCAPS 
structure returned from the WFS_INF_CIM_POSITION_CAPABILITIES query will determine 
whether or not it is necessary to call the WFS_CMD_CIM_PRESENT_MEDIA command in 
order to move items to the output position. If bPresentControl is TRUE then all items are moved 
immediately to the correct output position for removal. If bPresentControl is FALSE then items 
are not returned immediately and must be presented to the correct output position for removal 
using the WFS_CMD_CIM_PRESENT_MEDIA command.  

Exchange: This command can be used during an Exchange (fwExchangeType == 
WFS_CIM_DEPOSITINTO) to deposit items accepted from the input position. See section 8.16 
for an example flow. Note that WFS_ERR_CIM_EXCHANGEACTIVE would not be generated 
in this case. 

Input Param None. 

Output Param LPWFSCIMCASHINFO lpCashInfo; 

lpCashInfo 
List of cash units that have taken cash items and the type of cash items they have taken during the 
current transaction. For a description of the WFSCIMCASHINFO structure see the definition of 
the WFS_INF_CIM_CASH_UNIT_INFO command. The structure returned only contains data 
related to the current transaction, e.g. ulCount defines the number of banknotes or coins in the 
cash unit for this transaction. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A 

WFS_EXEE_CIM_CASHUNITERROR 
event will be sent with the details. 

WFS_ERR_CIM_NOITEMS There were no items to cash-in. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_NOCASHINACTIVE There is no cash-in transaction active. 
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty. 
WFS_ERR_CIM_SAFEDOOROPEN The safe door is open. This device requires 

the safe door to be closed in order to perform 
a WFS_CMD_CIM_CASH_IN_END 
command. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 

the cash units. 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 

A cash unit was changed. 
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with the cash unit. 



CWA 16926-15:2020 (E) 

73 

WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected 
during this operation. 

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected 
during the cash processing operation. 

WFS_EXEE_CIM_NOTEERROR An item detection error occurred. 
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user. 

This event is only generated during a Mixed 
Media transaction where the IPM items are 
presented and taken and the 
WFSCIMCAPS.bItemsTakenSensor field is 
TRUE. 

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be 
taken. This event is only generated during a 
Mixed Media transaction where the IPM 
items are presented. 

WFS_SRVE_CIM_COUNTS_CHANGED In Mixed Media mode, counters can be 
changed by the command 
WFS_CMD_IPM_MEDIA_IN_END. 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments In the special case where all the items inserted by the customer are classified as level 2 and/or 
level 3 items and the Service Provider is configured to automatically retain these item types then 
the WFS_CMD_CIM_CASH_IN_END command will complete with WFS_SUCCESS even if 
the hardware may have already moved the level 2 and/or level 3 items to their respective cash 
units on the WFS_CMD_CIM_CASH_IN command and there are no items on escrow at the start 
of the WFS_CMD_CIM_CASH_IN_END command. This allows the location of the notes 
retained to be reported in the output parameter. If no items are available for cash-in for any other 
reason then the WFS_ERR_CIM_NOITEMS error code is returned. 



CWA 16926-15:2020 (E) 

74 

6.4 WFS_CMD_CIM_CASH_IN_ROLLBACK 

Description This command is used to roll back a cash-in transaction. It causes all the cash items cashed in 
since the last WFS_CMD_CIM_CASH_IN_START command to be returned to the customer. 

This command ends the current cash-in transaction. The cash-in transaction is ended even if this 
command does not complete successfully. 

The bShutterControl field of the WFSCIMCAPS structure returned from the 
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled 
implicitly by this command or whether the application must explicitly control the shutter using the 
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or 
WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this 
command does not operate the shutter in any way, the application is responsible for all shutter 
control. If bShutterControl is TRUE then this command opens the shutter and it is closed when all 
items are removed. 

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the 
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary 
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output 
position. If bPresentControl is TRUE then all items are moved immediately to the correct output 
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the 
case of explicit shutter control). If bPresentControl is FALSE then items are not returned 
immediately and must be presented to the correct output position for removal using the 
WFS_CMD_CIM_PRESENT_MEDIA command. 

Items are returned in a single bunch or multiple bunches in the same way as described for the 
WFS_CMD_CIM_CASH_IN command. 

Mixed Media Mode: If the device is operating in Mixed Media mode 
(WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) the Service Provider will 
not perform any operation unless the WFS_CMD_IPM_MEDIA_IN_ROLLBACK command is 
called or has already been called on the IPM interface. Alternatively, if the 
WFSCIMCAPS.bMixedDepositAndRollback is TRUE, then the 
WFS_CMD_IPM_MEDIA_IN_END command could be used instead of the 
WFS_CMD_IPM_MEDIA_IN_ROLLBACK command in order to deposit the checks and return 
the items.  

Exchange: This command can be used during an Exchange (fwExchangeType == 
WFS_CIM_DEPOSITINTO) to return items accepted from the input position. Note that 
WFS_ERR_CIM_EXCHANGEACTIVE would not be generated in this case. 

Input Param None. 

Output Param NULL will be returned unless there were level 2 or level 3 notes inserted in the cash-in 
transaction that are not returned to the customer. 

LPWFSCIMCASHINFO lpCashInfo; 

lpCashInfo 
List of cash units that have taken banknotes and the type of banknotes they have taken. For a 
description of the WFSCIMCASHINFO structure see the definition of the 
WFS_INF_CIM_CASH_UNIT_INFO command. The structure returned only contains data 
related to the current transaction, e.g. ulCount defines the number of notes in the cash unit for this 
transaction. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A 

WFS_EXEE_CIM_CASHUNITERROR 
event will be sent with the details. 

WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open. In the case of explicit 
shutter control the application may have 
failed to open the shutter before issuing the 
command. 



CWA 16926-15:2020 (E) 

75 

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state. 
WFS_ERR_CIM_NOCASHINACTIVE There is no current cash-in transaction. 
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty. 
WFS_ERR_CIM_NOITEMS There were no items to rollback. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit. 
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user. 

This event is only generated if the 
bItemsTakenSensor field returned in the 
capabilities information is TRUE. 

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be 
taken. 

WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected 
during this operation. 

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected 
during the cash processing operation. 

WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 
the cash units. 

WFS_SRVE_CIM_COUNTS_CHANGED In Mixed Media mode, counters can be 
changed by 
WFS_CMD_IPM_MEDIA_IN_END. 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments In the special case where and all the items inserted by the customer are classified as level 2 and/or 
level 3 items and the Service Provider is configured to automatically retain these item types then 
the WFS_CMD_CIM_CASH_IN_ROLLBACK command will complete with WFS_SUCCESS 
even though no items are returned to the customer. This allows the location of the notes retained 
to be reported in the output parameter. The application can tell if items have been returned or not 
via the WFS_SRVE_CIM_ITEMSPRESENTED event. This event will be generated before the 
command completes when items are returned. This event will not be generated if no items are 
returned. If no items are available to rollback for any other reason then the 
WFS_ERR_CIM_NOITEMS error code is returned. 



CWA 16926-15:2020 (E) 

76 

6.5 WFS_CMD_CIM_RETRACT 

Description This command retracts items from an output position or internal areas within the CIM. Retracted 
items will be moved to either a retract bin, a reject bin, cash-in/recycle cash units, the transport or 
an intermediate stacker area. If items from internal areas within the CIM are preventing items at 
an output position from being retracted then the items from the internal areas will be retracted 
first. When the items are retracted from an output position the shutter is closed automatically, 
even if the bShutterControl capability is set to FALSE. 

This command terminates a running cash-in transaction. The cash-in transaction is terminated 
even if this command does not complete successfully. 

Mixed Media Mode: 

If the device is operating in Mixed Media mode (WFSCIMSTATUS.wMixedMode == 
WFS_CIM_IPMMIXEDMEDIA) this command will not perform any operation unless the 
WFS_CMD_IPM_RETRACT_MEDIA command is called or has already been called on the IPM 
interface. Where the parameters for this command and the corresponding 
WFS_CMD_IPM_RETRACT_MEDIA command conflict, for example the device is physically 
unable to satisfy both commands, the WFS_CMD_CIM_RETRACT input parameters will be 
used for all items.  

Exchange: This command can be used during an Exchange (fwExchangeType == 
WFS_CIM_DEPOSITINTO) to retract items. Note that WFS_ERR_CIM_EXCHANGEACTIVE 
would not be generated in this case. 

Input Param LPWFSCIMRETRACT lpRetract; 
typedef struct _wfs_cim_retract 
 { 
 WORD     fwOutputPosition; 
 USHORT    usRetractArea; 
 USHORT    usIndex; 
 } WFSCIMRETRACT, *LPWFSCIMRETRACT; 

fwOutputPosition 
Specifies the output position from which to retract the bills. The value is set to one of the 
following values: 

Value Meaning 
WFS_CIM_POSNULL The default configuration information should 

be used. This value is also used to retract 
items from internal CIM locations. 

WFS_CIM_POSOUTLEFT Retract items from the left output position. 
WFS_CIM_POSOUTRIGHT Retract items from the right output position. 
WFS_CIM_POSOUTCENTER Retract items from the center output 

position. 
WFS_CIM_POSOUTTOP Retract items from the top output position. 
WFS_CIM_POSOUTBOTTOM Retract items from the bottom output 

position. 
WFS_CIM_POSOUTFRONT Retract items from the front output position. 
WFS_CIM_POSOUTREAR Retract items from the rear output position. 

usRetractArea 
This value specifies the area to which the items are to be retracted. Possible values are: 

Value Meaning 
WFS_CIM_RA_RETRACT Retract the items to a retract cash unit. 
WFS_CIM_RA_REJECT Retract the items to a reject cash unit. 
WFS_CIM_RA_TRANSPORT Retract the items to the transport. 
WFS_CIM_RA_STACKER Retract the items to the intermediate stacker 

area. 
WFS_CIM_RA_BILLCASSETTES Retract the items to item cassettes, 

i.e. cash-in and recycle cash units. 



CWA 16926-15:2020 (E) 

77 

WFS_CIM_RA_CASHIN Retract the items to a cash-in cash unit. The 
fwItemType of the cash-in cash unit defined 
in WFSCIMCASHINFO must include 
(WFS_CIM_CITYPALL | 
WFS_CIM_CITYPUNFIT). 

usIndex 
If usRetractArea is set to WFS_CIM_RA_RETRACT this field defines the position inside the 
retract cash units into which the cash is to be retracted. usIndex starts with a value of one (1) for 
the first retract position and increments by one for each subsequent position. If there are several 
logical retract cash units (of type WFS_CIM_TYPERETRACTCASSETTE in command 
WFS_INF_CIM_CASH_UNIT_INFO), usIndex would be incremented from the first position of 
the first retract cash unit to the last position of the last retract cash unit defined in 
WFSCIMCASHINFO. The maximum value of usIndex is the sum of the ulMaximum of each 
retract cash unit. 

If usRetractArea is set to WFS_CIM_RA_CASHIN this field defines the physical cash unit under 
the WFS_CIM_TYPECASHIN cash units into which the cash is to be retracted. usIndex starts 
with a value of one (1) and would be incremented from the first physical cash unit of the first 
logical WFS_CIM_TYPECASHIN cash unit to the last physical cash unit of the last logical 
WFS_CIM_TYPECASHIN cash unit defined in WFSCIMCASHINFO. 

If usRetractArea is not set to WFS_CIM_RA_RETRACT or WFS_CIM_RA_CASHIN then the 
value of this field is ignored. 

Output Param LPWFSCIMCASHINFO lpCashInfo; 

lpCashInfo 
List of cash units that have taken banknotes and the type of banknotes they have taken (including 
level 2 and level 3 notes). This pointer can be NULL if usRetractArea is set to 
WFS_CIM_RA_TRANSPORT or WFS_CIM_RA_STACKER. For a description of the 
WFSCIMCASHINFO structure see the definition of the WFS_INF_CIM_CASH_UNIT_INFO 
command. The structure returned only contains data related to the current transaction, e.g. 
ulCount defines the number of notes in the cash unit for this transaction. Note that usNoteID in 
the NOTENUMBERLIST will be set to zero for level 1 notes retracted. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A retract bin caused a problem. A 

WFS_EXECUTE_EVENT with an id of 
WFS_EXEE_CIM_CASHUNITERROR 
will be posted with the details. 

WFS_ERR_CIM_NOITEMS There were no items to retract. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_SHUTTERNOTCLOSED The shutter failed to close. 
WFS_ERR_CIM_ITEMSTAKEN Items were present at the output position at 

the start of the operation, but were removed 
before the operation was complete - some or 
all of the items were not retracted. 

WFS_ERR_CIM_INVALIDRETRACTPOSITION 
The usIndex is not supported. 

WFS_ERR_CIM_NOTRETRACTAREA The retract area specified in usRetractArea is 
not supported. 

WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED 
Foreign items have been detected in the 
input position. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in a 

cash unit. 



CWA 16926-15:2020 (E) 

78 

WFS_EXEE_CIM_CASHUNITERROR An error occurred while attempting to retract 
to a cash unit. 

WFS_EXEE_CIM_NOTEERROR An item detection error occurred. 
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected 

during this operation. 
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user. 

This event is only generated if the 
bItemsTakenSensor field returned in the 
capabilities information is TRUE. 

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected 
during the cash processing operation. 

WFS_SRVE_CIM_CASHUNITINFOCHANGED 
A cash unit was updated as a result of this 
command. 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

79 

6.6 WFS_CMD_CIM_OPEN_SHUTTER 

Description This command opens the shutter.  

In cases where multiple bunches are to be returned under explicit shutter control and the first 
bunch has already been presented and taken and the output position is empty, this command 
moves the next bunch to the output position before opening the shutter – see sections 8.6 and 8.7. 
This does not apply if the output position is not empty, for example if items had been re-inserted 
or dropped back into the output position as the shutter closed. 

Input Param LPWORD lpfwPosition; 

lpfwPosition 
Pointer to the position where the shutter is to be opened. If the application does not need to 
specify the shutter, this field can be set to NULL or to WFS_CIM_POSNULL. Otherwise this 
field should be set to one of the following values: 

Value Meaning 
WFS_CIM_POSNULL The default configuration information should 

be used. 
WFS_CIM_POSINLEFT Open the shutter of the left input position. 
WFS_CIM_POSINRIGHT Open the shutter of the right input position. 
WFS_CIM_POSINCENTER Open the shutter of the center input position. 
WFS_CIM_POSINTOP Open the shutter of the top input position. 
WFS_CIM_POSINBOTTOM Open the shutter of the bottom input 

position. 
WFS_CIM_POSINFRONT Open the shutter of the front input position. 
WFS_CIM_POSINREAR Open the shutter of the rear input position. 
WFS_CIM_POSOUTLEFT Open the shutter of the left output position. 
WFS_CIM_POSOUTRIGHT Open the shutter of the right output position. 
WFS_CIM_POSOUTCENTER Open the shutter of the center output 

position. 
WFS_CIM_POSOUTTOP Open the shutter of the top output position. 
WFS_CIM_POSOUTBOTTOM Open the shutter of the bottom output 

position. 
WFS_CIM_POSOUTFRONT Open the shutter of the front output position. 
WFS_CIM_POSOUTREAR Open the shutter of the rear output position. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported. 
WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open. 
WFS_ERR_CIM_SHUTTEROPEN Shutter was already open. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. Note that 

this would not apply during an Exchange 
(fwExchangeType == 
WFS_CIM_DEPOSITINTO). 

WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED 
Foreign items have been detected in the 
input position. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user. 

This event is only generated if the 
bItemsTakenSensor field returned in the 
capabilities information is TRUE. 

WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted by the user. 



CWA 16926-15:2020 (E) 

80 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

81 

6.7 WFS_CMD_CIM_CLOSE_SHUTTER 

Description This command closes the shutter. 

Input Param LPWORD lpfwPosition; 

lpfwPosition 
Pointer to the position where the shutter is to be closed. If the application does not need to specify 
the shutter, this field can be set to NULL or to WFS_CIM_POSNULL. Otherwise this field 
should be set to one of the following values: 

Value Meaning 
WFS_CIM_POSNULL The default configuration information should 

be used. 
WFS_CIM_POSINLEFT Close the shutter of the left input position. 
WFS_CIM_POSINRIGHT Close the shutter of the right input position. 
WFS_CIM_POSINCENTER Close the shutter of the center input position. 
WFS_CIM_POSINTOP Close the shutter of the top input position. 
WFS_CIM_POSINBOTTOM Close the shutter of the bottom input 

position. 
WFS_CIM_POSINFRONT Close the shutter of the front input position. 
WFS_CIM_POSINREAR Close the shutter of the rear input position. 
WFS_CIM_POSOUTLEFT Close the shutter of the left output position. 
WFS_CIM_POSOUTRIGHT Close the shutter of the right output position. 
WFS_CIM_POSOUTCENTER Close the shutter of the center output 

position. 
WFS_CIM_POSOUTTOP Close the shutter of the top output position. 
WFS_CIM_POSOUTBOTTOM Close the shutter of the bottom output 

position. 
WFS_CIM_POSOUTFRONT Close the shutter of the front output position. 
WFS_CIM_POSOUTREAR Close the shutter of the rear output position. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported. 
WFS_ERR_CIM_SHUTTERCLOSED Shutter was already closed. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. Note that 

this would not apply during an Exchange 
(fwExchangeType == 
WFS_CIM_DEPOSITINTO). 

WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close. 
WFS_ERR_CIM_TOOMANYITEMS There were too many items inserted for the 

shutter to close. 
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED 

Foreign items have been detected in the 
input position. The shutter is open. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 

The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

82 

6.8 WFS_CMD_CIM_SET_TELLER_INFO 

Description This command allows the application to initialize counts for each currency assigned to the teller. 
The values set by this command are persistent. This command only applies to Teller CIMs. 

Input Param LPWFSCIMTELLERUPDATE lpTellerUpdate; 
typedef struct _wfs_cim_teller_update 
 { 
 USHORT    usAction; 
 LPWFSCIMTELLERDETAILS lpTellerDetails; 
 } WFSCIMTELLERUPDATE, *LPWFSCIMTELLERUPDATE; 

usAction 
The action to be performed specified as one of the following values: 

Value Meaning 
WFS_CIM_CREATE_TELLER A teller is to be added. 
WFS_CIM_MODIFY_TELLER Information about an existing teller is to be 

modified. 
WFS_CIM_DELETE_TELLER A teller is to be removed. 

lpTellerDetails 
For a specification of the structure WFSCIMTELLERINFO please refer to the 
WFS_INF_CIM_TELLER_INFO command. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALIDCURRENCY The specified currency is not currently 

available. 
WFS_ERR_CIM_INVALIDTELLERID The teller ID is invalid. 
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported. 
WFS_ERR_CIM_EXCHANGEACTIVE The target teller is currently in the middle of 

an exchange operation. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_SRVE_CIM_TELLERINFOCHANGED Teller information has been created, 

modified or deleted. 

Comments None. 



CWA 16926-15:2020 (E) 

83 

6.9 WFS_CMD_CIM_SET_CASH_UNIT_INFO 

Description This command is used to adjust information about the status and contents of the cash units present 
in the CIM. 

This command generates the service event WFS_SRVE_CIM_CASHUNITINFOCHANGED to 
inform applications that cash unit information has been changed. 

This command can only be used to change software counters, thresholds and the application lock. 
All other fields in the input structure will be ignored. 

The following fields of the WFSCIMCASHIN structure may be updated by this command: 

ulCount 
ulCashInCount 
ulMaximum 
bAppLock 
lpNoteNumberList (contents must be consistent with ulCount) 
ulInitialCount 
ulDispensedCount 
ulPresentedCount 
ulRetractedCount 
ulRejectCount 
ulMinimum 

As may the following fields of the WFSCIMPHCU structure: 

ulCashInCount 
ulCount 
ulInitialCount 
ulDispensedCount 
ulPresentedCount 
ulRetractedCount 
ulRejectCount 

Any other changes must be performed via an exchange operation. 

The lppPhysical counts must be consistent with the logical cash unit counts. The Service Provider 
controls whether the logical counts are maintained separately or are based on the sum of the 
physical counts. 

If the fields ulCount and ulCashInCount of lppPhysical are set to zero by this command, the 
application is indicating that it does not wish counts to be maintained for the physical cash units. 
Counts on the logical cash units will still be maintained and can be used by the application. If the 
physical counts are set by this command then the logical count will be the sum of the physical 
counts and any value sent as a logical count will be ignored. 

The values set by this command are persistent. 

Input Param LPWFSCIMCASHINFO lpCUInfo; 

The LPWFSCIMCASHINFO structure is specified in the documentation of the 
WFS_INF_CIM_CASH_UNIT_INFO command. All cash units must be included not just the 
cash units whose values are to be changed. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALIDCASHUNIT Invalid cash unit. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A 

WFS_EXEE_CIM_CASHUNITERROR event 
will be posted with the details. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 



CWA 16926-15:2020 (E) 

84 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in 

one of the cash units. 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 

A cash unit was updated as a result of this 
command. 

WFS_EXEE_CIM_CASHUNITERROR An error occurred while accessing a cash unit. 

Comments None. 



CWA 16926-15:2020 (E) 

85 

6.10 WFS_CMD_CIM_START_EXCHANGE 

Description This command puts the CIM in an exchange state, i.e. a state in which cash units can be emptied, 
replenished, removed or replaced. Other than the updates which can be made via the 
WFS_CMD_CIM_SET_CASH_UNIT_INFO command all changes to a cash unit must take place 
while the cash unit is in an exchange state. 

The command returns current cash unit information in the form described in the documentation of 
the WFS_INF_CIM_CASH_UNIT_INFO command. This command will also initiate any 
physical processes which may be necessary to make the cash units accessible. Before using this 
command an application should first have obtained exclusive control of the CIM. 

This command may return WFS_SUCCESS even if WFS_EXEE_CIM CASHUNITERROR 
events are generated. If this command returns WFS_SUCCESS or 
WFS_ERR_CIM_EXCHANGEACTIVE the CIM is in an exchange state. 

While in an exchange state the CIM will process all WFS requests, excluding 
WFS[Async]Execute commands other than WFS_CMD_CIM_END_EXCHANGE and 
WFS_CMD_CIM_RESET. 

Any other WFS[Async]Execute commands will result in the error 
WFS_ERR_CIM_EXCHANGEACTIVE being generated. 

If an error is returned by this command, the WFS_INF_CIM_CASH_UNIT_INFO command 
should be used to determine the cash unit information. 

If the CIM is part of a compound device together with a CDM (i.e. a cash recycler), exchange 
operations can either be performed separately on each interface to the compound device, or the 
entire exchange operation can be done through the CIM interface. 

Exchange via CDM and CIM interfaces: 

If the exchange is performed separately via the CDM and CIM interfaces then these operations 
cannot be performed simultaneously. An exchange state must therefore be initiated on each 
interface in the following sequence: 

CDM 

 (Lock) 

 WFS_CMD_CDM_START_EXCHANGE 

…exchange action… 

 WFS_CMD_CDM_END_EXCHANGE 

 (Unlock) 

CIM 

 (Lock) 

 WFS_CMD_CIM_START_EXCHANGE 

 …exchange action… 

 WFS_CMD_CIM_END_EXCHANGE 

 (Unlock) 

In the case of a cash recycler, the cash-in cash unit counts are set via the CIM interface and the 
cash-out cash unit counts are set via the CDM interface. Recycle cash units can be set via either 
interface. However, if the device has recycle cash units of multiple currencies and/or 
denominations (or multiple note identifiers associated with the same denomination), then the CIM 
interface should be used for exchange operations involving these cash units. Those fields which 
are not common to both the CDM and CIM cash units are left unchanged when an exchange (or 
WFS_CMD_CDM_SET_CASH_UNIT_INFO or WFS_CMD_CIM_SET_CASH_UNIT_INFO 
command) is executed on the other interface. For example, if the CDM interface is used to set the 
current count of notes in the cash unit the CIM lpNoteNumberList structure is not changed even if 
the data becomes inconsistent. 

Exchange via the CIM Interface: 



CWA 16926-15:2020 (E) 

86 

All cash unit info fields exposed through the CDM interface are also exposed through the CIM 
interface, so the entire exchange operation for a recycling device can be achieved through the 
CIM interface. 

Input Param LPWFSCIMSTARTEX lpStartEx; 
typedef struct _wfs_cim_start_ex 
 { 
 WORD     fwExchangeType; 
 USHORT    usTellerID; 
 USHORT    usCount; 
 LPUSHORT    lpusCUNumList; 
 LPWFSCIMOUTPUT   lpOutput; 
 } WFSCIMSTARTEX, *LPWFSCIMSTARTEX; 

fwExchangeType 
Specifies the type of the cash unit exchange operation. This field should be set to one of the 
following values: 

Value Meaning 
WFS_CIM_EXBYHAND The cash units will be replenished manually 

either by filling or emptying the cash unit by 
hand or by replacing the cash unit. 

WFS_CIM_EXTOCASSETTES Items will be moved from the replenishment 
container to the bill cash units. Items will be 
moved from the bill cash units to the 
replenishment container. On a cash recycler, 
the CDM interface should be used to move 
items from a replenishment container. 

WFS_CIM_CLEARRECYCLER Items will be moved from a recycle cash unit 
to a cash unit or output position. 

WFS_CIM_DEPOSITINTO Items will be moved from the deposit 
entrance to the bill cash units. See section 
8.16 for an example flow. 

usTellerID 
Identification of teller. If the device is a Self-Service CIM this field is ignored. 

usCount 
Number of cash units to be exchanged. This is also the size of the array contained in the 
lpusCUNumList field. This is not applicable where fwExchangeType is 
WFS_CIM_DEPOSITINTO as it may not be known in advance which cash units the items will be 
sorted to. 

lpusCUNumList 
Pointer to an array of unsigned shorts containing the logical numbers of the cash units to be 
exchanged. 

lpOutput 
This field is used when the exchange type is WFS_CIM_CLEARRECYCLER, i.e. a recycle cash 
unit is to be emptied. 

typedef struct _wfs_cim_output 
 { 
 USHORT    usLogicalNumber; 
 WORD     fwPosition; 
 USHORT    usNumber; 
 } WFSCIMOUTPUT, *LPWFSCIMOUTPUT; 

usLogicalNumber 
Logical number of recycle cash unit be emptied. 

fwPosition 
Determines to which position the cash should be moved as a combination of the following 
flags: 



CWA 16926-15:2020 (E) 

87 

Value Meaning 
WFS_CIM_POSNULL Move items to a cash unit. If no cash unit 

is specified in usNumber, use the default 
output position. 

WFS_CIM_POSOUTLEFT Move items to the left output position. 
WFS_CIM_POSOUTRIGHT Move items to the right output position. 
WFS_CIM_POSOUTCENTER Move items to the center output position. 
WFS_CIM_POSOUTTOP Move items to the top output position. 
WFS_CIM_POSOUTBOTTOM Move items to the bottom output 

position. 
WFS_CIM_POSOUTFRONT Move items to the front output position. 
WFS_CIM_POSOUTREAR Move items to the rear output position. 

usNumber 
Logical number of the cash unit the items are to be moved to. 

Output Param LPWFSCIMCASHINFO lpCUInfo; 

The WFSCIMCASHINFO structure is specified in the documentation of the 
WFS_INF_CIM_CASH_UNIT_INFO command. Information on all the CIM cash units will be 
returned. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALIDTELLERID Invalid teller ID. This error will never be 

generated by a Self-Service CIM. 
WFS_ERR_CIM_CASHUNITERROR An error occurred with a cash unit while 

performing the exchange operation. A 
WFS_EXEE_CIM_CASHUNITERROR 
event will be sent with the details. 

WFS_ERR_CIM_TOOMANYITEMS This error is generated if the contents of the 
recycle cash unit cannot be completely 
emptied to the output position. The 
maximum possible number of items is 
moved to the output position. 

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is already in an exchange state. 
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_EXEE_CIM_CASHUNITERROR A cash unit caused an error. 
WFS_EXEE_CIM_NOTEERROR An item detection error occurred. 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 

the cash units. This event is not generated for 
recycle cash units. 

WFS_SRVE_CIM_CASHUNITINFOCHANGED 
A cash unit was changed. 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

88 

6.11 WFS_CMD_CIM_END_EXCHANGE 

Description This command will end the exchange state. If any physical action took place as a result of the 
WFS_CMD_CIM_START_EXCHANGE command then this command will cause the cash units 
to be returned to their normal physical state, including depositing any remaining items where 
fwExchangeType is WFS_CIM_DEPOSITINTO. Any necessary device testing will also be 
initiated. The application can also use this command to update cash unit information in the form 
described in the documentation of the WFS_INF_CIM_CASH_UNIT_INFO command. 

The input parameters to this command may be ignored if the Service Provider can obtain cash unit 
information from self-configuring cash units. 

The lppPhysical counts must be consistent with the logical cash unit counts. The Service Provider 
controls whether the logical counts are maintained separately or are based on the sum of the 
physical counts. 

If the fields ulCount, and ulCashInCount of lppPhysical are set to zero by this command, the 
application is indicating that it does not wish counts to be maintained for the physical cash units. 
Counts on the logical cash units will still be maintained and can be used by the application. If the 
physical counts are set by this command then the logical count will be the sum of the physical 
counts and any value sent as a logical count will be ignored. 

If an error occurs during the execution of this command, then the application must issue a 
WFS_INF_CIM_CASH_UNIT_INFO to determine the cash unit information. 

A WFS_EXEE_CIM_CASHUNITERROR event will be sent for any logical cash unit which 
cannot be successfully updated. If no cash units could be updated then a 
WFS_ERR_CIM_CASHUNITERROR code will be returned and 
WFS_EXEE_CIM_CASHUNITERROR events generated for every logical cash unit that could 
not be updated. 

Even if this command does not return WFS_SUCCESS the exchange state has ended. 

Input Param LPWFSCIMCASHINFO lpCUInfo; 

The LPWFSCIMCASHINFO structure is specified in the documentation for the 
WFS_INF_CIM_CASH_UNIT_INFO command. This pointer can be NULL, if the cash unit 
information has not changed or the cash units have been replenished mechanically using 
replenishment or recycling cassettes or where fwExchangeType is WFS_CIM_DEPOSITINTO. 
Otherwise the parameter must contain the complete list of cash unit structures not just the ones 
that have changed. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A cash unit problem occurred that meant no 

cash units could be updated. One or more 
WFS_EXEE_CIM_CASHUNITERROR 
events will be sent with the details. 

WFS_ERR_CIM_NOEXCHANGEACTIVE There is no exchange active. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in 

one of the cash units. 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 

A cash unit was changed. 
WFS_EXEE_CIM_CASHUNITERROR A cash unit caused an error. 

Comments None. 



CWA 16926-15:2020 (E) 

89 

6.12 WFS_CMD_CIM_OPEN_SAFE_DOOR 

Description This command unlocks the safe door or starts the time delay count down prior to unlocking the 
safe door, if the device supports it. The command completes when the door is unlocked or the 
timer has started. 

Input Param None. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

90 

6.13 WFS_CMD_CIM_RESET 

Description This command is used by the application to perform a hardware reset which will attempt to return 
the CIM device to a known good state. This command does not over-ride a lock obtained on 
another application or service handle. 

If a cash-in transaction is active, this command will end it (even if this command does not 
complete successfully). If an exchange state is active then this command will end the exchange 
state (even if this command does not complete successfully). 

Persistent values, such as counts and configuration information are not cleared by this command. 

The device will attempt to move any items found anywhere within the device to the position 
specified within the lpResetIn parameter. This may not always be possible because of hardware 
problems. 

If items are found inside the device one or more WFS_SRVE_CIM_MEDIADETECTED events 
will be generated to inform the application where the items have actually been moved to. 

The bShutterControl field of the WFSCIMCAPS structure returned from the 
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled 
implicitly by this command or whether the application must explicitly control the shutter using the 
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or 
the WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this 
command does not operate the shutter in any way, the application is responsible for all shutter 
control. If bShutterControl is TRUE then this command operates the shutter as necessary so that 
the shutter is closed after the command completes successfully and any items returned to the 
customer have been removed. 

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the 
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary 
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output 
position. If bPresentControl is TRUE then all items are moved immediately to the correct output 
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the 
case of explicit shutter control). If bPresentControl is FALSE then items are not returned 
immediately and must be presented to the correct output position for removal using the 
WFS_CMD_CIM_PRESENT_MEDIA command. 

If requested, items are returned in a single bunch or multiple bunches in the same way as 
described for the WFS_CMD_CIM_CASH_IN command. 

Mixed Media Mode: 

The value of WFSCIMSTATUS.wMixedMode is not changed by this command. Where the items 
are to be moved to a cash unit, the cash unit must support an fwItemType of 
WFS_CIM_CITYPIPM. 

Input Param If the application does not wish to specify a cash unit or position it can set lpResetIn to NULL. In 
this case the Service Provider will determine where to move any items found. 

LPWFSCIMITEMPOSITION lpResetIn; 
typedef struct _wfs_cim_itemposition 
 { 
 USHORT    usNumber; 
 LPWFSCIMRETRACT   lpRetractArea; 
 WORD     fwOutputPosition; 
 } WFSCIMITEMPOSITION, *LPWFSCIMITEMPOSITION; 

usNumber 
If non-zero, this value specifies the usNumber (as specified by 
WFS_INF_CIM_CASH_UNIT_INFO) of the single cash unit to be used for the storage of any 
items found. 

If items are to be moved to an output position, this value must be zero, lpRetractArea must be 
NULL and fwOutputPosition specifies where items are to be moved to. 

If this value is zero and items are to be moved to internal areas of the device, lpRetractArea 
specifies where items are to be moved to or stored. 



CWA 16926-15:2020 (E) 

91 

lpRetractArea 
This field is used if items are to be moved to internal areas of the device, including cash units, the 
intermediate stacker or the transport. The field is only relevant if usNumber is zero. The 
WFSCIMRETRACT structure is defined in WFS_CMD_CIM_RETRACT. 

fwOutputPosition 
This value will be ignored because all items are moved from all positions. 

usRetractArea 
See the description in WFS_CMD_CIM_RETRACT. 

usIndex 
See the description in WFS_CMD_CIM_RETRACT. 

fwOutputPosition 
The output position to which items are to be moved. This field is only used if usNumber is zero 
and lpRetractArea is NULL. The value is set to one of the following values: 

Value Meaning 
WFS_CIM_POSNULL Take the default configuration. 
WFS_CIM_POSOUTLEFT Move items to the left output position. 
WFS_CIM_POSOUTRIGHT Move items to the right output position. 
WFS_CIM_POSOUTCENTER Move items to the center output position. 
WFS_CIM_POSOUTTOP Move items to the top output position. 
WFS_CIM_POSOUTBOTTOM Move items to the bottom output position. 
WFS_CIM_POSOUTFRONT Move items to the front output position. 
WFS_CIM_POSOUTREAR Move items to the rear output position. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1] the following can be generated by this 
command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A cash unit caused an error. A 

WFS_EXEE_CIM_CASHUNITERROR 
event will be sent with the details. 

WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported. 
WFS_ERR_CIM_INVALIDCASHUNIT The cash unit number specified is not valid. 
WFS_ERR_CIM_INVALIDRETRACTPOSITION 

The usIndex is not supported. 
WFS_ERR_CIM_NOTRETRACTAREA The retract area specified in usRetractArea is 

not supported. 
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED 

Foreign items have been detected in the 
input position. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in 

one of the cash units. 
WFS_EXEE_CIM_CASHUNITERROR A cash unit caused an error. 
WFS_SRVE_CIM_MEDIADETECTED Media was detected during the reset. 
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected 

during this operation. 
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user. 

This event is only generated if the 
bItemsTakenSensor field returned in the 
Capabilities information is TRUE. 

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected 
during the cash processing operation. 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

92 

6.14 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS 

Description This command is used to alter the banknote types a cash unit can take. The fwPossibleItemTypes 
field of the WFSCIMCASHUNITCAPABILITIES structure (see section 5.14) indicates values 
that can be configured for a given cash unit. 

The values set by this command are persistent. 

Input Param LPWFSCIMCASHINTYPE *lppCashInType; 

lppCashInType 
Pointer to a NULL-terminated array of pointers to WFSCIMCASHINTYPE structures. Only the 
cash units which are to be configured should be sent in this parameter: 
typedef struct _wfs_cim_cash_in_type 
 { 
 USHORT    usNumber; 
 DWORD     dwType; 
 LPUSHORT    lpusNoteIDs; 
 } WFSCIMCASHINTYPE, *LPWFSCIMCASHINTYPE; 

usNumber 
Logical number of the cash unit. 

dwType 
Specifies the type of items the cash unit is to take as a combination of the following flags. This 
modifies the fwItemType in a WFSCIMCASHIN (see section 5.3): 

Value Meaning 
WFS_CIM_CITYPALL The cash unit accepts all fit banknote types 

These are Level 4 notes which are fit for 
recycling. 

WFS_CIM_CITYPUNFIT The cash unit accepts all unfit banknotes. 
These are level 4 notes which are unfit for 
recycling. 

WFS_CIM_CITYPINDIVIDUAL The cash unit or recycle unit accepts all 
types of fit banknotes specified in the 
following list.  

WFS_CIM_CITYPLEVEL1 Level 1 note types are stored in this cash 
unit. 

WFS_CIM_CITYPLEVEL2 Level 2 note types are stored in this cash 
unit. 

WFS_CIM_CITYPLEVEL3 Level 3 note types are stored in this cash 
unit. 

WFS_CIM_CITYPIPM The cash unit can accept items on the IPM 
interface.  

WFS_CIM_CITYPUNFITINDIVIDUAL The cash unit takes all types of unfit 
banknotes specified in an individual list. 
These are level 4 notes which are unfit for 
recycling. This is only valid when combined 
with WFS_CIM_CITYPINDIVIDUAL. 

See the definition of the WFS_INF_CIM_CASH_UNIT_INFO command for a detailed 
description. 

lpusNoteIDs 
Pointer to a zero-terminated list of unsigned shorts which contains the note IDs of the banknotes 
the cash unit can take. This field only applies if the dwType field has the 
WFS_CIM_CITYPINDIVIDUAL or WFS_CIM_CITYPUNFITINDIVIDUAL flag set. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 



CWA 16926-15:2020 (E) 

93 

Value Meaning 
WFS_ERR_CIM_INVALIDCASHUNIT Invalid cash unit. This error will also be 

created if an invalid logical number of a cash 
unit is given. 

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_CASHUNITNOTEMPTY The hardware requires that the cash unit is 

empty before allowing changes. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 

A cash unit was changed. 

Comments Using this command it is possible to configure cash units in a highly flexible manner that can 
satisfy a wide range of requirements. 

 Example 1: A retract cash unit may be configured to accept Level 2 and 3 notes. 

 Example 2: A retract cash unit may be configured to take an entire bunch (including Level 1, 2, 3, 
4, fit and unfit notes). 

 It should be noted that the above two use cases are only examples, the combination of which 
dwType values can be configured for any given cash unit will be hardware dependent (see section 
5.14). 



CWA 16926-15:2020 (E) 

94 

6.15 WFS_CMD_CIM_CONFIGURE_NOTETYPES 

Description This command is used to configure the note types the banknote reader should accept during cash-
in. All note types the banknote reader should accept must be given in the input structure. If an 
unknown note type is given the error code WFS_ERR_UNSUPP_DATA will be returned. 

The values set by this command are persistent. 

Input Param LPUSHORT lpusNoteIDs; 

lpusNoteIDs 
Pointer to a zero-terminated list of unsigned shorts which contains the note IDs of the banknotes 
the banknote reader can accept. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. This device 

requires that no cash-in transaction is active 
in order to perform the command. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

95 

6.16 WFS_CMD_CIM_CREATE_P6_SIGNATURE 

Description This command is used to create a reference signature (normally a level 3 note) that was checked 
and regarded as a forgery. The reference can be compared with the available signatures of the 
cash-in transactions to track back the customer. 

When this command is executed, the CIM waits for a note to be inserted at the input position, 
transports the note to the recognition module, creates the signature and then returns the note to the 
output position. 

The bShutterControl field of the WFSCIMCAPS structure returned from the 
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled 
implicitly by this command or whether the application must explicitly control the shutter using the 
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or 
WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this 
command does not operate the shutter in any way, the application is responsible for all shutter 
control. If bShutterControl is TRUE then this command opens and closes the shutter at various 
times during the command execution and the shutter is finally closed when all items are removed. 

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the 
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary 
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output 
position. If bPresentControl is TRUE then all items are moved immediately to the correct output 
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the 
case of explicit shutter control). If bPresentControl is FALSE then items are not returned 
immediately and must be presented to the correct output position for removal using the 
WFS_CMD_CIM_PRESENT_MEDIA command. 

On devices with implicit shutter control, the WFS_EXEE_CIM_INSERTITEMS event will be 
generated when the device is ready to start accepting media. 

The application may have to execute this command repeatedly to make sure that all possible 
signatures are captured. 

If a single note is entered and returned to the customer but cannot be processed fully (e.g. no 
recognition software in the recognition module, the note is not recognized, etc.) then a 
WFS_EXEE_CIM_INPUTREFUSE event will be sent and the command will complete with 
WFS_SUCCESS. In this case, the output parameters will be set as follows, usNoteId = zero, 
ulLength = zero, dwOrientation = WFS_CIM_ORUNKNOWN and lpSignature = NULL. 

Input Param None. 

Output Param LPWFSCIMP6SIGNATURE lpP6Signature; 
typedef struct _wfs_cim_P6_signature 
 { 
 USHORT    usNoteId; 
 ULONG     ulLength; 
 DWORD     dwOrientation; 
 LPVOID    lpSignature; 
 } WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE; 

usNoteId 
Identification of note type. 

ulLength 
Length of the signature in bytes. 

dwOrientation 
Orientation of the entered banknote. Specified as one of the following flags: 



CWA 16926-15:2020 (E) 

96 

Value Meaning 
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading 

edge, the note was inserted with the front 
image facing up and the top edge of the note 
was inserted first. If the note is inserted short 
side as the leading edge, the note was 
inserted with the front image face up and the 
left edge was inserted first. 

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading 
edge, the note was inserted with the front 
image facing up and the bottom edge of the 
note was inserted first. If the note is inserted 
short side as the leading edge, the note was 
inserted with the front image face up and the 
right edge was inserted first. 

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading 
edge, the note was inserted with the back 
image facing up and the top edge of the note 
was inserted first. If the note is inserted short 
side as the leading edge, the note was 
inserted with the back image face up and the 
left edge was inserted first. 

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading 
edge, the note was inserted with the back 
image facing up and the bottom edge of the 
note was inserted first. If the note is inserted 
short side as the leading edge, the note was 
inserted with the back image face up and the 
right edge was inserted first. 

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not 
be determined. 

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the 
orientation. 

lpSignature 
Pointer to the returned signature. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_TOOMANYITEMS There was more than one banknote inserted 

for creating a signature. 
WFS_ERR_CIM_NOITEMS There was no banknote to create a signature. 
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_POSITION_NOT_EMPTY The output position is not empty so a 

banknote cannot be inserted. 
WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open. 
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close. 
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED 

Foreign items have been detected in the 
input position. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_EXEE_CIM_INPUTREFUSE The inserted item was no banknote or the 

note was not recognized. 
WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash-in 

position by the user. 
WFS_SRVE_CIM_ITEMSTAKEN Items returned to the user have been taken. 



CWA 16926-15:2020 (E) 

97 

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be 
taken. 

WFS_EXEE_CIM_NOTEERROR An item detection error occurred. 
WFS_EXEE_CIM_INSERTITEMS Device is ready to accept items from the 

user. 
WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected 

during this operation. 
WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 

The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

98 

6.17 WFS_CMD_CIM_SET_GUIDANCE_LIGHT 

Description This command is used to set the status of the CIM guidance lights. This includes defining the 
flash rate, the color and the direction. When an application tries to use a color or direction that is 
not supported then the Service Provider will return the generic error 
WFS_ERR_UNSUPP_DATA. 

Input Param LPWFSCIMSETGUIDLIGHT lpSetGuidLight; 
typedef struct _wfs_cim_set_guidlight 
 { 
 WORD     wGuidLight; 
 DWORD     dwCommand; 
 } WFSCIMSETGUIDLIGHT, *LPWFSCIMSETGUIDLIGHT; 

wGuidLight 
Specifies the index of the guidance light to set as one of the values defined within the capabilities 
section. 

dwCommand 
Specifies the state of the guidance light indicator as WFS_CIM_GUIDANCE_OFF or a 
combination of the following flags consisting of one type B, optionally one type C and optionally 
one type D. If no value of type C is specified then the default color is used. The Service Provider 
determines which color is used as the default color. 

Value Meaning Type 
WFS_CIM_GUIDANCE_OFF The light indicator is turned off. A 
WFS_CIM_GUIDANCE_SLOW_FLASH The light indicator is set to flash B 

slowly. 
WFS_CIM_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B 

medium frequency. 
WFS_CIM_GUIDANCE_QUICK_FLASH The light indicator is set to flash B 

quickly. 
WFS_CIM_GUIDANCE_CONTINUOUS The light indicator is turned on B 

continuously (steady). 
WFS_CIM_GUIDANCE_RED The light indicator color is set C 

to red. 
WFS_CIM_GUIDANCE_GREEN The light indicator color is set C 

to green. 
WFS_CIM_GUIDANCE_YELLOW The light indicator color is set C 

to yellow. 
WFS_CIM_GUIDANCE_BLUE The light indicator color is set C 

to blue. 
WFS_CIM_GUIDANCE_CYAN The light indicator color is set C 

to cyan. 
WFS_CIM_GUIDANCE_MAGENTA The light indicator color is set C 

to magenta. 
WFS_CIM_GUIDANCE_WHITE The light indicator color is set C 

to white.  
WFS_CIM_GUIDANCE_ENTRY The light indicator is set D 

to the entry state. 
WFS_CIM_GUIDANCE_EXIT The light indicator is set D 

to the exit state. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALID_PORT An attempt to set a guidance light to a new 

value was invalid because the guidance light 
does not exist. 

Events Only the generic events defined in [Ref. 1] can be generated by this command: 



CWA 16926-15:2020 (E) 

99 

Comments Guidance light support was added into the CIM primarily to support guidance lights for 
workstations where more than one instance of a CIM is present. The original SIU guidance light 
mechanism was not able to manage guidance lights for workstations with multiple CIMs. This 
command can also be used to set the status of the CIM guidance lights when only one instance of 
a CIM is present. 

The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order 
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be 
used. 



CWA 16926-15:2020 (E) 

100 

6.18 WFS_CMD_CIM_CONFIGURE_NOTE_READER 

Description This command is used to configure the currency description configuration data into the banknote 
reader module. The format and location of the configuration data is vendor and/or hardware 
dependent. 

Input Param LPWFSCIMCONFIGURENOTEREADER lpConfigureNoteReader; 
typedef struct _wfs_cim_configure_note_reader 
 { 
 BOOL     bLoadAlways; 
 } WFSCIMCONFIGURENOTEREADER, *LPWFSCIMCONFIGURENOTEREADER; 

bLoadAlways 
If set to TRUE, the Service Provider loads the currency description data into the note reader, even 
if it is already loaded. 

Output Param LPWFSCIMCONFIGURENOTEREADEROUT lpConfigureNoteReaderOut; 
typedef struct _wfs_cim_configure_note_reader_out 
 { 
 BOOL     bRebootNecessary; 
 } WFSCIMCONFIGURENOTEREADEROUT, *LPWFSCIMCONFIGURENOTEREADEROUT; 

bRebootNecessary 
If set to TRUE, the machine needs a reboot before the note reader can be accessed again. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_LOADFAILED The load failed because the device is in a 

state that will not allow the configuration 
data to be loaded at this time, for example on 
some devices there may be notes present in 
the cash units when they should not be. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

101 

6.19 WFS_CMD_CIM_COMPARE_P6_SIGNATURE 

Description This command is used to compare the signatures of a reference banknote with the available 
signatures of the cash-in transactions. 

The reference signatures are created by the WFS_CMD_CIM_CREATE_P6_SIGNATURE 
command. 

The transaction signatures are obtained through the WFS_INF_CIM_GET_P6_SIGNATURE 
command. 

The signatures (1 to 4) of the reference banknote are typically the signatures of the 4 orientations 
of the banknote. 

The WFS_CMD_CIM_COMPARE_P6_SIGNATURE command may return a single indication 
or a list of indications to the matching signatures, each one associated to a confidence level factor. 
If the Service Provider does not support the confidence level factor, it returns a single indication 
to the best matching signature with the confidence level factor set to zero. 

If the comparison completed with no matching signatures found then the command returns 
WFS_SUCCESS with lppP6SignaturesIndex set to NULL and usCount set to zero. 

This command must be used outside of the cash-in transactions and outside of exchange states. 

Input Param LPWFSCIMP6COMPARESIGNATURE lpP6CompareSignature; 
typedef struct _wfs_cim_P6_compare_signature 
 { 
 LPWFSCIMP6SIGNATURE  *lppP6ReferenceSignatures; 
 LPWFSCIMP6SIGNATURE  *lppP6Signatures; 
 } WFSCIMP6COMPARESIGNATURE, *LPWFSCIMP6COMPARESIGNATURE; 

lppP6ReferenceSignatures 
Pointer to a NULL-terminated array of pointers to WFSCIMP6SIGNATURE structures. 

Each pointer points to the signature corresponding to one orientation of a single reference 
banknote. 

At least one orientation must be provided. If no orientations are provided (this pointer is NULL or 
points to NULL) the command returns WFS_ERR_INVALID_DATA. For a description of the 
WFSCIMP6SIGNATURE structure see the definition of the command 
WFS_CMD_CIM_CREATE_P6_SIGNATURE. 

lppP6Signatures 
Pointer to a NULL-terminated array of pointers to WFSCIMP6SIGNATURE structures. Each 
pointer points to a level 2/3 signature, from the cash-in transactions, to be compared with the 
reference signatures in lppP6ReferenceSignature. 

At least one signature must be provided. If there are no signatures provided (this pointer is NULL 
or points to NULL) the command returns WFS_ERR_INVALID_DATA. 

For a description of the WFSCIMP6SIGNATURE structure see the definition of the command 
WFS_INF_CIM_GET_P6_SIGNATURE. 

Output Param LPWFSCIMP6COMPARERESULT lpP6CompareResult; 
typedef struct _wfs_cim_P6_compare_result 
 { 
 USHORT    usCount; 
 LPWFSCIMP6SIGNATURESINDEX *lppP6SignaturesIndex; 
 } WFSCIMP6COMPARERESULT, *LPWFSCIMP6COMPARERESULT; 

usCount 
Number of WFSCIMP6SIGNATURESINDEX structures returned in lppP6SignaturesIndex. 

lppP6SignaturesIndex 
Pointer to a NULL-terminated array of pointers to WFSCIMP6SIGNATURESINDEX structures. 
This pointer is NULL and usCount is zero when the compare operation completes with no match 
found. 



CWA 16926-15:2020 (E) 

102 

If there are matches found, lppP6SignaturesIndex contains the indexes of the matching signatures 
from the input parameter lppP6Signatures. 

If there is a match found but the Service Provider does not support the confidence level factor, 
lppP6SignaturesIndex contains a single index with usConfidenceLevel set to zero. 

typedef struct _wfs_cim_P6_signatures_index 
 { 
 USHORT    usIndex; 
 USHORT    usConfidenceLevel; 
 ULONG     ulLength; 
 LPVOID    lpComparisonData; 
 } WFSCIMP6SIGNATURESINDEX, *LPWFSCIMP6SIGNATURESINDEX; 

usIndex 
Specifies the index (zero to usNumOfSignatures-1) of the matching signature from the input 
parameter lppP6Signatures. 

usConfidenceLevel 
Specifies the level of confidence for the match found. This value is in a scale 1 - 100, where 
100 is the maximum confidence level. This value is zero if the Service Provider does not 
support the confidence level factor. 

ulLength 
Length of the comparison data in bytes. 

lpComparisonData 
Pointer to vendor dependent comparison result data. This data may be used as justification for 
the signature match or confidence level. This pointer is NULL if no additional comparison 
data is returned. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state. 
WFS_ERR_CIM_INVALIDREFSIG At least one of the reference signatures is 

invalid. The application should prompt the 
operator to carefully retry the creation of the 
reference signatures. 

WFS_ERR_CIM_INVALIDTRNSIG At least one of the transaction signatures is 
invalid. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments Due to the potential for signatures to be large, as well as the possibility that it may be necessary to 
compare the reference signature with a large number of signatures, applications should be aware 
of the amount of data passed as input to this command. In some cases, it may be necessary to 
execute this command more than once, with subsets of the total signatures, and then afterward 
compare the results from each execution. 



CWA 16926-15:2020 (E) 

103 

6.20 WFS_CMD_CIM_POWER_SAVE_CONTROL 

Description This command activates or deactivates the power saving mode. 

If the Service Provider receives another execute command while in power saving mode, the 
Service Provider automatically exits the power saving mode, and executes the requested 
command. If the Service Provider receives an information command while in power saving mode, 
the Service Provider will not exit the power saving mode. 

Input Param LPWFSCIMPOWERSAVECONTROL lpPowerSaveControl; 
typedef struct _wfs_cim_power_save_control 
 { 
 USHORT    usMaxPowerSaveRecoveryTime; 
 } WFSCIMPOWERSAVECONTROL, *LPWFSCIMPOWERSAVECONTROL; 

usMaxPowerSaveRecoveryTime 
Specifies the maximum number of seconds in which the device must be able to return to its 
normal operating state when exiting power save mode. The device will be set to the highest 
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero 
then the device will exit the power saving mode. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_POWERSAVETOOSHORT The power saving mode has not been 

activated because the device is not able to 
resume from the power saving mode within 
the specified 
usMaxPowerSaveRecoveryTime value. 

WFS_ERR_CIM_POWERSAVEMEDIAPRESENT 
The power saving mode has not been 
activated because media is present inside the 
device. 

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_SRVE_CIM_POWER_SAVE_CHANGE The power save recovery time has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

104 

6.21 WFS_CMD_CIM_REPLENISH 

Description This command replenishes items from a single cash unit to multiple cash units. Applications can 
use this command to ensure that there is the optimum number of items in the cassettes by moving 
items from a source cash unit to a target cash unit. This is especially applicable if a replenishment 
cash unit is used for the replenishment and can help to minimize manual replenishment 
operations. 

The WFS_INF_CIM_REPLENISH_TARGET command can be used to determine what cash 
units can be specified as target cash units for a given source cash unit. Any items which are 
removed from the source cash unit that are not of the correct currency ID and value for the target 
cash unit during execution of this command will be returned to the source cash unit. 

The ulCount, ulCashInCount, ulDispensedCount and ulRejectCount returned with the 
WFS_INF_CIM_CASH_UNIT_INFO command will be updated as part of the execution of this 
command. Also for cash recyclers the ulCount, ulDispensedCount and ulRejectCount returned 
with the WFS_INF_CDM_CASH_UNIT_INFO command will be updated as part of the 
execution of this command. 

If the command fails after some items have been moved, the command will complete with an 
appropriate error code, and a WFS_EXEE_CIM_INCOMPLETEREPLENISH event will be sent. 

Input Param LPWFSCIMREP lpReplenish; 
typedef struct _wfs_cim_replenish 
 { 
 USHORT    usNumberSource; 
 LPWFSCIMREPTARGET  *lppReplenishTargets; 
 } WFSCIMREP, *LPWFSCIMREP; 

usNumberSource 
Index number of the logical cash unit from which items are to be removed. This is the index 
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the output 
data of the WFS_INF_CIM_CASH_UNIT_INFO command. 

lppReplenishTargets 
Pointer to a NULL-terminated array of pointers to WFSCIMREPTARGET structures. There must 
be at least one array element: 

typedef struct_wfs_cim_replenish_target 
 { 
 USHORT     usNumberTarget 
 ULONG      ulNumberOfItemsToMove; 
 BOOL      bRemoveAll; 
 } WFSCIMREPTARGET, *LPWFSCIMREPTARGET; 

usNumberTarget 
Index number of the logical cash unit to which items are to be moved. This is the index 
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the 
output data of the WFS_INF_CIM_CASH_UNIT_INFO command. 

ulNumberOfItemsToMove 
The number of items to be moved to the target cash unit. Any items which are removed from 
the source cash unit that are not of the correct currency ID and value for the target cash unit 
during execution of this command will be returned to the source cash unit. This field will be 
ignored if the bRemoveAll parameter is set to TRUE. 

bRemoveAll 
Specifies if all items are to be moved to the target cash unit. Any items which are removed 
from the source cash unit that are not of the correct currency ID and value for the target cash 
unit during execution of this command will be returned to the source cash unit. If TRUE all 
items in the source will be moved, regardless of the ulNumberOfItemsToMove field value. If 
FALSE the number of items specified with ulNumberOfItemsToMove will be moved. 

Output Param LPWFSCIMREPRES lpReplenishResult; 



CWA 16926-15:2020 (E) 

105 

typedef struct _wfs_cim_replenish_result 
 { 
 ULONG     ulNumberOfItemsRemoved; 
 ULONG     ulNumberOfItemsRejected; 
 LPWFSCIMREPTARGETRES  *lppReplenishTargetResults; 
 } WFSCIMREPRES, *LPWFSCIMREPRES; 

ulNumberOfItemsRemoved 
Total number of items removed from the source cash unit including rejected items during 
execution of this command. 

ulNumberOfItemsRejected 
Total number of items rejected during execution of this command. 

lppReplenishTargetResults 
Pointer to a NULL-terminated array of pointers to WFSCIMREPTARGETRES structures. In the 
case where one note type has several releases and these are moved, or where items are moved 
from a multi denomination cash unit to a multi denomination cash unit, each target can receive 
several usNoteID note types. For example: If one single target was specified with the 
lppReplenishTargets input structure, and this target received two different usNoteID note types, 
then the lppReplenishTargetResults array will have two elements. Or if two targets were specified 
and the first target received two different usNoteID note types and the second target received three 
different usNoteID note types, then the lppReplenishTargetResults array will have five elements: 

typedef struct _wfs_cim_replenish_target_result 
 { 
 USHORT    usNumberTarget 
 USHORT    usNoteID; 
 ULONG     ulNumberOfItemsReceived; 
 } WFSCIMREPTARGETRES, *LPWFSCIMREPTARGETRES; 

usNumberTarget 
Index number of the logical cash unit to which items have been moved. This is the index 
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the 
output data of the WFS_INF_CIM_CASH_UNIT_INFO command. 

usNoteID 
Identification of note type. The note ID represents the note identifiers reported by the 
WFS_INF_CIM_BANKNOTE_TYPES command. 

ulNumberOfItemsReceived 
Total number of items received in this target cash unit of the usNoteID note type. A zero value 
will be returned if this target cash unit did not receive any items of this note type, for example 
due to a cash unit or transport jam. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A 

WFS_EXEE_CIM_CASHUNITERROR 
event will be sent with the details. If 
appropriate a 
WFS_EXEE_CIM_INCOMPLETE-
REPLENISH event will also be sent. 

WFS_ERR_CIM_INVALIDCASHUNIT The source or target cash unit specified is 
invalid for this operation. The 
WFS_INF_CIM_REPLENISH_TARGET 
command can be used to determine which 
source or target is valid. 

WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 



CWA 16926-15:2020 (E) 

106 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 

the cash units. 
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit. 
WFS_EXEE_CIM_NOTEERROR An item detection error has occurred. 
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected 

during this operation. 
WFS_EXEE_CIM_INCOMPLETEREPLENISH 

If this command fails with an error code (not 
WFS_SUCCESS) but some items have been 
moved, then the details will be reported with 
this event. This event can only occur once 
per command. 

Comments None. 



CWA 16926-15:2020 (E) 

107 

6.22 WFS_CMD_CIM_SET_CASH_IN_LIMIT 

Description This command specifies the amount/number of items limitation for the current cash-in transaction. 
This command can only be called after the WFS_CMD_CIM_CASH_IN_START command and 
before the first WFS_CMD_CIM_CASH_IN command, otherwise it will fail with the 
WFS_ERR_SEQUENCE_ERROR error. Any command that completes the cash-in transaction 
(i.e. WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_CASH_IN_ROLLBACK, 
WFS_CMD_CIM_RETRACT and WFS_CMD_CIM_RESET commands) will clear the limit. 

This limit is active until the end of the current cash-in transaction. The use of this command is 
optional, however it needs to be called for each cash-in transaction that needs a limitation. 

This command does not disable/enable the recognition of individual note types. The 
WFS_CMD_CIM_CONFIGURE_NOTETYPES command must be used to refuse a certain note 
type during cash-in transactions. 

If WFS_CIM_LIMITMULTIPLE is specified in the fwCashInLimit capability, the command may 
be called multiple times to add to or override amount limits placed on the current cash-in 
transaction; the input parameter descriptions below define whether limits are added or overridden. 
If WFS_CIM_LIMITMULTIPLE is not specified, this command can only be called once per 
cash-in transaction otherwise it will fail with the WFS_ERR_SEQUENCE_ERROR error. 

Input Param LPWFSCIMCASHINLIMIT lpCashInLimit; 

Pointer to the WFSCIMCASHINLIMIT structure. This cash-in limit structure can be used to limit 
the items that can be accepted during the cash-in transaction. The limit set does not include 
counterfeit or suspected counterfeit items which may be detected during such a cash-in 
transaction. If the lpCashInLimit field is set to a NULL pointer there is no specific 
amount/number of items limit for the cash-in transaction and any previously set limits are 
removed. Note that the cash-in limit set by this command may itself be limited by the physical 
cash-in limitation of the device. 

If one or more limit conditions have been set by this command, the limit reached during the 
WFS_CMD_CIM_CASH_IN command will be reported in the lpusReason field of the 
WFS_EXEE_CIM_INPUTREFUSE event. 
typedef struct _wfs_cim_cash_in_limit 
 { 
 ULONG     ulTotalItemsLimit; 
 LPWFSCIMAMOUNTLIMIT  lpAmountLimit; 
 } WFSCIMCASHINLIMIT, *LPWFSCIMCASHINLIMIT; 

ulTotalItemsLimit 
If set to a non-zero value, specifies a limit on the total number of items to be accepted during the 
cash-in transaction. If set to a zero value, this limitation will not be performed. 

This limitation can only be used if WFS_CIM_LIMITBYTOTALITEMS is specified in the 
fwCashInLimit field of the WFS_INF_CIM_CAPABILITIES command. If ulTotalItemsLimit is 
non-zero but not supported the WFS_ERR_UNSUPP_DATA error will be returned and no limit 
will be set. 

This parameter overrides any previously set limit on the total number of items. 

lpAmountLimit 
Pointer to the WFSCIMAMOUNTLIMIT structure. 

This limitation can only be used if WFS_CIM_LIMITBYAMOUNT is reported in the 
fwCashInLimit field of the WFS_INF_CIM_CAPABILITIES command. If lpAmountLimit is not 
NULL but not supported the WFS_ERR_UNSUPP_DATA error will be returned and no limit 
will be set. 

If lpAmountLimit is set to a NULL pointer, this has no impact. 



CWA 16926-15:2020 (E) 

108 

If lpAmountLimit is not NULL, this specifies the maximum amount of the currency specified by 
cCurrencyID which can be accepted in the current cash-in transaction. If the currency has already 
been specified for the current cash-in transaction, the maximum amount is overridden for that 
currency. If the currency has not already been specified, it is added to a set of currency specific 
limits to apply to the cash-in transaction. If any currency limits are specified for the current cash-
in transaction, the handling of other currencies is dependent on whether the 
WFS_CIM_LIMITREFUSEOTHER flag is reported in the fwCashInLimit field of the 
WFS_INF_CIM_CAPABILITIES command. See Comments below for examples. 

typedef struct _wfs_cim_amount_limit 
 { 
 CHAR     cCurrencyID[3]; 
 ULONG     ulAmount; 
 } WFSCIMAMOUNTLIMIT, *LPWFSCIMAMOUNTLIMIT; 

cCurrencyID 
Currency identifier in ISO 4217 format [Ref. 2]. This must not be three ASCII 0x20 
characters. 

ulAmount 
If set to a non-zero value, specifies a limit on the total amount of the cash-in transaction for 
the specified cCurrencyID. This value is expressed in minimum dispense units (see section 
WFS_INF_CIM_CURRENCY_EXP). If set to a zero value, no amount limit will apply to the 
specified currency. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments Where a CIM device can accept multiple currencies, this command can be called several times to 
specify the limits for each individual currency if WFS_CIM_LIMITMULTIPLE is reported in the 
fwCashInLimit capability. The following examples illustrate different limits set on cash-in 
transactions on a CIM device which can accept EUR, GBP and USD and shows that both amount 
and total number of items limits can be specified for a single transaction. 

If the WFS_CIM_LIMITREFUSEOTHER flag is reported in the fwCashInLimit field of the 
WFS_INF_CIM_CAPABILITIES command, if any currency amounts are specified, any 
currencies not specified are refused. If the WFS_CIM_LIMITREFUSEOTHER flag is not 
reported, then unspecified currencies are accepted, therefore a currency may only be completely 
refused if all its note types are disabled using WFS_CMD_CIM_CONFIGURE_NOTETYPES. 

 

Transaction limits WFS_CMD_CIM_SET_CASH_IN_LIMIT calls 
(ulTotalItemsLimit, cCurrencyID, ulAmount) 

EUR 100 or GBP 200 or USD 500 

Maximum number of items allowed limited 
by physical capability 

0, EUR, 100 

0, GBP, 200 

0, USD, 500 

EUR 100 or GBP 200, USD handled per 
WFS_CIM_LIMITREFUSEOTHER 
definition 

Maximum 50 items allowed 

50, EUR, 100 

50, GBP, 200 

USD 500, other currencies handled per 
WFS_CIM_LIMITREFUSEOTHER 
definition 

Maximum number of items allowed limited 
by physical capability 

0, USD, 500 



CWA 16926-15:2020 (E) 

109 

EUR limited by physical capability of the 
device. Other currencies handled per 
WFS_CIM_LIMITREFUSEOTHER 
definition 

0, EUR, 0 

EUR limited by physical capability of the 
device 

GBP 100, USD handled per 
WFS_CIM_LIMITREFUSEOTHER 
definition 

0, EUR, 0 

0, GBP, 100 



CWA 16926-15:2020 (E) 

110 

6.23 WFS_CMD_CIM_CASH_UNIT_COUNT 
Description This command counts the items in the cash unit(s). If it is necessary to move items internally to 

count them, the items should be returned to the cash unit from which they originated before 
completion of the command. If items could not be moved back to the cash unit they originated 
from and did not get rejected, the command will complete with an appropriate error. 

During the execution of this command one WFS_SRVE_CIM_CASHUNITINFOCHANGED 
event will be generated for each cash unit that has been counted successfully, or if the counts have 
changed, even if the overall command fails. 

After completion of this command the number of items rejected can be determined by calling the 
WFS_INF_CIM_CASH_UNIT_INFO command and checking the value of the ulRejectCount 
field within the WFSCIMCASHIN structure and WFSCIMPHCU substructures. The 
ulRejectCount value is incremented by one for each item rejected during execution of this 
command. 

This command is designed to be used on CIM devices where the ulCount cannot be guaranteed to 
be accurate and therefore may need to be automatically counted periodically. Upon successful 
completion, for those cash units that have been counted, the ulCount field within the 
WFSCIMCASHIN structure and its WFSCIMNOTENUMBERLIST and WFSCIMPHCU 
substructures are accurately reported with the WFS_INF_CIM_CASH_UNIT_INFO command. 

Input Param LPWFSCIMCOUNT lpCount; 

If the fwCountActions WFS_CIM_COUNTINDIVIDUAL capability is supported, this structure 
can provide data indicating which cash units are to be counted. If the fwCountActions 
WFS_CIM_COUNTALL capability is supported, this pointer can be NULL, and all cash units 
will be counted. 
typedef struct _wfs_cim_count 
 { 
 USHORT    usCount; 
 LPUSHORT    lpusCUNumList; 
 } WFSCIMCOUNT, *LPWFSCIMCOUNT; 

usCount 
Number of individual logical cash units to be counted. This is also the size of the array contained 
in the lpusCUNumList field. 

lpusCUNumList 
Pointer to an array of USHORT values containing the logical numbers of the individual cash units 
to be counted. All physical cash units which the logical cash unit is composed of will be counted. 
If an invalid logical number is contained in this list, the command will fail with a 
WFS_ERR_CIM_CASHUNITERROR error. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALIDCASHUNIT At least one of the logical cash units 

specified is either invalid or does not support 
being counted. No cash units have been 
counted. 

WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_TOOMANYITEMSTOCOUNT 

There were too many items. The required 
internal position may have been of 
insufficient size. All items should be 
returned to the cash unit from which they 
originated. 

WFS_ERR_CIM_COUNTPOSNOTEMPTY A required internal position is not empty so a 
cash unit count is not possible. 



CWA 16926-15:2020 (E) 

111 

WFS_ERR_CIM_CASHUNITERROR A cash unit caused a problem. A 
WFS_EXEE_CIM_CASHUNITERROR 
event will be posted with the details. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 

The counting of a cash unit has completed or 
the counts have changed. 

WFS_SRVE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 
the cash units. 

WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit. 
WFS_EXEE_CIM_NOTEERROR An item detection error has occurred. 
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected 

during this operation. 

Comments None. 



CWA 16926-15:2020 (E) 

112 

6.24 WFS_CMD_CIM_DEVICE_LOCK_CONTROL 

Description This command can be used to lock or unlock a CIM device, it can also be used to lock or unlock 
one or more cash units. 

During normal device operation the device and cash units will be locked and removal will not be 
possible. If supported the device or cash units can be unlocked, ready for removal. In this situation 
the device will still remain online and cash-in or dispense operations will be possible, as long as 
the device or cash units are not physically removed from their normal operating position. 

If the lock action is specified and the device or cash units are already locked, or if the unlock 
action is specified and the device or cash units are already unlocked then the action will complete 
successfully. 

Once a cash unit has been removed and reinserted it will then have a 
WFS_CIM_STATCUMANIP status. This status can only be cleared by issuing a 
WFS_CMD_CIM_START_EXCHANGE/WFS_CMD_CIM_END_EXCHANGE command 
sequence. 

The device and all cash units will also be locked implicitly as part of the execution of the 
WFS_CMD_CIM_END_EXCHANGE or the WFS_CMD_CIM_RESET command. 

Input Param LPWFSCIMDEVICELOCKCONTROL lpDeviceLockControl; 
typedef struct _wfs_cim_device_lock_control 
 { 
 WORD     wDeviceAction; 
 WORD     wCashUnitAction; 
 LPWFSCIMUNITLOCKCONTROL *lppUnitLockControl; 
 } WFSCIMDEVICELOCKCONTROL, *LPWFSCIMDEVICELOCKCONTROL; 

wDeviceAction 
Specifies to lock or unlock the CIM device in its normal operating position. Possible values are: 

Value Meaning 
WFS_CIM_LOCK Locks the CIM device so that it cannot be 

removed from its normal operating position. 
WFS_CIM_UNLOCK Unlocks the CIM device so that it can be 

removed from its normal operating position. 
WFS_CIM_NOLOCKACTION No lock/unlock action will be performed on 

the CIM device. 

wCashUnitAction 
Specifies the type of lock/unlock action on physical cash units as one of the following values: 

Value Meaning 
WFS_CIM_LOCKALL Locks all physical cash units supported. 
WFS_CIM_UNLOCKALL Unlocks all physical cash units supported. 
WFS_CIM_LOCKINDIVIDUAL Locks/unlocks physical cash units 

individually as specified in the 
lppUnitLockControl parameter. 

WFS_CIM_NOLOCKACTION No lock/unlock action will be performed on 
cash units. 

lppUnitLockControl 
Pointer to a NULL-terminated array of pointers to WFSCIMUNITLOCKCONTROL structures; 
only valid in the case where WFS_CIM_LOCKINDIVIDUAL is specified in the 
wCashUnitAction field. Otherwise this field will be ignored. Each element specifies one cash unit 
to be locked/unlocked: 

typedef struct _wfs_cim_unit_lock_control 
 { 
 LPSTR     lpPhysicalPositionName; 
 WORD     wUnitAction; 
 } WFSCIMUNITLOCKCONTROL, *LPWFSCIMUNITLOCKCONTROL; 



CWA 16926-15:2020 (E) 

113 

lpPhysicalPositionName 
Specifies which physical cash unit is to be locked/unlocked. This name is the same as the 
lpPhysicalPositionName in the WFSCIMPHCU structure. Only physical cash units reported 
by the WFS_INF_CIM_DEVICELOCK_STATUS command can be specified. 

wUnitAction 
Specifies whether to lock or unlock the physical cash unit indicated in the 
lpPhysicalPositionName parameter. Possible values are: 

Value Meaning 
WFS_CIM_LOCK Locks the specified cash unit so that it 

cannot be removed from the CIM device. 
WFS_CIM_UNLOCK Unlocks the specified cash unit so that it 

can be removed from the CIM device. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_INVALIDCASHUNIT The cash unit type specified is invalid. 
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state. 
WFS_ERR_CIM_DEVICELOCKFAILURE The device and/or the cash units specified 

could not be locked/unlocked. (e.g. the lock 
action could not be performed because the 
cash unit specified to be locked had been 
removed). 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 

the cash units. 
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit. 

Comments The normal command sequence is as follows: 

Step1: WFS_CMD_CIM_DEVICE_LOCK_CONTROL command is executed to unlock the 
device and some or all of the cash units. 

Step 2: Optionally a WFS_CMD_CIM_CASH_IN_START / WFS_CMD_CIM_CASH_IN / 
WFS_CMD_CIM_CASH_IN_END cash-in transaction or a WFS_CMD_CDM_DISPENSE / 
WFS_CMD_CDM_PRESENT transaction on a cash recycler device may be performed. 

Step 3: The operator was not required to remove any of the cash units, all cash units are still in 
their original position. 

Step 4: WFS_CMD_CIM_DEVICE_LOCK_CONTROL command is executed to lock the device 
and the cash units. 

The relation of lock/unlock control with the WFS_CMD_CIM_START_EXCHANGE and the 
WFS_CMD_CIM_END_EXCHANGE commands is as follows: 

Step 1: WFS_CMD_CIM_DEVICE_LOCK_CONTROL command is executed to unlock the 
device and some or all of the cash units. 

Step 2: Optionally a WFS_CMD_CIM_CASH_IN_START / WFS_CMD_CIM_CASH_IN / 
WFS_CMD_CIM_CASH_IN_END cash-in transaction or a WFS_CMD_CDM_DISPENSE / 
WFS_CMD_CDM_PRESENT transaction on a cash recycler device may be performed. 

Step 3: The operator removes and reinserts one or multiple of the previously unlocked cash units. 
The associated WFS_SRVE_CIM_CASHUNITINFOCHANGED event will be posted and after 
the reinsertion the cash unit will show the status WFS_CIM_STATCUMANIP. 

Step 4: WFS_CMD_CIM_START_EXCHANGE command is executed. 



CWA 16926-15:2020 (E) 

114 

Step 5: WFS_CMD_CIM_END_EXCHANGE command is executed. During this command 
execution the Service Provider implicitly locks the device and all previously unlocked cash units. 
The cash unit status of the previously removed cash unit will be reset. 



CWA 16926-15:2020 (E) 

115 

6.25 WFS_CMD_CIM_SET_MODE 

Description This execute command is used to set the deposit mode for the device and is only applicable for 
Mixed Media processing. The deposit mode determines how the device will process non cash 
items that are inserted. The deposit mode applies to all subsequent transactions. The deposit mode 
is persistent and is unaffected by a device reset by WFS_CMD_CIM_RESET or reset on another 
interface. The command will fail with a WFS_ERR_INVALID_DATA error where an attempt is 
made to set a mode that is not supported. 

Input Param LPWFSCIMSETMODE lpMode; 
typedef struct _wfs_cim_setmode 
 { 
 WORD     wMixedMode; 
 } WFSCIMSETMODE, *LPWFSCIMSETMODE; 

wMixedMode 
Specifies the Mixed Media mode of the device as one of the following values: 

Value Meaning 
WFS_CIM_MIXEDMEDIANOTACTIVE Mixed Media transactions are deactivated. 

This is the default mode. 
WFS_CIM_IPMMIXEDMEDIA Mixed Media transactions are activated in 

combination with the IPM interface as 
defined by the capability wMixedMode. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_MEDIAINACTIVE An item processing transaction is active. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments The commands WFS_CMD_CIM_SET_MODE and WFS_CMD_IPM_SET_MODE are 
equivalent; an application can use either to control the Mixed Media mode. If the requested mode 
is already active WFS_CMD_CIM_SET_MODE command returns with WFS_SUCCESS. 



CWA 16926-15:2020 (E) 

116 

6.26 WFS_CMD_CIM_PRESENT_MEDIA 

Description This command opens the shutter and presents items to be taken by the customer. The shutter is 
automatically closed after the media is taken. The command can be called after a 
WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_ROLLBACK, WFS_CMD_CIM_RESET or 
WFS_CMD_CIM_CREATE_P6_SIGNATURE command and can be used with explicit and 
implicit shutter control. The command is only valid on positions where fwUsage reported by the 
WFS_INF_CIM_POSITION_CAPABILITIES command is WFS_CIM_POSROLLBACK or 
WFS_CIM_POSREFUSE and where bPresentControl reported by the 
WFS_INF_CIM_POSITION_CAPABILITIES command is FALSE. 

This command cannot be used to present items stacked through the CDM interface. Where this is 
attempted the command fails with a WFS_ERR_SEQUENCE_ERROR error. 

Mixed Media Mode: 

If the device is operating in Mixed Media mode (WFSCIMSTATUS.wMixedMode == 
WFS_CIM_IPMMIXEDMEDIA) this command will not perform any operation unless the 
WFS_CMD_IPM_PRESENT_MEDIA command is called or has already been called on the IPM 
interface. Shutter control on devices that support Mixed Media processing is always implicit. 

Input Param LPWFSCIMPRESENT lpPresent; 

If the input parameter is NULL then all refused items are returned from all positions in a sequence 
determined by the Service Provider. 
typedef struct _wfs_cim_present 
 { 
 WORD     fwPosition; 
 } WFSCIMPRESENT, *LPWFSCIMPRESENT; 

fwPosition 
Describes the position where the media is to be presented as one of the following values: 

Value Meaning 
WFS_CIM_POSNULL The default configuration information should 

be used. 
WFS_CIM_POSINLEFT Present items to the left input position. 
WFS_CIM_POSINRIGHT Present items to the right input position. 
WFS_CIM_POSINCENTER Present items to of the center input position. 
WFS_CIM_POSINTOP Present items to the top input position. 
WFS_CIM_POSINBOTTOM Present items to the bottom input position. 
WFS_CIM_POSINFRONT Present items to the front input position. 
WFS_CIM_POSINREAR Present items to the rear input position. 
WFS_CIM_POSOUTLEFT Present items to the left output position. 
WFS_CIM_POSOUTRIGHT Present items to the right output position. 
WFS_CIM_POSOUTCENTER Present items to the center output position. 
WFS_CIM_POSOUTTOP Present items to the top output position. 
WFS_CIM_POSOUTBOTTOM Present items to the bottom output position. 
WFS_CIM_POSOUTFRONT Present items to the front output position. 
WFS_CIM_POSOUTREAR Present items to of the rear output position. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported or is 

not a valid position for this command. 
WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open. 
WFS_ERR_CIM_NOITEMS There were no items to present at the 

specified position. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED 

Foreign items have been detected in the 
input position. 



CWA 16926-15:2020 (E) 

117 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user. 

This event is only generated if the 
bItemsTakenSensor field returned in the 
capabilities information is TRUE. 

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be 
taken. 

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 
The shutter status has changed. 

Comments None. 



CWA 16926-15:2020 (E) 

118 

6.27 WFS_CMD_CIM_DEPLETE 

Description This command removes items from multiple cash units to a single cash unit. Applications can use 
this command to ensure that there is the optimum number of items in the cassettes by moving 
items from source cash units to a target cash unit. This is especially applicable if surplus items are 
removed from multiple recycle cash units to a replenishment cash unit and can help to minimize 
manual replenishment operations. 

The WFS_INF_CIM_DEPLETE_SOURCE command can be used to determine what cash units 
can be specified as source cash units for a given target cash unit. 

The ulCount, ulCashInCount, ulDispensedCount and ulRejectCount returned with the 
WFS_INF_CIM_CASH_UNIT_INFO command will be updated as part of the execution of this 
command. Also for cash recyclers the ulCount, ulDispensedCount and ulRejectCount returned 
with the WFS_INF_CDM_CASH_UNIT_INFO command will be updated as part of the 
execution of this command. 

If the command fails after some items have been moved, the command will complete with an 
appropriate error code, and a WFS_EXEE_CIM_INCOMPLETEDEPLETE event will be sent. 

Input Param LPWFSCIMDEP lpDeplete; 
typedef struct _wfs_cim_deplete 
 { 
 LPWFSCIMDEPSOURCE  *lppDepleteSources; 
 USHORT    usNumberTarget; 
 } WFSCIMDEP, *LPWFSCIMDEP; 

lppDepleteSources 
Pointer to a NULL-terminated array of pointers to WFSCIMDEPSOURCE structures. There must 
be at least one WFSCIMDEPSOURCE structure: 

typedef struct_wfs_cim_deplete_source 
 { 
 USHORT     usNumberSource; 
 ULONG      ulNumberOfItemsToMove; 
 BOOL      bRemoveAll; 
 } WFSCIMDEPSOURCE, *LPWFSCIMDEPSOURCE; 

usNumberSource 
Index number of the logical cash unit from which items are to be removed. This is the index 
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the 
output data of the WFS_INF_CIM_CASH_UNIT_INFO command. 

ulNumberOfItemsToMove 
The number of items to be moved from the source cash unit. This must be equal to or less than 
the count of items reported for the cash unit specified by usNumberSource. This field will be 
ignored if the bRemoveAll parameter is set to TRUE. 

bRemoveAll 
Specifies if all items are to be moved from the source cash unit. If TRUE all items in the 
source will be moved, regardless of the ulNumberOfItemsToMove field value. If FALSE the 
number of items specified with ulNumberOfItemsToMove will be moved. 

usNumberTarget 
Index number of the logical cash unit to which items are to be moved. This is the index number 
identifier defined in the usNumber field of the WFSCIMCASHIN structure of the output data of 
the WFS_INF_CIM_CASH_UNIT_INFO command. 

Output Param LPWFSCIMDEPRES lpDepleteResult; 
typedef struct _wfs_cim_deplete_result 
 { 
 ULONG     ulNumberOfItemsReceived; 
 ULONG     ulNumberOfItemsRejected; 
 LPWFSCIMDEPSOURCERES  *lppDepleteSourceResults; 
 } WFSCIMDEPRES, *LPWFSCIMDEPRES; 

ulNumberOfItemsReceived 
Total number of items received in the target cash unit during execution of this command. 



CWA 16926-15:2020 (E) 

119 

ulNumberOfItemsRejected 
Total number of items rejected during execution of this command. 

lppDepleteSourceResults 
Pointer to a NULL-terminated array of pointers to WFSCIMDEPSOURCERES structures. In the 
case where one item type has several releases and these are moved, or where items are moved 
from a multi denomination cash unit to a multi denomination cash unit, each source can move 
several usNoteID item types. For example: If one single source was specified with the 
lppDepleteSources input structure, and this source moved two different usNoteID item types, then 
the lppDepleteSourceResults array will have two elements. Or if two sources were specified and 
the first source moved two different usNoteID item types and the second source moved three 
different usNoteID item types, then the lppDepleteSourceResults array will have five elements: 

typedef struct _wfs_cim_deplete_source_result 
 { 
 USHORT    usNumberSource; 
 USHORT    usNoteID; 
 ULONG     ulNumberOfItemsRemoved; 
 } WFSCIMDEPSOURCERES, *LPWFSCIMDEPSOURCERES; 

usNumberSource 
Index number of the logical cash unit from which items have been removed. This is the index 
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the 
output data of the WFS_INF_CIM_CASH_UNIT_INFO command. 

usNoteID 
Identification of item type. The note ID represents the item identifiers reported by the 
WFS_INF_CIM_BANKNOTE_TYPES command. 

ulNumberOfItemsRemoved 
Total number of items removed from this source cash unit of the usNoteID item type. A zero 
value will be returned if this source cash unit did not move any items of this item type, for 
example due to a cash unit or transport jam. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A 

WFS_EXEE_CIM_CASHUNITERROR 
event will be sent with the details. If 
appropriate a 
WFS_EXEE_CIM_INCOMPLETE-
DEPLETE event will also be sent. 

WFS_ERR_CIM_INVALIDCASHUNIT The source or target cash unit specified is 
invalid for this operation. The 
WFS_INF_CIM_DEPLETE_SOURCE 
command can be used to determine which 
source or target is valid. 

WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this 
command: 

Value Meaning 
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of 

the cash units. 
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit. 
WFS_EXEE_CIM_NOTEERROR An item detection error has occurred. 
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected 

during this operation. 
WFS_EXEE_CIM_INCOMPLETEDEPLETE If this command fails with an error code (not 

WFS_SUCCESS) but some items have been 
moved, then the details will be reported with 
this event. This event can only occur once 
per command. 

Comments None. 



CWA 16926-15:2020 (E) 

120 

6.28 WFS_CMD_CIM_SET_BLACKLIST 

Description This command is used to set all blacklist information. This list is persistent. Information set by 
this command overrides any existing blacklist or classification list, although it is not 
recommended that an application use both this command and 
WFS_CMD_CIM_SET_CLASSIFICATION_LIST to avoid overlap and confusion. 

Input Param This parameter should be set to NULL if the application wishes to empty the blacklist. 

LPWFSCIMBLACKLIST lpBlacklist; 

The LPWFSCIMBLACKLIST structure is defined in the documentation of the 
WFS_INF_CIM_GET_BLACKLIST command. 

lpszVersion 
This is an application defined Unicode string that sets the version identifier of the blacklist. This 
can be set to NULL if it has no version identifier. 

usCount 
Number of pointers to WFSCIMBLACKLISTELEMENT structures returned in 
lppBlacklistElements. 

lppBlacklistElements 
Pointer to an array of pointers to WFSCIMBLACKLISTELEMENT structures. Each element 
represents a serial number, currency and value combination that a banknote will be matched 
against to determine if it is blacklisted. 

The WFSCIMBLACKLISTELEMENT structure is defined in the documentation of the 
WFS_INF_CIM_GET_BLACKLIST command. 

lpszSerialNumber 
This Unicode string defines the serial number or a mask of serial numbers of one blacklist 
element with the defined currency and value. For a definition of the mask see section 4. 

cCurrencyID 
The three character ISO format currency identifier [Ref. 2] of the blacklist element. 

ulValue 
The value of a blacklist element. This field can be set to zero to match all values. 

Output Param None. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments Some classes of counterfeit banknotes have the same or similar serial numbers. By setting a serial 
number blacklist financial institutions can react quickly to a threat from counterfeit banknotes. 



CWA 16926-15:2020 (E) 

121 

6.29 WFS_CMD_CIM_SYNCHRONIZE_COMMAND 

Description This command is used to reduce response time of a command (e.g. for synchronization with 
display) as well as to synchronize actions of the different device classes. This command is 
intended to be used only on hardware which is capable of synchronizing functionality within a 
single device class or with other device classes. 

The list of execute commands which this command supports for synchronization is retrieved in 
the lpdwSynchronizableCommands parameter of the WFS_INF_CIM_CAPABILITIES. 

This command is optional, i.e. any other command can be called without having to call it in 
advance. Any preparation that occurs by calling this command will not affect any other 
subsequent command. However, any subsequent execute command other than the one that was 
specified in the dwCommand input parameter will execute normally and may invalidate the 
pending synchronization. In this case the application should call the 
WFS_CMD_CIM_SYNCHRONIZE_COMMAND again in order to start a synchronization. 

Input Param LPWFSCIMSYNCHRONIZECOMMAND lpSynchronizeCommand; 
typedef struct _wfs_cim_synchronize_command 
 { 
 DWORD     dwCommand; 
 LPVOID    lpCmdData; 
 } WFSCIMSYNCHRONIZECOMMAND, *LPWFSCIMSYNCHRONIZECOMMAND; 

dwCommand 
The command ID of the command to be synchronized and executed next. 

lpCmdData 
Pointer to data or a data structure that represents the parameter that is normally associated with 
the command that is specified in dwCommand. For example, if dwCommand is 
WFS_CMD_CIM_RETRACT then lpCmdData will point to a WFSCIMRETRACT structure. 
This parameter can be NULL if no command input parameter is needed or if this detail is not 
needed to synchronize for the command. 

It will be device-dependent whether the synchronization is effective or not in the case where the 
application synchronizes for a command with this command specifying a parameter but 
subsequently executes the synchronized command with a different parameter. This case should 
not result in an error; however, the preparation effect could be different from what the application 
expects. The application should, therefore, make sure to use the same parameter between 
lpCmdData of this command and the subsequent corresponding execute command. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state. 
WFS_ERR_CIM_COMMANDUNSUPP The command specified in the dwCommand 

field is not supported by the Service 
Provider. 

WFS_ERR_CIM_SYNCHRONIZEUNSUPP The preparation for the command specified 
in the dwCommand with the parameter 
specified in the lpCmdData is not supported 
by the Service Provider. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments For sample flows of this synchronization see the [Ref. 1] Appendix C.  



CWA 16926-15:2020 (E) 

122 

6.30 WFS_CMD_CIM_SET_CLASSIFICATION_LIST 

Description This command is used to specify the entire note classification list. Any items not specified in this 
list will be handled according to normal classification rules. This information is persistent. 
Information set by this command overrides any existing blacklist or classification list, although it 
is not recommended that an application use both this command and 
WFS_CMD_CIM_SET_BLACKLIST to avoid overlap and confusion. 

If a note is reclassified, it is handled as though it was a note of the new classification. For 
example, a fit note reclassified as unfit would be treated as though it were unfit, which may mean 
that the note is not dispensed. 

Reclassification cannot be used to change a note’s classification to a higher level, for example, a 
note recognized as counterfeit by the device cannot be reclassified as genuine. In addition, it is not 
possible to re-classify a level 2 note as level 1. 

If two or more classification elements specify overlapping note definitions, but different usLevel 
values then the first one takes priority. 

Input Param LPWFSCIMCLASSIFICATIONLIST lpClassificationList; 

The LPWFSCIMCLASSIFICATIONLIST structure is defined in 
WFS_INF_CIM_GET_CLASSIFICATION_LIST. This parameter should be set to NULL if the 
application wishes to empty the note classification list. 

Output Param None. 

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. 

Events Only the generic events defined in [Ref. 1] can be generated by this command. 

Comments None. 



CWA 16926-15:2020 (E) 

123 

6.31 WFS_CMD_CIM_PREPARE_PRESENT 

Description In cases where multiple bunches are to be returned under explicit shutter control, this command is 
used for the purpose of moving a remaining bunch to the output position explicitly before using 
the following commands: 

WFS_CMD_CIM_OPEN_SHUTTER 
WFS_CMD_CIM_PRESENT_MEDIA 

The application can tell whether the additional items were left by using 
WFS_INF_CIM_PRESENT_STATUS command. 

This command does not affect the status of the current cash-in transaction. 

Input Param LPWFSCIMMOVEITEMS lpPresent; 
typedef struct _wfs_cim_moveitems 
 { 
 WORD     fwPosition; 
 } WFSCIMMOVEITEMS, *LPWFSCIMMOVEITEMS; 

fwPosition 
Describes the position where the items are to be moved as one of the following values: 

Value Meaning 
WFS_CIM_POSNULL The default configuration information should 

be used. 
WFS_CIM_POSOUTLEFT Move items to the left output position. 
WFS_CIM_POSOUTRIGHT Move items to the right output position. 
WFS_CIM_POSOUTCENTER Move items to the center output position. 
WFS_CIM_POSOUTTOP Move items to the top output position. 
WFS_CIM_POSOUTBOTTOM Move items to the bottom output position. 
WFS_CIM_POSOUTFRONT Move items to the front output position. 
WFS_CIM_POSOUTREAR Move items to the rear output position. 

Output Param None. 

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be 
generated by this command: 

Value Meaning 
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported or is 

not a valid position for this command. 
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty. 
WFS_ERR_CIM_NOITEMS There were no items to present at the 

specified position. 
WFS_ERR_CIM_CASHUNITERROR A cash unit caused a problem. A 

WFS_EXEE_CIM_CASHUNITERROR 
event will be posted with the details. 

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a 
result of this command: 

Value Meaning 
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with the cash unit. 
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected. 
WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected 

during the cash processing operation. 

Comments None. 



CWA 16926-15:2020 (E) 

124 

7. Events 

7.1 WFS_SRVE_CIM_SAFEDOOROPEN 

Description This service event specifies that the safe door has been opened. 

Event Param None. 

Comments None. 



CWA 16926-15:2020 (E) 

125 

7.2 WFS_SRVE_CIM_SAFEDOORCLOSED 

Description This service event specifies that the safe door has been closed. 

Event Param None. 

Comments None. 



CWA 16926-15:2020 (E) 

126 

7.3 WFS_USRE_CIM_CASHUNITTHRESHOLD 

Description This user event is generated when a threshold condition has occurred in one of the logical cash 
units or the threshold condition is removed. If the logical cash unit is a shared cash unit in a 
compound device then this event can also be generated as a result of an operation on another 
device class. 

This event can be triggered either by hardware sensors in the device or by the logical ulCount 
reaching the ulMaximum value as specified in the WFSCIMCASHIN structure. For a cash unit of 
type WFS_CIM_TYPERETRACTCASSETTE, it is also possible that this event can instead be 
triggered by the ulCashInCount reaching the ulMaximum value. For more detail see the 
bRetractNoteCountThresholds field description in the 
WFS_INF_CIM_CASH_UNIT_CAPABILITIES command. 

The application can check if the device has hardware sensors by querying the bHardwareSensors 
field of the WFSCIMPHCUCAPABILITIES structure. If any of the physical cash units associated 
with the logical cash unit have this capability then threshold events based on hardware sensors 
will be triggered if the ulMaximum values are not used and are set to zero. 

In the situation where the cash unit is associated with multiple physical cash units the 
WFS_SRVE_CIM_CASHUNITINFOCHANGED event will be generated when any of the 
physical cash units reaches the threshold. When the final physical cash unit reaches the threshold, 
the WFS_USRE_CIM_CASHUNITTHRESHOLD event as well as the 
WFS_SRVE_CIM_CASHUNITINFOCHANGED event will be generated. 

Event Param LPWFSCIMCASHIN lpCashUnit; 

lpCashUnit 
Pointer to a WFSCIMCASHIN structure, describing the cash unit on which the threshold 
condition occurred. See lpCashUnit->usStatus for the type of condition. For a description of the 
WFSCIMCASHIN structure, see the definition of the WFS_INF_CIM_CASH_UNIT_INFO 
command. 

Comments None. 



CWA 16926-15:2020 (E) 

127 

7.4 WFS_SRVE_CIM_CASHUNITINFOCHANGED 

Description This service event is generated under the following circumstances: 

• It is generated whenever the status of usStatus and/or usPStatus changes. For instance, a 
physical cash unit has been removed or inserted or a physical/logical cash unit has 
become empty or full. 

• This event will also be generated for every cash unit changed in any way (including 
changes to counts, e.g. ulCount, ulRejectCount, ulInitialCount, ulDispensedCount and 
ulPresentedCount) as a result of the following commands: 

WFS_CMD_CIM_SET_CASH_UNIT_INFO 
WFS_CMD_CIM_END_EXCHANGE 

• In addition this event will be generated when a cash unit has been counted during the 
WFS_CMD_CIM_CASH_UNIT_COUNT command execution. 

If the cash unit is a shared cash unit in a compound device then this event can also be generated as 
a result of an operation on another device class. 

When a physical cash unit is removed, the status of the physical cash unit becomes 
WFS_CIM_STATCUMISSING. If there are no physical cash units of the same logical type 
remaining the status of the logical cash unit becomes WFS_CIM_STATCUMISSING. 

When a physical cash unit is inserted and this physical cash unit is of an existing logical cash unit 
both the logical and the physical cash unit structures will be updated. 

If a physical cash unit of a new logical cash unit inserted the cash unit structure reported by the 
last WFS_INF_CIM_CASH_UNIT_INFO command is no longer valid. In that case an 
application should issue a WFS_INF_CIM_CASH_UNIT_INFO command after receiving this 
event to obtain updated cash unit information. 

Event Param LPWFSCIMCASHIN lpCashUnit; 

lpCashUnit 
Pointer to the changed cash unit structure. For a description of the WFSCIMCASHIN structure 
see the definition of the WFS_INF_CIM_CASH_UNIT_INFO command. 

Comments None. 



CWA 16926-15:2020 (E) 

128 

7.5 WFS_SRVE_CIM_TELLERINFOCHANGED 

Description This service event specifies that the counts assigned to the specified teller have been changed. 
This event is only returned as a result of a WFS_CMD_CIM_SET_TELLER_INFO command. 

Event Param LPUSHORT lpusTellerID; 

lpusTellerID 
Pointer to an unsigned short holding the ID of the teller whose counts have been changed. 

Comments None. 



CWA 16926-15:2020 (E) 

129 

7.6 WFS_EXEE_CIM_CASHUNITERROR 

Description This execute event specifies that a cash unit was addressed which caused a problem. 

Event Param LPWFSCIMCUERROR lpCashUnitError; 
typedef struct _wfs_cim_cu_error 
 { 
 WORD     wFailure; 
 LPWFSCIMCASHIN   lpCashUnit; 
 } WFSCIMCUERROR, *LPWFSCIMCUERROR; 

wFailure 
Specifies the kind of failure that occurred in the cash unit. Values are: 

Value Meaning 
WFS_CIM_CASHUNITEMPTY Specified cash unit is empty. 
WFS_CIM_CASHUNITERROR Specified cash unit has malfunctioned. 
WFS_CIM_CASHUNITFULL Specified cash unit is full. 
WFS_CIM_CASHUNITLOCKED The bAppLock field of the 

WFSCIMCASHIN structure has previously 
been set to TRUE and the cash unit remains 
locked. 

WFS_CIM_CASHUNITNOTCONF Specified cash unit is not configured due to 
being removed and/or replaced with a 
different cash unit. 

WFS_CIM_CASHUNITINVALID Specified cash unit is invalid. 
WFS_CIM_CASHUNITCONFIG Attempt to change the setting of a self-

configuring cash unit. 
WFS_CIM_FEEDMODULEPROBLEM A problem has been detected with the 

feeding module. 
WFS_CIM_CASHUNITPHYSICALLOCKED The cash unit could not be unlocked by the 

WFS_CMD_CIM_DEVICE_LOCK_-
CONTROL command and remains 
physically locked. 

WFS_CIM_CASHUNITPHYSICALUNLOCKED 
The cash unit could not be locked by the 
WFS_CMD_CIM_DEVICE_LOCK_-
CONTROL command and remains 
physically unlocked. 

lpCashUnit 
Pointer to the cash unit structure that caused the problem. For a description of the 
WFSCIMCASHIN structure see the definition of the WFS_INF_CIM_CASH_UNIT_INFO 
command. 

Comments None. 



CWA 16926-15:2020 (E) 

130 

7.7 WFS_SRVE_CIM_ITEMSTAKEN 

Description This service event specifies that items presented to the user have been taken. This event may be 
generated at any time. 

Event Param LPWFSCIMPOSITIONINFO lpPositionInfo; 
typedef struct _wfs_cim_position_info 
 { 
 WORD     wPosition; 
 WORD     wAdditionalBunches; 
 USHORT    usBunchesRemaining; 
 } WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO; 

wPosition 
Specifies the position from which the items have been taken, set to one of the following values: 

Value Meaning 
WFS_CIM_POSINLEFT Items taken from the left input position. 
WFS_CIM_POSINRIGHT Items taken from the right input position. 
WFS_CIM_POSINCENTER Items taken from the center input position. 
WFS_CIM_POSINTOP Items taken from the top input position. 
WFS_CIM_POSINBOTTOM Items taken from the bottom input position. 
WFS_CIM_POSINFRONT Items taken from the front input position. 
WFS_CIM_POSINREAR Items taken from the rear input position. 
WFS_CIM_POSOUTLEFT Items taken from the left output position. 
WFS_CIM_POSOUTRIGHT Items taken from the right output position. 
WFS_CIM_POSOUTCENTER Items taken from the center output position. 
WFS_CIM_POSOUTTOP Items taken from the top output position. 
WFS_CIM_POSOUTBOTTOM Items taken from the bottom output position. 
WFS_CIM_POSOUTFRONT Items taken from the front output position. 
WFS_CIM_POSOUTREAR Items taken from the rear output position. 

wAdditionalBunches 
This value will always be zero within this event. 

usBunchesRemaining 
This value will always be zero within this event. 

Comments None. 



CWA 16926-15:2020 (E) 

131 

7.8 WFS_SRVE_CIM_COUNTS_CHANGED 

Description This service event is generated if the device is a compound device and the counts in a shared cash 
unit have changed as a result of an operation on the other device class other than as a result of an 
operation that explicitly sets counts. For example, WFS_CMD_CDM_SET_CASH_UNIT_INFO 
and WFS_CMD_CDM_END_EXCHANGE commands on the CDM and 
WFS_CMD_IPM_SET_MEDIA_BIN_INFO command on the IPM. 

Event Param LPWFSCIMCOUNTSCHANGED lpCountsChanged; 
typedef struct _wfs_cim_counts_changed 
 { 
 USHORT    usCount; 
 LPUSHORT    lpusCUNumList; 
 } WFSCIMCOUNTSCHANGED, *LPWFSCIMCOUNTSCHANGED; 

usCount 
The size of lpusCUNumList. 

lpusCUNumList 
A list of the usNumber values of the cash units whose counts have changed. 

Comments None. 



CWA 16926-15:2020 (E) 

132 

7.9 WFS_EXEE_CIM_INPUTREFUSE 

Description This execute event specifies that the device has refused either a portion or the entire amount of the 
cash-in order. 

Event Param LPUSHORT lpusReason; 

lpusReason 
Pointer to an USHORT holding the reason for refusing a part of the amount. Possible values are: 

Value Meaning 
WFS_CIM_CASHINUNITFULL Cash unit is full. 
WFS_CIM_INVALIDBILL Recognition of the items took place, but one 

or more of the items are invalid. 
WFS_CIM_NOBILLSTODEPOSIT There are no items in the input area. 
WFS_CIM_DEPOSITFAILURE A deposit has failed for a reason not covered 

by the other reasons and the failure is not a 
fatal hardware problem, for example failing 
to pick an item from the input area. 

WFS_CIM_COMMINPCOMPFAILURE Failure of a common input component which 
is shared by all cash units. 

WFS_CIM_STACKERFULL The intermediate stacker is full. 
WFS_CIM_FOREIGN_ITEMS_DETECTED Foreign items have been detected in the 

input position. 
WFS_CIM_INVALIDBUNCH Recognition of the items did not take place. 

The bunch of notes inserted is invalid, e.g. it 
is too large or was inserted incorrectly. 

WFS_CIM_COUNTERFEIT One or more counterfeit items have been 
detected and refused. This is only applicable 
where notes are not classified as level 2 and 
the device is capable of differentiating 
between invalid and counterfeit items. 

WFS_CIM_LIMITOVERTOTALITEMS Number of items count exceeded the 
limitation set with the 
WFS_CMD_CIM_SET_CASH_IN_LIMIT 
command. 

WFS_CIM_LIMITOVERAMOUNT Amount exceeded the limitation set with the 
WFS_CMD_CIM_SET_CASH_IN_LIMIT 
command. 

Comments None. 



CWA 16926-15:2020 (E) 

133 

7.10 WFS_SRVE_CIM_ITEMSPRESENTED 

Description This service event specifies that items have been presented to the output position, and the shutter 
has been opened to allow the user to take the items. 

Event Param LPWFSCIMPOSITIONINFO lpPositionInfo; 
typedef struct _wfs_cim_position_info 
 { 
 WORD     wPosition; 
 WORD     wAdditionalBunches; 
 USHORT    usBunchesRemaining; 
 } WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO; 

wPosition 
Specifies the position from which the items have been presented, set to one of the following 
values: 

Value Meaning 
WFS_CIM_POSOUTLEFT Items presented at the left output position. 
WFS_CIM_POSOUTRIGHT Items presented at the right output position. 
WFS_CIM_POSOUTCENTER Items presented at the center output position. 
WFS_CIM_POSOUTTOP Items presented at the top output position. 
WFS_CIM_POSOUTBOTTOM Items presented at the bottom output 

position. 
WFS_CIM_POSOUTFRONT Items presented at the front output position. 
WFS_CIM_POSOUTREAR Items presented at the rear output position. 
WFS_CIM_POSINLEFT Items presented at the left input position. 
WFS_CIM_POSINRIGHT Items presented at the right input position. 
WFS_CIM_POSINCENTER Items presented at the center input position. 
WFS_CIM_POSINTOP Items presented at the top input position. 
WFS_CIM_POSINBOTTOM Items presented at the bottom input position. 
WFS_CIM_POSINFRONT Items presented at the front input position. 
WFS_CIM_POSINREAR Items presented at the rear input position. 

wAdditionalBunches 
Specifies whether or not additional bunches of items are remaining to be presented as a result of 
the current operation, set to one of the following values: 

Value Meaning 
WFS_CIM_ADDBUNCHNONE No additional bunches remain. 
WFS_CIM_ADDBUNCHONEMORE At least one additional bunch remains. 
WFS_CIM_ADDBUNCHUNKNOWN It is unknown whether additional bunches 

remain. 

usBunchesRemaining 
If wAdditionalBunches is WFS_CIM_ADDBUNCHONEMORE, specifies the number of 
additional bunches of items remaining to be presented as a result of the current operation. If the 
number of additional bunches is at least one, but the precise number is unknown, 
usBunchesRemaining will be WFS_CIM_NUMBERUNKNOWN. For any other value of 
wAdditionalBunches, usBunchesRemaining will be zero. 

Comments None. 



CWA 16926-15:2020 (E) 

134 

7.11 WFS_SRVE_CIM_ITEMSINSERTED 

Description This service event specifies that items have been inserted into the cash-in position by the user. 
This event may be generated at any time. 

Event Param LPWFSCIMPOSITIONINFO lpPositionInfo; 
typedef struct _wfs_cim_position_info 
 { 
 WORD     wPosition; 
 WORD     wAdditionalBunches; 
 USHORT    usBunchesRemaining; 
 } WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO; 

wPosition 
Specifies the position where the items have been inserted, set to one of the following values: 

Value Meaning 
WFS_CIM_POSINLEFT Items detected in the left input position. 
WFS_CIM_POSINRIGHT Items detected in the right input position. 
WFS_CIM_POSINCENTER Items detected in the center input position. 
WFS_CIM_POSINTOP Items detected in the top input position. 
WFS_CIM_POSINBOTTOM Items detected in the bottom input position. 
WFS_CIM_POSINFRONT Items detected in the front input position. 
WFS_CIM_POSINREAR Items detected in the rear input position. 
WFS_CIM_POSOUTLEFT Items detected in the left output position. 
WFS_CIM_POSOUTRIGHT Items detected in the right output position. 
WFS_CIM_POSOUTCENTER Items detected in the center output position. 
WFS_CIM_POSOUTTOP Items detected in the top output position. 
WFS_CIM_POSOUTBOTTOM Items detected in the bottom output position. 
WFS_CIM_POSOUTFRONT Items detected in the front output position. 
WFS_CIM_POSOUTREAR Items detected in the rear output position. 

wAdditionalBunches 
This value will always be zero within this event. 

usBunchesRemaining 
This value will always be zero within this event. 

Comments None. 



CWA 16926-15:2020 (E) 

135 

7.12 WFS_EXEE_CIM_NOTEERROR 

Description This execute event specifies the reason for an item detection error during an operation which 
involves moving items. 

Event Param LPUSHORT lpusReason; 

lpusReason 
Pointer to an USHORT holding the reason for the item detection error. Possible values are: 

Value Meaning 
WFS_CIM_DOUBLENOTEDETECTED Double notes have been detected. 
WFS_CIM_LONGNOTEDETECTED A long note has been detected. 
WFS_CIM_SKEWEDNOTE A skewed note has been detected. 
WFS_CIM_INCORRECTCOUNT An item counting error has occurred. 
WFS_CIM_NOTESTOOCLOSE Notes have been detected as being too close. 
WFS_CIM_OTHERNOTEERROR An item error not covered by the other 

values has been detected. 
WFS_CIM_SHORTNOTEDETECTED A short note has been detected. 

Comments None. 



CWA 16926-15:2020 (E) 

136 

7.13 WFS_EXEE_CIM_SUBCASHIN 

Description This execute event is generated when one of the sub cash-in operations into which the cash-in 
operation was divided has finished successfully. 

Event Param LPWFSCIMNOTENUMBERLIST lpNoteNumberList; 

lpNoteNumberList 
Pointer to a WFSCIMNOTENUMBERLIST structure holding a list of banknote numbers which 
have been identified and accepted during execution of the sub cash-in. This field will contain the 
banknote numbers of the accepted items. For a description of the WFSCIMNOTENUMBERLIST 
structure see the definition of the WFS_INF_CIM_CASH_UNIT_INFO command. 

Comments None. 



CWA 16926-15:2020 (E) 

137 

7.14 WFS_SRVE_CIM_MEDIADETECTED 

Description This service event is generated if media is detected during a reset (WFS_CMD_CIM_RESET 
command). The parameter on the event specifies the position of the media on completion of the 
reset. If the device has been unable to successfully move the items found then this parameter will 
be NULL. 

Event Param LPWFSCIMITEMPOSITION lpItemPosition; 

For a description of this parameter see the definition of the WFS_CMD_CIM_RESET command. 

Comments None. 



CWA 16926-15:2020 (E) 

138 

7.15 WFS_EXEE_CIM_INPUT_P6 

Description This execute event is generated if level 2 and / or level 3 notes are detected during the cash 
processing operation. 

Event Param LPWFSCIMP6INFO *lppP6Info; 

Pointer to a NULL-terminated array of pointers to WFSCIMP6INFO structures, one structure for 
every level. For the description of the structure see the definition of the 
WFS_INF_CIM_GET_P6_INFO command. 

Comments Note: Although this event can be used to indicate that level 2 /level 3 notes have been detected, 
the information that it provides is limited. The more recent 
WFS_EXEE_CIM_INFO_AVAILABLE event combined with the 
WFS_INF_CIM_GET_ITEM_INFO and WFS_INF_CIM_GET_ALL_ITEM_INFO commands 
provide much more information. It is therefore recommended for future development that 
WFS_EXEE_CIM_INFO_AVAILABLE should be used in preference to this event in order to 
support the greatest functionality, and this event supported where backwards compatibility is 
necessary. 



CWA 16926-15:2020 (E) 

139 

7.16 WFS_EXEE_CIM_INFO_AVAILABLE 

Description This execute event is generated when information is available for items detected during the cash 
processing operation. 

Event Param LPWFSCIMITEMINFOSUMMARY *lppItemInfoSummary; 

Pointer to a NULL-terminated array of pointers to WFSCIMITEMINFOSUMMARY structures, 
one structure for every level. 
typedef struct _wfs_cim_item_info_summary 
 { 
 USHORT    usLevel; 
 USHORT    usNumOfItems; 
 } WFSCIMITEMINFOSUMMARY, *LPWFSCIMITEMINFOSUMMARY; 

usLevel 
Defines the note level. Possible values are: 

Value Meaning 
WFS_CIM_LEVEL_1 Information for level 1 notes. 
WFS_CIM_LEVEL_2 Information for level 2 notes. 
WFS_CIM_LEVEL_3 Information for level 3 notes. 
WFS_CIM_LEVEL_4 Information for level 4 notes. 

usNumOfItems 
Number of items classified as usLevel which have information available. 

Comments None. 



CWA 16926-15:2020 (E) 

140 

7.17 WFS_EXEE_CIM_INSERTITEMS 

Description This event notifies the application when the device is ready for the user to insert items. 

Event Param None. 

Comments None. 



CWA 16926-15:2020 (E) 

141 

7.18 WFS_SRVE_CIM_DEVICEPOSITION 

Description This service event reports that the device has changed its position status. 

Event Param LPWFSCIMDEVICEPOSITION lpDevicePosition; 
typedef struct _wfs_cim_device_position 
 { 
 WORD     wPosition; 
 } WFSCIMDEVICEPOSITION, *LPWFSCIMDEVICEPOSITION; 

wPosition 
Position of the device as one of the following values: 

Value Meaning 
WFS_CIM_DEVICEINPOSITION The device is in its normal operating 

position. 
WFS_CIM_DEVICENOTINPOSITION The device has been removed from its 

normal operating position. 
WFS_CIM_DEVICEPOSUNKNOWN The position of the device cannot be 

determined. 

Comments None. 



CWA 16926-15:2020 (E) 

142 

7.19 WFS_SRVE_CIM_POWER_SAVE_CHANGE 

Description This service event specifies that the power save recovery time has changed. 

Event Param LPWFSCIMPOWERSAVECHANGE lpPowerSaveChange; 
typedef struct _wfs_cim_power_save_change 
 { 
 USHORT    usPowerSaveRecoveryTime; 
 } WFSCIMPOWERSAVECHANGE, *LPWFSCIMPOWERSAVECHANGE; 

usPowerSaveRecoveryTime 
Specifies the actual number of seconds required by the device to resume its normal operational 
state. This value is zero if the device exited the power saving mode. 

Comments If another device class compounded with this device enters into a power saving mode, this device 
will automatically enter into the same power saving mode and this event will be generated. 



CWA 16926-15:2020 (E) 

143 

7.20 WFS_EXEE_CIM_INCOMPLETEREPLENISH 

Description This execute event is generated when some items had been moved before the 
WFS_CMD_CIM_REPLENISH command failed with an error code (not WFS_SUCCESS), but 
some items were moved then the details will be reported with this event. This event can only 
occur once per command. 

Event Param LPWFSCIMINCOMPLETEREPLENISH lpIncompleteReplenish; 
typedef struct _wfs_cim_incomplete_replenish 
 { 
 LPWFSCIMREPRES   lpReplenish; 
 } WFSCIMINCOMPLETEREPLENISH, *LPWFSCIMINCOMPLETEREPLENISH; 

lpReplenish 
The WFSCIMREPRES structure is defined in the description of the command 
WFS_CMD_CIM_REPLENISH. Note that in this case the values in this structure report the 
amount and number of each denomination that have actually been moved during the 
replenishment command. 

Comments None. 



CWA 16926-15:2020 (E) 

144 

7.21 WFS_EXEE_CIM_INCOMPLETEDEPLETE 

Description This execute event is generated when some items had been moved before the 
WFS_CMD_CIM_DEPLETE command failed with an error code (not WFS_SUCCESS), but 
some items were moved. In this case the details will be reported with this event. This event can 
only occur once per command. 

Event Param LPWFSCIMINCOMPLETEDEPLETE lpIncompleteDeplete; 
typedef struct _wfs_cim_incomplete_deplete 
 { 
 LPWFSCIMDEPRES   lpDeplete; 
 } WFSCIMINCOMPLETEDEPLETE, *LPWFSCIMINCOMPLETEDEPLETE; 

lpDeplete 
The WFSCIMDEPRES structure is defined in the description of the command 
WFS_CMD_CIM_DEPLETE. Note that in this case the values in this structure report the amount 
and number of each denomination that have actually been moved during the depletion command. 

Comments None. 



CWA 16926-15:2020 (E) 

145 

7.22 WFS_SRVE_CIM_SHUTTERSTATUSCHANGED 

Description Within the limitations of the hardware sensors this service event is generated whenever the status 
of a shutter changes. The shutter status can change because of an explicit, implicit or manual 
operation depending on how the shutter is operated. 

Event Param LPWFSCIMSHUTTERSTATUSCHANGED lpShutterStatusChanged; 
typedef struct _wfs_cim_shutter_status_changed 
 { 
 WORD     fwPosition; 
 WORD     fwShutter; 
 } WFSCIMSHUTTERSTATUSCHANGED, *LPWFSCIMSHUTTERSTATUSCHANGED; 

fwPosition 
Specifies one of the CIM input or output positions whose shutter status has changed as one of the 
following values: 

Value Meaning 
WFS_CIM_POSINLEFT Left input position. 
WFS_CIM_POSINRIGHT Right input position. 
WFS_CIM_POSINCENTER Center input position. 
WFS_CIM_POSINTOP Top input position. 
WFS_CIM_POSINBOTTOM Bottom input position. 
WFS_CIM_POSINFRONT Front input position. 
WFS_CIM_POSINREAR Rear input position. 
WFS_CIM_POSOUTLEFT Left output position. 
WFS_CIM_POSOUTRIGHT Right output position. 
WFS_CIM_POSOUTCENTER Center output position. 
WFS_CIM_POSOUTTOP Top output position. 
WFS_CIM_POSOUTBOTTOM Bottom output position. 
WFS_CIM_POSOUTFRONT Front output position. 
WFS_CIM_POSOUTREAR Rear output position. 

fwShutter 
Specifies the new state of the shutter as one of the following values: 

Value Meaning 
WFS_CIM_SHTCLOSED The shutter is closed. 
WFS_CIM_SHTOPEN The shutter is opened. 
WFS_CIM_SHTJAMMED The shutter is jammed. 
WFS_CIM_SHTUNKNOWN Due to a hardware error or other condition, 

the state of the shutter cannot be determined. 

Comments None. 



CWA 16926-15:2020 (E) 

146 

7.23 WFS_SRVE_CIM_COUNTACCURACYCHANGED 

Description This service event is generated when information about the accuracy of ulCount contained in the 
logical or physical cash unit is changed. 

Event Param LPWFSCIMCASHUNITCOUNTSTATUS lpCashUnitCountStatus; 

 For the description of the structure see the definition of the 
WFS_INF_CIM_CASH_UNIT_COUNT_STATUS command. 

Comments None. 

 

 



CWA 16926-15:2020 (E) 

147 

8. ATM Cash-In Transaction Flow - Application Guidelines 

The following table is a summary of the application flows required given the possible values for bShutterControl 
and bItemsTakenSensor for a successful cash-in transaction. In all cases bPresentControl == TRUE. 

 
 bItemsInsertedSensor == TRUE bItemsInsertedSensor == FALSE 
bShutterControl == TRUE WFS_CMD_CIM_CASH_IN_START 

WFS_CMD_CIM_CASH_IN 
InsertedEvent generated 
WFS_CMD_CIM_CASH_IN_END 

WFS_CMD_CIM_CASH_IN_START 
WFS_CMD_CIM_CASH_IN 
 
WFS_CMD_CIM_CASH_IN_END 

bShutterControl == FALSE WFS_CMD_CIM_CASH_IN_START 
WFS_CMD_CIM_OPEN_SHUTTER 
InsertedEvent generated 
WFS_CMD_CIM_CLOSE_SHUTTER 
WFS_CMD_CIM_CASH_IN 
WFS_CMD_CIM_CASH_IN_END 

WFS_CMD_CIM_CASH_IN_START 
WFS_CMD_CIM_OPEN_SHUTTER 
User Input 
WFS_CMD_CIM_CLOSE_SHUTTER 
WFS_CMD_CIM_CASH_IN 
WFS_CMD_CIM_CASH_IN_END 

The following sections describe the flow of a cash-in transaction on a Self-Service CIM. These application flows 
are provided as guidelines only. 



CWA 16926-15:2020 (E) 

148 

8.1 OK Transaction (Explicit Shutter Control) 

The following table describes a normal cash-in transaction flow where everything works and the shutter is explicitly 
controlled by the application. 

This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE 

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE 

 
Step Customer Application XFS Commands and Events 
1. Customer selects cash-

in operation. 
 WFS_CMD_CIM_CASH_IN_START 

2.  Open the shutter of the input tray. WFS_CMD_CIM_OPEN_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_EXEE_CIM_INSERTITEMS 

3.  Ask the customer to insert money.  
4. Customer inserts 

money. 
  

5. If bItemsInsertedSensor 
== FALSE, confirm 
completion. 

 If bItemsInsertedSensor == TRUE: 
WFS_SRVE_CIM_ITEMSINSERTED 

6.  Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

7.   * WFS_CMD_CIM_CASH_IN initiated 
The bill recognition begins. 

8.   * WFS_CMD_CIM_CASH_IN completion 
9.  Display the number of items 

and/or amount recognized so far. 
 

10.  Ask the customer for further 
actions: 
 
If the customer wants to insert 
more money: 
Repeat from step 2. 
 
If the customer wants to finish the 
transaction: 
Continue with step 11. 
 
If the customer wants to get back 
all items inserted so far see table 
"Cancellation by Customer 
(Explicit Shutter Control)" 

 

11.  Transport the money into the cash 
units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

12.  Credit the money to the customer's 
account. 

 

13.  End of transaction.  



CWA 16926-15:2020 (E) 

149 

8.2 Cancellation by Customer (Explicit Shutter Control) 

The following table describes the flow of a cash-in transaction where the customer wants all the items to be 
returned after recognition. 

This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE 

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == TRUE 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE 

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == FALSE 

 
Step Customer Application XFS Commands and Events 
1.-
10. 

See OK Transaction 
(Explicit Shutter 
Control). 

  

11. Selection: Return all the 
items. 

  

12.  Transport the items recognized to 
the output position. 

WFS_CMD_CIM_CASH_IN_ROLLBACK 

13.  Open shutter. WFS_CMD_CIM_OPEN_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

14.  Request removal of the money.  
15. Customer takes the 

money from the output 
position. 

  

16. If bItemsTakenSensor 
== FALSE, confirm 
completion or use 
application timeout. 

 If bItemsTakenSensor == TRUE: 
WFS_SRVE_CIM_ITEMSTAKEN 

17.  Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

18.  End of transaction.  



CWA 16926-15:2020 (E) 

150 

8.3 Stacker Becomes Full (Explicit Shutter Control) 

The following table describes the flow of a cash-in transaction when the stacker becomes full during the transaction 
and the shutter is explicitly controlled by the application. This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE 

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == TRUE 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE 

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == FALSE 

 
Step Customer Application XFS Commands and Events 
1.-6. See OK Transaction 

(Explicit Shutter 
Control). 

  

7.   * WFS_CMD_CIM_CASH_IN initiated. 
The bill recognition begins. 

8.   WFS_EXEE_CIM_INPUTREFUSE 
(WFS_CIM_STACKERFULL) 
… 
* WFS_CMD_CIM_CASH_IN completes 
with WFS_SUCCESS 

9.  Open shutter. WFS_CMD_CIM_OPEN_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

10.  Ask the customer to remove the 
excess items. 

 

11. Customer removes 
excess money. 

  

12. If bItemsTakenSensor 
== FALSE: confirm 
completion or use 
application timeout. 

 If bItemsTakenSensor == TRUE: 
WFS_SRVE_CIM_ITEMSTAKEN 

13.  Close shutter WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

14.  Display the amount recognized so 
far and tell the customer that the 
stacker is full. 

 

15.  Ask the customer for further 
actions: 
 
If the customer wants to deposit 
the amount: 
Continue with step 16. 
 
If the customer wants to get back 
all items inserted so far see table 
"Cancellation by Customer 
(Explicit Shutter Control)" 

 

16.  Transport the money into the cash 
units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 



CWA 16926-15:2020 (E) 

151 

17.  Ask the customer if the customer 
wants to deposit more money. 
 
If the customer wants to deposit 
more: 
Repeat from step 1. 
 
If the customer wants to finish the 
transaction: 
Continue with step 18. 

 

18.  Credit the money to the customer's 
account. 

 

19.  End of transaction.  



CWA 16926-15:2020 (E) 

152 

8.4 Bill Recognition Error (Explicit Shutter Control) 

The following table describes the flow of a cash-in transaction when the items are rejected as unrecognized during 
the transaction and the shutter is explicitly controlled by the application. 

This flow covers the following cases: 
• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE 

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == TRUE 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE 

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == FALSE 
 

Step Customer Application XFS Commands and Events 
1.-6. See OK Transaction 

(Explicit Shutter 
Control). 

  

7.   * WFS_CMD_CIM_CASH_IN initiated. 
The bill recognition begins. 
 

8.   WFS_EXEE_CIM_INPUTREFUSE 
(WFS_CIM_INVALIDBILL) 
… 
* WFS_CMD_CIM_CASH_IN completes 
with WFS_SUCCESS 

9.  Open shutter. WFS_CMD_CIM_OPEN_SHUTTER 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPENED) 
WFS_SRVE_CIM_ITEMSPRESENTED 

10.  Tell the customer that the items 
were not recognized and that the 
customer should take the items. 

 

11. Customer removes 
unrecognized money 

  

12. If bItemsTakenSensor 
== FALSE: confirm 
completion or use 
application timeout. 

 If bItemsTakenSensor == TRUE: 
WFS_SRVE_CIM_ITEMSTAKEN 

13.  Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

14.  Display the amount recognized so 
far. 

 

15.  Ask the customer for further 
actions: 
 
If the customer wants to deposit 
the amount: 
Continue with step 16. 
 
If the customer wants to get back 
all items inserted so far see table 
"Cancellation by Customer 
(Explicit Shutter Control)" 

 

16.  Transport the money into the cash 
units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

17.  Credit the money to the customer's 
account. 

 

18.  End of transaction.  



CWA 16926-15:2020 (E) 

153 

8.5 OK Transaction (Explicit Shutter Control) - Level 2 and 3 Note classification 
Supported 

This section describes a possible cash-in transaction where Level 2 and 3 Note classification is supported and 
everything works fine when level 2 / level 3 notes are inserted. 

This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE 

 
Step Customer Application XFS Command 
1. Select function cash-in. Open the shutter of the input tray. WFS_CMD_CIM_CASH_IN_START 

WFS_CMD_CIM_OPEN_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_EXEE_CIM_INSERTITEMS 

2.  Ask the customer to insert money.  
3. Customer inserts 

money. 
 WFS_SRVE_CIM_ITEMSINSERTED 

WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
* WFS_CMD_CIM_CASH_IN initiated 
The bill recognition begins. 

4.   WFS_EXEE_CIM_INPUTP6 
* WFS_CMD_CIM_CASH_IN completes 

5.  Get number of level 2 / level 3 
notes. 

WFS_INF_CIM_GET_P6_INFO 

6.  Display the amount recognized so 
far and inform customer that level 
2 / level 3 notes are inserted. 

 

7.  Store signatures of level 2 / level 3 
notes with customer data. 

Call command 
WFS_INF_CIM_GET_P6_SIGNATURE 
once for every signature. 

8.  Ask the customer for further 
actions: 
 
If the customer wants to insert 
more money: 
Repeat from step 2. 
 
If the customer wants to finish the 
transaction: 
Continue with step 9. 
 
If the customer wants to get back 
all items inserted so far see table 
"cancellation by customer" 

 

9.  Transport the money into the cash 
units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

10.  At this point the application should 
decide how to credit the 
appropriate money to the 
customer's account, and inform the 
customer about the amounts of 
level 2 and level 3 notes. 

 

11.  End of transaction.  



CWA 16926-15:2020 (E) 

154 

8.6 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused 
Notes (Explicit Shutter Control) 

The following table describes the flow of a cash-in transaction where items are rejected during the transaction and 
the Service Provider has explicit shutter control. In this case the WFS_CMD_CIM_OPEN_SHUTTER and 
WFS_CMD_CIM_CLOSE_SHUTTER commands are used. Additionally, the number of items refused may be 
greater than the number of items that can be presented at the output position. 

This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == FALSE 

 
Step Customer Application XFS Commands and Events 
1.-6. See OK 

Transaction 
(Explicit 
Shutter 
Control). 

  

7.   * WFS_CMD_CIM_CASH_IN initiated. 
The bill recognition begins. 
 

8.   WFS_EXEE_CIM_INPUTREFUSE 
(WFS_CIM_INVALIDBILL) 
… 
* WFS_CMD_CIM_CASH_IN 
completes with WFS_SUCCESS 

9.  Open shutter. WFS_CMD_CIM_OPEN_SHUTTER 
 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPENED) 
 
WFS_SRVE_CIM_ITEMSPRESENTED 
 
WFS_CMD_CIM_OPEN_SHUTTER 
completes with WFS_SUCCESS 

10.  If there are additional bunches to deliver then 
this can be determined from the output parameter 
of the WFS_SRVE_CIM_ITEMSPRESENTED 
event. 
Tell the customer that the items were not 
accepted, and to take the items. The customer 
should be informed that the items will be 
returned in multiple bunches. 

 

11. Customer 
takes the 
bunch of 
items. 

 WFS_SRVE_CIM_ITEMSTAKEN 

12.  Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
 
WFS_CMD_CIM_CLOSE_SHUTTER 
completes with WFS_SUCCESS 



CWA 16926-15:2020 (E) 

155 

13.  Check if more refused bills need to be taken. The 
wAdditionalBunches and usBunchesRemaining  
fields from the last 
WFS_SRVE_CIM_ITEMSPRESENTED event 
are used to determine this. Note that if more 
items are to be presented, the  
WFS_CMD_CIM_OPEN_SHUTTER in step 9 
will move the next bunch to the output position. 
 
If wAdditionalBunches == 
WFS_CIM_ADDBUNCHONEMORE  
     Repeat steps 9. – 13. 
Else 
     Go to step 14. 

 
 

14.  Display the amount recognized so far.  
15.  Ask the customer for further actions: 

 
If the customer wants to deposit the amount: 
Continue with step 16. 
 
If the customer wants to get back all items 
inserted so far see table "Multiple Bunches 
Returned During 
WFS_CMD_CIM_CASH_IN_ROLLBACK" 

 

16.  Transport the money into the cash units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

17.  Credit the money to the customer's account.  
18.  End of transaction.  

 



CWA 16926-15:2020 (E) 

156 

8.7 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK 
(Explicit Shutter Control) 

The following table describes the flow of a roll back operation where items are rolled back during the transaction 
and the Service Provider has explicit shutter control. In this case the WFS_CMD_CIM_OPEN_SHUTTER and 
WFS_CMD_CIM_CLOSE_SHUTTER commands are used. Additionally, the number of items rolled back may be 
greater than the number of items that can be presented at the output position. 

This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == FALSE 

 
Step Customer Application XFS Commands and Events 
1.-
10. 

See OK 
Transaction 
(Explicit Shutter 
Control). 

  

11. Selection: Return 
all the items. 

  

12.  Transport the items recognized to the 
output position. 

WFS_CMD_CIM_CASH_IN_ROLLBACK 

   WFS_CMD_CIM_CASH_IN_ROLLBACK  
completes with WFS_SUCCESS. 

13.  Open shutter. WFS_CMD_CIM_OPEN_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
 
WFS_SRVE_CIM_ITEMSPRESENTED 
 
WFS_CMD_CIM_OPEN_SHUTTER 
completes with WFS_SUCCESS 

14.  Tell the customer to take the items. The 
customer should be informed that the 
items will be returned in multiple bunches. 
If there are additional bunches to deliver 
then this can be determined from the 
output parameter of the 
WFS_SRVE_CIM_ITEMSPRESENTED 
event. 

 

15. Customer takes the 
bunch of items. 

 WFS_SRVE_CIM_ITEMSTAKEN 

16.  Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
 
WFS_CMD_CIM_CLOSE_SHUTTER 
completes with WFS_SUCCESS 



CWA 16926-15:2020 (E) 

157 

17.  Check if more bills need to be taken. The 
wAdditionalBunches and 
usBunchesRemaining  fields from the last 
WFS_SRVE_CIM_ITEMSPRESENTED 
event is used to determine this. Note that if 
more items are to be presented, the  
WFS_CMD_CIM_OPEN_SHUTTER in 
step 13 will move the next bunch to the 
output position. 
 
If wAdditionalBunches == 
WFS_CIM_ADDBUNCHONEMORE  
     Repeat steps 13. – 17. 
Else 
     Go to step 18. 

 
 

18.  End of transaction.  

 



CWA 16926-15:2020 (E) 

158 

8.8 OK Transaction (Implicit Shutter Control) 

The following table describes a normal cash-in transaction flow where everything works and the shutter is 
implicitly controlled by the Service Provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and 
WFS_CMD_CIM_CLOSE_SHUTTER commands are not explicitly used by the application. 

This flow covers the following cases: 
• bShutterControl == TRUE, bItemsInsertedSensor == TRUE 

• bShutterControl == TRUE, bItemsInsertedSensor == FALSE 
 

Step Customer Application XFS Commands and Events 
1. Customer selects cash-

in operation. 
 WFS_CMD_CIM_CASH_IN_START 

2.   * WFS_CMD_CIM_CASH_IN initiated 
The Service Provider implicitly opens the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_EXEE_CIM_INSERTITEMS event is 
sent when the shutter is fully open and the 
device is ready to begin accepting items. 

3.  Ask the customer to insert money.  
4. Customer inserts 

money. 
  

5.   If bItemsInsertedSensor == TRUE: 
WFS_SRVE_CIM_ITEMSINSERTED 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
The bill recognition begins. 

6.   * WFS_CMD_CIM_CASH_IN command 
completes. 

7.  Display the number of items 
and/or amount recognized so far. 

 

8.  Ask the customer for further 
actions: 
 
If the customer wants to insert 
more money: 
Repeat from step 2. 
 
If the customer wants to finish the 
transaction: 
Continue with step 9. 
 
If the customer wants to get back 
all items inserted so far see table 
"Cancellation by Customer 
(Implicit Shutter Control)" 

 

9. Selection: Finish the 
transaction 

  

10.  Transport the money into the cash 
units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

11.  Credit the money to the customer's 
account. 

 

12.  End of transaction.  



CWA 16926-15:2020 (E) 

159 

8.9 Customer Initiates Returning Of Previously Recognized Items (Implicit 
Shutter Control) 

The following table describes the flow of a cash-in transaction where the customer wants all the items to be 
returned after recognition and the shutter is implicitly controlled by the Service Provider. In this case the 
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used. 

This flow covers the following cases: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE 

 
Step Customer Application XFS Commands and Events 
1.-8. See OK Transaction 

(Implicit Shutter 
Control). 

  

9. Selection: Return all the 
items. 

  

10.  Transport the items recognized to 
the output position. 

WFS_CMD_CIM_CASH_IN_ROLLBACK 
The Service Provider implicitly opens the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

11.  Request removal of the money.  
12. Customer takes the 

money from the output 
position. 

  

13. If bItemsTakenSensor 
== FALSE: confirm 
completion or use 
application timeout. 

 If bItemsTakenSensor == TRUE: 
WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

14.  End of transaction  



CWA 16926-15:2020 (E) 

160 

8.10 OK Transaction - (Implicit Shutter Control and 
WFS_EXEE_CIM_SUBCASHIN event supported) 

The following table describes the chronological steps taken in the flow of a cash-in transaction where the cash-in 
operation is subdivided into a number of logical operations under hardware control. In this case a 
WFS_EXEE_CIM_SUBCASHIN event is generated for each sub cash-in operation. This may be the case for 
instance where a device does its coin or bill recognition in batches of 25. In this case the Service Provider would 
post a WFS_EXEE_CIM_SUBCASHIN event each time 25 items were processed. In this example the shutter is 
implicitly controlled by the Service Provider so the WFS_CMD_CIM_OPEN_SHUTTER and 
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used. 

This flow covers the following cases: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE 

• bShutterControl == TRUE, bItemsInsertedSensor == FALSE 

 
Step Customer Application XFS Commands and Events 
1.-5. See OK Transaction 

(Implicit Shutter 
Control). 

  

6.   The device processes the items in batches. 
Each time a batch is completed a 
WFS_EXEE_CIM_SUBCASHIN event is 
posted then the cash-in operation continues. 

7.   * WFS_CMD_CIM_CASH_IN completes. 
8.  Display the number of items 

and/or amount recognized so far. 
 

9.  Ask the customer for further 
actions: 
 
If the customer wants to insert 
more money: 
Repeat from step 2. 
 
If the customer wants to finish the 
transaction: 
Continue with step 10. 
 
If the customer wants to get back 
all items inserted so far see table 
"Cancellation by Customer 
(Implicit Shutter Control)" 

 

10.   WFS_CMD_CIM_CASH_IN_END 
11.  End of transaction.  



CWA 16926-15:2020 (E) 

161 

8.11  Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN (Implicit 
Shutter Control and Implicit Present Control) 

The following table describes the flow of a cash-in transaction where items are rejected during the transaction and 
the Service Provider has implicit shutter and present control. In this case the WFS_CMD_CIM_OPEN_SHUTTER, 
WFS_CMD_CIM_CLOSE_SHUTTER and WFS_CMD_CIM_PRESENT_MEDIA commands are not used. 
Additionally, the number of items refused may be greater than the number of items that can be presented at the 
output position. Due to the complexity of this scenario, shutter and present control must be implicit. Therefore, 
there is no corresponding flow for explicit shutter and present control. 

This flow covers the following cases: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == TRUE 

 
Step Customer Application XFS Command 
1.-5. See OK Transaction 

(Implicit Shutter 
Control). 

  

6.   As a result of the bill processing n bunches 
of items must be returned to the customer. 

7.   WFS_EXEE_CIM_INPUTREFUSE 
8.   Return bunch 1 of items to customer. 

The Service Provider implicitly opens the 
shutter and implicitly presents the bunch of 
items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

9.  Tell the customer that the items 
were not accepted, and to take the 
items. The customer should be 
informed that the items will be 
returned in multiple bunches. If 
there are additional bunches to 
deliver then this can be determined 
from the output parameter of the 
WFS_SRVE_CIM_ITEMSPRESE
NTED event. 

 

10. Customer takes the 
bunch of items. 

 WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

11.   Return bunch 2 of items to customer. The 
Service Provider implicitly opens the shutter 
and implicitly presents the bunch of items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 



CWA 16926-15:2020 (E) 

162 

12.  Tell the customer that the items 
were not accepted, and to take the 
items. The customer should be 
informed that the items will be 
returned in multiple bunches. If 
there are additional bunches to 
deliver then this can be determined 
from the output parameter of the 
WFS_SRVE_CIM_ITEMSPRESE
NTED event. 

 

13. Customer takes the 
bunch of items. 

 WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

14.   Repeat steps 11.-13. until bunches 3 to n-1 
are returned to the customer. 

15.   Return bunch n (last) of items to customer. 
The Service Provider implicitly opens the 
shutter and implicitly presents the bunch of 
items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

16.   * WFS_CMD_CIM_CASH_IN completes 
with WFS_SUCCESS. 

17.  Tell the customer to take the items. 
The customer should be informed 
that this is the final bunch. 

 

18. Customer takes the 
bunch of items. 

  

19.   WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

20.  Display the amount recognized so 
far. 

 

21.  Ask the customer for further 
actions: 
 
If the customer wants to deposit the 
amount: 
Continue with step 21. 
 
If the customer wants to get back all 
items inserted so far see table 
"Cancellation by Customer 
(Implicit Shutter Control)" 

 

22.  Transport the money into the cash 
units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

23.  Credit the money to the customer's 
account. 

 

24.  End of transaction.  



CWA 16926-15:2020 (E) 

163 

8.12 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK 
(Implicit Shutter Control and Implicit Present Control) 

The following table describes the flow of a roll back operation where items are rolled back during the transaction 
and the Service Provider has implicit shutter and present control. In this case the 
WFS_CMD_CIM_OPEN_SHUTTER, WFS_CMD_CIM_CLOSE_SHUTTER and 
WFS_CMD_CIM_PRESENT_MEDIA commands are not used. Additionally, the number of items rolled back may 
be greater than the number of items that can be presented at the output position. Due to the complexity of this 
scenario, shutter and present control must be implicit. Therefore, there is no corresponding flow for explicit shutter 
and present control. 

This flow covers the following cases: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == TRUE 

 
Step Customer Application XFS Command 
1.-9. See Customer Initiates 

Returning Of Previously 
Recognized Items 
(Implicit Shutter 
Control). 

  

10.  Initiate the roll back operation. * WFS_CMD_CIM_CASH_IN_ROLLBACK 
11.   The Service Provider begins the roll back. 

As a result of this n bunches of items must be 
returned to the customer. 

12.   Return bunch 1 of items to customer. 
The Service Provider implicitly opens the 
shutter and implicitly presents the bunch of 
items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

13.  Tell the customer to take the 
items. The customer should be 
informed that the items will be 
returned in multiple bunches. If 
there are additional bunches to 
deliver then this can be 
determined from the output 
parameter of the 
WFS_SRVE_CIM_ITEMSPRES
ENTED event. 

 

14. Customer takes the 
bunch of items. 

 WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

15.   Repeat steps 11.-14. until bunches 2 to n-1 
are returned to the customer. 

16.   Return bunch n (last) of items to customer. 
The Service Provider implicitly opens the 
shutter and implicitly presents the bunch of 
items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 



CWA 16926-15:2020 (E) 

164 

17.   * WFS_CMD_CIM_CASH_IN_ROLLBACK 
completes with WFS_SUCCESS. 

18.  Tell the customer to take the 
items. The customer should be 
informed that this is the final 
bunch. 

 

19. Customer takes the 
bunch of items. 

  

20.   WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

21.  End of transaction.  



CWA 16926-15:2020 (E) 

165 

8.13 Retracting Items When Multiple Bunches Are Returned During 
WFS_CMD_CIM_CASH_IN (Implicit Shutter Control and Implicit Present 
Control) 

The following table describes the flow of a cash-in transaction where items are returned back during the transaction 
and the Service Provider has implicit shutter and present control. In this case the 
WFS_CMD_CIM_OPEN_SHUTTER, WFS_CMD_CIM_CLOSE_SHUTTER and 
WFS_CMD_CIM_PRESENT_MEDIA commands are not used. Additionally, the number of items returned may be 
greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, 
shutter and present control must be implicit. Therefore, there is no corresponding flow for explicit shutter and 
present control. 

This flow covers the following cases: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == TRUE 

 
Step Customer Application XFS Command 
1.-5. See OK Transaction 

(Implicit Shutter 
Control). 

  

6.   As a result of the bill processing n bunches 
of items must be returned to the customer. 

7.   WFS_EXEE_CIM_INPUTREFUSE 
8.   Return bunch 1 of items to customer. 

The Service Provider implicitly opens the 
shutter and implicitly presents the bunch of 
items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN)  
WFS_SRVE_CIM_ITEMSPRESENTED 

9.  Tell the customer that the items 
were not accepted, and to take the 
items. The customer should be 
informed that the items will be 
returned in multiple bunches. If 
there are additional bunches to 
deliver then this can be determined 
from the output parameter of the 
WFS_SRVE_CIM_ITEMSPRESE
NTED event. 

 

10. Customer does not take 
the bunch of items. 

  

11.  After some time the application 
timeout waiting for the items to be 
taken is reached 

WFSCancelAsyncRequest is executed to end 
the WFS_CMD_CIM_CASH_IN command. 

12.   * If command cancellation is supported the 
WFS_CMD_CIM_CASH_IN completes 
with WFS_ERR_CANCELED. 

13.  All items are retracted. WFS_CMD_CIM_RETRACT 
14.  End of transaction.  



CWA 16926-15:2020 (E) 

166 

8.14 Bill Recognition Error (WFS_CMD_CIM_PRESENT_MEDIA Command 
Supported) 

The following table describes the flow of a cash-in transaction when the items are rejected as unrecognized during 
the transaction and the WFS_CMD_CIM_PRESENT_MEDIA command is supported. 

This flow covers the following case: 

• bShutterControl == FALSE, bPresentControl == FALSE, bItemsTakenSensor == TRUE 

 
Step Customer Application XFS Commands and Events 
1.-7. See OK Transaction 

(Explicit Shutter 
Control). 

  

8.   WFS_EXEE_CIM_INPUTREFUSE 
(WFS_CIM_INVALIDBILL) 
* WFS_CMD_CIM_CASH_IN completes 
with WFS_SUCCESS. 

9.  Present items to customer. * WFS_CMD_CIM_PRESENT_MEDIA 
initiated. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

10.   * WFS_CMD_CIM_PRESENT_MEDIA 
completes 

11.  Tell the customer that the items 
were not recognized and that the 
customer should take the items. 

 

12. Customer removes 
unrecognized money. 

  

13.   WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

14.  Display the amount recognized so 
far. 

 

15.  Ask the customer for further 
actions: 
 
If the customer wants to deposit 
the amount: 
Continue with step 15. 
 
If the customer wants to get back 
all items inserted so far see table 
"Cancellation by Customer 
(Explicit Shutter Control)" 

 

16.  Transport the money into the cash 
units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

17.  Credit the money to the customer's 
account. 

 

18.  End of transaction.  



CWA 16926-15:2020 (E) 

167 

8.15 Cancellation by Customer (Implicit Shutter Control and 
WFS_CMD_CIM_PRESENT_MEDIA Command Supported) 

The following table describes the flow of a cash-in transaction where the customer wants all the items to be 
returned after recognition and the WFS_CMD_CIM_PRESENT_MEDIA command is supported. 

This flow covers the following case: 

• bShutterControl == TRUE, bPresentControl == FALSE, bItemsTakenSensor == TRUE 

 
Step Customer Application XFS Commands and Events 
1.-9. See Cancellation by 

Customer (Implicit 
Shutter Control). 

  

10.  Transport the items recognized to 
an internal position. 

* WFS_CMD_CIM_CASH_IN_ROLLBACK 
initiated 

11.   * WFS_CMD_CIM_CASH_IN_ROLLBACK 
completes. 

12.  Present items to the customer. * WFS_CMD_CIM_PRESENT_MEDIA 
initiated. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

13.   * WFS_CMD_CIM_PRESENT_MEDIA 
completes. 

14.  Request removal of the money.  
15. Customer takes the 

money from the output 
position. 

  

16.   WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

17.  End of transaction.  



CWA 16926-15:2020 (E) 

168 

8.16 Multiple Bunch Timeout Handling 

The following sections describe flows where the Service Provider could potentially present refused items in 
multiple bunches during the WFS_CMD_CIM_CASH_IN command. As the WFS_CMD_CIM_CASH_IN timeout 
(dwTimeout parameter in WFSAsyncExecute or WFSExecute) may elapse before the last bunch is presented, 
resulting in a WFS_ERR_TIMEOUT in the completion event, it is recommended that the application take control 
by specifying a long dwTimeout and use timers to allow sufficient time for user interaction before cancelling the 
command. dwTimeout should be set sufficiently long to allow for any scenario; it could be set to 
WFS_INDEFINITE_WAIT as the command would be explicitly cancelled by the application if timers elapse. 

Each flow covers the following cases: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == TRUE 

8.16.1 No Items Inserted 

In this flow, the user does not insert items within the required time, therefore the application cancels the 
WFS_CMD_CIM_CASH_IN command using WFS_CMD_CIM_CASH_IN_END. 

 
Step Customer Application XFS Command 
1. Customer selects cash-in 

operation. 
 WFS_CMD_CIM_CASH_IN_START 

2.   * WFS_CMD_CIM_CASH_IN initiated 
with a long timeout (for example, 
WFS_INDEFINITE_WAIT) using 
WFSAsyncExecute 
 
The Service Provider implicitly opens the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_EXEE_CIM_INSERTITEMS event 
is sent when the shutter is fully open and 
the device is ready to begin accepting 
items. 

3.  Ask the customer to insert money. 
Application sets an insertion timer. 

 

4. Customer does not insert 
money. 

  

5.  The insertion timer elapses WFSCancelAsyncRequest is executed to end 
the WFS_CMD_CIM_CASH_IN command. 

6.   * If command cancellation is supported the 
WFS_CMD_CIM_CASH_IN completes 
with WFS_ERR_CANCELED. 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

7.  Transaction cancelled WFS_CMD_CIM_CASH_IN_END 
8.  End of transaction.  

 

8.16.2 First Bunch Not Taken 

In this flow, the user does not take the first returned bunch within the required time, therefore the application 
cancels the WFS_CMD_CIM_CASH_IN command. The same sequence can be extended to any bunch other than 
the last bunch as this would complete the WFS_CMD_CIM_CASH_IN command; each time a new bunch is 
presented a new presentation timer should be set. 



CWA 16926-15:2020 (E) 

169 

 
Step Customer Application XFS Commands and Events 
1.-3. See No Items Inserted   
4. Customer inserts money  If bItemsInsertedSensor == TRUE: 

WFS_SRVE_CIM_ITEMSINSERTED 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
The bill recognition begins. 

5.  Insertion timer cancelled  
6.   As a result of the bill processing n 

bunches of items must be returned to the 
customer. 

7.   WFS_EXEE_CIM_INPUTREFUSE 
8.   Return bunch 1 of items to customer. 

The Service Provider implicitly opens the 
shutter and implicitly presents the bunch 
of items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

9.  Tell the customer that the items 
were not accepted, and to take 
the items. The customer should 
be informed that the items will 
be returned in multiple bunches. 
If there are additional bunches 
to deliver then this can be 
determined from the output 
parameter of the 
WFS_SRVE_CIM_ITEMSPRE
SENTED event. 
Presentation timer set 

 

10. Customer does not take the 
items 

The presentation timer elapses WFSCancelAsyncRequest is executed to 
end the WFS_CMD_CIM_CASH_IN 
command. 

   * If command cancellation is supported 
the WFS_CMD_CIM_CASH_IN 
completes with 
WFS_ERR_CANCELED. 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

11.  All items are retracted. WFS_CMD_CIM_RETRACT 
12.  End of transaction.  

8.16.3 Last Bunch Taken 

In this flow, two bunches are to be returned & the user takes all of the returned bunches within the required time, 
therefore WFS_CMD_CIM_CASH_IN command completes normally. 

 

 

 

 



CWA 16926-15:2020 (E) 

170 

Step Customer Application XFS Commands and Events 
1.-9. See First Bunch Not Taken   
10. Customer takes the bunch  WFS_SRVE_CIM_ITEMSTAKEN 

The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

11.  Presentation timer cancelled Return bunch 2 of items to customer. The 
Service Provider implicitly opens the 
shutter and implicitly presents the bunch 
of items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

12.   * WFS_CMD_CIM_CASH_IN 
completes with WFS_SUCCESS. 

13. Customer takes the bunch of 
items. 

  

14.   WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 

15.  Display the amount recognized 
so far. 

 

16.  Ask the customer for further 
actions: 
 
If the customer wants to deposit 
the amount: 
Continue with step 17. 
 
If the customer wants to get 
back all items inserted so far see 
table "Cancellation by 
Customer (Implicit Shutter 
Control)" 

 

17.  Transport the money into the 
cash units of type 
WFS_CIM_TYPERECYCLIN
G / WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

18.  Credit the money to the 
customer's account. 

 

19.  End of transaction.  



CWA 16926-15:2020 (E) 

171 

8.17 Exchange using DEPOSITINTO (Implicit Shutter Control) 

The following table describes an Exchange using the WFS_CIM_DEPOSITINTO parameter to specify that items 
will be deposited using the deposit entrance. The shutter is implicitly controlled by the Service Provider. In this 
case the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not 
explicitly used by the application. 

Although this re-uses Cash In transaction commands to move the items, the Exchange is not restricted by the 
maximum number of items in a Cash In transaction (fwIntermediateStacker) as the Exchange can be performed 
using multiple deposits. Items may be returned or captured per local policy and configuration. Despite using the 
standard Cash In transaction commands, this sequence does not constitute one or more Cash In transactions 
therefore is not reported by WFS_INF_CIM_CASH_IN_STATUS. Other Cash In transaction commands such as 
WFS_CMD_CIM_CASH_IN_ROLLBACK can be used if required. Note also that in this example flow, each 
bunch will be transported to cash units before additional items can be inserted; it is equally valid to accept multiple 
bunches before depositing the items to the cash units. 

This example flow covers cases where all the items are accepted during WFS_CMD_CIM_CASH_IN; 
unrecognized items may be deposited to a cash unit with the fwItemType containing WFS_CIM_CITYPLEVEL1. 
Refer to other example flows for how refused items would be handled. 

This flow covers the following case: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, fwIntermediateStacker != 0 

 
Step User Application XFS Commands and Events 
1. User selects to perform 

a replenishment using 
the deposit entrance. 

 WFS_CMD_CIM_START_EXCHANGE 
with fwExchangeType == 
WFS_CIM_DEPOSITINTO. 

2.   WFS_CMD_CIM_CASH_IN_START 
called to specify the input position. 

3.   WFS_CMD_CIM_CASH_IN initiated 
The Service Provider implicitly opens the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
WFS_EXEE_CIM_INSERTITEMS event is 
sent when the shutter is fully open and the 
device is ready to begin accepting items. 

4.  Ask the user to insert items.  
5. User inserts items.   
6.   WFS_SRVE_CIM_ITEMSINSERTED 

The Service Provider implicitly closes the 
shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
The bill recognition begins. 

7.   WFS_CMD_CIM_CASH_IN command 
completes. 

8.  Display the number of items 
and/or amount recognized so far. 

 

8.  Transport the items into the 
designated cash units. 

WFS_CMD_CIM_CASH_IN_END 



CWA 16926-15:2020 (E) 

172 

9.  Ask the user for further actions: 
 
If the user wants to insert more 
items: 
Repeat from step 2. 
 
If the user wants to complete the 
Exchange operation: 
Continue with step 10. 

 

10. Selection: Complete   
11.   WFS_CMD_CIM_END_EXCHANGE. This 

can be specified with a NULL input 
parameter as all the notes will have been 
counted and cash unit counts adjusted 
accordingly during the preceding operations. 

12.  End of Exchange.  



CWA 16926-15:2020 (E) 

173 

8.18 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused 
Notes (using WFS_CMD_CIM_PREPARE_PRESENT) 

The following table describes the flow of a cash-in transaction where items are rejected during the transaction. The 
application uses WFS_CMD_CIM_PREPARE_PRESENT commands to move items to the output position. The 
Service Provider has explicit shutter control. In this case the WFS_CMD_CIM_OPEN_SHUTTER and 
WFS_CMD_CIM_CLOSE_SHUTTER commands are used for the user to take items. Additionally, the number of 
items refused may be greater than the number of items that can be presented at the output position. 

This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == FALSE, bPreparePresent == TRUE 

 
Step Customer Application XFS Commands and Events 
1.-6. See OK 

Transaction 
(Explicit 
Shutter 
Control). 

  

7.   * WFS_CMD_CIM_CASH_IN initiated. 
The bill recognition begins. 
* WFS_CMD_CIM_CASH_IN resets the 
lpTotalReturnedItems output parameter 
of 
WFS_INF_CIM_PRESENT_STATUS. 
 

8.   WFS_EXEE_CIM_INPUTREFUSE 
(WFS_CIM_INVALIDBILL) 
… 
* WFS_CMD_CIM_CASH_IN 
completes with WFS_SUCCESS 

9.  Move refused items to the output position. WFS_CMD_CIM_PREPARE_PRESEN
T 
 
WFS_CMD_CIM_PREPARE_PRESEN
T completes with WFS_SUCCESS 

10.  Open shutter. WFS_CMD_CIM_OPEN_SHUTTER 
 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPENED) 
 
WFS_SRVE_CIM_ITEMSPRESENTED 
 
WFS_CMD_CIM_OPEN_SHUTTER 
completes with WFS_SUCCESS 

11.  If there are additional bunches to deliver then 
this can be determined from the output parameter 
of the WFS_SRVE_CIM_ITEMSPRESENTED 
event or the 
WFS_INF_CIM_PRESENT_STATUS 
command. 
Tell the customer that the items were not 
accepted, and to take the items. The customer 
should be informed that the items will be 
returned in multiple bunches. 

 

12. Customer 
takes the 
bunch of 
items. 

 WFS_SRVE_CIM_ITEMSTAKEN 



CWA 16926-15:2020 (E) 

174 

13.  Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
 
WFS_CMD_CIM_CLOSE_SHUTTER 
completes with WFS_SUCCESS 

14.  If more refused items need to be taken:  
     Repeat steps 9. – 14. 
Else 
     Go to step 15. 

 
 

15.  Display the amount recognized so far.  
16.  Ask the customer for further actions: 

 
If the customer wants to deposit the amount: 
Continue with step 17. 
 
If the customer wants to get back all items 
inserted so far see table "Cancellation by 
Customer (Explicit Shutter Control)" 

 

17.  Transport the money into the cash units of type 
WFS_CIM_TYPERECYCLING / 
WFS_CIM_TYPECASHIN. 

WFS_CMD_CIM_CASH_IN_END 

18.  Credit the money to the customer's account.  
19.  End of transaction.  

 



CWA 16926-15:2020 (E) 

175 

8.19 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK 
(using WFS_CMD_CIM_PREPARE_PRESENT) 

The following table describes the flow of a roll back operation where items are rolled back during the transaction. 
The application use WFS_CMD_CIM_PREPARE_PRESENT commands to move items to the output position. The 
Service Provider has explicit shutter control. In this case the WFS_CMD_CIM_OPEN_SHUTTER and 
WFS_CMD_CIM_CLOSE_SHUTTER commands are used. Additionally, the number of items rolled back may be 
greater than the number of items that can be presented at the output position. 

This flow covers the following cases: 

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, 
bPresentControl == FALSE, bPreparePresent == TRUE 

 
Step Customer Application XFS Commands and Events 
1.-
10. 

See OK 
Transaction 
(Explicit Shutter 
Control). 

  

11. Selection: Return 
all the items. 

  

12.  Transport the items recognized to the 
output position. 

WFS_CMD_CIM_CASH_IN_ROLLBACK 
 
* 
WFS_CMD_CIM_CASH_IN_ROLLBACK 
reset the lpTotalReturnedItems output 
parameter of 
WFS_INF_CIM_PRESENT_STATUS. 

   WFS_CMD_CIM_CASH_IN_ROLLBACK  
completes with WFS_SUCCESS. 

13.  Move items to be rolled back to the output 
position. 

WFS_CMD_CIM_PREPARE_PRESENT 
 
WFS_CMD_CIM_PREPARE_PRESENT 
completes with WFS_SUCCESS 

14.  Open shutter. WFS_CMD_CIM_OPEN_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTOPEN) 
 
WFS_SRVE_CIM_ITEMSPRESENTED 
 
WFS_CMD_CIM_OPEN_SHUTTER 
completes with WFS_SUCCESS 

15.  Tell the customer to take the items. The 
customer should be informed that the 
items will be returned in multiple bunches. 
If there are additional bunches to deliver 
then this can be determined from the 
output parameter of the 
WFS_SRVE_CIM_ITEMSPRESENTED 
event. 

 

16. Customer takes the 
bunch of items. 

 WFS_SRVE_CIM_ITEMSTAKEN 

17.  Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER 
… 
WFS_SRVE_CIM_SHUTTERSTATUS-
CHANGED(WFS_CIM_SHTCLOSED) 
 
WFS_CMD_CIM_CLOSE_SHUTTER 
completes with WFS_SUCCESS 



CWA 16926-15:2020 (E) 

176 

18.  If more items need to be taken: 
     Repeat steps 13. – 18. 
Else 
     Go to step 19. 

 
 

19.  End of transaction.  

 



CWA 16926-15:2020 (E) 

177 

9. ATM Mixed Media Transaction Flow – Application Guidelines 

Compound CIM/IPM deposit devices are able to accept and process different types of media such as cash and 
checks. In order to improve the speed and usability of deposit devices it may be desirable to allow a bunch of items 
deposited to contain a variety of media types. Typically this is a bunch containing both cash and checks and is 
termed ‘Mixed Media processing’. 

During this type of transaction the customer will insert cash and checks together in one bunch. The device will 
identify each item. Items not positively identified may be immediately returned to the customer. All remaining 
items can be deposited and shared deposit bins can be configured to receive mixed items. The application can also 
choose to return all items. Additionally the specification allows for depositing all checks and returning all cash or 
vice-versa depending on requirements. 

In order to facilitate devices of differing hardware design and to support reuse of the XFS API, Mixed Media 
processing is achieved by initiating a CIM and an IPM transaction in parallel. The application and Service 
Providers must be able to handle concurrent CIM and IPM commands and events. The application will use the 
WFS_CMD_CIM_SET_MODE or WFS_CMD_IPM_SET_MODE command to activate Mixed Media processing. 
The literals used (i.e. WFS_CIM_IPMMIXEDMEDIA) describe the modes and indicate the nature of the 
compound device. This allows applications to open the correct interfaces to drive the transaction. 

Mixed Media processing commands that move media in the device require commands to be called on both CIM and 
IPM interfaces. See the table below for a list of CIM commands and their IPM counterparts. Where the operation is 
to be cancelled the application is required to cancel only one command on either the CIM or IPM interface. 
Applications must be aware that the command that was NOT explicitly cancelled may complete with a 
WFS_ERR_CANCELED error. 

For example the application must call both WFS_CMD_CIM_CASH_IN and WFS_CMD_IPM_MEDIA_IN 
commands to initiate the transaction. If an application wishes to cancel the transaction before items are inserted, 
only the WFS_CMD_CIM_CASH_IN command can be cancelled and the WFS_CMD_IPM_MEDIA_IN 
command will also be cancelled. 

Devices suitable for Mixed Media processing must report WFSCIMCAPS.bShutterControl == TRUE to allow 
WFS_CMD_CIM_PRESENT_MEDIA and WFS_CMD_IPM_PRESENT_MEDIA commands to work 
concurrently. 

The Mixed Media mode can be determined by calling WFS_INF_CIM_STATUS or WFS_INF_IPM_STATUS 
command and checking the value of the wMixedMode field. 

Where an error occurs both CIM and IPM interfaces will report it. To recover the device a reset command can be 
called on either of the interfaces. Reset calls on both CIM and IPM interfaces are not required. 

Application refusal (in the IPM interface) is not supported in Mixed Media mode. 

To initiate a Mixed Media transaction the WFS_CMD_CIM_CASH_IN_START command must be called. There is 
no equivalent command to the WFS_CMD_CIM_CASH_IN_START command on the IPM interface. 

Commands and their counterparts: 

This table lists the counterpart IPM commands which must be called as well as the CIM commands when in Mixed 
Media processing mode. 

 

CIM command IPM Command 

WFS_CMD_CIM_CASH_IN WFS_CMD_IPM_MEDIA_IN 

WFS_CMD_CIM_CASH_IN_END WFS_CMD_IPM_MEDIA_IN_END or where 
bMixedDepositAndRollback is TRUE 
WFS_CMD_IPM_MEDIA_IN_ROLLBACK 

WFS_CMD_CIM_CASH_IN_ROLLBACK WFS_CMD_IPM_MEDIA_IN_ROLLBACK or where 
bMixedDepositAndRollback is TRUE 
WFS_CMD_IPM_MEDIA_IN_END 

WFS_CMD_CIM_PRESENT_MEDIA WFS_CMD_IPM_PRESENT_MEDIA 

WFS_CMD_CIM_RETRACT WFS_CMD_IPM_RETRACT_MEDIA 



CWA 16926-15:2020 (E) 

178 

 
Events and their Counterparts 

The CIM and IPM interfaces both have a range of events to inform the application of device activity. During Mixed 
Media processing events fired from each interface can describe the same situation (i.e. items presented). In these 
cases the recommendation to application developers is to rely on a single interface for these duplicate notifications. 
The choice of which interface to use to handle specific events will be based on factors such as current codebase or 
application presentation requirements. 

 

CIM Event IPM Event 

WFS_USRE_CIM_CASHUNITTHRESHOLD WFS_USRE_IPM_MEDIABINTHRESHOLD 

WFS_SRVE_CIM_CASHUNITINFOCHANGED WFS_SRVE_IPM_MEDIABININFOCHANGED 

WFS_EXEE_CIM_CASHUNITERROR WFS_EXEE_IPM_MEDIABINERROR 

WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN 

WFS_SRVE_CIM_COUNTS_CHANGED WFS_SRVE_IPM_MEDIABININFOCHANGED 

WFS_EXEE_CIM_INPUTREFUSE WFS_EXEE_IPM_MEDIAREFUSED 

WFS_SRVE_CIM_ITEMSPRESENTED WFS_EXEE_IPM_MEDIAPRESENTED 

WFS_SRVE_CIM_ITEMSINSERTED WFS_EXEE_IPM_MEDIAINSERTED 

WFS_EXEE_CIM_SUBCASHIN WFS_EXEE_IPM_MEDIADATA 

WFS_SRVE_CIM_MEDIADETECTED WFS_SRVE_IPM_MEDIADETECTED 

WFS_EXEE_CIM_INSERTITEMS WFS_EXEE_IPM_NOMEDIA 

WFS_SRVE_CIM_DEVICEPOSITION WFS_SRVE_IPM_DEVICEPOSITION 

WFS_SRVE_CIM_POWER_SAVE_CHANGE WFS_SRVE_IPM_POWER_SAVE_CHANGE 

The following sections describe the flow of a Mixed Media transaction on a compound CIM/IPM device. These 
application flows are provided as guidelines only. In all cases WFSCIMPOSCAPS.bPresentControl == TRUE 
unless otherwise stated. 



CWA 16926-15:2020 (E) 

179 

9.1 Mixed Media OK Transaction 

The following table describes a normal Mixed Media transaction flow where there is a successful deposit. 

This flow covers the following case: 

• bShutterControl == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA 

 
Step Application/Customer CIM Commands and Events IPM Commands and Events 
1. Application transaction 

opens sessions with both 
the CIM and the IPM 
service providers. 

  

2. Customer selects Mixed 
Media transaction. 

WFS_CMD_CIM_CASH_IN_START  

3.  * WFS_CMD_CIM_CASH_IN 
initiated 
(The shutter is not opened until 
WFS_CMD_IPM_MEDIA_IN is 
called.) 

* WFS_CMD_IPM_MEDIA_IN 
initiated 
(Service Provider opens the input 
shutter). 

4.  … 
WFS_SRVE_CIM_SHUTTER-
STATUSCHANGED(WFS_CIM_SHT
OPEN) 
WFS_EXEE_CIM_INSERTITEMS 
event is sent when the shutter is fully 
open and the device is ready to begin 
accepting items. 

… 
WFS_SRVE_IPM_SHUTTER-
STATUSCHANGED(WFS_IPM_SHT
OPEN) 
WFS_EXEE_IPM_NOMEDIA 
This event specifies that media must be 
inserted into the device in order for the 
execute command to proceed. 

5. Ask the customer to insert 
items. 

  

6. Customer inserts items.   
7.  WFS_SRVE_CIM_ITEMSINSERTED WFS_EXEE_IPM_MEDIA-

INSERTED 
8.  The Service Provider closes the input 

shutter and the device begins 
processing the inserted items. 
… 
WFS_SRVE_CIM_SHUTTER-
STATUSCHANGED(WFS_CIM_SHT
CLOSED) 

 
 
 
… 
WFS_SRVE_IPM_SHUTTER-
STATUSCHANGED(WFS_IPM_SHT
CLOSED) 
Send one 
WFS_EXEE_IPM_MEDIADATA 
event for every check item identified 

9.  * WFS_CMD_CIM_CASH_IN 
completes. 

* WFS_CMD_IPM_MEDIA_IN 
completes. 

10.  WFS_INF_CIM_CASH_IN_STATUS 
can be issued to request the number of 
CIM related items that were inserted. 

WFS_INF_IPM_TRANSACTION_-
STATUS is issued to request the 
number of IPM related items that were 
inserted. 

11. Display the items 
recognized and associated 
information so far. 

 Process the checks by sending any of: 
WFS_CMD_IPM_READ_IMAGE, 
WFS_CMD_IPM_SET_-
DESTINATION, 
WFS_CMD_IPM_PRINT_TEXT, 
WFS_CMD_IPM_GET_IMAGE_-
AFTER_PRINT 



CWA 16926-15:2020 (E) 

180 

12. Ask the customer for 
further actions: 
 
If the customer wants to 
insert more items: 
Repeat from step 3. 
 
If the customer wants to 
finish the transaction: 
Continue with step 13. 
 
If the customer wants to 
get back all items inserted 
so far see table 
"Cancellation by 
Customer". 

  

13.  * WFS_CMD_CIM_CASH_IN_END 
initiated 
(The device will not complete the 
media movement until 
WFS_CMD_IPM_MEDIA_IN_END 
command is called on IPM interface.) 

* WFS_CMD_IPM_MEDIA_IN_END 
initiated 
Print on individual media items (as 
specified from IPM commands) 

14.  Transport the items into the specified 
destinations. 

 

15.  * WFS_CMD_CIM_CASH_IN_END 
completes. 

* WFS_CMD_IPM_MEDIA_IN_END 
completes. Output parameter indicates 
media bin / outputs positions that have 
received items. 

16. Credit the appropriate 
funds to the customer's 
account. 

  

17. End of transaction.   



CWA 16926-15:2020 (E) 

181 

9.2 Mixed Media Cancellation by Customer 

The following table describes the flow of a Mixed Media transaction where the customer wants all the items to be 
returned. In this case the returned items must be explicitly presented by the application. 

This flow covers the following cases: 

• bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE 

• bCompound == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA 

• WFSCIMPOSCAPS.bPresentControl == FALSE 
 
Step Customer/ 

Application 
CIM Commands and Events IPM Commands and Events 

1.-
12. 

As per OK 
Transaction. 

  

13. Selection: Return all 
the items. 

  

14. Transport the items 
recognized to the 
output position. 

* WFS_CMD_CIM_CASH_IN_-
ROLLBACK initiated (No physical 
action may take place until the 
WFS_CMD_IPM_-
MEDIA_IN_ROLLBACK command.) 

* WFS_CMD_IPM_MEDIA_IN_-
ROLLBACK initiated 

15.  * WFS_CMD_CIM_CASH_IN_-
ROLLBACK completes. 

* WFS_CMD_IPM_MEDIA_IN_-
ROLLBACK completes. 

16.  * WFS_CMD_CIM_PRESENT_MEDIA 
initiated (No physical action may take 
place until the 
WFS_CMD_IPM_PRESENT_MEDIA 
command.) 

* WFS_CMD_IPM_PRESENT_MEDIA 
initiated 

17.  The Service Provider opens the 
shutter(s). CIM cash moves to output 
position. 
 
… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTOPEN) 

The Service Provider opens the 
shutter(s). IPM media moves to output 
position. 
… 
WFS_SRVE_IPM_SHUTTERSTATUS
CHANGED(WFS_IPM_SHTOPEN) 

18. Request removal of 
the items. 

WFS_SRVE_CIM_ITEMSPRESENTED
. 

WFS_EXEE_IPM_MEDIA-
PRESENTED. 

19.  * WFS_CMD_CIM_PRESENT_MEDIA 
completes. 

* WFS_CMD_IPM_PRESENT_MEDIA 
completes. 

20. Customer takes the 
items from the output 
position. 

  

21.  WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN 
22.  The Service Provider closes the shutter. 

… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTCLOSED) 

 
… 
WFS_SRVE_IPM_SHUTTERSTATUS
CHANGED(WFS_IPM_SHTCLOSED) 

23. End of transaction.   



CWA 16926-15:2020 (E) 

182 

9.3 Mixed Media Cancellation by Customer on Cash Part Only 

The following table describes the flow of a Mixed Media transaction where the customer wants the cash items to be 
returned but deposit the check items. In this case the returned items are implicitly presented by the Service 
Provider. 

This flow covers the following cases: 

• bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE 

• wMixedMode == WFS_CIM_IPMMIXEDMEDIA 

• WFSCIMPOSCAPS.bPresentControl == TRUE 
 
Step Customer/ 

Application 
CIM Commands and Events IPM Commands and Events 

1.-
12. 

As per OK transaction   

13. Selection: return cash 
items. 

  

14. Transport the items 
recognized to the 
output position. 

* WFS_CMD_CIM_CASH_IN_-
ROLLBACK initiated (No physical 
action may take place until the 
WFS_CMD_IPM_MEDIA_IN_END 
command.) 

* WFS_CMD_IPM_MEDIA_IN_END 
initiated 

15.   Print on, and deposit individual media 
items (as specified by IPM commands). 

16.  The Service Provider opens the shutter. 
CIM cash moves to output position. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTOPEN) 

 
 
… 
WFS_SRVE_IPM_SHUTTERSTATUS
CHANGED(WFS_IPM_SHTOPEN) 

17. Request removal of 
the cash items. 

WFS_SRVE_CIM_ITEMSPRESENTED
. 

WFS_EXEE_IPM_MEDIA-
PRESENTED. 

18.  * WFS_CMD_CIM_CASH_IN_-
ROLLBACK completes. 

* WFS_CMD_IPM_MEDIA_IN_END 
completes. 

19. Customer takes the 
cash items from the 
output position. 

  

20.  WFS_SRVE_CIM_ITEMSTAKEN 
The Service Provider closes the shutter. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTCLOSED) 

WFS_SRVE_IPM_MEDIATAKEN 
 
… 
WFS_SRVE_IPM_SHUTTERSTATUS
CHANGED(WFS_IPM_SHTCLOSED) 

21. End of transaction.   



CWA 16926-15:2020 (E) 

183 

9.4 Mixed Media Multiple Refused Items 

The following table describes the flow of a Mixed Media transaction where items are rejected during the 
transaction. Additionally, the number of items refused may be greater than the number of items that can be 
presented at the output position. In this case the returned items must be explicitly presented by the application. 

This flow covers the following cases: 

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE 

• bCompound == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA 

• WFSCIMPOSCAPS.bPresentControl == FALSE 
 
Step Application/ 

Customer 
CIM Commands and Events IPM Commands and Events 

1. Customer selects 
Mixed Media 
transaction. 

WFS_CMD_CIM_CASH_IN_START  

2.  * WFS_CMD_CIM_CASH_IN initiated 
(The shutter is not opened until 
WFS_CMD_IPM_MEDIA_IN is called.) 
… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTOPEN) 

* WFS_CMD_IPM_MEDIA_IN initiated 
Service Provider opens the input shutter. 
 
 
… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTOPEN) 

3.  WFS_EXEE_CIM_INSERTITEMS 
event is sent when the shutter is fully 
open and the device is ready to begin 
accepting items. 

WFS_EXEE_IPM_NOMEDIA 
This event specifies that media must be 
inserted into the device in order for the 
execute command to proceed. 

4. Ask the customer to 
insert items. 

  

5. Customer inserts 
items. 

  

6.  WFS_SRVE_CIM_ITEMSINSERTED WFS_EXEE_IPM_MEDIAINSERTED 
7.  The Service Provider closes the input 

shutter and the device begins processing 
the inserted items. 
… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTCLOSED) 

 
 
 
… 
WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTCLOSED) 
Send one 
WFS_EXEE_IPM_MEDIADATA event 
for every check item identified. 

8. Items are refused. WFS_EXEE_CIM_INPUTREFUSE 
event sent with appropriate lpusReason 
parameter. 
Items that are not bills or checks are 
rejected with 
WFS_CIM_INVALIDBILL. 

WFS_EXEE_IPM_MEDIAREFUSED 

9.  * WFS_CMD_CIM_CASH_IN 
completes. 

* WFS_CMD_IPM_MEDIA_IN 
completes. 

10. Application chooses 
to return refused 
items now. 

* WFS_CMD_CIM_PRESENT_MEDIA 
initiated (No physical action may take 
place until the 
WFS_CMD_IPM_PRESENT_MEDIA 
command.) 

* WFS_CMD_IPM_PRESENT_MEDIA 
initiated 

11. Each bunch of items 
presented. 

… 
WFS_SRVE_CIM_SHUTTERSTATUS
CHANGED(WFS_CIM_SHTOPEN) 
WFS_SRVE_CIM_ITEMSPRESENTED 

… 
WFS_SRVE_IPM_SHUTTERSTATUS-
CHANGED(WFS_IPM_SHTOPEN 
WFS_EXEE_IPM_MEDIAPRESENTED 



CWA 16926-15:2020 (E) 

184 

12. All but last bunch of 
items taken. 

WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN 

13.  * WFS_CMD_CIM_PRESENT_MEDIA 
completes. 

* WFS_CMD_IPM_PRESENT_MEDIA 
completes. 

14. Last bunch of items 
taken. 

WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN 

15. Transaction 
continues from step 
13. in the OK 
transaction. 

  



CWA 16926-15:2020 (E) 

185 

10. Rules for Cash Unit Exchange 

The XFS Start and End Exchange commands should be used by applications to supply the latest information with 
regards to cash unit replenishment state and content. This guarantees a certain amount of control to an application 
as to which denominations are stored in which position as well as the general physical state of the logical/physical 
cash units. 

If a cash unit is removed from the CIM outside of the Start/End Exchange operations and subsequently reinserted 
the status of the physical cash unit should be set to WFS_CIM_STATCUMANIP to indicate to the application that 
the physical cash unit has been removed, reinserted and possibly tampered with. While the cash unit has this status 
the Service Provider should not attempt to use it as part of a cash-in operation. The WFS_CIM_STATCUMANIP 
status should not change until the next Start/End Exchange operation is performed, even if the cash unit is replaced 
in its original position. 

If all the physical cash units belonging to a logical cash unit are manipulated the parent logical cash unit that the 
physical cash units belong to should also have its status set to WFS_CIM_STATCUMANIP. 

When a cash unit is removed and/or replaced outside of the Start/End Exchange operations the original logical cash 
unit information such as the values, currency and counts should be preserved in the Cash Unit Info structure 
reported to the application for accounting purposes until the next Start/End Exchange operations, even if the cash 
unit physically contains a different denomination. 

Mixed Media Processing: 

Where the device supports cash units that can store non-CIM items, a counters update to those cash units applied by 
the CIM interface can also be seen in the other interfaces available to the compound device. 

The CIM ulCount on a shared bin (of type WFS_CIM_TYPECASHIN) reports the total number of banknotes, 
checks or coins of all types in the cash unit. This is for the following reasons: 

1. ulCount on CIM has the same meaning as ulCount on IPM. That is the number of items of any type in the bin. 

2. ulMaximum, is truly representative of the capacity of the physical bin and software thresholds can accurately 
reflect the state of the bin. 

3. Use of ulCount representing items from both interfaces gives the greatest flexibility. Dedicated CIM or IPM bins 
and therefore counts can still be achieved through bin configuration. 

4. The actual number of notes can be determined from lpNoteNumberList. 

The following table describes the effect on the IPM counts where an application causes counter changes to a shared 
cassette using the CIM interface. The example assumes the starting position of a shared CIM cash unit/IPM media 
bin: 

From WFSCIMCASHIN: 
fwType = WFS_CIM_TYPECASHIN 
fwItemType = WFS_CIM_CITYPALL|WFS_CIM_CITYPIPM 
ulCashInCount = 0 
ulCount = 0 

And the IPM starting position for the shared CIM cash unit/IPM media bin: 

From WFSIPMMEDIABIN: 
fwType = WFS_IPM_TYPEMEDIAIN 
wMediaType = WFS_IPM_MEDIATYPCOMPOUND 
ulMediaInCount = 0 
ulCount = 0 

 

 Application Activity CIM Counts on the shared 
cash unit 

IPM Counts on the 
shared media bin 

1. A customer enters 10 good notes and 10 good 
checks in the same transaction. 

ulCashInCount = 10 
ulCount = 20 

ulMediaInCount = 10 
ulCount = 20 

2. Replenishment activity removes all items from 
the cash unit and clears the counts using 
WFS_CMD_CIM_END_EXCHANGE 

ulCashInCount = 0 
ulCount = 0 

ulMediaInCount = 0 
ulCount = 0 



CWA 16926-15:2020 (E) 

186 

3. A further customer enters 10 good notes and 10 
good checks in the same transaction. 

ulCashInCount = 10 
ulCount = 20 

ulMediaInCount = 10 
ulCount = 20 
 

4. Replenishment activity removes only cash 
items from the cash unit. The CIM counts are 
adjusted using 
WFS_CMD_CIM_SET_CASH_UNIT_INFO 

ulCashInCount is set to 0, and ulCount is set to 
10 

ulCashInCount = 0 
ulCount = 10 

ulMediaInCount = 10 
ulCount = 10 
 

5. A further customer enters 10 good notes and 10 
good checks in the same transaction. 

ulCashInCount = 10 
ulCount = 30 

ulMediaInCount = 20 
ulCount = 30 

6. Replenishment activity removes only checks 
(20 items) from the cash unit. The counts are 
adjusted using 
WFS_CMD_IPM_SET_MEDIA_BIN_INFO. 

ulMediaInCount is set to 0, and ulCount is set 
to 10 

ulCashInCount = 10 
ulCount = 10 

ulMediaInCount = 0 
ulCount = 10 

 

Multiple Physical Cash Units: 

Where a logical cash unit contains more than one physical cash unit and is configured to accept or dispense more 
than one note ID, the breakdown of notes contained within each physical cash unit can be tracked or specified if the 
Service Provider supports the NOTENUMBERLIST string in the physical cash unit lpszExtra (see 
WFSCIMPHCU). Support for this is defined by the bPhysicalNoteList capability.  

It is not mandatory to specify the NOTENUMBERLIST string in an Exchange even if supported; the Service 
Provider will track the counts from the point of the replenishment. 

The following flow shows how this can be used: 

 

 User/Application Activity Logical Cash Unit Counts Physical Cash Unit Counts 

1 The device is replenished by inserting 
two physical cash units which are 
associated with one logical cash unit. 
The first physical cash unit contains 
500 x usNoteID 1, the second cash 
unit contains 500 x usNoteID 2. 
Application performs an Exchange to 
set the counts including the 
NOTENUMBERLIST in the physical 
cash units. 

ulCount = 1000 

lpNoteNumberList: 

  usNumOfNoteNumbers = 2 

  lppNoteNumber[0].usNoteID = 1 

  lppNoteNumber[0].ulCount = 500 

  lppNoteNumber[1].usNoteID = 2 

  lppNoteNumber[1].ulCount = 500 

lppPhysical[0]: 

ulCount = 500 

NOTENUMBERLIST=1,500 

 

lppPhysical[1]: 

ulCount = 500 

NOTENUMBERLIST=2,500 

2. After several transactions, the first 
physical cash unit is full and requires 
replenishment. Application queries 
the counts. 

ulCount = 1600 

lpNoteNumberList: 

  usNumOfNoteNumbers = 2 

  lppNoteNumber[0].usNoteID = 1 

  lppNoteNumber[0].ulCount = 900 

  lppNoteNumber[1].usNoteID = 2 

  lppNoteNumber[1].ulCount = 700 

lppPhysical[0]: 

ulCount = 1000 

NOTENUMBERLIST=1,800;2,200 

 

lppPhysical[1]: 

ulCount = 600 

NOTENUMBERLIST=1,100;2,500 



CWA 16926-15:2020 (E) 

187 

3. The first physical cash unit is 
removed. The logical cash unit 
counts can now report only what is in 
the remaining physical cash unit. 
Application queries the counts 

ulCount = 600 

lpNoteNumberList: 

  usNumOfNoteNumbers = 2 

  lppNoteNumber[0].usNoteID = 1 

  lppNoteNumber[0].ulCount = 100 

  lppNoteNumber[1].usNoteID = 2 

  lppNoteNumber[1].ulCount = 500 

lppPhysical[0]: 

ulCount = 600 

NOTENUMBERLIST=1,100;2,500 

4.  A new cash unit is inserted 
containing 300 x usNoteID 1. As the 
application already knows the 
contents of the remaining physical 
cash unit, the logical cash unit counts 
can be calculated. Application 
performs an Exchange to set the 
counts. 

ulCount = 900 

lpNoteNumberList: 

  usNumOfNoteNumbers = 2 

  lppNoteNumber[0].usNoteID = 1 

  lppNoteNumber[0].ulCount = 400 

  lppNoteNumber[1].usNoteID = 2 

  lppNoteNumber[1].ulCount = 500 

lppPhysical[0]: 

ulCount = 300 

NOTENUMBERLIST=1,300 

 

lppPhysical[1]: 

ulCount = 600 

NOTENUMBERLIST=1,100;2,500 
 

 

 



CWA 16926-15:2020 (E) 

188 

11. Events Associated with Cash Unit Status Changes 

The following instances illustrate which events will be posted when the cash unit statuses change. In all cases 
bHardwareSensors == TRUE, ulMaximum == 0 and ulMinimum == 0. 

 

11.1 One Physical Cash Unit Goes HIGH 

The following table describes a deposit transaction case where the status of a physical cash unit only changes from 
WFS_CIM_STATCUOK to WFS_CIM_STATCUHIGH. 

• Logical CU 1 consists of Physical CU 1 and Physical CU 2 

 
 Action Status/Event 
1.  Logical CU 1: WFS_CIM_STATCUOK 

- Physical CU 1: WFS_CIM_STATCUOK 
- Physical CU 2: WFS_CIM_STATCUOK 

2. A user deposits items.  
3. The device accepts and moves the items into 

Physical CU 1, whose status changes to high. 
 

4. The status of Logical CU 1 does not change. Logical CU 1: WFS_CIM_STATCUOK 
- Physical CU 1: WFS_CIM_STATCUHIGH 
- Physical CU 2: WFS_CIM_STATCUOK 
 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 



CWA 16926-15:2020 (E) 

189 

11.2 Last Physical Cash Unit Goes HIGH 

The following table describes a deposit transaction case where the status of a logical cash unit changes from 
WFS_CIM_STATCUOK to WFS_CIM_STATCUHIGH. 

• Logical CU 1 consists of Physical CU 1 and Physical CU 2 

 
 Action Status/Event 
1.  Logical CU 1: WFS_CIM_STATCUOK 

- Physical CU 1: WFS_CIM_STATCUHIGH 
- Physical CU 2: WFS_CIM_STATCUOK 

2. A user deposits items.  
3. The device accepts and moves the items into 

Physical CU 2, whose status changes to high. 
 

4. As a result, the status of Logical CU 1 changes to 
high. 

Logical CU 1: WFS_CIM_STATCUHIGH 
- Physical CU 1: WFS_CIM_STATCUHIGH 
- Physical CU 2: WFS_CIM_STATCUHIGH 
 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 
WFS_USRE_CIM_CASHUNITTHRESHOLD 



CWA 16926-15:2020 (E) 

190 

11.3 One Physical Cash Unit Goes INOP 

The following table describes a deposit transaction case where the status of a logical cash unit changes from 
WFS_CIM_STATCUOK to WFS_CIM_STATCUHIGH as the result of a physical cash unit failure. 

• Logical CU 1 consists of Physical CU 1 and Physical CU 2 

• The device has ability to continue transaction when a problem occurs in a physical cash unit. 

 
 Action Status/Event 
1.  Logical CU 1: WFS_CIM_STATCUOK 

- Physical CU 1: WFS_CIM_STATCUOK 
- Physical CU 2: WFS_CIM_STATCUHIGH 

2. A user deposits items.  
3. The device accepts the items and tries to move 

them into Physical CU 1; however, a problem 
occurs in the cash unit, whose status changes to 
inoperative. 

 

4. Instead, the device moves the items into Physical 
CU 2. 

 

5. As a result, the status of Logical CU 1 changes to 
high. 

Logical CU 1: WFS_CIM_STATCUHIGH 
- Physical CU 1: WFS_CIM_STATCUINOP 
- Physical CU 2: WFS_CIM_STATCUHIGH 
 
WFS_EXEE_CIM_CASHUNITERROR 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 
WFS_USRE_CIM_CASHUNITTHRESHOLD 



CWA 16926-15:2020 (E) 

191 

11.4 Last Physical Cash Unit Goes FULL 

The following table describes a deposit transaction case where the status of a logical cash unit changes from 
WFS_CIM_STATCUHIGH to WFS_CIM_STATCUFULL. 

• Logical CU 1 consists of Physical CU 1 and Physical CU 2 

 
 Action Status/Event 
1.  Logical CU 1: WFS_CIM_STATCUHIGH 

- Physical CU 1: WFS_CIM_STATCUFULL 
- Physical CU 2: WFS_CIM_STATCUHIGH 

2. A user deposits items.  
3. The device accepts and moves the items into 

Physical CU 2, whose status changes to full. 
 

4. As a result, the status of Logical CU 1 changes to 
full. 

Logical CU 1: WFS_CIM_STATCUFULL 
- Physical CU 1: WFS_CIM_STATCUFULL 
- Physical CU 2: WFS_CIM_STATCUFULL 
 
WFS_SRVE_CIM_CASHUNITINFOCHANGED 



CWA 16926-15:2020 (E) 

192 

12. C - Header file 

/****************************************************************************** 
*                                                                             * 
* xfscim.h      XFS - Cash Acceptor (CIM) definitions                         * 
*                                                                             * 
*               Version 3.40  (December 6 2019)                               * 
*                                                                             * 
******************************************************************************/ 
 
#ifndef __INC_XFSCIM__H 
#define __INC_XFSCIM__H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include <xfsapi.h> 
 
/* be aware of alignment */ 
#pragma pack (push, 1) 
 
/* values of WFSCIMCAPS.wClass */ 
 
#define     WFS_SERVICE_CLASS_CIM               (13) 
#define     WFS_SERVICE_CLASS_VERSION_CIM       (0x2803) /* Version 3.40 */ 
#define     WFS_SERVICE_CLASS_NAME_CIM          "CIM" 
 
#define     CIM_SERVICE_OFFSET                  (WFS_SERVICE_CLASS_CIM * 100) 
 
/* CIM Info Commands */ 
 
#define     WFS_INF_CIM_STATUS                  (CIM_SERVICE_OFFSET + 1) 
#define     WFS_INF_CIM_CAPABILITIES            (CIM_SERVICE_OFFSET + 2) 
#define     WFS_INF_CIM_CASH_UNIT_INFO          (CIM_SERVICE_OFFSET + 3) 
#define     WFS_INF_CIM_TELLER_INFO             (CIM_SERVICE_OFFSET + 4) 
#define     WFS_INF_CIM_CURRENCY_EXP            (CIM_SERVICE_OFFSET + 5) 
#define     WFS_INF_CIM_BANKNOTE_TYPES          (CIM_SERVICE_OFFSET + 6) 
#define     WFS_INF_CIM_CASH_IN_STATUS          (CIM_SERVICE_OFFSET + 7) 
#define     WFS_INF_CIM_GET_P6_INFO             (CIM_SERVICE_OFFSET + 8) 
#define     WFS_INF_CIM_GET_P6_SIGNATURE        (CIM_SERVICE_OFFSET + 9) 
#define     WFS_INF_CIM_GET_ITEM_INFO           (CIM_SERVICE_OFFSET + 10) 
#define     WFS_INF_CIM_POSITION_CAPABILITIES   (CIM_SERVICE_OFFSET + 11) 
#define     WFS_INF_CIM_REPLENISH_TARGET        (CIM_SERVICE_OFFSET + 12) 
#define     WFS_INF_CIM_DEVICELOCK_STATUS       (CIM_SERVICE_OFFSET + 13) 
#define     WFS_INF_CIM_CASH_UNIT_CAPABILITIES  (CIM_SERVICE_OFFSET + 14) 
#define     WFS_INF_CIM_DEPLETE_SOURCE          (CIM_SERVICE_OFFSET + 15) 
#define     WFS_INF_CIM_GET_ALL_ITEMS_INFO      (CIM_SERVICE_OFFSET + 16) 
#define     WFS_INF_CIM_GET_BLACKLIST           (CIM_SERVICE_OFFSET + 17) 
#define     WFS_INF_CIM_GET_CLASSIFICATION_LIST (CIM_SERVICE_OFFSET + 18) 
#define     WFS_INF_CIM_CASH_UNIT_COUNT_STATUS  (CIM_SERVICE_OFFSET + 19) 
#define     WFS_INF_CIM_PRESENT_STATUS          (CIM_SERVICE_OFFSET + 20) 
 
 
/* CIM Execute Commands */ 
 
#define     WFS_CMD_CIM_CASH_IN_START           (CIM_SERVICE_OFFSET + 1) 
#define     WFS_CMD_CIM_CASH_IN                 (CIM_SERVICE_OFFSET + 2) 
#define     WFS_CMD_CIM_CASH_IN_END             (CIM_SERVICE_OFFSET + 3) 
#define     WFS_CMD_CIM_CASH_IN_ROLLBACK        (CIM_SERVICE_OFFSET + 4) 
#define     WFS_CMD_CIM_RETRACT                 (CIM_SERVICE_OFFSET + 5) 
#define     WFS_CMD_CIM_OPEN_SHUTTER            (CIM_SERVICE_OFFSET + 6) 
#define     WFS_CMD_CIM_CLOSE_SHUTTER           (CIM_SERVICE_OFFSET + 7) 
#define     WFS_CMD_CIM_SET_TELLER_INFO         (CIM_SERVICE_OFFSET + 8) 
#define     WFS_CMD_CIM_SET_CASH_UNIT_INFO      (CIM_SERVICE_OFFSET + 9) 
#define     WFS_CMD_CIM_START_EXCHANGE          (CIM_SERVICE_OFFSET + 10) 
#define     WFS_CMD_CIM_END_EXCHANGE            (CIM_SERVICE_OFFSET + 11) 
#define     WFS_CMD_CIM_OPEN_SAFE_DOOR          (CIM_SERVICE_OFFSET + 12) 
#define     WFS_CMD_CIM_RESET                   (CIM_SERVICE_OFFSET + 13) 



CWA 16926-15:2020 (E) 

193 

#define     WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS (CIM_SERVICE_OFFSET + 14) 
#define     WFS_CMD_CIM_CONFIGURE_NOTETYPES     (CIM_SERVICE_OFFSET + 15) 
#define     WFS_CMD_CIM_CREATE_P6_SIGNATURE     (CIM_SERVICE_OFFSET + 16) 
#define     WFS_CMD_CIM_SET_GUIDANCE_LIGHT      (CIM_SERVICE_OFFSET + 17) 
#define     WFS_CMD_CIM_CONFIGURE_NOTE_READER   (CIM_SERVICE_OFFSET + 18) 
#define     WFS_CMD_CIM_COMPARE_P6_SIGNATURE    (CIM_SERVICE_OFFSET + 19) 
#define     WFS_CMD_CIM_POWER_SAVE_CONTROL      (CIM_SERVICE_OFFSET + 20) 
#define     WFS_CMD_CIM_REPLENISH               (CIM_SERVICE_OFFSET + 21) 
#define     WFS_CMD_CIM_SET_CASH_IN_LIMIT       (CIM_SERVICE_OFFSET + 22) 
#define     WFS_CMD_CIM_CASH_UNIT_COUNT         (CIM_SERVICE_OFFSET + 23) 
#define     WFS_CMD_CIM_DEVICE_LOCK_CONTROL     (CIM_SERVICE_OFFSET + 24) 
#define     WFS_CMD_CIM_SET_MODE                (CIM_SERVICE_OFFSET + 25) 
#define     WFS_CMD_CIM_PRESENT_MEDIA           (CIM_SERVICE_OFFSET + 26) 
#define     WFS_CMD_CIM_DEPLETE                 (CIM_SERVICE_OFFSET + 27) 
#define     WFS_CMD_CIM_SET_BLACKLIST           (CIM_SERVICE_OFFSET + 28) 
#define     WFS_CMD_CIM_SYNCHRONIZE_COMMAND     (CIM_SERVICE_OFFSET + 29) 
#define     WFS_CMD_CIM_SET_CLASSIFICATION_LIST (CIM_SERVICE_OFFSET + 30) 
#define     WFS_CMD_CIM_PREPARE_PRESENT         (CIM_SERVICE_OFFSET + 31) 
 
 
/* CIM Messages */ 
 
#define     WFS_SRVE_CIM_SAFEDOOROPEN           (CIM_SERVICE_OFFSET + 1) 
#define     WFS_SRVE_CIM_SAFEDOORCLOSED         (CIM_SERVICE_OFFSET + 2) 
#define     WFS_USRE_CIM_CASHUNITTHRESHOLD      (CIM_SERVICE_OFFSET + 3) 
#define     WFS_SRVE_CIM_CASHUNITINFOCHANGED    (CIM_SERVICE_OFFSET + 4) 
#define     WFS_SRVE_CIM_TELLERINFOCHANGED      (CIM_SERVICE_OFFSET + 5) 
#define     WFS_EXEE_CIM_CASHUNITERROR          (CIM_SERVICE_OFFSET + 6) 
#define     WFS_SRVE_CIM_ITEMSTAKEN             (CIM_SERVICE_OFFSET + 7) 
#define     WFS_SRVE_CIM_COUNTS_CHANGED         (CIM_SERVICE_OFFSET + 8) 
#define     WFS_EXEE_CIM_INPUTREFUSE            (CIM_SERVICE_OFFSET + 9) 
#define     WFS_SRVE_CIM_ITEMSPRESENTED         (CIM_SERVICE_OFFSET + 10) 
#define     WFS_SRVE_CIM_ITEMSINSERTED          (CIM_SERVICE_OFFSET + 11) 
#define     WFS_EXEE_CIM_NOTEERROR              (CIM_SERVICE_OFFSET + 12) 
#define     WFS_EXEE_CIM_SUBCASHIN              (CIM_SERVICE_OFFSET + 13) 
#define     WFS_SRVE_CIM_MEDIADETECTED          (CIM_SERVICE_OFFSET + 14) 
#define     WFS_EXEE_CIM_INPUT_P6               (CIM_SERVICE_OFFSET + 15) 
#define     WFS_EXEE_CIM_INFO_AVAILABLE         (CIM_SERVICE_OFFSET + 16) 
#define     WFS_EXEE_CIM_INSERTITEMS            (CIM_SERVICE_OFFSET + 17) 
#define     WFS_SRVE_CIM_DEVICEPOSITION         (CIM_SERVICE_OFFSET + 18) 
#define     WFS_SRVE_CIM_POWER_SAVE_CHANGE      (CIM_SERVICE_OFFSET + 19) 
#define     WFS_EXEE_CIM_INCOMPLETEREPLENISH    (CIM_SERVICE_OFFSET + 20) 
#define     WFS_EXEE_CIM_INCOMPLETEDEPLETE      (CIM_SERVICE_OFFSET + 21) 
#define     WFS_SRVE_CIM_SHUTTERSTATUSCHANGED   (CIM_SERVICE_OFFSET + 22) 
#define     WFS_SRVE_CIM_COUNTACCURACYCHANGED   (CIM_SERVICE_OFFSET + 23) 
 
/* values of WFSCIMSTATUS.fwDevice */ 
 
#define     WFS_CIM_DEVONLINE                   WFS_STAT_DEVONLINE 
#define     WFS_CIM_DEVOFFLINE                  WFS_STAT_DEVOFFLINE 
#define     WFS_CIM_DEVPOWEROFF                 WFS_STAT_DEVPOWEROFF 
#define     WFS_CIM_DEVNODEVICE                 WFS_STAT_DEVNODEVICE 
#define     WFS_CIM_DEVUSERERROR                WFS_STAT_DEVUSERERROR 
#define     WFS_CIM_DEVHWERROR                  WFS_STAT_DEVHWERROR 
#define     WFS_CIM_DEVBUSY                     WFS_STAT_DEVBUSY 
#define     WFS_CIM_DEVFRAUDATTEMPT             WFS_STAT_DEVFRAUDATTEMPT 
#define     WFS_CIM_DEVPOTENTIALFRAUD           WFS_STAT_DEVPOTENTIALFRAUD 
 
/* values of WFSCIMSTATUS.fwSafeDoor */ 
 
#define     WFS_CIM_DOORNOTSUPPORTED            (1) 
#define     WFS_CIM_DOOROPEN                    (2) 
#define     WFS_CIM_DOORCLOSED                  (3) 
#define     WFS_CIM_DOORUNKNOWN                 (4) 
 
/* values of WFSCIMSTATUS.fwAcceptor */ 
 
#define     WFS_CIM_ACCOK                       (0) 
#define     WFS_CIM_ACCCUSTATE                  (1) 
#define     WFS_CIM_ACCCUSTOP                   (2) 



CWA 16926-15:2020 (E) 

194 

#define     WFS_CIM_ACCCUUNKNOWN                (3) 
 
/* values of WFSCIMSTATUS.fwIntermediateStacker */ 
 
#define     WFS_CIM_ISEMPTY                     (0) 
#define     WFS_CIM_ISNOTEMPTY                  (1) 
#define     WFS_CIM_ISFULL                      (2) 
#define     WFS_CIM_ISUNKNOWN                   (4) 
#define     WFS_CIM_ISNOTSUPPORTED              (5) 
 
/* Size and max index of dwGuidLights array */ 
#define     WFS_CIM_GUIDLIGHTS_SIZE             (32) 
#define     WFS_CIM_GUIDLIGHTS_MAX              (WFS_CIM_GUIDLIGHTS_SIZE - 1) 
 
/* Indices of WFSCIMSTATUS.dwGuidLights [...] 
              WFSCIMCAPS.dwGuidLights [...] 
*/ 
 
#define     WFS_CIM_GUIDANCE_POSINNULL          (0) 
#define     WFS_CIM_GUIDANCE_POSINLEFT          (1) 
#define     WFS_CIM_GUIDANCE_POSINRIGHT         (2) 
#define     WFS_CIM_GUIDANCE_POSINCENTER        (3) 
#define     WFS_CIM_GUIDANCE_POSINTOP           (4) 
#define     WFS_CIM_GUIDANCE_POSINBOTTOM        (5) 
#define     WFS_CIM_GUIDANCE_POSINFRONT         (6) 
#define     WFS_CIM_GUIDANCE_POSINREAR          (7) 
#define     WFS_CIM_GUIDANCE_POSOUTLEFT         (8) 
#define     WFS_CIM_GUIDANCE_POSOUTRIGHT        (9) 
#define     WFS_CIM_GUIDANCE_POSOUTCENTER       (10) 
#define     WFS_CIM_GUIDANCE_POSOUTTOP          (11) 
#define     WFS_CIM_GUIDANCE_POSOUTBOTTOM       (12) 
#define     WFS_CIM_GUIDANCE_POSOUTFRONT        (13) 
#define     WFS_CIM_GUIDANCE_POSOUTREAR         (14) 
#define     WFS_CIM_GUIDANCE_POSOUTNULL         (15) 
 
/* Values of WFSCIMSTATUS.dwGuidLights [...] 
             WFSCIMCAPS.dwGuidLights [...] 
*/ 
 
#define     WFS_CIM_GUIDANCE_NOT_AVAILABLE      (0x00000000) 
#define     WFS_CIM_GUIDANCE_OFF                (0x00000001) 
#define     WFS_CIM_GUIDANCE_SLOW_FLASH         (0x00000004) 
#define     WFS_CIM_GUIDANCE_MEDIUM_FLASH       (0x00000008) 
#define     WFS_CIM_GUIDANCE_QUICK_FLASH        (0x00000010) 
#define     WFS_CIM_GUIDANCE_CONTINUOUS         (0x00000080) 
#define     WFS_CIM_GUIDANCE_RED                (0x00000100) 
#define     WFS_CIM_GUIDANCE_GREEN              (0x00000200) 
#define     WFS_CIM_GUIDANCE_YELLOW             (0x00000400) 
#define     WFS_CIM_GUIDANCE_BLUE               (0x00000800) 
#define     WFS_CIM_GUIDANCE_CYAN               (0x00001000) 
#define     WFS_CIM_GUIDANCE_MAGENTA            (0x00002000) 
#define     WFS_CIM_GUIDANCE_WHITE              (0x00004000) 
#define     WFS_CIM_GUIDANCE_ENTRY              (0x00100000) 
#define     WFS_CIM_GUIDANCE_EXIT               (0x00200000) 
 
/* values of WFSCIMSTATUS.wDevicePosition 
             WFSCIMDEVICEPOSITION.wPosition */ 
 
#define     WFS_CIM_DEVICEINPOSITION            (0) 
#define     WFS_CIM_DEVICENOTINPOSITION         (1) 
#define     WFS_CIM_DEVICEPOSUNKNOWN            (2) 
#define     WFS_CIM_DEVICEPOSNOTSUPP            (3) 
 
/* values of WFSCIMSTATUS.fwStackerItems */ 
 
#define     WFS_CIM_CUSTOMERACCESS              (0) 
#define     WFS_CIM_NOCUSTOMERACCESS            (1) 
#define     WFS_CIM_ACCESSUNKNOWN               (2) 
#define     WFS_CIM_NOITEMS                     (4) 
 



CWA 16926-15:2020 (E) 

195 

/* values of WFSCIMSTATUS.fwBankNoteReader */ 
 
#define     WFS_CIM_BNROK                       (0) 
#define     WFS_CIM_BNRINOP                     (1) 
#define     WFS_CIM_BNRUNKNOWN                  (2) 
#define     WFS_CIM_BNRNOTSUPPORTED             (3) 
 
/* values of WFSCIMSTATUS.fwShutter */ 
 
#define     WFS_CIM_SHTCLOSED                   (0) 
#define     WFS_CIM_SHTOPEN                     (1) 
#define     WFS_CIM_SHTJAMMED                   (2) 
#define     WFS_CIM_SHTUNKNOWN                  (3) 
#define     WFS_CIM_SHTNOTSUPPORTED             (4) 
 
/* values of WFSCIMCAPS.wMixedMode */ 
 
#define     WFS_CIM_MIXEDMEDIANOTSUPP           (0) 
#define     WFS_CIM_IPMMIXEDMEDIA               (1) 
 
/* values of WFSCIMSETMODE.wMixedMode */ 
/* values of WFSCIMSTATUS.wMixedMode.*/ 
 
#define     WFS_CIM_MIXEDMEDIANOTACTIVE         (0) 
 
/* values of WFSCIMINPOS.fwPositionStatus */ 
 
#define     WFS_CIM_PSEMPTY                     (0) 
#define     WFS_CIM_PSNOTEMPTY                  (1) 
#define     WFS_CIM_PSUNKNOWN                   (2) 
#define     WFS_CIM_PSNOTSUPPORTED              (3) 
#define     WFS_CIM_PSFOREIGNITEMS              (4) 
 
/* values of WFSCIMSTATUS.fwTransport */ 
 
#define     WFS_CIM_TPOK                        (0) 
#define     WFS_CIM_TPINOP                      (1) 
#define     WFS_CIM_TPUNKNOWN                   (2) 
#define     WFS_CIM_TPNOTSUPPORTED              (3) 
 
/* values of WFSCIMINPOS.fwTransportStatus */ 
 
#define     WFS_CIM_TPSTATEMPTY                 (0) 
#define     WFS_CIM_TPSTATNOTEMPTY              (1) 
#define     WFS_CIM_TPSTATNOTEMPTYCUST          (2) 
#define     WFS_CIM_TPSTATNOTEMPTY_UNK          (3) 
#define     WFS_CIM_TPSTATNOTSUPPORTED          (4) 
 
/* values of WFSCIMOUTPOS.fwJammedShutterPosition */ 
 
#define     WFS_CIM_SHUTTERPOS_NOTSUPPORTED     (0) 
#define     WFS_CIM_SHUTTERPOS_NOTJAMMED        (1) 
#define     WFS_CIM_SHUTTERPOS_OPEN             (2) 
#define     WFS_CIM_SHUTTERPOS_PARTIALLY_OPEN   (3) 
#define     WFS_CIM_SHUTTERPOS_CLOSED           (4) 
#define     WFS_CIM_SHUTTERPOS_UNKNOWN          (5) 
 
/* values of WFSCIMCAPS.fwType */ 
 
#define     WFS_CIM_TELLERBILL                  (0) 
#define     WFS_CIM_SELFSERVICEBILL             (1) 
#define     WFS_CIM_TELLERCOIN                  (2) 
#define     WFS_CIM_SELFSERVICECOIN             (3) 
 
/* values of WFSCIMCAPS.fwExchangeType */ 
/* values of WFSCIMSTARTEX.fwExchangeType */ 
 
#define     WFS_CIM_EXBYHAND                    (0x0001) 
#define     WFS_CIM_EXTOCASSETTES               (0x0002) 
#define     WFS_CIM_CLEARRECYCLER               (0x0004) 



CWA 16926-15:2020 (E) 

196 

#define     WFS_CIM_DEPOSITINTO                 (0x0008) 
 
/* values of WFSCIMCAPS.fwRetractTransportActions */ 
/* values of WFSCIMCAPS.fwRetractStackerActions */ 
 
#define     WFS_CIM_PRESENT                     (0x0001) 
#define     WFS_CIM_RETRACT                     (0x0002) 
#define     WFS_CIM_NOTSUPP                     (0x0004) 
#define     WFS_CIM_REJECT                      (0x0008) 
#define     WFS_CIM_BILLCASSETTES               (0x0010) 
#define     WFS_CIM_CASHIN                      (0x0020) 
 
/* values for WFSCIMCAPS.fwCashInLimit */ 
 
#define     WFS_CIM_LIMITNOTSUPP                (0x0000) 
#define     WFS_CIM_LIMITBYTOTALITEMS           (0x0001) 
#define     WFS_CIM_LIMITBYAMOUNT               (0x0002) 
#define     WFS_CIM_LIMITMULTIPLE               (0x0004) 
#define     WFS_CIM_LIMITREFUSEOTHER            (0x0008) 
 
/* values of WFSCIMCASHIN.fwType */ 
 
#define     WFS_CIM_TYPERECYCLING               (1) 
#define     WFS_CIM_TYPECASHIN                  (2) 
#define     WFS_CIM_TYPEREPCONTAINER            (3) 
#define     WFS_CIM_TYPERETRACTCASSETTE         (4) 
#define     WFS_CIM_TYPEREJECT                  (5) 
#define     WFS_CIM_TYPECDMSPECIFIC             (6) 
 
/* values of WFSCIMCASHIN.fwItemType */ 
/* values of WFSCIMCASHINTYPE.dwType */ 
 
#define     WFS_CIM_CITYPALL                    (0x0001) 
#define     WFS_CIM_CITYPUNFIT                  (0x0002) 
#define     WFS_CIM_CITYPINDIVIDUAL             (0x0004) 
#define     WFS_CIM_CITYPLEVEL3                 (0x0008) 
#define     WFS_CIM_CITYPLEVEL2                 (0x0010) 
#define     WFS_CIM_CITYPIPM                    (0x0020) 
#define     WFS_CIM_CITYPLEVEL1                 (0x0040) 
#define     WFS_CIM_CITYPUNFITINDIVIDUAL        (0x0080) 
 
/* values of WFSCIMCASHIN.usStatus */ 
/* values of WFSCIMPHCU.usPStatus */ 
 
#define     WFS_CIM_STATCUOK                    (0) 
#define     WFS_CIM_STATCUFULL                  (1) 
#define     WFS_CIM_STATCUHIGH                  (2) 
#define     WFS_CIM_STATCULOW                   (3) 
#define     WFS_CIM_STATCUEMPTY                 (4) 
#define     WFS_CIM_STATCUINOP                  (5) 
#define     WFS_CIM_STATCUMISSING               (6) 
#define     WFS_CIM_STATCUNOVAL                 (7) 
#define     WFS_CIM_STATCUNOREF                 (8) /* NOTE: Not used in CIM */ 
#define     WFS_CIM_STATCUMANIP                 (9) 
 
/* values of WFSCIMSTATUS.fwPositions */ 
/* values of WFSCIMCAPS.fwPositions */ 
/* values of WFSCIMINPOS.fwPosition */ 
/* values of WFSCIMTELLERDETAILS.fwInputPosition */ 
/* values of WFSCIMCASHINSTART.fwInputPosition */ 
/* values of WFSCIMMOVEITEMS.fwPosition */ 
 
#define     WFS_CIM_POSNULL                     (0x0000) 
#define     WFS_CIM_POSINLEFT                   (0x0001) 
#define     WFS_CIM_POSINRIGHT                  (0x0002) 
#define     WFS_CIM_POSINCENTER                 (0x0004) 
#define     WFS_CIM_POSINTOP                    (0x0008) 
#define     WFS_CIM_POSINBOTTOM                 (0x0010) 
#define     WFS_CIM_POSINFRONT                  (0x0020) 
#define     WFS_CIM_POSINREAR                   (0x0040) 



CWA 16926-15:2020 (E) 

197 

 
/* values of WFSCIMSTATUS.fwPositions */ 
/* values of WFSCIMCAPS.fwPositions */ 
/* values of WFSCIMTELLERDETAILS.fwOutputPosition */ 
/* values of WFSCIMCASHINSTART.fwOutputPosition */ 
/* values of WFSCIMOUTPUT.fwPosition */ 
/* values of WFSCIMMOVEITEMS.fwPosition */ 
 
#define     WFS_CIM_POSOUTLEFT                  (0x0080) 
#define     WFS_CIM_POSOUTRIGHT                 (0x0100) 
#define     WFS_CIM_POSOUTCENTER                (0x0200) 
#define     WFS_CIM_POSOUTTOP                   (0x0400) 
#define     WFS_CIM_POSOUTBOTTOM                (0x0800) 
#define     WFS_CIM_POSOUTFRONT                 (0x1000) 
#define     WFS_CIM_POSOUTREAR                  (0x2000) 
 
/* values of WFSCIMCASHINSTATUS.wStatus */ 
 
#define     WFS_CIM_CIOK                        (0) 
#define     WFS_CIM_CIROLLBACK                  (1) 
#define     WFS_CIM_CIACTIVE                    (2) 
#define     WFS_CIM_CIRETRACT                   (3) 
#define     WFS_CIM_CIUNKNOWN                   (4) 
#define     WFS_CIM_CIRESET                     (5) 
 
/* values of WFSCIMCAPS.fwRetractAreas */ 
/* values of WFSCIMRETRACT.usRetractArea */ 
 
#define     WFS_CIM_RA_RETRACT                  (0x0001) 
#define     WFS_CIM_RA_TRANSPORT                (0x0002) 
#define     WFS_CIM_RA_STACKER                  (0x0004) 
#define     WFS_CIM_RA_BILLCASSETTES            (0x0008) 
#define     WFS_CIM_RA_NOTSUPP                  (0x0010) 
#define     WFS_CIM_RA_REJECT                   (0x0020) 
#define     WFS_CIM_RA_CASHIN                   (0x0040) 
 
/* values of WFSCIMP6INFO.usLevel */ 
/* values of WFSCIMP6SIGNATURE.usLevel */ 
/* values of WFSCIMGETALLITEMSINFO.usLevel */ 
/* values of WFSCIMITEMINFOALL.usLevel */ 
 
#define     WFS_CIM_LEVEL_1                     (1) 
#define     WFS_CIM_LEVEL_2                     (2) 
#define     WFS_CIM_LEVEL_3                     (3) 
#define     WFS_CIM_LEVEL_4                     (4) 
 
/* values of WFSCIMITEMINFOALL.usLevel */ 
 
#define     WFS_CIM_LEVEL_ALL                   (0) 
 
/* values of WFSCIMTELLERUPDATE.usAction */ 
 
#define     WFS_CIM_CREATE_TELLER               (1) 
#define     WFS_CIM_MODIFY_TELLER               (2) 
#define     WFS_CIM_DELETE_TELLER               (3) 
 
/* values of WFSCIMCUERROR.wFailure */ 
 
#define     WFS_CIM_CASHUNITEMPTY               (1) 
#define     WFS_CIM_CASHUNITERROR               (2) 
#define     WFS_CIM_CASHUNITFULL                (3) 
#define     WFS_CIM_CASHUNITLOCKED              (4) 
#define     WFS_CIM_CASHUNITNOTCONF             (5) 
#define     WFS_CIM_CASHUNITINVALID             (6) 
#define     WFS_CIM_CASHUNITCONFIG              (7) 
#define     WFS_CIM_FEEDMODULEPROBLEM           (8) 
#define     WFS_CIM_CASHUNITPHYSICALLOCKED      (9) 
#define     WFS_CIM_CASHUNITPHYSICALUNLOCKED    (10) 
 
/*values of WFSCIMP6SIGNATURE.dwOrientation*/ 



CWA 16926-15:2020 (E) 

198 

 
#define     WFS_CIM_ORFRONTTOP                  (1) 
#define     WFS_CIM_ORFRONTBOTTOM               (2) 
#define     WFS_CIM_ORBACKTOP                   (3) 
#define     WFS_CIM_ORBACKBOTTOM                (4) 
#define     WFS_CIM_ORUNKNOWN                   (5) 
#define     WFS_CIM_ORNOTSUPPORTED              (6) 
 
/* values for WFSCIMGETITEMINFO.dwItemInfoType */ 
#define     WFS_CIM_ITEM_NOTSUPP                (0x00000000) 
#define     WFS_CIM_ITEM_SERIALNUMBER           (0x00000001) 
#define     WFS_CIM_ITEM_SIGNATURE              (0x00000002) 
#define     WFS_CIM_ITEM_IMAGEFILE              (0x00000004) 
 
/* values of lpusReason in WFS_EXEE_CIM_INPUTREFUSE */ 
 
#define     WFS_CIM_CASHINUNITFULL              (1) 
#define     WFS_CIM_INVALIDBILL                 (2) 
#define     WFS_CIM_NOBILLSTODEPOSIT            (3) 
#define     WFS_CIM_DEPOSITFAILURE              (4) 
#define     WFS_CIM_COMMINPCOMPFAILURE          (5) 
#define     WFS_CIM_STACKERFULL                 (6) 
#define     WFS_CIM_FOREIGN_ITEMS_DETECTED      (7) 
#define     WFS_CIM_INVALIDBUNCH                (8) 
#define     WFS_CIM_COUNTERFEIT                 (9) 
#define     WFS_CIM_LIMITOVERTOTALITEMS         (10) 
#define     WFS_CIM_LIMITOVERAMOUNT             (11) 
 
/* values of lpusReason in WFS_EXEE_CIM_NOTESERROR */ 
 
#define     WFS_CIM_DOUBLENOTEDETECTED          (1) 
#define     WFS_CIM_LONGNOTEDETECTED            (2) 
#define     WFS_CIM_SKEWEDNOTE                  (3) 
#define     WFS_CIM_INCORRECTCOUNT              (4) 
#define     WFS_CIM_NOTESTOOCLOSE               (5) 
#define     WFS_CIM_OTHERNOTEERROR              (6) 
#define     WFS_CIM_SHORTNOTEDETECTED           (7) 
 
/* Values of fwUsage in WFS_INF_CIM_POSITION_CAPABILITIES */ 
 
#define     WFS_CIM_POSIN                       (0x0001) 
#define     WFS_CIM_POSREFUSE                   (0x0002) 
#define     WFS_CIM_POSROLLBACK                 (0x0004) 
 
/* values of WFSCIMPOSITIONINFO.wAdditionalBunches */ 
/* values of WFSCIMPRESENTSTATUS.wAdditionalBunches */ 
 
#define     WFS_CIM_ADDBUNCHNONE                (1) 
#define     WFS_CIM_ADDBUNCHONEMORE             (2) 
#define     WFS_CIM_ADDBUNCHUNKNOWN             (3) 
 
/* values of WFSCIMPOSITIONINFO.usBunchesRemaining */ 
/* values of WFSCIMPRESENTSTATUS.usBunchesRemaining */ 
 
#define     WFS_CIM_NUMBERUNKNOWN               (255) 
 
/* values of WFSCIMCAPS.fwCountActions */ 
 
#define     WFS_CIM_COUNTNOTSUPP                (0x0000) 
#define     WFS_CIM_COUNTINDIVIDUAL             (0x0001) 
#define     WFS_CIM_COUNTALL                    (0x0002) 
 
/* values of WFSCIMDEVICELOCKCONTROL.wDeviceAction */ 
/* values of WFSCIMDEVICELOCKCONTROL.wCashUnitAction */ 
/* values of WFSCIMUNITLOCKCONTROL.wUnitAction */ 
 
#define     WFS_CIM_LOCK                        (1) 
#define     WFS_CIM_UNLOCK                      (2) 
#define     WFS_CIM_LOCKALL                     (3) 
#define     WFS_CIM_UNLOCKALL                   (4) 



CWA 16926-15:2020 (E) 

199 

#define     WFS_CIM_LOCKINDIVIDUAL              (5) 
#define     WFS_CIM_NOLOCKACTION                (6) 
#define     WFS_CIM_LOCKUNKNOWN                 (7) 
#define     WFS_CIM_LOCKNOTSUPPORTED            (8) 
 
/* values of WFSCIMSTATUS.wAntiFraudModule */ 
 
#define     WFS_CIM_AFMNOTSUPP                  (0) 
#define     WFS_CIM_AFMOK                       (1) 
#define     WFS_CIM_AFMINOP                     (2) 
#define     WFS_CIM_AFMDEVICEDETECTED           (3) 
#define     WFS_CIM_AFMUNKNOWN                  (4) 
 
/* values for WFSCIMITEMINFOALL.wOnBlacklist */ 
 
#define     WFS_CIM_ONBLACKLIST                 (0x0001) 
#define     WFS_CIM_NOTONBLACKLIST              (0x0002) 
#define     WFS_CIM_BLACKLISTUNKNOWN            (0x0003) 
 
/* values for WFSCIMITEMINFOALL.wItemLocation */ 
 
#define     WFS_CIM_LOCATION_DEVICE             (0x0001) 
#define     WFS_CIM_LOCATION_CASHUNIT           (0x0002) 
#define     WFS_CIM_LOCATION_CUSTOMER           (0x0003) 
#define     WFS_CIM_LOCATION_UNKNOWN            (0x0004) 
 
/* values for WFSCIMITEMINFOALL.wOnClassificationList */ 
 
#define     WFS_CIM_CLASSIFICATIONLIST_ON       (0x0001) 
#define     WFS_CIM_CLASSIFICATIONLIST_NOTON    (0x0002) 
#define     WFS_CIM_CLASSIFICATIONLIST_UNKNOWN  (0x0003) 
 
/* values for WFSCIMCASHUNITCOUNTSTATUS.usAccuracy */ 
/* values for WFSCIMPHCUCOUNTSTATUS.usAccuracy */ 
 
#define     WFS_CIM_ACCURACYNOTSUPPORTED        (0) 
#define     WFS_CIM_COUNTACCURATE               (1) 
#define     WFS_CIM_COUNTACCURATESET            (2) 
#define     WFS_CIM_COUNTINACCURATE             (3) 
#define     WFS_CIM_ACCURACYUNKNOWN             (4) 
 
/* values for WFSCIMITEMINFOALL.wItemDeviceLocation */ 
 
#define     WFS_CIM_DEVLOC_STACKER              (0x0001) 
#define     WFS_CIM_DEVLOC_OUTPUT               (0x0002) 
#define     WFS_CIM_DEVLOC_TRANSPORT            (0x0003) 
#define     WFS_CIM_DEVLOC_UNKNOWN              (0x0004) 
 
/* values of WFSCIMPRESENTSTATUS.wPresentState */ 
#define     WFS_CIM_PRESENTED                   (1) 
#define     WFS_CIM_NOTPRESENTED                (2) 
#define     WFS_CIM_UNKNOWN                     (3) 
 
/* XFS CIM Errors */ 
 
#define WFS_ERR_CIM_INVALIDCURRENCY             (-(CIM_SERVICE_OFFSET + 0)) 
#define WFS_ERR_CIM_INVALIDTELLERID             (-(CIM_SERVICE_OFFSET + 1)) 
#define WFS_ERR_CIM_CASHUNITERROR               (-(CIM_SERVICE_OFFSET + 2)) 
#define WFS_ERR_CIM_TOOMANYITEMS                (-(CIM_SERVICE_OFFSET + 7)) 
#define WFS_ERR_CIM_UNSUPPOSITION               (-(CIM_SERVICE_OFFSET + 8)) 
#define WFS_ERR_CIM_SAFEDOOROPEN                (-(CIM_SERVICE_OFFSET + 10)) 
#define WFS_ERR_CIM_SHUTTERNOTOPEN              (-(CIM_SERVICE_OFFSET + 12)) 
#define WFS_ERR_CIM_SHUTTEROPEN                 (-(CIM_SERVICE_OFFSET + 13)) 
#define WFS_ERR_CIM_SHUTTERCLOSED               (-(CIM_SERVICE_OFFSET + 14)) 
#define WFS_ERR_CIM_INVALIDCASHUNIT             (-(CIM_SERVICE_OFFSET + 15)) 
#define WFS_ERR_CIM_NOITEMS                     (-(CIM_SERVICE_OFFSET + 16)) 
#define WFS_ERR_CIM_EXCHANGEACTIVE              (-(CIM_SERVICE_OFFSET + 17)) 
#define WFS_ERR_CIM_NOEXCHANGEACTIVE            (-(CIM_SERVICE_OFFSET + 18)) 
#define WFS_ERR_CIM_SHUTTERNOTCLOSED            (-(CIM_SERVICE_OFFSET + 19)) 
#define WFS_ERR_CIM_ITEMSTAKEN                  (-(CIM_SERVICE_OFFSET + 23)) 



CWA 16926-15:2020 (E) 

200 

#define WFS_ERR_CIM_CASHINACTIVE                (-(CIM_SERVICE_OFFSET + 25)) 
#define WFS_ERR_CIM_NOCASHINACTIVE              (-(CIM_SERVICE_OFFSET + 26)) 
#define WFS_ERR_CIM_POSITION_NOT_EMPTY          (-(CIM_SERVICE_OFFSET + 28)) 
#define WFS_ERR_CIM_INVALIDRETRACTPOSITION      (-(CIM_SERVICE_OFFSET + 34)) 
#define WFS_ERR_CIM_NOTRETRACTAREA              (-(CIM_SERVICE_OFFSET + 35)) 
#define WFS_ERR_CIM_INVALID_PORT                (-(CIM_SERVICE_OFFSET + 36)) 
#define WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED      (-(CIM_SERVICE_OFFSET + 37)) 
#define WFS_ERR_CIM_LOADFAILED                  (-(CIM_SERVICE_OFFSET + 38)) 
#define WFS_ERR_CIM_CASHUNITNOTEMPTY            (-(CIM_SERVICE_OFFSET + 39)) 
#define WFS_ERR_CIM_INVALIDREFSIG               (-(CIM_SERVICE_OFFSET + 40)) 
#define WFS_ERR_CIM_INVALIDTRNSIG               (-(CIM_SERVICE_OFFSET + 41)) 
#define WFS_ERR_CIM_POWERSAVETOOSHORT           (-(CIM_SERVICE_OFFSET + 42)) 
#define WFS_ERR_CIM_POWERSAVEMEDIAPRESENT       (-(CIM_SERVICE_OFFSET + 43)) 
#define WFS_ERR_CIM_DEVICELOCKFAILURE           (-(CIM_SERVICE_OFFSET + 44)) 
#define WFS_ERR_CIM_TOOMANYITEMSTOCOUNT         (-(CIM_SERVICE_OFFSET + 45)) 
#define WFS_ERR_CIM_COUNTPOSNOTEMPTY            (-(CIM_SERVICE_OFFSET + 46)) 
#define WFS_ERR_CIM_MEDIAINACTIVE               (-(CIM_SERVICE_OFFSET + 47)) 
#define WFS_ERR_CIM_COMMANDUNSUPP               (-(CIM_SERVICE_OFFSET + 48)) 
#define WFS_ERR_CIM_SYNCHRONIZEUNSUPP           (-(CIM_SERVICE_OFFSET + 49)) 
 
/*=================================================================*/ 
/* CIM Info Command Structures */ 
/*=================================================================*/ 
 
typedef struct _wfs_cim_inpos 
{ 
    WORD                     fwPosition; 
    WORD                     fwShutter; 
    WORD                     fwPositionStatus; 
    WORD                     fwTransport; 
    WORD                     fwTransportStatus; 
    WORD                     fwJammedShutterPosition; 
} WFSCIMINPOS, *LPWFSCIMINPOS; 
 
typedef struct _wfs_cim_status 
{ 
    WORD                     fwDevice; 
    WORD                     fwSafeDoor; 
    WORD                     fwAcceptor; 
    WORD                     fwIntermediateStacker; 
    WORD                     fwStackerItems; 
    WORD                     fwBanknoteReader; 
    BOOL                     bDropBox; 
    LPWFSCIMINPOS            *lppPositions; 
    LPSTR                    lpszExtra; 
    DWORD                    dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE]; 
    WORD                     wDevicePosition; 
    USHORT                   usPowerSaveRecoveryTime; 
    WORD                     wMixedMode; 
    WORD                     wAntiFraudModule; 
} WFSCIMSTATUS, *LPWFSCIMSTATUS; 
 
typedef struct _wfs_cim_caps 
{ 
    WORD                     wClass; 
    WORD                     fwType; 
    WORD                     wMaxCashInItems; 
    BOOL                     bCompound; 
    BOOL                     bShutter; 
    BOOL                     bShutterControl; 
    BOOL                     bSafeDoor; 
    BOOL                     bCashBox; 
    BOOL                     bRefill; 
    WORD                     fwIntermediateStacker; 
    BOOL                     bItemsTakenSensor; 
    BOOL                     bItemsInsertedSensor; 
    WORD                     fwPositions; 
    WORD                     fwExchangeType; 
    WORD                     fwRetractAreas; 
    WORD                     fwRetractTransportActions; 



CWA 16926-15:2020 (E) 

201 

    WORD                     fwRetractStackerActions; 
    LPSTR                    lpszExtra; 
    DWORD                    dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE]; 
    DWORD                    dwItemInfoTypes; 
    BOOL                     bCompareSignatures; 
    BOOL                     bPowerSaveControl; 
    BOOL                     bReplenish; 
    WORD                     fwCashInLimit; 
    WORD                     fwCountActions; 
    BOOL                     bDeviceLockControl; 
    WORD                     wMixedMode; 
    BOOL                     bMixedDepositAndRollback; 
    BOOL                     bAntiFraudModule; 
    BOOL                     bDeplete; 
    BOOL                     bBlacklist; 
    LPDWORD                  lpdwSynchronizableCommands; 
    BOOL                     bClassificationList; 
    BOOL                     bPhysicalNoteList; 
} WFSCIMCAPS, *LPWFSCIMCAPS; 
 
typedef struct _wfs_cim_physicalcu 
{ 
    LPSTR                    lpPhysicalPositionName; 
    CHAR                     cUnitID[5]; 
    ULONG                    ulCashInCount; 
    ULONG                    ulCount; 
    ULONG                    ulMaximum; 
    USHORT                   usPStatus; 
    BOOL                     bHardwareSensors; 
    LPSTR                    lpszExtra; 
    ULONG                    ulInitialCount; 
    ULONG                    ulDispensedCount; 
    ULONG                    ulPresentedCount; 
    ULONG                    ulRetractedCount; 
    ULONG                    ulRejectCount; 
} WFSCIMPHCU, *LPWFSCIMPHCU; 
 
typedef struct _wfs_cim_note_number 
{ 
    USHORT                   usNoteID; 
    ULONG                    ulCount; 
} WFSCIMNOTENUMBER, *LPWFSCIMNOTENUMBER; 
 
typedef struct _wfs_cim_note_number_list 
{ 
    USHORT                   usNumOfNoteNumbers; 
    LPWFSCIMNOTENUMBER       *lppNoteNumber; 
} WFSCIMNOTENUMBERLIST, *LPWFSCIMNOTENUMBERLIST; 
 
typedef struct _wfs_cim_cash_in 
{ 
    USHORT                   usNumber; 
    DWORD                    fwType; 
    DWORD                    fwItemType; 
    CHAR                     cUnitID[5]; 
    CHAR                     cCurrencyID[3]; 
    ULONG                    ulValues; 
    ULONG                    ulCashInCount; 
    ULONG                    ulCount; 
    ULONG                    ulMaximum; 
    USHORT                   usStatus; 
    BOOL                     bAppLock; 
    LPWFSCIMNOTENUMBERLIST   lpNoteNumberList; 
    USHORT                   usNumPhysicalCUs; 
    LPWFSCIMPHCU             *lppPhysical; 
    LPSTR                    lpszExtra; 
    LPUSHORT                 lpusNoteIDs; 
    WORD                     usCDMType; 
    LPSTR                    lpszCashUnitName; 
    ULONG                    ulInitialCount; 



CWA 16926-15:2020 (E) 

202 

    ULONG                    ulDispensedCount; 
    ULONG                    ulPresentedCount; 
    ULONG                    ulRetractedCount; 
    ULONG                    ulRejectCount; 
    ULONG                    ulMinimum; 
} WFSCIMCASHIN, *LPWFSCIMCASHIN; 
 
typedef struct _wfs_cim_cash_info 
{ 
    USHORT                   usCount; 
    LPWFSCIMCASHIN           *lppCashIn; 
} WFSCIMCASHINFO, *LPWFSCIMCASHINFO; 
 
typedef struct _wfs_cim_teller_info 
{ 
    USHORT                   usTellerID; 
    CHAR                     cCurrencyID[3]; 
} WFSCIMTELLERINFO, *LPWFSCIMTELLERINFO; 
 
typedef struct _wfs_cim_teller_totals 
{ 
   CHAR                      cCurrencyID[3]; 
   ULONG                     ulItemsReceived; 
   ULONG                     ulItemsDispensed; 
   ULONG                     ulCoinsReceived; 
   ULONG                     ulCoinsDispensed; 
   ULONG                     ulCashBoxReceived; 
   ULONG                     ulCashBoxDispensed; 
} WFSCIMTELLERTOTALS, *LPWFSCIMTELLERTOTALS; 
 
typedef struct _wfs_cim_teller_details 
{ 
    USHORT                   usTellerID; 
    WORD                     fwInputPosition; 
    WORD                     fwOutputPosition; 
    LPWFSCIMTELLERTOTALS     *lppTellerTotals; 
} WFSCIMTELLERDETAILS, *LPWFSCIMTELLERDETAILS; 
 
typedef struct _wfs_cim_currency_exp 
{ 
    CHAR                     cCurrencyID[3]; 
    SHORT                    sExponent; 
} WFSCIMCURRENCYEXP, *LPWFSCIMCURRENCYEXP; 
 
 
typedef struct _wfs_cim_note_type 
{ 
    USHORT                   usNoteID; 
    CHAR                     cCurrencyID[3]; 
    ULONG                    ulValues; 
    USHORT                   usRelease; 
    BOOL                     bConfigured; 
} WFSCIMNOTETYPE, *LPWFSCIMNOTETYPE; 
 
typedef struct _wfs_cim_note_type_list 
{ 
    USHORT                   usNumOfNoteTypes; 
    LPWFSCIMNOTETYPE         *lppNoteTypes; 
} WFSCIMNOTETYPELIST, *LPWFSCIMNOTETYPELIST; 
 
typedef struct _wfs_cim_cash_in_status 
{ 
    WORD                     wStatus; 
    USHORT                   usNumOfRefused; 
    LPWFSCIMNOTENUMBERLIST   lpNoteNumberList; 
    LPSTR                    lpszExtra; 
    LPWFSCIMNOTENUMBERLIST   lpUnfitNoteNumberList; 
} WFSCIMCASHINSTATUS, *LPWFSCIMCASHINSTATUS; 
 
typedef struct _wfs_cim_P6_info 



CWA 16926-15:2020 (E) 

203 

{ 
    USHORT                   usLevel; 
    LPWFSCIMNOTENUMBERLIST   lpNoteNumberList; 
    USHORT                   usNumOfSignatures; 
} WFSCIMP6INFO, *LPWFSCIMP6INFO; 
 
typedef struct _wfs_cim_get_P6_signature 
{ 
    USHORT                   usLevel; 
    USHORT                   usIndex; 
} WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE; 
 
typedef struct _wfs_cim_P6_signature 
{ 
    USHORT                   usNoteId; 
    ULONG                    ulLength; 
    DWORD                    dwOrientation; 
    LPVOID                   lpSignature; 
} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE; 
 
typedef struct _wfs_cim_get_item_info 
{ 
    USHORT                   usLevel; 
    USHORT                   usIndex; 
    DWORD                    dwItemInfoType; 
} WFSCIMGETITEMINFO, *LPWFSCIMGETITEMINFO; 
 
typedef struct _wfs_cim_get_all_items_info 
{ 
    USHORT                   usLevel; 
} WFSCIMGETALLITEMSINFO, *LPWFSCIMGETALLITEMSINFO; 
 
typedef struct _wfs_cim_item_info_all 
{ 
    USHORT                   usLevel; 
    USHORT                   usNoteID; 
    LPWSTR                   lpszSerialNumber; 
    DWORD                    dwOrientation; 
    LPSTR                    lpszP6SignatureFileName; 
    LPSTR                    lpszImageFileName; 
    WORD                     wOnBlacklist; 
    WORD                     wItemLocation; 
    USHORT                   usNumber; 
    WORD                     wOnClassificationList;  
    WORD                     wItemDeviceLocation; 
} WFSCIMITEMINFOALL, *LPWFSCIMITEMINFOALL; 
 
typedef struct _wfs_cim_all_items_info 
{ 
    USHORT                   usCount; 
    LPWFSCIMITEMINFOALL      *lppItemsList; 
} WFSCIMALLITEMSINFO, *LPWFSCIMALLITEMSINFO; 
 
typedef struct _wfs_cim_item_info 
{ 
    USHORT                   usNoteID; 
    LPWSTR                   lpszSerialNumber; 
    LPWFSCIMP6SIGNATURE      lpP6Signature; 
    LPSTR                    lpszImageFileName; 
} WFSCIMITEMINFO, *LPWFSCIMITEMINFO; 
 
typedef struct _wfs_cim_item_info_summary 
{ 
    USHORT                   usLevel; 
    USHORT                   usNumOfItems; 
} WFSCIMITEMINFOSUMMARY, *LPWFSCIMITEMINFOSUMMARY; 
 
typedef struct _wfs_cim_pos_caps 
{ 
    WORD                     fwPosition; 



CWA 16926-15:2020 (E) 

204 

    WORD                     fwUsage; 
    BOOL                     bShutterControl; 
    BOOL                     bItemsTakenSensor; 
    BOOL                     bItemsInsertedSensor; 
    WORD                     fwRetractAreas; 
    LPSTR                    lpszExtra; 
    BOOL                     bPresentControl; 
    BOOL                     bPreparePresent; 
} WFSCIMPOSCAPS, *LPWFSCIMPOSCAPS; 
 
typedef struct _wfs_cim_pos_capabilities 
{ 
    LPWFSCIMPOSCAPS          *lppPosCapabilities; 
} WFSCIMPOSCAPABILITIES, *LPWFSCIMPOSCAPABILITIES; 
 
typedef struct _wfs_cim_replenish_info 
{ 
    USHORT                   usNumberSource; 
} WFSCIMREPINFO, *LPWFSCIMREPINFO; 
 
typedef struct _wfs_cim_replenish_info_target 
{ 
    USHORT                   usNumberTarget; 
} WFSCIMREPINFOTARGET, *LPWFSCIMREPINFOTARGET; 
 
typedef struct _wfs_cim_replenish_info_result 
{ 
    LPWFSCIMREPINFOTARGET    *lppReplenishTargets; 
} WFSCIMREPINFORES, *LPWFSCIMREPINFORES; 
 
typedef struct _wfs_cim_cash_unit_lock 
{ 
    LPSTR                    lpPhysicalPositionName; 
    WORD                     wCashUnitLockStatus; 
} WFSCIMCASHUNITLOCK, *LPWFSCIMCASHUNITLOCK; 
 
typedef struct _wfs_cim_device_lock_status 
{ 
    WORD                     wDeviceLockStatus; 
    LPWFSCIMCASHUNITLOCK     *lppCashUnitLock; 
} WFSCIMDEVICELOCKSTATUS, *LPWFSCIMDEVICELOCKSTATUS; 
 
typedef struct _wfs_cim_physicalcu_capabilities 
{ 
    LPSTR                     lpPhysicalPositionName; 
    ULONG                     ulMaximum; 
    BOOL                      bHardwareSensors; 
    LPSTR                     lpszExtra; 
} WFSCIMPHCUCAPABILITIES, *LPWFSCIMPHCUCAPABILITIES; 
 
typedef struct _wfs_cim_cash_unit_capabilities 
{ 
    USHORT                   usNumber; 
    USHORT                   usNumPhysicalCUs; 
    LPWFSCIMPHCUCAPABILITIES *lppPhysical; 
    BOOL                     bRetractNoteCountThresholds; 
    LPSTR                    lpszExtra; 
    DWORD                    fwPossibleItemTypes; 
} WFSCIMCASHUNITCAPABILITIES, *LPWFSCIMCASHUNITCAPABILITIES; 
 
typedef struct _wfs_cim_cash_caps 
{ 
    USHORT                       usCount; 
    LPWFSCIMCASHUNITCAPABILITIES *lppCashUnitCaps; 
} WFSCIMCASHCAPABILITIES, *LPWFSCIMCASHCAPABILITIES; 
 
typedef struct _wfs_cim_deplete_info 
{ 
    USHORT                   usNumberTarget; 
} WFSCIMDEPINFO, *LPWFSCIMDEPINFO; 



CWA 16926-15:2020 (E) 

205 

 
typedef struct _wfs_cim_deplete_info_source 
{ 
    USHORT                   usNumberSource; 
} WFSCIMDEPINFOSOURCE, *LPWFSCIMDEPINFOSOURCE; 
 
typedef struct _wfs_cim_deplete_info_result 
{ 
    LPWFSCIMDEPINFOSOURCE    *lppDepleteSources; 
} WFSCIMDEPINFORES, *LPWFSCIMDEPINFORES; 
 
typedef struct _wfs_cim_phcu_count_status 
{ 
    LPSTR                    lpPhysicalPositionName; 
    USHORT                   usAccuracy; 
    LPSTR                    lpszExtra; 
} WFSCIMPHCUCOUNTSTATUS, *LPWFSCIMPHCUCOUNTSTATUS; 
 
typedef struct _wfs_cim_cash_unit_count_status 
{ 
    USHORT                   usNumber; 
    USHORT                   usAccuracy; 
    USHORT                   usNumPhysicalCUs; 
    LPWFSCIMPHCUCOUNTSTATUS  *lppPhCashUnitStatus; 
    LPSTR                    lpszExtra; 
} WFSCIMCASHUNITCOUNTSTATUS, *LPWFSCIMCASHUNITCOUNTSTATUS; 
 
typedef struct _wfs_cim_cash_count_status 
{ 
    USHORT                      usCount; 
    LPWFSCIMCASHUNITCOUNTSTATUS *lppCashUnitStatus; 
} WFSCIMCASHCOUNTSTATUS, *LPWFSCIMCASHCOUNTSTATUS; 
 
typedef struct _wfs_cim_present_status 
{ 
    WORD                     fwPosition; 
    WORD                     wPresentState; 
    WORD                     wAdditionalBunches; 
    USHORT                   usBunchesRemaining; 
    LPWFSCIMNOTENUMBERLIST   lpReturnedItems; 
    LPWFSCIMNOTENUMBERLIST   lpTotalReturnedItems; 
    LPWFSCIMNOTENUMBERLIST   lpRemainingItems; 
    LPSTR                    lpszExtra; 
} WFSCIMPRESENTSTATUS, *LPWFSCIMPRESENTSTATUS; 
 
/*=================================================================*/ 
/* CIM Execute Command Structures */ 
/*=================================================================*/ 
 
typedef struct _wfs_cim_cash_in_start 
{ 
    USHORT                   usTellerID; 
    BOOL                     bUseRecycleUnits; 
    WORD                     fwOutputPosition; 
    WORD                     fwInputPosition; 
} WFSCIMCASHINSTART, *LPWFSCIMCASHINSTART; 
 
typedef struct _wfs_cim_retract 
{ 
    WORD                     fwOutputPosition; 
    USHORT                   usRetractArea; 
    USHORT                   usIndex; 
} WFSCIMRETRACT, *LPWFSCIMRETRACT; 
 
typedef struct _wfs_cim_teller_update 
{ 
    USHORT                   usAction; 
    LPWFSCIMTELLERDETAILS    lpTellerDetails; 
} WFSCIMTELLERUPDATE, *LPWFSCIMTELLERUPDATE; 
 



CWA 16926-15:2020 (E) 

206 

typedef struct _wfs_cim_output 
{ 
    USHORT                   usLogicalNumber; 
    WORD                     fwPosition; 
    USHORT                   usNumber; 
} WFSCIMOUTPUT, *LPWFSCIMOUTPUT; 
 
typedef struct _wfs_cim_start_ex 
{ 
    WORD                     fwExchangeType; 
    USHORT                   usTellerID; 
    USHORT                   usCount; 
    LPUSHORT                 lpusCUNumList; 
    LPWFSCIMOUTPUT           lpOutput; 
} WFSCIMSTARTEX, *LPWFSCIMSTARTEX; 
 
typedef struct _wfs_cim_itemposition 
{ 
    USHORT                   usNumber; 
    LPWFSCIMRETRACT          lpRetractArea; 
    WORD                     fwOutputPosition; 
} WFSCIMITEMPOSITION, *LPWFSCIMITEMPOSITION; 
 
typedef struct _wfs_cim_cash_in_type 
{ 
    USHORT                   usNumber; 
    DWORD                    dwType; 
    LPUSHORT                 lpusNoteIDs; 
} WFSCIMCASHINTYPE, *LPWFSCIMCASHINTYPE; 
 
typedef struct _wfs_cim_set_guidlight 
{ 
    WORD                     wGuidLight; 
    DWORD                    dwCommand; 
} WFSCIMSETGUIDLIGHT, *LPWFSCIMSETGUIDLIGHT; 
 
typedef struct _wfs_cim_configure_note_reader 
{ 
    BOOL                     bLoadAlways; 
} WFSCIMCONFIGURENOTEREADER, *LPWFSCIMCONFIGURENOTEREADER; 
 
typedef struct _wfs_cim_configure_note_reader_out 
{ 
    BOOL                     bRebootNecessary; 
} WFSCIMCONFIGURENOTEREADEROUT, *LPWFSCIMCONFIGURENOTEREADEROUT; 
 
typedef struct _wfs_cim_P6_compare_signature 
{ 
   LPWFSCIMP6SIGNATURE       *lppP6ReferenceSignatures; 
   LPWFSCIMP6SIGNATURE       *lppP6Signatures; 
} WFSCIMP6COMPARESIGNATURE, *LPWFSCIMP6COMPARESIGNATURE; 
 
typedef struct _wfs_cim_P6_signatures_index 
{ 
    USHORT                   usIndex; 
    USHORT                   usConfidenceLevel; 
    ULONG                    ulLength; 
    LPVOID                   lpComparisonData; 
} WFSCIMP6SIGNATURESINDEX, *LPWFSCIMP6SIGNATURESINDEX; 
 
typedef struct _wfs_cim_P6_compare_result 
{ 
   USHORT                    usCount; 
   LPWFSCIMP6SIGNATURESINDEX *lppP6SignaturesIndex; 
} WFSCIMP6COMPARERESULT, *LPWFSCIMP6COMPARERESULT; 
 
typedef struct _wfs_cim_power_save_control 
{ 
    USHORT                   usMaxPowerSaveRecoveryTime; 
} WFSCIMPOWERSAVECONTROL, *LPWFSCIMPOWERSAVECONTROL; 



CWA 16926-15:2020 (E) 

207 

 
typedef struct _wfs_cim_replenish_target 
{ 
    USHORT                   usNumberTarget; 
    ULONG                    ulNumberOfItemsToMove; 
    BOOL                     bRemoveAll; 
} WFSCIMREPTARGET, *LPWFSCIMREPTARGET; 
 
typedef struct _wfs_cim_replenish 
{ 
    USHORT                   usNumberSource; 
    LPWFSCIMREPTARGET        *lppReplenishTargets; 
} WFSCIMREP, *LPWFSCIMREP; 
 
typedef struct _wfs_cim_replenish_target_result 
{ 
    USHORT                   usNumberTarget; 
    USHORT                   usNoteID; 
    ULONG                    ulNumberOfItemsReceived; 
} WFSCIMREPTARGETRES, *LPWFSCIMREPTARGETRES; 
 
typedef struct _wfs_cim_replenish_result 
{ 
    ULONG                    ulNumberOfItemsRemoved; 
    ULONG                    ulNumberOfItemsRejected; 
    LPWFSCIMREPTARGETRES     *lppReplenishTargetResults; 
} WFSCIMREPRES, *LPWFSCIMREPRES; 
 
typedef struct _wfs_cim_amount_limit 
{ 
    CHAR                     cCurrencyID[3]; 
    ULONG                    ulAmount; 
} WFSCIMAMOUNTLIMIT, *LPWFSCIMAMOUNTLIMIT; 
 
typedef struct _wfs_cim_cash_in_limit 
{ 
    ULONG                    ulTotalItemsLimit; 
    LPWFSCIMAMOUNTLIMIT      lpAmountLimit; 
} WFSCIMCASHINLIMIT, *LPWFSCIMCASHINLIMIT; 
 
typedef struct _wfs_cim_count 
{ 
    USHORT                   usCount; 
    LPUSHORT                 lpusCUNumList; 
} WFSCIMCOUNT, *LPWFSCIMCOUNT; 
 
typedef struct _wfs_cim_unit_lock_control 
{ 
    LPSTR                    lpPhysicalPositionName; 
    WORD                     wUnitAction; 
} WFSCIMUNITLOCKCONTROL, *LPWFSCIMUNITLOCKCONTROL; 
 
typedef struct _wfs_cim_device_lock_control 
{ 
    WORD                     wDeviceAction; 
    WORD                     wCashUnitAction; 
    LPWFSCIMUNITLOCKCONTROL  *lppUnitLockControl; 
} WFSCIMDEVICELOCKCONTROL, *LPWFSCIMDEVICELOCKCONTROL; 
 
typedef struct _wfs_cim_setmode 
{ 
    WORD                     wMixedMode; 
} WFSCIMSETMODE, *LPWFSCIMSETMODE; 
 
typedef struct _wfs_cim_present 
{ 
    WORD                     fwPosition; 
} WFSCIMPRESENT, *LPWFSCIMPRESENT; 
 
typedef struct _wfs_cim_deplete_source 



CWA 16926-15:2020 (E) 

208 

{ 
    USHORT                   usNumberSource; 
    ULONG                    ulNumberOfItemsToMove; 
    BOOL                     bRemoveAll; 
} WFSCIMDEPSOURCE, *LPWFSCIMDEPSOURCE; 
 
typedef struct _wfs_cim_deplete 
{ 
    LPWFSCIMDEPSOURCE        *lppDepleteSources; 
    USHORT                   usNumberTarget; 
} WFSCIMDEP, *LPWFSCIMDEP; 
 
typedef struct _wfs_cim_deplete_source_result 
{ 
    USHORT                   usNumberSource; 
    USHORT                   usNoteID; 
    ULONG                    ulNumberOfItemsRemoved; 
} WFSCIMDEPSOURCERES, *LPWFSCIMDEPSOURCERES; 
 
typedef struct _wfs_cim_deplete_result 
{ 
    ULONG                    ulNumberOfItemsReceived; 
    ULONG                    ulNumberOfItemsRejected; 
    LPWFSCIMDEPSOURCERES     *lppDepleteSourceResults; 
} WFSCIMDEPRES, *LPWFSCIMDEPRES; 
 
typedef struct _wfs_cim_blacklist_element 
{ 
    LPWSTR                   lpszSerialNumber; 
    CHAR                     cCurrencyID[3]; 
    ULONG                    ulValue; 
} WFSCIMBLACKLISTELEMENT, *LPWFSCIMBLACKLISTELEMENT; 
 
typedef struct _wfs_cim_blacklist 
{ 
    LPWSTR                   lpszVersion; 
    USHORT                   usCount; 
    LPWFSCIMBLACKLISTELEMENT *lppBlacklistElements; 
} WFSCIMBLACKLIST, *LPWFSCIMBLACKLIST; 
 
typedef struct _wfs_cim_synchronize_command 
{ 
    DWORD                    dwCommand; 
    LPVOID                   lpCmdData; 
} WFSCIMSYNCHRONIZECOMMAND, *LPWFSCIMSYNCHRONIZECOMMAND; 
 
typedef struct _wfs_cim_classification_element 
{ 
    LPWSTR                   lpszSerialNumber; 
    CHAR                     cCurrencyID[3]; 
    ULONG                    ulValue; 
    USHORT                   usLevel; 
    BOOL                     bUnfit; 
} WFSCIMCLASSIFICATIONELEMENT, *LPWFSCIMCLASSIFICATIONELEMENT; 
 
typedef struct _wfs_cim_classification_list 
{ 
    LPWSTR                   lpszVersion; 
    USHORT                   usCount; 
    LPWFSCIMCLASSIFICATIONELEMENT *lppClassificationElements; 
} WFSCIMCLASSIFICATIONLIST, *LPWFSCIMCLASSIFICATIONLIST; 
 
typedef struct _wfs_cim_moveitems 
{ 
    WORD                     fwPosition; 
} WFSCIMMOVEITEMS, *LPWFSCIMMOVEITEMS; 
 
/*=================================================================*/ 
/* CIM Message Structures */ 
/*=================================================================*/ 



CWA 16926-15:2020 (E) 

209 

 
typedef struct _wfs_cim_cu_error 
{ 
    WORD                     wFailure; 
    LPWFSCIMCASHIN           lpCashUnit; 
} WFSCIMCUERROR, *LPWFSCIMCUERROR; 
 
typedef struct _wfs_cim_counts_changed 
{ 
    USHORT                   usCount; 
    LPUSHORT                 lpusCUNumList; 
} WFSCIMCOUNTSCHANGED, *LPWFSCIMCOUNTSCHANGED; 
 
typedef struct _wfs_cim_position_info 
{ 
    WORD                     wPosition; 
    WORD                     wAdditionalBunches; 
    USHORT                   usBunchesRemaining; 
} WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO; 
 
typedef struct _wfs_cim_device_position 
{ 
    WORD                     wPosition; 
} WFSCIMDEVICEPOSITION, *LPWFSCIMDEVICEPOSITION; 
 
typedef struct _wfs_cim_power_save_change 
{ 
    USHORT                   usPowerSaveRecoveryTime; 
} WFSCIMPOWERSAVECHANGE, *LPWFSCIMPOWERSAVECHANGE; 
 
typedef struct _wfs_cim_incomplete_replenish 
{ 
    LPWFSCIMREPRES           lpReplenish; 
} WFSCIMINCOMPLETEREPLENISH, *LPWFSCIMINCOMPLETEREPLENISH; 
 
typedef struct _wfs_cim_incomplete_deplete 
{ 
    LPWFSCIMDEPRES           lpDeplete; 
} WFSCIMINCOMPLETEDEPLETE, *LPWFSCIMINCOMPLETEDEPLETE; 
 
typedef struct _wfs_cim_shutter_status_changed 
{ 
    WORD                     fwPosition; 
    WORD                     fwShutter; 
} WFSCIMSHUTTERSTATUSCHANGED, *LPWFSCIMSHUTTERSTATUSCHANGED; 
 
/* restore alignment */ 
#pragma pack (pop) 
 
#ifdef __cplusplus 
}       /*extern "C"*/ 
#endif 
 
#endif  /* __INC_XFSCIM__H */ 


	1. Introduction
	1.1 Background to Release 3.40
	1.2 XFS Service-Specific Programming

	2. Cash-In Module
	3. References
	4. Note Classification
	5. Info Commands
	5.1 WFS_INF_CIM_STATUS
	5.2 WFS_INF_CIM_CAPABILITIES
	5.3 WFS_INF_CIM_CASH_UNIT_INFO
	5.4 WFS_INF_CIM_TELLER_INFO
	5.5 WFS_INF_CIM_CURRENCY_EXP
	5.6 WFS_INF_CIM_BANKNOTE_TYPES
	5.7 WFS_INF_CIM_CASH_IN_STATUS
	5.8 WFS_INF_CIM_GET_P6_INFO
	5.9 WFS_INF_CIM_GET_P6_SIGNATURE
	5.10 WFS_INF_CIM_GET_ITEM_INFO
	5.11 WFS_INF_CIM_POSITION_CAPABILITIES
	5.12 WFS_INF_CIM_REPLENISH_TARGET
	5.13 WFS_INF_CIM_DEVICELOCK_STATUS
	5.14 WFS_INF_CIM_CASH_UNIT_CAPABILITIES
	5.15 WFS_INF_CIM_DEPLETE_SOURCE
	5.16 WFS_INF_CIM_GET_ALL_ITEMS_INFO
	5.17 WFS_INF_CIM_GET_BLACKLIST
	5.18 WFS_INF_CIM_GET_CLASSIFICATION_LIST
	5.19 WFS_INF_CIM_CASH_UNIT_COUNT_STATUS
	5.20 WFS_INF_CIM_PRESENT_STATUS

	6. Execute Commands
	6.1 WFS_CMD_CIM_CASH_IN_START
	6.2 WFS_CMD_CIM_CASH_IN
	6.3 WFS_CMD_CIM_CASH_IN_END
	6.4 WFS_CMD_CIM_CASH_IN_ROLLBACK
	6.5 WFS_CMD_CIM_RETRACT
	6.6 WFS_CMD_CIM_OPEN_SHUTTER
	6.7 WFS_CMD_CIM_CLOSE_SHUTTER
	6.8 WFS_CMD_CIM_SET_TELLER_INFO
	6.9 WFS_CMD_CIM_SET_CASH_UNIT_INFO
	6.10 WFS_CMD_CIM_START_EXCHANGE
	6.11 WFS_CMD_CIM_END_EXCHANGE
	6.12 WFS_CMD_CIM_OPEN_SAFE_DOOR
	6.13 WFS_CMD_CIM_RESET
	6.14 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS
	6.15 WFS_CMD_CIM_CONFIGURE_NOTETYPES
	6.16 WFS_CMD_CIM_CREATE_P6_SIGNATURE
	6.17 WFS_CMD_CIM_SET_GUIDANCE_LIGHT
	6.18 WFS_CMD_CIM_CONFIGURE_NOTE_READER
	6.19 WFS_CMD_CIM_COMPARE_P6_SIGNATURE
	6.20 WFS_CMD_CIM_POWER_SAVE_CONTROL
	6.21 WFS_CMD_CIM_REPLENISH
	6.22 WFS_CMD_CIM_SET_CASH_IN_LIMIT
	6.23 WFS_CMD_CIM_CASH_UNIT_COUNT
	6.24 WFS_CMD_CIM_DEVICE_LOCK_CONTROL
	6.25 WFS_CMD_CIM_SET_MODE
	6.26 WFS_CMD_CIM_PRESENT_MEDIA
	6.27 WFS_CMD_CIM_DEPLETE
	6.28 WFS_CMD_CIM_SET_BLACKLIST
	6.29 WFS_CMD_CIM_SYNCHRONIZE_COMMAND
	6.30 WFS_CMD_CIM_SET_CLASSIFICATION_LIST
	6.31 WFS_CMD_CIM_PREPARE_PRESENT

	7. Events
	7.1 WFS_SRVE_CIM_SAFEDOOROPEN
	7.2 WFS_SRVE_CIM_SAFEDOORCLOSED
	7.3 WFS_USRE_CIM_CASHUNITTHRESHOLD
	7.4 WFS_SRVE_CIM_CASHUNITINFOCHANGED
	7.5 WFS_SRVE_CIM_TELLERINFOCHANGED
	7.6 WFS_EXEE_CIM_CASHUNITERROR
	7.7 WFS_SRVE_CIM_ITEMSTAKEN
	7.8 WFS_SRVE_CIM_COUNTS_CHANGED
	7.9 WFS_EXEE_CIM_INPUTREFUSE
	7.10 WFS_SRVE_CIM_ITEMSPRESENTED
	7.11 WFS_SRVE_CIM_ITEMSINSERTED
	7.12 WFS_EXEE_CIM_NOTEERROR
	7.13 WFS_EXEE_CIM_SUBCASHIN
	7.14 WFS_SRVE_CIM_MEDIADETECTED
	7.15 WFS_EXEE_CIM_INPUT_P6
	7.16 WFS_EXEE_CIM_INFO_AVAILABLE
	7.17 WFS_EXEE_CIM_INSERTITEMS
	7.18 WFS_SRVE_CIM_DEVICEPOSITION
	7.19 WFS_SRVE_CIM_POWER_SAVE_CHANGE
	7.20 WFS_EXEE_CIM_INCOMPLETEREPLENISH
	7.21 WFS_EXEE_CIM_INCOMPLETEDEPLETE
	7.22 WFS_SRVE_CIM_SHUTTERSTATUSCHANGED
	7.23 WFS_SRVE_CIM_COUNTACCURACYCHANGED

	8. ATM Cash-In Transaction Flow - Application Guidelines
	8.1 OK Transaction (Explicit Shutter Control)
	8.2 Cancellation by Customer (Explicit Shutter Control)
	8.3 Stacker Becomes Full (Explicit Shutter Control)
	8.4 Bill Recognition Error (Explicit Shutter Control)
	8.5 OK Transaction (Explicit Shutter Control) - Level 2 and 3 Note classification Supported
	8.6 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused Notes (Explicit Shutter Control)
	8.7 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (Explicit Shutter Control)
	8.8 OK Transaction (Implicit Shutter Control)
	8.9 Customer Initiates Returning Of Previously Recognized Items (Implicit Shutter Control)
	8.10 OK Transaction - (Implicit Shutter Control and WFS_EXEE_CIM_SUBCASHIN event supported)
	8.11  Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN (Implicit Shutter Control and Implicit Present Control)
	8.12 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (Implicit Shutter Control and Implicit Present Control)
	8.13 Retracting Items When Multiple Bunches Are Returned During WFS_CMD_CIM_CASH_IN (Implicit Shutter Control and Implicit Present Control)
	8.14 Bill Recognition Error (WFS_CMD_CIM_PRESENT_MEDIA Command Supported)
	8.15 Cancellation by Customer (Implicit Shutter Control and WFS_CMD_CIM_PRESENT_MEDIA Command Supported)
	8.16 Multiple Bunch Timeout Handling
	8.16.1 No Items Inserted
	8.16.2 First Bunch Not Taken
	8.16.3 Last Bunch Taken

	8.17 Exchange using DEPOSITINTO (Implicit Shutter Control)
	8.18 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused Notes (using WFS_CMD_CIM_PREPARE_PRESENT)
	8.19 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (using WFS_CMD_CIM_PREPARE_PRESENT)

	9. ATM Mixed Media Transaction Flow – Application Guidelines
	9.1 Mixed Media OK Transaction
	9.2 Mixed Media Cancellation by Customer
	9.3 Mixed Media Cancellation by Customer on Cash Part Only
	9.4 Mixed Media Multiple Refused Items

	10. Rules for Cash Unit Exchange
	11. Events Associated with Cash Unit Status Changes
	11.1 One Physical Cash Unit Goes HIGH
	11.2 Last Physical Cash Unit Goes HIGH
	11.3 One Physical Cash Unit Goes INOP
	11.4 Last Physical Cash Unit Goes FULL

	12. C - Header file

